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Abstract

We discuss the time-discrete parametrized dynamics of two neuromod-
ules, which are coupled in a uni-directional way. General conditions for
the existence of synchronized dynamics are derived for these systems. It is
demonstrated that already the one-way couplings of 2-neuron modules can
result in periodic, quasiperiodic as well as chaotic dynamics constrained
to a synchronization manifold M. Stability of the synchronized dynamics
is calculated by conditional Lyapunov exponents. In addition to synchro-
nized attractors there often co-exist asynchronous periodic, quasiperiodic
or even chaotic attractors. Simulation results for selected sets of parame-
ters are presented.
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1 Introduction

In a paper by Pecora and Carroll [7] it was established for the first time that syn-
chronization of chaotic systems is possible. Since then, many articles investigated
this phenomenon, often because of its importance for applications in the field of
secure communication. (cf. e.g. citations in [2]). Most of the work analyses the
dynamics of coupled time-continuous systems, like Chua’s circuit, or Lorenz or
Réssler systems. But also time-discrete systems have been studied [3].

On the other hand, selective synchronization of neural activity in biological
brains was often suggested to be a fundamental temporal mechanism for binding
spatially distributed features into a coherent object (cf. e.g. [9]). Thus, study-
ing the properties of synchronized dynamics in coupled chaotic neuromodules
may not only induce new explanatory models for cognitive functions of biologi-
cal brains, but may also provide interesting models for the generation of higher
level information processes in artificial neural systems. Typically, coupled neuro-
modules are endowed with a large set of parameters (synaptic weights and bias
terms/stationary inputs), which allow not only synchronization but also a fast
de-synchronization of module dynamics.

The term “synchronization” will be used here in the sense of complete syn-
chronization; i.e. we consider systems, the states of which can coincide, while
the dynamics in time remains, for instance, chaotic. We also discern between
global and local synchronization. Global synchronization means that for almost
all initial conditions the orbits of the systems will synchronize. Local synchro-
nization refers to stable synchronized states; i.e. small perturbations will not
de-synchronize the systems.

In this contribution we study the discrete synchronous dynamics of two neuro-
modules, which are assembled to a composed system through a one-way coupling.
The modules have the same number of additive graded neurons. In section 2 we
derive general conditions for the existence of synchronized dynamics of the cou-
pled modules and for the stability of synchronized states. Results of computer
simulations are presented for a specific example in section 3. It uses a chaotic
2-neuron module with self-inhibiting neuron coupled bi-directionally to an ex-
citatory neuron [4]. The driven system is a 2-neuron module oscillating with
period-4. This setup has larger parameter domains for which global as well as
local synchronization of periodic, quasiperiodic and chaotic dynamics is observed.
Synchronized orbits are not always stable; this can be read from the conditional
Lyapunov exponents first introduced in [7]. The boundary between stable and
unstable synchronization of chaos corresponds to switching from a chaotic to a
hyperchaotic [8] regime of the coupled system. Furthermore, computer simu-
lations demonstrate that various non-synchronous attractors may co-exist with
attractors constrained to the manifold M of synchronized states.



2 Coupled neuromodules

We are considering a neuromodule with n units as a discrete parametrized dy-
namical system on an n-dimensional activity phase space R". With respect to a
set p of parameters it is given by the map f, : R" — R" defined by

ai(t—l—l)zﬁi—l—i:wija(aj(t)), i=1,...,n, (1)

where a; € R" denotes the activity of the i-th neuron, and 6; = ; + I; denotes
the sum of its fixed bias term 6; and its stationary external input 7;. The output
0; = o(a;) of a unit is given by the standard sigmoidal transfer function o(z) :=
(14+e ) !, z € R, and w;; denotes the synaptic weight from unit j to unit 7. If
there exists a parameter set p = (6, w) for which the dynamics (1) has at least
one chaotic attractor, the module will be called a chaotic neuromodule.

Now, let A and B denote two neuromodules (1) with parameter sets p? =
(04, w?) and p? = (67, w?), respectively. The neural activities of module A and
B will be denoted a;, b;, i = 1,...,n, respectively. Connections going from mod-
ule B to module A are given by (n x n)-coupling matrix w*?. Correspondingly,
connections from module A to module B are given as a matrix w?4. Thus, the
architecture of the 2n-dimensional coupled system is given by a matrix w of the
form o AP

w:<wBA wB) . (2)
In the following we will consider the process of complete synchronization, i.e.
there exists a subset D C R*" such that (ag,by) € D implies
tli>rcr>10| a(t;ag) — b(t;00) | =0,
where (a(t;a0),b(t;by)) denotes the orbit under F, through the initial condition
(ag,by) € R*™. Thus we are interested in the case where corresponding neurons
of the modules have identical activities during a process. The synchronization
is called global if D = R?", and local if D C R*" is a proper subset. Thus, a
synchronized state s of the coupled system is defined by s :=a =b € R". The
synchronization manifold M := {(s,s) € R* | s = a = b} of synchronized states
corresponds to an n-dimensional hyperplane M = R™ C R?".

