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Abstract

We discuss the time�discrete parametrized dynamics of two neuromod�

ules� which are coupled in a uni�directional way� General conditions for

the existence of synchronized dynamics are derived for these systems� It is

demonstrated that already the one�way couplings of ��neuron modules can

result in periodic� quasiperiodic as well as chaotic dynamics constrained

to a synchronization manifold M � Stability of the synchronized dynamics

is calculated by conditional Lyapunov exponents� In addition to synchro�

nized attractors there often co�exist asynchronous periodic� quasiperiodic

or even chaotic attractors� Simulation results for selected sets of parame�

ters are presented�

�in� Proceedings IWANN���� June ���� 	���� Alicante� Spain� LNCS� Springer� to appear�
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� Introduction

In a paper by Pecora and Carroll ��� it was established for the �rst time that syn�
chronization of chaotic systems is possible� Since then� many articles investigated
this phenomenon� often because of its importance for applications in the �eld of
secure communication� �cf� e�g� citations in �	�
� Most of the work analyses the
dynamics of coupled time�continuous systems� like Chua�s circuit� or Lorenz or
R�ossler systems� But also time�discrete systems have been studied �
��

On the other hand� selective synchronization of neural activity in biological
brains was often suggested to be a fundamental temporal mechanism for binding
spatially distributed features into a coherent object �cf� e�g� ���
� Thus� study�
ing the properties of synchronized dynamics in coupled chaotic neuromodules
may not only induce new explanatory models for cognitive functions of biologi�
cal brains� but may also provide interesting models for the generation of higher
level information processes in arti�cial neural systems� Typically� coupled neuro�
modules are endowed with a large set of parameters �synaptic weights and bias
terms�stationary inputs
� which allow not only synchronization but also a fast
de�synchronization of module dynamics�

The term �synchronization� will be used here in the sense of complete syn�

chronization� i�e� we consider systems� the states of which can coincide� while
the dynamics in time remains� for instance� chaotic� We also discern between
global and local synchronization� Global synchronization means that for almost
all initial conditions the orbits of the systems will synchronize� Local synchro�
nization refers to stable synchronized states� i�e� small perturbations will not
de�synchronize the systems�

In this contribution we study the discrete synchronous dynamics of two neuro�
modules� which are assembled to a composed system through a one�way coupling�
The modules have the same number of additive graded neurons� In section 	 we
derive general conditions for the existence of synchronized dynamics of the cou�
pled modules and for the stability of synchronized states� Results of computer
simulations are presented for a speci�c example in section 
� It uses a chaotic
	�neuron module with self�inhibiting neuron coupled bi�directionally to an ex�
citatory neuron ���� The driven system is a 	�neuron module oscillating with
period��� This setup has larger parameter domains for which global as well as
local synchronization of periodic� quasiperiodic and chaotic dynamics is observed�
Synchronized orbits are not always stable� this can be read from the conditional
Lyapunov exponents �rst introduced in ���� The boundary between stable and
unstable synchronization of chaos corresponds to switching from a chaotic to a
hyperchaotic ��� regime of the coupled system� Furthermore� computer simu�
lations demonstrate that various non�synchronous attractors may co�exist with
attractors constrained to the manifold M of synchronized states�

	



� Coupled neuromodules

We are considering a neuromodule with n units as a discrete parametrized dy�
namical system on an n�dimensional activity phase space Rn� With respect to a
set � of parameters it is given by the map f� � R

n � R
n de�ned by

ai�t� �
 � �i �
nX

j��

wij ��aj�t

 � i � �� � � � � n � ��


where ai � R
n denotes the activity of the i�th neuron� and �i � �i � Ii denotes

the sum of its �xed bias term �i and its stationary external input Ii� The output
oi � ��ai
 of a unit is given by the standard sigmoidal transfer function ��x
 ��
�� � e�x
��� x � R� and wij denotes the synaptic weight from unit j to unit i� If
there exists a parameter set � � ��� w
 for which the dynamics ��
 has at least
one chaotic attractor� the module will be called a chaotic neuromodule�

Now� let A and B denote two neuromodules ��
 with parameter sets �A �
��A� wA
 and �B � ��B� wB
� respectively� The neural activities of module A and
B will be denoted ai� bi� i � �� � � � � n� respectively� Connections going from mod�
ule B to module A are given by �n� n
�coupling matrix wAB� Correspondingly�
connections from module A to module B are given as a matrix wBA� Thus� the
architecture of the 	n�dimensional coupled system is given by a matrix w of the
form

w �
�

wA wAB

wBA wB

�
� �	


In the following we will consider the process of complete synchronization� i�e�
there exists a subset D � R

�n such that �a�� b�
 � D implies

lim
t��

j a�t� a�
� b�t� b�
 j � � �

where �a�t� a�
� b�t� b�

 denotes the orbit under F� through the initial condition
�a�� b�
 � R

�n� Thus we are interested in the case where corresponding neurons
of the modules have identical activities during a process� The synchronization
is called global if D � R

�n� and local if D � R
�n is a proper subset� Thus� a

synchronized state s of the coupled system is de�ned by s �� a � b � R
n� The

synchronization manifold M �� f�s� s
 � R�n j s � a � bg of synchronized states
corresponds to an n�dimensional hyperplane M �� R

n � R
�n�

A straight forward calculation will prove the following general synchronization
condition�

Lemma � Let the parameter sets �A� �B of the modules A and B satisfy

� �� �A � �B � �wA � wBA
 � �wB � wAB
 � �



Then every orbit of F� through a synchronized state s � M is constrained to M
for all times�






Here we will be interested in the special case of uni�directional couplings
between modules� i�e�� with wAB � �� module B is driven by the dynamics of
module A� The general synchronization condition �

 then reduces to

� �� �A � �B � �wA � wBA
 � wB � ��


Using this last condition ��
� and introducing new coordinates parallel and or�
thogonal to the synchronization manifold M by

�i ��
�p
	
�ai � bi
 � �i ��

�p
	
�ai � bi
 � i � �� � � � � n � ��


the dynamics �F� of two uni�directionally coupled n�modules is given by

�i�t� �
 �
p
	 � �i � �p

	

nX
j��

�w�

ij � g���j�t
� �j�t

 � wB
ij � g���j�t
� �j�t

� �

�i�t� �
 �
�p
	

nX
j��

wB
ij � �g���j�t
� �j�t

� g���j�t
� �j�t


 � ��


where i � �� � � � � n� and we have set w� �� �wA � wBA
� the functions g� are
de�ned by

g��x� y
 �� � �
�p
	
�x� y

 � x� y � R �

Setting � � � and s � ��
p
	 �� the synchronized n�dimensional dynamics F s

�

constrained to the manifold M is derived from equations ��
� It reads

si�t � �
 � �i �
nX

j��

wA
ij � ��sj�t

 � ��


i�e�� because of the uni�directional coupling� the synchronized dynamics F s
� will

reproduce the dynamical behavior of the driving module A� Although the per�
sistence of the synchronized dynamics is guaranteed by condition ��
� it is not at
all clear that the synchronization manifold M itself is asymptotically stable with
respect to the dynamics �F�� A periodic or chaotic orbit inM may be an attractor
for the synchronized dynamics F s

� but not for the dynamics �F� of the coupled
system� We therefore have to discuss stability aspects of the synchronized dy�
namics� As in ��� we will use the synchronization exponents �si and conditional

exponents ��i � i � �� � � � � n� They are derived from the linearizations LA�s�t


and LB�s�t

 of corresponding module dynamics along synchronized orbits s�t
�
i�e� we have

LA
ij�s
 �� wA

ij � ���sj
 � LB
ij�s
 �� wB

ij � ���sj
 � i� j � �� 	 � ��


Synchronization exponents �si will be calculated from the eigenvalues of matrix
LA� and conditional exponents ��i from those of LB� Synchronized chaotic dy�
namics will be characterized by a situation where at least one synchronization

