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� Introduction

In this paper we study Hk�recti�able sets in metric spaces� i�e� sets S which
can be covered� up to Hk�negligible sets� by a countable family of Lipschitz
images of subsets of Rk� One of the reasons for our interest in this class of sets
is the development� in a forthcoming paper ���� of a general theory of currents
in metric spaces� along the lines proposed by E� De Giorgi in ���� �	�� Indeed�
in this general setting we will prove the Federer
Fleming closure theorem and
the boundary recti�ability theorem for integral currents� which are supported
on countably Hk�recti�able sets�
The theory of recti�able sets in Euclidean spaces provides on the one hand

side a powerful tool for the solution of geometrical problems in the calculus of
variations� On the other hand side� it allows to decide if a general set is of this
particular type �so being curve� or surface�like� knowing only some of its metric
�densities� or geometric properties �size of projections� existence of approximate
tangent planes�� This theory started in the pioneering work by A�S� Besicovitch
in the late �
�ties treating these questions in deep for sets of �nite length in the
plane� Subsequent contributions by H� Federer� J�M� Marstrand and P� Mattila
extended these results to sets of any dimension in general Euclidean spaces
and �nally D� Preiss established the relation between density and geometry for
general measures in such spaces� A nice presentation of the whole subject can
be found in �����
As concerns recti�able sets in general metric spaces the situation is much

less understood� The �rst results concerning countably Hk�recti�able sets� in
particular for k � �� in this situation were proved by the second author in �����
Using a new metric di�erentiability theorem for Lipschitz functions f � Rk �
E� in ���� an area formula for these maps was estabilished� and this formula
was used to study the k�dimensional density lim���Hk�S � B��x�����k�

k� of
recti�able sets with �nite measure� Moreover� it was proved that in a suitable
approximate sense the distance function locally behaves on S as a norm �called
local norm�� not necessarily induced by an inner product�
In this paper we use an isometric embedding of E into a Banach space Y

�typically l�� as in ����� to gain a linear structure� This structure is necessary
if one intends to de�ne an approximate tangent space to recti�able sets as in
the Euclidean case� Our main technical tool is an extension of the Rademacher
di�erentiability theorem for Lipschitz maps f � Rk � Y � with Y dual of a
separable Banach space� saying that for Hk�a�e� x � Rk the di�erence quotients
satisfy ����

���
w� � lim

y�x

f�y�� f�x�� wdfx�y � x�

jy � xj � 


lim
y�x

kf�y�� f�x�k � kwdfx�y � x�k
jy � xj � 


�����

for some linear map wdfx � R
k � Y � called w��di�erential of f � Simple exam�

ples show that this statement is optimal� indeed� if k � �� Y � L��
� �� and
f�x� � ����x� the di�erence quotients are nowhere converging� and this shows
the necessity to deal with dual spaces� Moreover� if f is viewed as a map with
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values in the space �C�
� ���� of Radon measures in �
� ��� then ����� holds with
wdfx�t� � t�x� but the di�erence quotients are not strongly converging� Notice
that ����� implies Frechet di�erentiability if Y is uniformly convex�
The plan of our paper is the following� in Section � we collect the main facts

about di�erentiability of Lipschitz functions� in Section � we de�ne a notion of
jacobian for linear maps L � V � W � with V� W �nite dimensional Banach
spaces and we use it in Section � to estabilish a general area formula between
recti�able subsets of metric spaces� In the same section we study recti�able sets�
introducing the approximate tangent space to them� it turns out that in the
general metric setting the approximate tangent space is uniquely determined
up to isometries� and that its norm is exactly the local norm of ����� Moreover�
if E � Y is the dual of a separable Banach space the approximate tangent space
can be characterized by the w��limits of secant vectors� the geometric counter�
part of ����� is the w��convergence of unit secant vectors to unit tangent vectors�
In Section 	 we see that the above mentioned properties of recti�able sets are
sharp� giving recti�ability criteria for sets and measures� Moreover� revisiting
an unpublished work of S� Konyagin ����� we show in Section � that recti�abil�
ity can not be recovered using Euclidean projections� in fact� for any s � 
 we
exhibit a compact metric space Xs such that Hs�Xs� � � and Hs �f�Xs�� � 

for any Lipschitz map f into any Euclidean space Rp� This property implies
that� for integer s� Xs is purely Hs�unrecti�able� i�e� Hs �f�M�� � 
 for any
Lipschitz map f �M � Rs � Xs �see Theorem �� in ������
The �nal two sections of the paper are devoted to the area and coarea

formula in a general metric setting� i�e� for Lipschitz functions de�ned on
countably Hk�recti�able subsets of a metric space�
It is a pleasure to thank M�Chleb��k and J�Matou�sek for their helpful com�

ments and suggestions� The �rst author gratefully acknowledges the hospitality
of the Max Planck Institut in Leipzig� where a large part of this paper was writ�
ten�

� Notations

We denote by B�X� the ��algebra of Borel sets in a metric space �X� d� and
by M�X� the class of �nite Borel measures in X� i�e� ��additive functions
� � B�X�� �
�����
We de�ne the k�dimensional Hausdor� measure in X as in ���� ���
������

and will denote it by Hk� Since Hk
X�B� � Hk

Y �B� whenever B � X and X
is isometrically embeded in Y � our notation for the Hausdor� measure does
not emphasize the ambient space� Even if we will often work in non�separable
spaces� sets of �nite or ���nite Hausdor� measure will of course always be
separable�
We recall �see for instance ����� Lemma 	�i�� that if X is a k�dimensional

vector space and B� is its unit ball� thenHk�B�� is a dimensional constant inde�
pendent of the norm of X and equal� in particular� to the Lebesgue measure of
the Euclidean unit ball� This constant will be denoted by �k� and the Lebesgue
measure in Rk will be denoted by Lk�
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The upper and lower k�dimensional densities of a �nite Borel measure � at
x are respectively de�ned by