A straight forward calculation will prove the following general synchronization

condition:

Lemma 1 Let the parameter sets p?, pP of the modules A and B satisfy
0:=0"=0", (v*—wP) = (w?—-w?). (3)

Then every orbit of F, through a synchronized state s € M is constrained to M
for all times.



Here we will be interested in the special case of uni-directional couplings
between modules; i.e., with w4® = 0, module B is driven by the dynamics of
module A. The general synchronization condition (3) then reduces to

0:=041=0%, (v —wP =w?. (4)

Using this last condition (4), and introducing new coordinates parallel and or-
thogonal to the synchronization manifold M by

fi = %(CLZ—FZ)Z) , TNy = —(ai—bi), izl,...,n, (5)

the dynamics Fp of two uni-directionally coupled n-modules is given by

GED) = VBt~ ST g 601 0) + g0, ()],
7=1
1 n
mt+1) = — >owi - (g (&), mi (1) — 97 (&), mi(1)) (6)
7=1
where i = 1,...,n, and we have set w* := (w? + wP4); the functions g* are
defined by .
g (,y) =o(5l£y), o yeR.

Setting 7 = 0 and s = 1/4/2¢, the synchronized n-dimensional dynamics FJ
constrained to the manifold M is derived from equations (6). It reads

St 41) = 0,4 S wik - ols, (1) | (7)

i=1

i.e., because of the uni-directional coupling, the synchronized dynamics F; will
reproduce the dynamical behavior of the driving module A. Although the per-
sistence of the synchronized dynamics is guaranteed by condition (4), it is not at
all clear that the synchronization manifold M itself is asymptotically stable with
respect to the dynamics Fp. A periodic or chaotic orbit in M may be an attractor
for the synchronized dynamics F] but not for the dynamics Fp of the coupled
system. We therefore have to discuss stability aspects of the synchronized dy-
namics. As in [7] we will use the synchronization exponents A{ and conditional
ezponents A\, i = 1,...,n. They are derived from the linearizations L*(s(t))
and L?(s(t)) of corresponding module dynamics along synchronized orbits s(t),
i.e. we have

Lf‘j(s) = wg co'(sj) Lg(s) = wg -o'(sj), i4,j=12. (8)

Synchronization exponents A; will be calculated from the eigenvalues of matrix
L4, and conditional exponents A\ from those of LZ. Synchronized chaotic dy-
namics will be characterized by a situation where at least one synchronization
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exponent satisfies A* > 0. On the other hand, a positive conditional exponent
indicates an unstable synchronization manifold M. Thus, if an unstable M con-
tains a chaotic orbit the system naturally must have entered a hyperchaotic regime
[8]; i.e. at least two Lyapunov exponents of the synchronized dynamics F , are
positive.

For a better characterization of attractors in coupled neuromodules the fol-
lowing definition is found useful [1]: A quasiperiodic or chaotic attractor is called
p-cyclic if it has p connected components which are permuted cyclically by the
map F »- Every component of a p-cyclic attractor is an attractor of F b

3 Example: Coupled 2-neuron modules

As a driving module we will chose in the following the chaotic 2-module [4]
composed of an excitatory neuron coupled bi-directionally with an inhibitory
neuron with self-connection. Its dynamics is given by a five parameter family of
maps f, : R* — R? defined by

a(t+1) = 0 +wiyolax(t)),

ax(t+1) = 05 +wj o(ar(t)) +wyo(ax(t) - 9)
This module has chaotic chaotic attractors for parameters around 0! = 3, 03! =
-2, —wiy, = wy} = 6, and wi, = —16. If we now choose an uni-directional

coupling given by the only non-zero coupling connection w2 # 0, then the
driven module B must have parameters identical to that of A, with the exception
that w2 - according to the synchronization condition (4) - must satisfy wl, =
(wsy, — whA). We will study the extreme case where wi* = 0; i.e. the isolated
module B has no self-connections, and its dynamics has only fixed point or period-
4 attractors [5].

Simulations reveal that stable synchronization of this setup is feasible. For
demonstration we calculated the synchronization and conditional Lyapunov ex-
ponents A\{ and A\, i = 1,2, respectively, for a bifurcation sequence of the syn-
chronized dynamics shown in figure 2. The result is presented in figure 1, where
only the largest exponents \j and A\{ are drawn.

Synchronized dynamics starts with a fixed point attractor at #; = 0. Then
there follows a bifurcation to quasiperiodic attractors, a small window with var-
ious bifurcation sequences to chaos, and after a larger period-2 interval, there
is a (forward and backward) period-doubling route to chaos ending again in a
period-2 attractor for ; = 6. From figure 1we read that there are #;-intervals,
for which the conditional exponent A{ is positive; i.e. the corresponding syn-
chronized dynamics on M is unstable. The underlying data file locates the larger
interval as (1.39,2.76), and a smaller one at (4.09,4.37). In the last #;-interval we

will find unstable synchronized chaos, as in the interval (2.57,2.76). Outside of
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Figure 1: Largest synchronization and conditional exponents for fixed parameters
Oy = —2, —wyy = woy = 6, wi, = —16, wBA = —16, and varying 6;.
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Figure 2: Bifurcation diagram of the synchronized dynamics for the same param-
eter values as in figure 1.

these intervals we find synchronized fixed point, periodic, quasiperiodic, as well
as synchronized chaotic attractors.