�



exponent satis�es �s 	 �� On the other hand� a positive conditional exponent
indicates an unstable synchronization manifold M � Thus� if an unstable M con�
tains a chaotic orbit the system naturally must have entered a hyperchaotic regime
���� i�e� at least two Lyapunov exponents of the synchronized dynamics F s

� are
positive�

For a better characterization of attractors in coupled neuromodules the fol�
lowing de�nition is found useful ���� A quasiperiodic or chaotic attractor is called
p�cyclic if it has p connected components which are permuted cyclically by the
map �F�� Every component of a p�cyclic attractor is an attractor of �F p

� �

� Example� Coupled ��neuron modules

As a driving module we will chose in the following the chaotic 	�module ���
composed of an excitatory neuron coupled bi�directionally with an inhibitory
neuron with self�connection� Its dynamics is given by a �ve parameter family of
maps f� � R

� � R
� de�ned by

a��t� �
 �� �A� � wA
�� ��a��t

 �

a��t� �
 �� �A� � wA
�� ��a��t

 � wA

�� ��a��t

 � ��


This module has chaotic chaotic attractors for parameters around �A� � 
� �A� �
�	� �wA

�� � wA
�� � �� and wA

�� � ���� If we now choose an uni�directional
coupling given by the only non�zero coupling connection wBA

�� 	� �� then the
driven module B must have parameters identical to that of A� with the exception
that wB

�� � according to the synchronization condition ��
 � must satisfy wB
�� �

�wA
�� � wBA

�� 
� We will study the extreme case where wBA
�� � �� i�e� the isolated

moduleB has no self�connections� and its dynamics has only �xed point or period�
� attractors ����

Simulations reveal that stable synchronization of this setup is feasible� For
demonstration we calculated the synchronization and conditional Lyapunov ex�
ponents �si and ��i � i � �� 	� respectively� for a bifurcation sequence of the syn�
chronized dynamics shown in �gure 	� The result is presented in �gure �� where
only the largest exponents �s� and ��� are drawn�

Synchronized dynamics starts with a �xed point attractor at �� � �� Then
there follows a bifurcation to quasiperiodic attractors� a small window with var�
ious bifurcation sequences to chaos� and after a larger period�	 interval� there
is a �forward and backward
 period�doubling route to chaos ending again in a
period�	 attractor for �� � �� From �gure �we read that there are ���intervals�
for which the conditional exponent ��� is positive� i�e� the corresponding syn�
chronized dynamics on M is unstable� The underlying data �le locates the larger
interval as ���
�� 	���
� and a smaller one at ������ ��
�
� In the last ���interval we
will �nd unstable synchronized chaos� as in the interval �	���� 	���
� Outside of

�
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Figure �� Largest synchronization and conditional exponents for �xed parameters
�� � �	� �w�� � w�� � �� wA

�� � ���� wBA
�� � ���� and varying ���

Figure 	� Bifurcation diagram of the synchronized dynamics for the same param�
eter values as in �gure ��

these intervals we �nd synchronized �xed point� periodic� quasiperiodic� as well
as synchronized chaotic attractors�

In fact� also co�existing attractors constrained to the stable synchronization
manifold M can be observed� For �� � ��
� for example� we �nd synchronous
period��� and period��� attractors in addition to a synchronous chaotic attractor�
In �gures � to � some of the observed dynamical features are documented � Left
�gures show projections of attractors onto the �oA� � o

A
� 
�phase space of the driving

module A� the right hand �gure projections onto the �oA� � o
B
� 
�output space of the

coupled system� Synchronized outputs will appear as states on the main diagonal
in �oA� � o

B
� 
�space� The parameters �� � �	� �w�� � w�� � �� wA

�� � wBA
�� � ���

are �xed� Figure 
� for �� � 
� displays an example of an �presumable globally

stable synchronous attractor �right
� driven by the chaotic attractor of module
A �left
� In �gure �� for �� � ���� the driving dynamics is a 	�cyclic chaotic
attractor� Coupling wBA