��k��� x� �� lim sup
���

��B��x��

�k�k
��k��� x� �� lim inf

���

��B��x��

�k�k
	

We recall that the implications

��k��� x� � t �x � B �� � � tHk B �����

��k��� x� 	 t �x � B �� � B 	 �ktHk B �����

hold in any metric space X whenever t � �
��� and B � B�X� �see ���� ���
�����
Let �X� dX �� �Y� dY � be metric spaces� we say that f � X � Y is a Lipschitz

function if
dY �f�x�� f�y�� 	MdX�x� y� �x� y � X

for some constant M � �
���� the least constant with this property will be
denoted by Lip�f�� and the collection of Lipschitz functions will be denoted by
Lip�X�Y � �Y will be omitted if Y � R�� Furthermore� we use the notation
Lip��X�Y � for the collection of Lipschitz functions with Lipschitz constant less
or equal to ��
Given a Lipschitz functions f � A � X � Y � with X� Y Banach spaces� one

often needs an extension which is still a Lipschitz function� possibly with the
same Lipschitz constant� If Y � R then f can be extended to the whole of X�
preserving the Lipschitz constant� by

�f�x� �� inf
y�A

f�y� � Lip�f�kx� yk x � X 	

A similar result holds if both X and Y are Euclidean �which in this paper
always includes �niteness of the dimension� spaces� but the construction of an
extension is not elementary �see ���� ���
����� If X is an Euclidean space� then
without any assumption on Y there is a Lipschitz extension� not necessarily
with the same Lipschitz constant �see ������ If Y � l� an extension preserving
the Lipschitz constant can easily be obtained with the same procedure used in
the case Y � R� arguing on the single components of f �
We will often use isometric embeddings into l� or� more generally� into

duals of separable Banach spaces� To this aim� we recall that any separable
metric space can be isometrically embedded into l� by the map

j�x� �� �
��x�� 
��x��� 
��x�� 
��x��� 	 	 	 � x � X

where 
i�x� � d�x� xi� and �xi� � X is a dense sequence�
Finally� if Y � G� is the dual of a separable Banach space G we de�ne the

distance

dw�x� y� ��
�X
n��

��njhx� y� gnij � �����

where �gn� is a countable dense set in the unit ball of G� It is easy to check
that dw induces the w

� topology on bounded subsets of Y and that �Y� dw� is
separable�
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� Di�erentiability of Lipschitz functions

In this section we study the di�erentiability properties of Lipschitz functions
f � Rk � Y � where Y is a metric space or a dual Banach space�

De�nition ��� 
Metric di�erential� Let E be a metric space� we say that

a function f � Rk � E is metrically di�erentiable at x � Rk if there exists a

seminorm k 
 kx in Rk such that

d �f�y�� f�x��� ky � xkx � o�jy � xj� 	

This seminorm will be said to be the metric di�erential and be denoted by

mdf�x��

The following di�erentiability result has �rst been estabilished in ���� �see
also ��� for the case k � ���

Theorem ��� 
Metric di�erentiability� Any Lipschitz function f � Rk �
E is metrically di�erentiable at Lk�a�e� x � Rk�

Using an isometric embedding of f�Rk� in a dual space we will obtain in
Theorem ��� a new proof of this di�erentiability result� In the following theorem
we see how the metric di�erentiability property can be strengthened� taking into
account also d �f�y�� f�z�� for y� z close to x� We shall use the natural metric
on seminorms given by

��s� s�� �� sup
jxj��

��s�x�� s��x�
�� 	

Theorem ��� For any Lipschitz map f � Rk � E we have

d �f�y�� f�z���mdfx�y � z� � o�jy � xj� jz � xj�

for Lk�a�e� x � Rk� Furthermore� there exist a sequence of compact set Kh

whose union covers Lk�almost all of Rk and moduli of continuity �h such that

x �� mdfx is ��continuous in Kh and

jd �f�y�� f�z���mdfz�y � z�j 	 �h�jy � zj�jy � zj �y � Rk� z � Kh

for any h � N�

Proof� The �rst part of the statement is proved in Theorem � of ����� By
Lusin theorem we can �nd a family of compact sets Ch whose union covers Lk�
almost all of Rk and such that x �� mdfx is ��continuous in Ch� Analogously�
by Egorov theorem� we can �nd a family of compact sets Lh whose union covers
Lk�almost all of Rk and such that

jd �f�y�� f�z���mdfz�y � z�j 	 �h�jy � zj�jy � zj �y � Rk� z � Lh

for some modulus of continuity �h� By taking the intersections Ch � Lk the
proof is achieved�
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Now we introduce a natural w��di�erentiability property for Lipschitz maps
with values in dual Banach spaces� This concept is of course closely related
to other kind of weak�di�erentials which are around since the foundation of
Banach space theory� However� it seems that our particular notion was used
for the �rst time in �����

De�nition ��� 
Weak� di�erential� Let Y � G� be a dual Banach space

and let f � Rk � Y be a function� we say that f is w��di�erentiable at x if

there exists a linear map L � Rk � Y satisfying

w� � lim
y�x

f�y�� f�x�� L�y � x�

jy � xj � 
 	

This map L will be said to be the w��di�erential of f at x and it will be denoted
by wdfx�

The metric di�erential and the w��di�erential at a given point are obviously
related by

kwdfx�v�k 	 mdfx�v� �v � Rk �

by the w��lower semicontinuity of the norm� However� the following result can
be estabilished�

Theorem ��� 
Weak� di�erentiability� Let Y � G�� with G separable� Any

Lipschitz function f � Rk � Y is w��di�erentiable and metrically di�erentiable
and ful�lls

mdfx�v� � kwdfx�v�k �v � Rk �����

for Lk�a�e� x � Rk�

Proof� For the convenience of the reader we repeat the existence proof for the
w� di�erential� which could also be considered as a kind of folklore�
LetD � G be a dense and countable vector space overQ� by the Rademacher

theorem we can �nd a Lk�negligible set N � Rk such that fg�x� � hf�x�� gi is
di�erentiable at any x � RknN for any g � D� By continuity� we can �nd for any
x � Rk n N a linear function rf�x� � Rk � Y such that hrf�x�� gi � rfg�x�
for any x � Rk nN and any g � D� By a density argument it is easy to check
that f is w��di�erentiable at any x � Rk nN and rf�x� � wdfx�
Using the lower w��semicontinuity of the norm we infer

kwdfx�v�k 	 lim inf
t��

kf�x� tv�� f�x�k
t

�v � Rk 	 �����

Let D� � Sk�� be a countable dense set� setting rfg � 
 in N and rf � 

in N as well� for any x � Rk and any v � D� we de�ne rvf�x� as the unique
element of y � Y such that hy� gi � rvfg�x� for any g � D� By a well known
theorem about derivatives of functions in Sobolev spaces �see for instance �����
Theorem ������ there exists a Lk�negligible set N � � Rk such that

hf�x� tv�� f�x�� gi �
Z t

�
rvfg�x� �v� d�

	



and

lim
���

�

�

Z �

�
krvf�x� �v�k d� � krvf�x�k

for any t � 
� v � D�� g � D and x � Rk nN �� By density this yields

jhf�x� tv�� f�x�� gij 	
Z t

�
jrvfg�x� �v�j d� �

Z t

�
jhrvf�x� �v�� gij d�

for any t � 
� v � D�� g � G and x � Rk nN �� hence

kf�x� tv�� f�x�k 	
Z t

�
krvf�x� �v�k d� 	

If x �� �N �N �� and v � D� we can divide both sides by t and let t 
 
 to get

lim sup
t��

kf�x� tv�� f�x�k
t

	 kwdfx�v�k 	

By density again� the inequality above holds for any v � Sk�� and� in conjunc�
tion with ������ gives the metric di�erentiability of f at x and ������

Remark ��	 Assuming that E � Y is the dual of a separable Banach space�
the conditions on Kh listed in Theorem ��� can be� with a similar argument�
strengthened� we can require that f is w��di�erentiable at any point of Kh� and
that x �� wdfx�v� is w

��continuous in Kh for any v � Rk� we can also require
that

dw �f�y�� f�z�� wdfz�y � z�� 	 �h�jy � zj�jy � zj �y � Rk� z � Kh 	

Using the ��continuity of the metric di�erential on Kh we obtain also

jd �f�y�� f�z�� �mdfx�y � z�j � o�jy � zj� �����

dw �f�y�� f�z�� wdfx�y � z�� � o�jy � zj�
as z � Kh converges to x�

� Norms and jacobians

In the framework of an area formula for Lipschitz mappings between recti�able
metric spaces� we will need to generalize the notion of the jacobian of a linear
map between Euclidean spaces� Since the metric di�erential is only a seminorm�
not necessarily given by an inner product� we have to consider general �nite
dimensional linear maps and spaces�

De�nition ��� 
Jacobians� Let W� V be Banach spaces� L � W � V linear�

If k � dimW is �nite� the �k�jacobian� of L is de�ned by

Jk�L� ��
�k

Hk�fx � kL�x�k 	 �g� 	

If s is a seminorm in Rk we de�ne also

Jk�s� ��
�k

Hk�fx � s�x� 	 �g� 	

�



Notice that the second de�nition of jacobian could be considered as a par�
ticular case of the �rst one with W � Rk and V � l�� in fact� any convex and
symmetric set C � Rk is the intersection of a sequence of strips

Sh ��
n
x � Rk � jhah� xij 	 �

o
�

for a suitable bounded sequence �ah� � Rk� Hence� given a seminorm s and
C � fx � s�x� 	 �g� by setting

L�x� �� �ha�� xi� ha�� xi� 	 	 	 � x � Rk

we obtain s�x� � kL�x�k� hence Jk�s� � Jk�L��
If W� V are Hilbert spaces it is well known that Jk�L� coincides withp
det�L� � L�� In ���� an expression of the jacobian for linear maps from Eu�

clidean into general Banach spaces can be found �compare also Chapter 	 of
��	��� We will often need the following simple chain rule for the jacobians�

Lemma ��� If dimU � dimV � k 	 dimW and K � U � V � L � V �W are
linear maps� then

Jk �L �K� � Jk�L�Jk�K� 	 �����

Proof� The statement relies on the simple observation that any translation
invariant and locally �nite measure on a k�dimensional normed space is a certain
constant multiple of the k�dimensional Hausdor� measure on this space� in fact
any linear isomorphism to Rk reduces the situation to the more familiar one
about multiples of Lebesgue measure in Euclidean space� Since we already
noticed that Hk�fx � kxk 	 �g� � �k for all k and all norms� we conclude that
the jacobian JkL of any linear map L is just the proportion of the k�dimensional
Hausdor� of the L�image of any set to the Hk�measure of the set itself� So� �����
becomes obvious�

� Area formula and recti�able sets

The following generalization of the Euclidean area formula to the case of Lip�
schitz maps f from the Euclidean space Rk into a metric space E has been
proved in ����� Corollary ��

Theorem ��� 
Area formula� Let f � Rk � E be a Lipschitz function�
Then Z

Rk
��x�Jk�mdfx� dx �

Z
E

X
x�f���y�

��x� dHk�y�

for any Borel function � � Rk � �
��� andZ
A
��f�x��Jk�mdfx� dx �

Z
E
��y�H�

�
A � f���y�

�
dHk�y�

for A � B�Rk� and any Borel function � � E � �
����

�



The proof of Theorem ��� is mainly based on the following lemma �see �����
Lemma ��� which is of independent interest�

Lemma ��� Let f � Rk � E be a Lipschitz function and let B � Rk be the

Borel set of points x � Rk such that mdfx exists and is a norm� Then� for any


 � � there exist a sequence of norms k 
ki and a Borel partition �Bi� of B such

that

�



kx� yki 	 d �f�x�� f�y�� 	 
kx� yki �x� y � Bi� i � N 	

De�nition ��� 
Recti�able sets and measures� We say that a Borel set

S � E is countably Hk�recti�able if there exists a sequence of Lipschitz functions

fj � Aj � Rk � E such that Hk �S n �jfj�Aj�� � 
�
We say that � � M�E� is k�recti�able if � � �Hk S for some countably

Hk�recti�able set S and some Borel function � � S � �
����
Countably Hk�recti�able sets are closed under �nite or countable unions�

and it is not hard to see that the property of being countably Hk�recti�able is
intrinsic� i�e� if E is isometrically embedded in another metric space F then S
is countably Hk�recti�able in E if and only if S is countably Hk�recti�able in
F � If E is a Banach space� using the Lipschitz extension theorem mentioned in
Section � it can be easily seen that countably Hk�recti�ability can be restated
in an equivalent way by requiring the existence of countably many Lipschitz
functions� fj � R

k � E whose images cover Hk�almost all of S�
By the Radon
Nikodym theorem� a positive �nite Borel measure � is k�

recti�able if and only if it is absolutely continuous with respect to Hk S for
some countably Hk�recti�able set S� However� the Radon
Nikodym theorem
does not provide an explicit formula for �� Like in the Euclidean spaces� � can
be recovered as a spherical density� as the following theorem shows�

Theorem ��� 
Spherical density� Let � � �Hk S be a k�recti�able mea�

sure in E� Then

lim
���

��B��x��

�k�k
� ��x� for Hk�a�e� x � S 	

The above theorem has been proved by the �rst author �see ����� Theorem
�� when � is a characteristic function� a simple comparison argument together
with ����� and ����� proves the result in the general case� We also recall that
����� easily implies

lim
���

��B��x��

�k�k
� 
 for Hk�a�e� x � E n S 	

without any recti�ability assumption on S�
Now we de�ne an approximate tangent space to countablyHk�recti�able sets

in dual Banach spaces� the de�nition is �rst given using a Lipschitz parametriza�
tion of the set and then it is compared with more intrinsic properties related
to w��limits of secant vectors to the set� Finally� using an isometric embedding
the de�nition is extended to the general metric case�

�or� equivalently� a single Lipschitz map f � Rk
� E

�



De�nition ��� 
Approximate tangent space� Let Y be the dual of a sepa�
rable Banach space� let S � B�Y �� and assume that S � f�B� for some Lipschitz

function f � Rk � Y � one to one on B � B�Rk�� For any x � S such that f
is metrically and w��di�erentiable at y � f���x�� with Jk�wdfy� � 
� we de�ne
the approximate tangent space Tan�k��S� x� as wdfy�R

k��
If S � Y is any countably Hk�recti�able set and Sij � fj�Bi� are given by

Lemma ��	� we de�ne

Tan�k��S� x� �� Tan�k��Sij � x� for Hk�a�e� x � Sij � S 	

Notice that� by the area formula� the Sij
s cover Hk�almost all of S�

Even though the Sij�s above are not disjoint in general� the de�nition is well
posed because of the following result�

Lemma ��	 
Locality� Let Si � fi�Bi� with fi � Lip�Rk� Y � one to one on
Bi � B�Rk�� i � �� �� Then

Tan�k��S�� x� � Tan
�k��S�� x� for Hk�a�e� x � S� � S� 	

More generally the conclusion above holds for any pair of countably Hk�recti�able

subsets S�� S� of Y �

Proof� Let K � S� � S� be a closed set and K� � f��� �K�� K� � f��� �K��
We will prove the inclusion � for Hk�a�e� x � K �the other one follows by a
symmetric argument��
Let K �

� be the set of points z � K� such that f� is metrically and w��
di�erentiable� Jk�wdf�z� � 
 and K� has density � at z� and let K

�
� be de�ned

analogously with f� in place of f�� we will prove the inclusion at any point
x � f��K