In fact, also co-existing attractors constrained to the stable synchronization
manifold M can be observed. For #; = 1.3, for example, we find synchronous
period-5, and period-14 attractors in addition to a synchronous chaotic attractor.
In figures 4 to 5 some of the observed dynamical features are documented : Left
figures show projections of attractors onto the (0f!, 05')-phase space of the driving
module A, the right hand figure projections onto the (of}, oP)-output space of the
coupled system. Synchronized outputs will appear as states on the main diagonal
in (o, 0P)-space. The parameters 0y = —2, —wi9 = wy; = 6, Wi = WPt = —16
are fixed. Figure 3, for ; = 3, displays an example of an (presumable globally)
stable synchronous attractor (right), driven by the chaotic attractor of module
A (left). In figure 4, for #; = 4.1, the driving dynamics is a 2-cyclic chaotic

attractor. Coupling wZ?* results here in a 2-cyclic chaotic attractor, one part of



which corresponds to synchronized units 14 and 12 and asynchronous units 24
and 28, the other part is asynchronous on 14, 12 and gives synchronized units
24 and 2P. This means, that at every second time step ¢ the outputs satisfy
0l (t) = 0B(t), 02 (t) # 0B (t) and for ¢+ 1 synchronization is the other way round.
Finally, in figure 5 a driving 2-cyclic chaotic attractor for ; = 2.7 produces,
depending on initial conditions, a synchronous chaotic attractor co-existing with
a 2-cyclic chaotic attractors. This second attractor has again an asynchronous
part and a synchronous part (the shorter line in the upper right corner).

The same type of dynamical phenomena - synchronized periodic, quasiperiodic
and chaotic attractors, and the co-existence of synchronous and asynchronous
attractors - are also observed for other one-way couplings schemes satisfying the
synchronization condition (4). For instance, one may couple two chaotic modules
of the kind given by equations (9) by setting only wf* # 0. Then the connection
w? must satisfy w? = wi, — wBA With wB* = -3, and wil, = —6, wh = -3,
for example, we observe with wy = wf =6, wi = wf =0, wy = ws = 16,
03 = 08 = —2 fixed, and 6, = 0! = 0F = 4.3 a 2-cyclic, for §; = 2.6 a 4-
cyclic synchronous chaotic attractor. Both attractors co-exist with corresponding
asynchronous chaotic attractors. A driving quasiperiodic attractor of module A
can result in asynchronous chaotic attractors (e.g. at ¢; = 0.7) or in asynchronous
2-cyclic quasiperiodic attractors (e.g. at 6; = 0.6).

4 Conclusions

It has been shown that in a system composed of simple neuromodules synchro-
nization of non-trivial discrete-time dynamics is feasible already by a one-way
coupling of modules. For a synchronous dynamics to exist, the sum of external
stationary inputs and bias terms of corresponding module units has to be identi-
cal. Depending on module parameters, the synchronized orbits can be locally or
globally stable, or unstable. Remarkable seems to be the existence of a strange
type of chaotic attractor depicted in figure 4; it shows a 2-cyclic chaotic attractor
with one part consisting of synchronized states and the other part being hyper-
chaotic. This means that one part is a synchronous chaotic attractor of F[;z the

other is a hyperchaotic attractor of F’ p2.

Simulations, not only for the example presented here, convinced us that in
general there are larger parameter domains for which stable synchronized chaos
will exist. Noteworthy is also the fact that synchronous dynamics often co-exists
with different kinds of asynchronous dynamics. Thus, (locally) stable synchro-
nization depends on initial conditions, that is, on the “history” of the coupled
system.

Furthermore, a synchronized mode often persists even if external inputs are
varying slowly. Thus, synchronization of coupled modules is really a sign for time-
varying (identical) input signals with amplitudes having a fized ratio (recall, that
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Figure 3: A synchronous chaotic attractor. Projections to module space (left)
and to the output space of the coupled system (right). Parameters: 6; = 3,
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Figure 4: A driven 2-cyclic chaotic attractor with one part situated on the syn-
chronization manifold M. Parameters as for figure 3 but with 6; = 4.1.
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Figure 5: A synchronous chaotic attractor co-existing with an asynchronous 2-
cyclic chaotic attractor. They are driven by a 2-cyclic chaotic attractor. Param-
eters as for figure 3 but with 6, = 2.7



the inputs may correspond to the weighted outputs of other neurons in a larger
system). De-synchronizing the coupled modules is of course easily done: Either
by diverging inputs or by steering the coupled modular system into parameter
domains for unstable synchronization.

The general synchronization condition (3) allows also a bi-directional coupling
of neurons. Analysis and result from computer simulations for special kinds of
recurrently coupled neuromodules will be presented elsewhere [6].
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