�� results here in a 	�cyclic chaotic attractor� one part of

�



which corresponds to synchronized units �A and �B and asynchronous units 	A

and 	B� the other part is asynchronous on �A� �B and gives synchronized units
	A and 	B� This means� that at every second time step t the outputs satisfy
oA� �t
 � oB� �t
� o

A
� �t
 	� oB� �t
 and for t�� synchronization is the other way round�

Finally� in �gure � a driving 	�cyclic chaotic attractor for �� � 	�� produces�
depending on initial conditions� a synchronous chaotic attractor co�existing with
a 	�cyclic chaotic attractors� This second attractor has again an asynchronous
part and a synchronous part �the shorter line in the upper right corner
�

The same type of dynamical phenomena � synchronized periodic� quasiperiodic
and chaotic attractors� and the co�existence of synchronous and asynchronous
attractors � are also observed for other one�way couplings schemes satisfying the
synchronization condition ��
� For instance� one may couple two chaotic modules
of the kind given by equations ��
 by setting only wBA

�� 	� �� Then the connection
wB
�� must satisfy wB

�� � wA
�� � wBA

�� � With wBA
�� � �
� and wA

�� � ��� wB
�� � �
�

for example� we observe with wA
�� � wB

�� � �� wA
�� � wB

�� � �� wA
�� � wB

�� � ����
�A� � �B� � �	 �xed� and �� � �A� � �B� � ��
 a 	�cyclic� for �� � 	�� a ��
cyclic synchronous chaotic attractor� Both attractors co�exist with corresponding
asynchronous chaotic attractors� A driving quasiperiodic attractor of module A
can result in asynchronous chaotic attractors �e�g� at �� � ���
 or in asynchronous
	�cyclic quasiperiodic attractors �e�g� at �� � ���
�

� Conclusions

It has been shown that in a system composed of simple neuromodules synchro�
nization of non�trivial discrete�time dynamics is feasible already by a one�way
coupling of modules� For a synchronous dynamics to exist� the sum of external
stationary inputs and bias terms of corresponding module units has to be identi�
cal� Depending on module parameters� the synchronized orbits can be locally or
globally stable� or unstable� Remarkable seems to be the existence of a strange
type of chaotic attractor depicted in �gure �� it shows a 	�cyclic chaotic attractor
with one part consisting of synchronized states and the other part being hyper�
chaotic� This means that one part is a synchronous chaotic attractor of �F �

� the

other is a hyperchaotic attractor of �F �
� �

Simulations� not only for the example presented here� convinced us that in
general there are larger parameter domains for which stable synchronized chaos
will exist� Noteworthy is also the fact that synchronous dynamics often co�exists
with di�erent kinds of asynchronous dynamics� Thus� �locally
 stable synchro�
nization depends on initial conditions� that is� on the �history� of the coupled
system�

Furthermore� a synchronized mode often persists even if external inputs are
varying slowly� Thus� synchronization of coupled modules is really a sign for time�
varying �identical
 input signals with amplitudes having a �xed ratio �recall� that

�



Figure 
� A synchronous chaotic attractor� Projections to module space �left

and to the output space of the coupled system �right
� Parameters� �� � 
�
�� � �	� �w�� � w�� � �� wA

�� � ���� wBA
�� � ����

Figure �� A driven 	�cyclic chaotic attractor with one part situated on the syn�
chronization manifold M � Parameters as for �gure 
 but with �� � ����

Figure �� A synchronous chaotic attractor co�existing with an asynchronous 	�
cyclic chaotic attractor� They are driven by a 	�cyclic chaotic attractor� Param�
eters as for �gure 
 but with �� � 	��

�



the inputs may correspond to the weighted outputs of other neurons in a larger
system
� De�synchronizing the coupled modules is of course easily done� Either
by diverging inputs or by steering the coupled modular system into parameter
domains for unstable synchronization�

The general synchronization condition �

 allows also a bi�directional coupling
of neurons� Analysis and result from computer simulations for special kinds of
recurrently coupled neuromodules will be presented elsewhere ����
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