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Abstract

We discuss the time�discrete parametrized synchronous dynamics of

two coupled chaotic neuromodules� The symmetrical coupling of identi�

cal ��neuron modules results in periodic� quasiperiodic as well as chaotic

dynamics constrained to a synchronization manifold M � Stability of the

synchonized dynamics is calculated by transversal Lyapunov exponents�

In addition to synchronized attractors there often co�exist asynchronous

periodic� quasiperiodic or even chaotic atractors� Simulation results for

selected sets of parameters are presented�

�in� Proceedings of the ESANN���� Bruges� April ����	� to appear�
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� Introduction

Many recent articles investigated the feasibility of synchronized chaotic dynamics
in various kinds of coupled systems �cf� citations in ����� Most of this work
was stimulated mainly because of its importance for applications in the �eld of
secure communication� On the other hand� selective synchronization of neural
activity in biological brains was often suggested to be a fundamental temporal
mechanism for binding spatially distributed features into a coherent object �cf�
e�g� ����� Thus� studying the properties of synchronized dynamics in coupled
chaotic neuromodules may provide interesting models also for the description
of higher level information processing in biological and arti�cial neural systems�
Coupled neuromodules provide a large set of parameters �synaptic weights and
bias terms	stationary inputs�� which allow not only synchronization but also the
de
synchronization of module dynamics�

In the following we will use the term �synchronization� in the sense of com�

plete synchronization of dynamical systems
 i�e� we consider systems� the states
of which can coincide� while the dynamics in time remains� for instance� chaotic�
We also discern between global and local synchronization� Global synchroniza

tion means that for almost all initial conditions the orbits of the systems will
synchronize� Local synchronization refers to stable synchronized states
 i�e� small
perturbations will not de
synchronize the systems�

In this contribution we study the discrete synchronous dynamics of two cou

pled neuromodules� The modules are composed of standard analog neurons� a
self
inhibiting neuron coupled bi
directionally to an excitatory neuron� This setup
has larger parameter domains allowing for chaotic module dynamics ���� We de

rive conditions for the existence of synchronized dynamics in the coupled modules
and for the stability of synchronized states� Already in this simple coupled sys

tem we observe global as well as local synchronization of periodic� quasiperiodic
and chaotic dynamics� Synchronized orbits are not always stable
 this be read
from the transversal Lyapunov exponents introduced in section �� The boundary
between stable and unstable synchronization of chaos corresponds to switching
from a chaotic to a hyperchaotic ��� regime of the coupled system� Furthermore�
computer simulations demonstrate that various non
synchronous attractors may
co
exist with attractors constrained to the synchronization manifold M �

� Coupling chaotic neuromodules

We are considering a neuromodule as a discrete parametrized dynamical system
on an n
dimensional activity phase space Rn given by the map

ai�t� �� � �i �
nX

j��

wij ��aj�t�� � i � �� � � � � n � ���
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where ai � R
n denotes the activity of the i
th neuron� and �i � �i � Ii denotes

the sum of its �xed bias term �i and its stationary external input Ii� The output
oi � ��ai� of a unit is given by the standard sigmoidal transfer function ��x� ��
��� e�x���� x � R� and wij denotes the synaptic weight from unit j to unit i� A
neuromodule having a parameter set � � ��� w� for which the dynamics ��� has
at least one chaotic attractor will be called a chaotic neuromodule�

In the following we consider a chaotic neuromodule consisting of an excitatory
unit bi
directionally coupled to an inhibitory unit with self
connection ���� Its
�
dimensional discrete dynamics is given by a �ve parameter family of maps
f� � R

� � R
�� � � ���� w��� ��� w��� w��� � R�� de�ned by

a��t� �� �� �� � w�� ��a��t�� �

a��t� �� �� �� � w�� ��a��t�� � w�� ��a��t�� � ���

This module has a large parameter domain� where its dynamics has a global
chaotic attractor� but also the coexistence of periodic and chaotic attractors is
observed ����

