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Abstract

We give an example of a smooth function f : R2*? — R, which is not polyconvex
and that has the property that its restriction to any ball B C R?**? of radius one can
be extended to a smooth polyconvex function fg : R2*2 — R. In particular, it implies
that there exists no ‘local condition’ which is necessary and sufficient for polyconvexity
of functions g : R**"™ — R, where n, m > 2. We also briefly discuss connections with
quasiconvexity.
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The class of polyconvex functions was introduced by Ball in [3] following earlier work by
Morrey [9]. We recall that a function f : R**™ — R is polyconvex if f(X) can be written
as a convex function of the minors of X. For example, if m = n = 2, then f is polyconvex
if there exists a convex function F : R2*? x R — R, such that f(X) = F(X,detX)
(detX denotes the determinant of the matrix X). The main reason for the interest in
polyconvexity stems from the fact that, at present, it is the only known tractable condition,
which is reasonably flexible (e.g., it is compatible with natural requirements for stored
energy functions in nonlinear elasticity) and which implies quasiconvexity. The notion of
quasiconvexity is due to Morrey [9] and is the natural substitute for convexity in the multi-
dimensional calculus of variations. The condition of polyconvexity is strictly stronger than
the condition of quasiconvexity (see e.g. [1]). We refer to the monograph of Dacorogna [4]
and the lecture notes by Miiller [10] for the definitions and an introduction to the various
convexity notions studied in the multi-dimensional calculus of variations.

The principal result of this paper is contained in the following theorem.

Theorem 1 Assume that n, m > 2. There exists a non-polyconvexr smooth function
f o R¥™ — R such that its restriction to any ball B C R"™*™ of radius one can be
extended to a smooth polyconvex function fp: R"™ — R. Ifn >3, m > 2, then f can
be taken to be non-quasiconvex.

Remark. For m > 2, n > 6 Sverdk (see [10]) has given an example of a non-quasiconvex
smooth function f : R"*™ — R, which has the property that it agrees with polyconvex
functions on balls of radius 1. The result stated in Theorem 1 was announced in [5].

As an immediate consequence we deduce that there exists no ‘local condition’, which
is equivalent to polyconvexity. To formulate this statement precisely we introduce the
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following notation. Denote by C>° = C*°(R"*") the class of smooth functions f : R**" —
R and by F = F(R"*™) the class of all functions f : R**™ — R U {zo0}.

Definition. Let r > 0 and let C : C*° — F be a mapping. We say that C is r-local if for
all f, g € C*® and all Xy € R™™ we have that if f(X) = g(X) for | X — Xo| < 7, then
C(f)(Xo) = C(g)(Xo).

Notice that if we define the mapping C,. : C*° — F as
Cre(f)(X) =inf {D?’f(X)(a®b,a®b) : a e K", be R"}, X € R™"™,

then f is rank-1 convex if and only if Cy..(f) = 0. Furthermore, the mapping C,. is r-local
for any r > 0.

Corollary 2 Let n, m > 2 and r > 0. There does not exist an r-local mapping C : C*° —
F with the property that f is polyconvex if and only if C(f) = 0.

The proofs of these results are based on a similar idea as the one used in [5]. This idea
is reminiscent of an idea used by Tartar in [14].

The polyconvex envelope, fP¢, of a function f : R?*? — R by definition is the extended
real-valued function defined as

J7(X) = sup{g(x) : g polyconvex, g < f}.
We make use of the following two results.

Proposition 3 Let f : R?*? — R be a function and let fP¢ denote the polyconvex envelope
of f, i.e. the largest polyconvex function below f. Then

6 6 6
X)) =inf $Y "4 (X)) 1 520, 5 =1,(X,detX) =Y £;(X;, detX;)
j=1 j=1 j=1
for X € R2*2,
Remark. We do not exclude the case where fP¢ = —oo. The proof can be found in [6]; it

can also be inferred from [4] Chap. 5.

Proposition 4 (Terpstra [15], Marcellini [8], Serre [11]) Let f : R2*2 — R be a rank-one
convez quadratic form. Then f is polyconvex, and therefore

f(X) = q(X) + adet X, (1)
where q is a positively semi-definite quadratic form and o € R,

Remark. If f satisfies a strict Legendre-Hadamard condition, i.e. there exists a positive
number ¢ > 0, such that
f(a®b) > claf*|bf’

for all a, b € R?, then the quadratic form ¢ in the decomposition (1) can be taken to be
positive definite (cf. [8]).