Now� let A and B denote two neuromodules of the kind described above ���
with parameter sets �A � ��A� wA� and �B � ��B� wB�� The neural activities
of module A and B will be denoted ai� bi� i � �� �� respectively� Connections
going from module B to module A are given by �� � ��
coupling matrix wAB�
Correspondingly� connections from module A to module B are given as a matrix
wBA� We will discuss the special case of inhibitory couplings from the inhibitory
neuron of a module to the excitatory neuron of the other module� The resulting
�
dimensional dynamics F� of the coupled �
modules A and B is then given by

a��t� �� � �A� � wA
�� ��a��t�� � wAB

�� ��b��t�� �

a��t� �� � �A� � wA
�� ��a��t�� � wA

�� ��a��t�� �

b��t� �� � �B� � wB
�� ��b��t�� � wBA

�� ��a��t�� �

b��t� �� � �B� � wB
�� ��b��t�� � wB

�� ��b��t�� � ���

We are interested in the process of complete synchronization of module neu

rons� by which we mean that there exists a subset D � R

� such that �a�� b�� � D
implies

lim
t��

j a�t
 a��� b�t
 b�� j � � �

where �a�t
 a��� b�t
 b��� denotes the orbit under F� through the initial condition
�a�� b�� � R

�� Thus we will study the case where corresponding neurons of the
modules have identical activities during a process� The synchronization is called
global if D � R

�n� and local if D � R
� is a proper subset� Thus� a synchronized

state s of the coupled system is de�ned by s �� a � b � Rn� The synchronization
manifold M �� f�s� s� � R�n j s � a � bg of synchronized states corresponds to
a �
dimensional hyperplane M �� R

� � R
�� We introduce coordinates parallel
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and orthogonal to the synchronization manifold M as follows�

�i ��
�p
�
�ai � bi� � �i ��

�p
�
�ai � bi� � i � �� � � ���

For simplicity� we will now consider identical modules with parameter sets satis

fying

� �� �A � �B � w �� wA � wB � wcoup �� wBA � wAB � ���

Setting ��t�� � a�t�� � b�t��� � � for some t� we can immediately verify by
direct calculation that every orbit of F� through a synchronized state s � M is
constrained to M for all times�

Using ��� ��
coordinates given by ��� the dynamics �F� of two coupled identical
modules can be written as

�i�t� �� �
p
� � �i � �p

�

�X
j��

w�
ij �G���j�t�� �j�t�� � i � �� � � ���

�i�t� �� �
�p
�

�X
j��

w�ij �G���j�t�� �j�t�� � i � �� � � ���

where we have set

w� �� �w � wcoup� � w� �� �w � wcoup� � ���

and the functions G�� G� � R� � R are de�ned by

G��x� y� �� ��
�p
�
�x � y�� � ��

�p
�
�x� y�� � ���

G��x� y� �� ��
�p
�
�x � y��� ��

�p
�
�x� y�� � ����

Setting � � � and s � ��
p
� �� the synchronized �
dimensional dynamics F s

�

constrained to M is derived from equations ���� It reads

s��t� �� � �� � w�

�� � ��s��t�� � ����

s��t� �� � �� � w�

�� � ��s��t�� � w�

�� � ��s��t�� � ����

Thus� the synchronized dynamics F s
� will display the whole spectrum of dynam


ical behavior of a single isolated chaotic �
module with w�� in ��� replaced by
w�
�� � wA

�� � wAB
�� 
 i�e� it may have �xed point attractors as well as periodic or

chaotic ones ���� Although the persistence of synchronized dynamics for identical
modules is guaranteed by condition ���� it is not at all clear that the synchroniza

tion manifold M itself is asymptotically stable with respect to the dynamics �F��
Thus� a periodic or chaotic orbit in M may be an attractor for the synchronized
dynamics F s

� but not for the dynamics �F� of the coupled system�
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Figure �� Bifurcation diagram for the synchronous dynamics with respect to ��
�� inputs to the excitatory units�� For �xed parameter values see text�
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Figure �� Largest synchronization and transversal exponents corresponding to
the bifurcation diagram of �gure ��

To discuss the stability aspects of the synchronization manifold M it is e�ec

tive to consider the synchronization exponents �si and the transversal exponents

��i � i � �� � for the synchronized dynamics ����� They are derived from the
linearization D �F��s� of �F� around synchronized states s�t��

D �F��s� �
�
L��s� �
� L��s�

�
� L�ij�s� �� w�ij � ���sj� � i� j � �� � � ����

Synchronization exponents �si will be calculated from the eigenvalues of matrix
L�� and transversal exponents ��i from those of L�� Synchronized chaotic dy

namics will be characterized by a situation where at least one synchronization
exponent satis�es �s 	 �� On the other hand� a positive transversal exponent
indicates an unstable synchronization manifold M � Thus� if an unstable M con

tains a chaotic orbit the system entered a hyperchaotic regime ���
 i�e� at least
two Lyapunov exponents of the synchronized dynamics F s

� are positive�
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Simulations reveal that stable synchronization of identical �
modules occurs
over a large range of identical external inputs to the excitatory units
 moreover�
synchronization can be observed for periodic orbits as well as for quasi
periodic
or chaotic dynamics� This is illustrated� for instance� in the bifurcation diagram
of the synchronized dynamics constrained to M depicted for the �xed parame

ters �� � ��� �w�� � w�� � �� w�� � ���� wcoup � �� in �gure ���� Control
parameter is the external input �� to the excitatory units� Starting at �� � ��
quasiperiodic orbits are observed� succeeded by a short interval with periodic and
chaotic attractors� Then a large domain of period
� attractors is seen� which at
�� � ���� bifurcates into a chaotic attractor� A �classical� chaotic domain fol

lows� where reversed period
doubling routes to chaos �nally end up in period
�
attractors� The stability of this synchronous dynamics can be read from �gure ���
where the largest synchronization and transversal exponents� �s� and ��� � respec

tively� are depicted� We observe ��
intervals for which the transversal exponent
��� is positive
 i�e� the corresponding synchronized dynamics on M is unstable�
The underlying data �le locates the larger instability ��
intervals as ����� ������
������ ������ ������ ������

Figure �� A synchronous chaotic attractor co
existing with an asynchronous
quasiperiodic attractor for the coupled �
neuron modules� Figures show pro

jections to the phase space of module A �left� and to the �oA� � o

B
� �
output space

of the coupled system� Parameters� see text�

We conclude that stability of synchronous periodic and chaotic dynamics in
symmetrically coupled identical neuromodules is a quite general phenomenon�
However� the following observation is also noteworthy� For large parameter do

mains there co
exist di�erent attractors in the coupled system� There are syn

chronous periodic or chaotic attractors constrained to M and at the same time
also asynchronous periodic� quasiperiodic or chaotic attractors not constrained
to M � An example is shown in �gure �� where a synchronous chaotic attrac

tor co
exists with an asynchronous quasiperiodic attractor for parameter values
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�� � �� �� � ��� �w�� � w�� � �� w�� � ���� wcoup
�� � ��� The left �gure

shows projections of the co
existing attractors onto the �oA� � o
A
� �
phase space of

module A� the right hand �gure projections onto the �oA� � o
B
� �
output space of the

coupled system� Synchronized outputs will appear as states on the main diagonal
in �oA� � o

B
� �
space�

� Conclusions

Synchronized chaos in symmetrically coupled identical neuromodules is a fairly
general phenomenon� It often co
exists with di�erent kinds of asynchronous dy

namics� Thus� stable synchronization can depend on initial conditions� that is�
on the �history� of the coupled system� Furthermore� a synchronized mode of

ten persists even if external inputs are varying slowly� Thus� synchronization of
coupled modules is really a sign for time
varying �identical� input signals with
amplitudes having a �xed ratio �recall� that the inputs may correspond to the
weighted outputs of other neurons in a larger system�� Diverging inputs and	or
steering the coupled modular system into unstable synchronization domains are
di�erent techniques for de
synchronization�
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