For a C?-function f : R?*2 — R we have by Taylor’s formula

FX+Y) = (X) + DFXOY + 3D f(X)(Y;Y) + R(X:Y),

where the remainder term R(X;Y) is given by
1
R(X;Y) = / (1 —t)(D*f(X +tY) — D*f(X))(Y;Y)dt.
0

For notational reasons it is convenient to introduce an auxiliary function, which essentially
is a continuity modulus for the second derivative of f. For each r € (0,00) define €, :
(0,00) — [0,00) as (the norm being the usual one for bilinear mappings)

Q. (t) =sup {|D*f(X +Y) = D*f(X)| : |X| <, [Y]|<t}.

Obviously, ©, is non-decreasing and continuous, and since D?f is uniformly continuous
on compact sets, 2,.(t) = 0 as t — 0". Furthermore we notice that if | X| < r, then

1
|R(X;Y)| < §Qr(|Y|)|Y|2 (2)
for all Y € R2%2,

Lemma 5 Let f : R?*? — R be a C?-function, such that D*f(X)(a ® b,a ®b) > 0 for all
a, b€ R% and | X| <r. Fore >0 we let § = (1/2)sup{t € (0,r) : € > Q.(t)}. Then there
exists a polyconvex function g : R?*? — R, such that

F(X) +elX[* = g(X) if |X] <. 3)

Remark. An example of a quasiconvex homogeneous quartic p : R?*? — R, which is not
polyconvex can be found in [1]. It is clear that p cannot be equal to a polyconvex function
in any neighbourhood of 0. Consequently, the term ‘e|X|?’ cannot be omitted in (3).

Proof. Put f-(X) = f(X) + ¢|X|? and define the function g = GP¢, where

_ f(X) if | X] <,
GX) = { Sup|y|<s (fs(Y) +Df (YN X-Y)+ %DQfg(Y)(X -Y X - Y))) otherwise.

Then obviously g is polyconvex and g(X) < f.(X) for |X| < d. We claim that g(X) =
fe(X) for | X| < 4. Fix X with |X| < ¢ and let 0 > 0. By Proposition 3 we can find a
convex combination » 7, ¢;X; of X with detX = > ", ¢;det X}, such that

9(X) +0 > ;G(X;).
j=1

From the definition of G we deduce,

9(X)+o0>

> 6805+ Y 15 (L0 + DA, - X) 4 SO, - XX, - X))

|X;1<6 | X >0



If we apply Taylor’s formula we see that the last sum equals

Y HR(X, X - X)+ )t <f(X) +Df(X)(X; — X) + %szE(X)(Xj - X, X, — X))
|X;1<8 j=1

and estimating this sum from below using (2) and the choice of § we get

9(X) 0> f(X) +5 3 HIGRE - 2%, = X)) de > £.00).
|X;1<0

This concludes the proof. O

Proof of Theorem 1. It suffices to prove the first assertion for the case m = n = 2. Let
h : R?*2 — R be a smooth function which is rank-1 convex, but not polyconvex (see
e.g. [2], [1] or [12]). Take for each s > 1 two auxiliary functions (s, & € C*°(R) verifying

1 ift<s
Cs(t)_{ 0 ift>s+1,

0 ift<s—1
55“)_{ 2 ift>s+1,

and & non-decreasing, convex and &/(¢) > 0 for t € (s —1,s+1). It is not difficult to see
that there exist s > 1 and k£ > 0, such that

h(X)Gs (1X1) + ks (1X])
is rank-1 convex, but not polyconvex. Further choose € > 0, such that
9(X) = h(X)C(1X]) + k& (1X]) + | X[

is not polyconvex. If R(X,Y) denotes the remainder term in the Taylor expansion of g
about X, then there exists a constant C' > 0

1 Yo
ROLY)| <3 [ (=07 3 [0%(X + V) de < Iy P
0 ‘ |73 Oé'

for all X, Y € R?*2. In the notation of Lemma 5 (see (2)) this corresponds to €2,.(t) < 2Ct,
t > 0, independently of r > 0.

Fix Xy € R?*2. We claim that there exists a polyconvex extension of g from the closed
ball | X — Xy| < ¢/(4C). Indeed, define gx,(X) = g(Xo + X) and notice that by Lemma
5 we may find a polyconvex function Gx,, such that g(X + Xy) = gx,(X) = Gx,(X) for
| X| < e/(4C), or equivalently, such that

9(X) = Gxo(X = Xo) for [X - Xo| < .

which proves the claim. Finally, we define the function f as

F(X) = o x), X e,



To obtain a function with smooth polyconvex extensions we mollify f using a non-negative
mollifier. This finishes the proof of the first assertion. To prove the second assertion we
notice that according to Sverak [13] there exists a polynomial p of degree four on R3*2,
which is rank-1 convex but not quasiconvex. We may now repeat the above construction
with h = p to obtain the conclusion. However, instead of using Proposition 4 we apply
a more general result of Terpstra [15] (see also Serre [11]). This result states that for
min{m,n} = 2 and for quadratic forms on R"*" rank-1 convexity is equivalent to poly-
convexity. We also need to use a higher dimensional variant of Proposition 3 that can be
deduced from [4], Chap. 5 (see also [6]). O
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