�
�� � f��K �

��� In fact� if x � f��z� � f��y�� since K� has density one at
z we can �nd a unitary basis w�� 	 	 	 � wk of R

k such that� for any i � �� 	 	 	 � k�
there exists a sequence �tk� 
 
 with z � tkwi � K� for any k �N� Setting

xk � f��z � tkwi� � K � yk � f��� �xk� � K�

we have �xk� � x and �yk� � y� We can assume� possibly extracting a subse�
quence� that �yk� y��jyk� yj converge to some unit vector v� Hence� using the
w� and the metric di�erentiability properties of fi we get

wdf�z�wi� � w� � lim
k��

xk � x

tk
� mdf�z�wi�w

� � lim
k��

xk � x

kxk � xk
� mdf�z�wi�w

� � lim
k��

f��wk�� f��w�

kxk � xk �
mdf�z�wi�

mdf�w�v�
wdf�w�v� 	

This proves that wdf�z�wi� � Tan�k��S�� x� for any i � �� 	 	 	 � k� whence the
inclusion � follows�
Finally� the general locality property for any pair of countablyHk�recti�able

sets follows directly by the previous one and by the construction of the approx�
imate tangent space�

�




By construction the approximate tangent space is de�ned only Hk�a�e�� and
is a k�dimensional subspace of Y � The following proposition shows the intrinsic
character of the approximate tangent space� basically we can say that secant
vectors generate �taking w��limits� the approximate tangent space� the metric
counterpart of this statement will be investigated in Proposition ����

Proposition ��� 
Secant vectors to recti�able sets� Let S � Y be count�

ably Hk�recti�able� Then� we can �nd a countable family of sets Si whose union
covers Hk�almost all of S and such that

Tan�k��Si� x� � �B� �

�
p � p � w� � lim

y�Si�x

y � x

ky � xk
�

�����

for Hk�a�e� x � Si�

Proof� We assume without loss of generality that S � f�Rk� for some Lips�
chitz map f � Rk � Y � let Bi be given by Lemma ��� and let B

�
i be the set of all

points y � Bi such that f is metrically and w
��di�erentiable at y� Jk�mdfy� � 


and ����� holds� By the area formula� Si � f�B�
i� cover Hk�almost all of S�

Moreover� by de�nition Tan�k��Si� x� � wdfy�R
k� for Hk�a�e� x � f�y� � Si� If

yh � B�
i n fyg and xh � f�yh� � Si converge to x� then yh converge to y and we

can assume� possibly extracting a subsequence� that �yh � y��jyh � yj converge
to some unit vector v� Using both the metric and the w��di�erentiability at y
we get

w� � lim
h��

xh � x

kxh � xk � w� � lim
h��

f�yh�� f�y�

kf�yh�� f�y�k �
wdfy�v�

mdfy�v�
	

This proves the inclusion � in ������ the opposite inclusion holds� by a similar
argument� at Hk�a�e� point x � f�y� such that B�

i has density � at y�

Using ����� we can now describe the local metric behaviour of countablyHk�
recti�able sets with �nite measure� showing that locally the distance behaves
like the norm in the approximate tangent space� A similar property has been
proved in Theorem � of ����� in a purely metric setting�

Proposition ��� 
Local metric behaviour� Let S � Y be a countably Hk�

recti�able set with Hk�S� � �� Then� for Hk�a�e� x � S there exist a Borel

set Sx and a linear and w��continuous map �x � Y � Tan�k��S� x� equal to the

identity on Tan�k��S� x�� such that ��k�S n Sx� x� � 
 and

lim
���
sup

�����k�x�y�� �x�z�k
ky � zk � �

���� � y� z � Sx �B��x�� y �� z

�
� 
 	

Proof� It is not restrictive to assume that S � f�Rk� for some Lipschitz map
f � Rk � Y � Let Kh be given by Remark ��	 and Bi given by Lemma ���� Let
h� i be �xed and Sih � f�Kh � Bi�� let x

� � Kh � Bi� x � f�x��� assume
Sx � wdfx��R

k� to be k�dimensional and let �x be a w��continuous linear
projection of Y onto Sx�

��



Since Hk�almost any point of S is a point of density 
 for one of the sets
S n Sih the conclusion will be achieved with Sx � Sih if we show that �using a
selfexplaining notation�

lim
���

� ky � zk
k�x�y � z�k � y� z � B��x� � Sih� y �� z

�
� � 	

Writing y � f�y��� z � f�z�� with y�� z� � Kh � Bi� the claimed equality is
implied by

lim
���

�kf�y��� f�z��k
mdfx��y� � z��

� y�� z� � B��x
�� �Kh �Bi� y

� �� z�
�
� �

and

lim
���

� kwdfx��y� � z��k
k�x�f�y��� f�z���k � y

�� z� � B��x
�� �Kh �Bi� y

� �� z�
�
� � 	

The �rst identity follows at once from the �rst one in ������ the prove the second
one� consider sequences �y�l�� �z

�
l� in Kh �Bi both converging to x

� and assume
with no loss of generality that vl � �y

�
l � z�l��jy�l � z�lj converge to some unit

vector v� Then� the second equality in ����� and the w��continuity of �x imply

lim
l��

kwdfx��y�l � z�l�k
k�x�f�y�l�� f�z�l��k

� lim
l��

kwdfx��y�l � z�l�k
jy�l � z�lj


 lim
l��

jy�l � z�lj
k�x�f�y�l�� f�z�l��k

� kwdfx��v�k 
 �

k�x�wdfx��v��k
�
kwdfx��v�k
kwdfx��v�k

� � 	

Finally� we conclude this section pointing out how the de�nition of approx�
imate tangent space can be given for countably Hk�recti�able subsets S of a
general metric space E�

De�nition ��� Let S� E as above and let j � S � Y be an isometric embedding�

with Y � G�� G separable �for instance G � l�� Y � l��� We de�ne

Tan�k��S� x� �� Tan�k� �j�S�� j�x�� �x � S 	

Of course� the approximate tangent space is de�ned Hk�a�e� on S and
depends on the choice of the space Y and of the embedding j� However� since
j is an isometry� Proposition ��� shows that di�erent choices of Y and j simply
produce approximate tangent spaces which are isometric for Hk�a�e� x � S�
In this sense the de�nition above is well posed� and will be used to estabilish
general area and coarea formulas for Lipschitz maps between recti�able subsets
of metric spaces�

��



� Recti�ability criterions

In this section we �nd some recti�ability criterions for sets and measures in dual
Banach spaces� We will see that the condition stated in Proposition ���� namely
the w��convergence of unit secant vectors to nonzero �actually� unit� vectors in
a suitable k�dimensional subspace actually provides a characterization of k�
recti�able sets�
For any pair of Banach spaces Y� M � with Y dual space� we de�ne �k�Y�M�

as the collection of all w��continuous linear maps � � Y � M such that
dim ���Y �� � k� In �k�Y�M� we de�ne a pseudometric � as follows�

���� ��� �� sup
kxk��

��k��x�k � k���x�k�� 	

In general � is not a metric� for instance� if Y �M � �C�
� ����� k � � and
�t��� � ���
� ����t� then ���t� �

�
t� � 
 whenever t� t

� � �
� ��� The advantage of
� is that it makes �the quotient space of� �k�Y�M� separable even though Y
is not separable� as the following lemma shows�

Lemma 	�� If Y is the dual of a separable Banach space� the set �k�Y�M��
endowed with the pseudometric �� is separable�

Proof� Any � � �k�Y�M� can be factored �not uniquely� as 
�
�� where

 � �k�Y�R

k� and 
 � �k�R
k�M��

Let D � G be a countable dense set and let

F ��
	

kX
i��

hx� gii�ei � gi � D



� �k�Y�R

k�

where ��e�� 	 	 	 � �ek� is the canonical basis of R
k� Let �
i� � �k�R

k�M� be a
sequence such that the sets Ci � fv � k
i�v�k 	 �g are dense in

C ��
n
fv � k
�v�k 	 �g � 
 � �k�R

k�M�
o

with respect to the Hausdor� topology on compact� convex� symmetric sets�
We will prove that the class 
i��
� with i � N and �
 � F is dense� In

fact� if 
�
� � �k�Y�M� and � � 
 are given� we can �nd �
 � F such that
k
kk
 � �
k � ���� hence

�
�

�
�� 
��
�

� 	 k
kk
 � �
k � �

�
	

On the other hand� by the density of the associated convex sets in the Hausdor�
topology� we can �nd i � N such that

k�
k jk
�y�k � k
i�y�kj 	 �

�
�y � B� �

hence �
�

��
�� 
i��
�

�
� ���� By the triangle inequality the conclusion follows�

��



Using the previous lemma and a standard argument in �nite dimensional
spaces �see for instance ����� Theorem ����� we can establish the following rec�
ti�ability result�

Theorem 	�� 
Recti�ability criterion for sets� Let Y � G�� with G sep�

arable� let S � Y and assume that for any x � S there exist ��x� � 
� ��x� � 

and �x � �k�Y� Y � such that

k�x�y � x�k � ��x�ky � xk �y � S �B��x��x� 	

Then� there exists a sequence of Lipschitz functions fh � R
k � Y such that

S � Sh fh�R
k��

Proof� Possibly splitting S in a countable union of sets we can assume with
no loss of generality the existence of an integer j � � such that ��x� � ��j and
��x� � ��j for any x � S� Let f�igi�N be given by Lemma 	�� and let

Si ��

�
x � S � ���x� �i� �

�

�j

�
� Vi �� �i�Y � 	

We will prove that any subset A of Si with diameter less than ��j is contained
in f�Vi� for some Lipschitz function f � Vi � Y � In fact� if x�� x� � A we can
apply the hypothesis with x � x� to get

k�i�x� � x��k � k�x��x� � x��k � �

�j
kx� � x�k � �

�j
kx� � x�k 	

This shows that �i � A � Vi is one to one and that its inverse function has
Lipschitz constant less than �j�

Theorem 	�� 
Recti�ability criterion for measures� Assume ��M�Y ��
Then� � is k�recti�able if and only if for ��a�e� x � Y the following two con�

ditions hold
 
 � �k���� x� 	 ��k��� x� �� and there exist �x � �k�Y� Y � and
��x� � 
 such that

Cx �� fy � Y � k�x�y � x�k 	 ��x�ky � xkg
has ��density 
 at x�

Proof� By ����� the measure � is concentrated on a Borel set S ���nite with
respect to Hk� and ����� implies that � is absolutely continuous with respect to
Hk� Assuming with no loss of generality that both conditions in the statement
of the theorem are satis�ed for any x � S� we will prove that the sets

S� ��

�
x � S �

��B��x��

�k
� � �� � �
� ��

�
� � 


satisfy the assumptions of Theorem 	��� and hence are countably Hk�recti�able�
In fact� let x � S� and let � � �
� �� such that

��x��� � �k�xk
�� �

	 ��x� 	

��



We claim that �k�x�y�x�k � ��x�ky�xk if y � S� and ky�xk is small enough�
in fact� by the triangle inequality we have

ky � y�k 	 �

�� �
ky� � xk � ky � xk 	



� �

�

�� �

�
ky� � xk � �

�� �
ky� � xk

for any y� � B�ky�xk�y�� Setting r � ky � xk� �k�x�y � x�k 	 ��x�ky � xk
implies

k�x�y� � x�k 	 ��x�

�
r � �k�xkr 	 ��x��� � �k�xk

�� �
ky� � xk

	 ��x�ky� � xk �y� � B�r�y� 	

This proves that B�r�y� is contained in Cx� as ��B�r�x� � Cx� � o�rk� and

��krk 	 ��B�r�y�� 	 ��B�r�x� �Cx�

the claim follows�

The density condition on Cx is implied by the w
��convergence of unit secant

vectors to a k�dimensional subspace� with a lower bound on the norms of the
w��limits� The following example shows that the only w��convergence of secant
vectors to a k�dimensional subspace is not su cient for recti�ability� not even
if supplemented with a uniform density lower bound�

Example 	�� Let E � �
� ��� endowed with the distance d�x� y� �
pjx� yj�

Then� E isometrically embeds in L���
� ��� with the mapping t �� ����t�� It is
easy to check that H��E� � ��� and� more generally� that

H��B��t��

���
�
�

�
for any ball B��t� � �
� �� 	

In particular� by Theorem ���� E is purely H��unrecti�able� i�e� no subset of
E with strictly positive H��measure is countably H��recti�able� On the other
hand� the secant vectors to ����t�

����s� � ����t�pjs� tj
weakly converge to 
 in L���
� ��� as s� t� The same is true if we embed� using
l� coordinates� L���
� ��� in l�� in this case the secant vectors w��converge to 

in l��

To our knowledge� the problem whether

lim
���

Hk�E �B��x��

�k�k
� � for Hk�a�e� x � E

implies recti�ability for a general metric space E is open� This is known to
be true in Euclidean spaces �see ����� ����� or in case one dimensional mea�
sures are considered �see ������ For two dimensional measures� �rst promising
nonEuclidean results have been obtained in ��
�� Finally� the results in ��� in�
dicate that the implication might be true for spaces which can be isometrically
embedded in Hilbert spaces�

��



� Unrecti�able metric spaces

In this section we deal with examples of purely k�unrecti�able metric spaces�
i�e� metric spaces E such that Hk�S� � 
 for any countably Hk�recti�able set
S � E�
The �rst example is the Heisenberg group H� for simplicity we consider the

lowest dimensional one� made of all pairs �z� t� with z � C and t � R� The
noncommutative group operation is

�z� t��z�� t�� ��
�
z � z�� t� t� � �Im�z�z��

�
so that �
� 
� is the identity and �z� t��� � ��z��t�� The Heisenberg group
becomes a metric space �see ����� when endowed with the homogeneous norm
k�z� t�k � �jzj� � t����� and with the distance

d�x� y� �� kx��yk 	

It is easy to check that H has Hausdor� dimension �� strictly larger than the
topological dimension� The group law� the norm and the distance are well
behaved with respect to the dilations �r�z� t� � �rz� r

�t�� these dilations can
be used to prove the following di�erentiability theorem� proved by P� Pansu in
the more general framework of Lipschitz maps between Carnot
Carath�eodory
spaces�

Theorem ��� Let A � Rk be a Borel set and let f � A � H be a Lipschitz

function� Then for Lk�a�e� x � A there exists a group homomorphism dfx �
Rk � H such that

lim
t��

���t
�
�f�x����f�x� tv�

�
� dfx�v� �v � Rk 	

Notice that the result is stated in ���� under the assumption that A is
an open set� but its proof works with minor modi�cations also in the general
case� Using the Pansu and the metric di�erentiability theorems and following
basically the argument in x���� of ��� we can obtain the following result�
Theorem ��� The Heisenberg group is purely k�unrecti�able for k � �� �� ��

Proof� Let f � A � Rk � H be a Lipschitz map and let us prove that
Hk �f�A�� � 
� Since H is complete we can assume with no loss of generality
that A is closed� By the area formula we need only to check that Jk�mdfx� � 

at any metric di�erentiability point where the Pansu di�erential dfx is de�ned�
Since dfx�R

k� is a commutative subgroup of H� it must be contained inRz��R
for some z� � C� on the other hand� writing dfx�v� � �z�v�� t�v��� the inequality

jt�v� � t�v��j 	 �Lip�dfx��� jv � v�j� �v� v� � Rk

implies that t is constant� hence the image of dfx is contained in Rz��f
g and
the kernel of dfx has dimension at least k � � � �� Since

mdfx�v� � lim
t��

d �f�x� tv�� f�x��

t
� lim

t��
k���t

�
�f�x����f�x� tv�

�
k � kdfx�v�k

for any v � Rk we conclude that Hk
�
fv � Rk � mdfx�v� 	 �g

�
�� and hence

that Jk�mdfx� � 
�

�	



The statement is false for k � �� indeed� it can be proved �see for instance
����� Section III��� that any pair of points inH can be connected by a curve with
�nite length� The lack of recti�able sets in the Heisenberg group suggests that
more intrinsic de�nitions of recti�ability could be useful in this space� related
for instance to level sets of regular functions� Some ideas in this direction can
be found in ����
In the following de�nition we introduce a property stronger than pure k�

unrecti�ability�

De�nition ��� 
Strongly k�unrecti�able spaces� Let �E� d� be a metric

space with Hk�E� ��� We say that E is strongly k�unrecti�able if Hk �f�E�� �

 for any Lipschitz map f with values into an Euclidean space�

By Lemma ��� we infer that any strongly k�unrecti�able space is purely
k�unrecti�able� but the opposite implication does not hold� in fact� there are
simple examples of purely ��unrecti�able sets in the Euclidean plane having
linear projections with strictly positive H��measure� see for instance Lemma
����� in ����� An example of purely ��unrecti�able set E in the Euclidean
plane such that H��E� � � and H� �f�E�� � 
 for any f � Lip�E�R� was
constructed by A�G� Vitu�skin� L�D� Ivanov and M�S� Melnikov in ��
� �see also
��	� for a simpli�ed and rigorous presentation�� this property is close to strong
k�unrecti�ability� but of course no subset of any Euclidean space can be strongly
k�unrecti�able�
We conclude this section with a remarkable example of strongly k�unrecti��

able space� this shows that that recti�ability can not be deduced by the recti��
ability of the projections� not even if nonlinear projections on Euclidean spaces
of arbitrary dimension are allowed� The construction is a modi�cation of an
unpublished idea of S� Konyagin ���� which answers the more special question
posed in ��
� for the case of one dimensional measure and real Lipschitz func�
tions�

Theorem ��� For any dimension � � 
 there exists a compact metric space

�X��� such that Hs
��X� � � but any Lipschitz image of X in any Euclidean

space is Hs�negligible�

Proof� For any j � � we consider the space
X�j� �� f
� �gj �� fA � A � f�� 	 	 	 � jg g

equipped with the normalized l��metric

�j�x� y� ��
�

j

jX
i��

jxi � yij �� �
j
card�x!y� 	

In the sequel we will use the following two observations�
Fact �� If � 	 k 	 j then

kX
l��

�
j

l

�
	 �j��



k

j

�
	

��



Indeed� this inequality obviously holds if k � � or k � j��� Moreover� the left
hand side is convex on f�� 	 	 	 � ��j � �����g whereas the right one is linear in k�

Fact 	� For each � � 
 there is an integer j� such that for any j � j� and
any A�B � X�j� ful�lling card�A�� card�B� � � 
 card�X�j�� the �j�distance
between A and B is necessarily less than �� The best estimate of this kind can
be obtained using Harper�s inequality based on combinatorial considerations�
see ����� Alternatively� the claim is also a consequence of the isoperimetric
results for the Hamming metric proved using martingale techniques� see x��� of
����� It states that �here �j�x�M� denotes the �j distance of x from M�

card

�
x � X�j� � �j�x�M� � �

�

�
	 � exp��j���	���j

for anyM � f
� �gj with card�M� � �j�� and positive �� Our statement follows
now by the usual argument applied e�g� in the local theory of Banach spaces to
prove the phenomenon of concentration of measure� Indeed� we choose

T � inf
n
t � 
 � cardfx � �j�x�A� 	 tg � �j��

o
	

Then T is the median of x � �j�A� x�� which means that both sets M� �
f�j�
� A� � Tg� M� � f�j�
� A� 	 Tg have cardinality at least card�X�j�����
Since for j large enough � exp��j���	�� � �� we conclude that dist�j �A�M�� 	
���� hence T 	 ���� Analogously� we infer that dist�j �B�M�� 	 ��� and so the
de�nition of M� gives that dist�j �A�B� 	 T � ��� 	 ��

For k � 
 we set mk �
Pk

l�� l � k�k � ���� and choose the set Ik�� �
fmk � �� 	 	 	 �mk��g of cardinality k � �� Our space X will be the set f
� �gN�

of all sequences ���� ��� 	 	 	 � with �i � f
� �g� So� for � � X the restriction � Ik
can be understood as an element of X�k�� Given n � 
 we de�ne the "tail# of
� � X by

Tn��� � f�� � �i � ��i for i 	 ng �

so that in particular T���� � X� Finally� for di�erent �� �� � X de�ne the
distance of � to �� to be

�s��� ��� � �
�mj���s ��j�� Ij� �� Ij��

min�����s�

where
j �� j��� ��� � minfj � � � � Ij �� �� Ijg 	

Since �j�s � jmin�����s� for all s � 
� it follows that

��mj�s 	 �s��� ��� 	 ��mj���s

and using these inequalities it is easily checked that �s is indeed a metric which
induces on f
� �gN� the canonical product topology�
Now we show that �s��

s�� 	 Hs
�s�X� 	 �� The upper estimate readly fol�

lows using covers of the type fTmk
��� � � � Xg �for a �xed k � �� which consists

of �mk sets of diameter ��mk�s� To obtain the lower estimate we consider the

��



canonical product probability measure � on X such that ��f� � �i � �g� � ���
for all i� Obviously� it su ces to show that

��A� 	 � 
 diam�s�A�
s for all A � B�X� 	 �����

Of course� we can suppose that A contains at least two points and set
j� � minfj��� ��� � �� �� � A di�erentg� We also �x �� � A� set

�A �� f� Ij� � � � Ag � X�j��

and notice that �A contains at least two points� Since ��Tn���� � �
�n for all

n � 
� � � X� we have

��A� 	 �
�
f� � � Ij � �� Ij if j � j� and � Ij� � �Ag

�
� ��mj� card� �A� 	

Choosing the maximal k which satis�es card� �A� �
Pk��

l��

�j�
l

�
� we obtain

� 	 k 	 j� and diam�s�A� � ��mj���
�s 




k

j�

�min�����s�

	

Consequently� due to Fact �

diam�s�A�
s � ��mj���



k

j�

�
� ��mj���

�j���
kX
l��

�
j�
l

�

� �

�
��mj� card� �A� � ��A���

which establishes ������
Moreover� the natural isomorphism between the tails Tk��� and Tk���� en�

sures that

Hs
�s�Tk���� � �

�k 
 Hs
�s�X� for all � � X� k � 
 	 �����

To �nish the proof of the theorem� we assume now by contradiction that we
are given an integer d � s and a ��Lipschitz map f � �X��s� � Rd such that
Hs�f�X�� � 
	
Since Hs�f�X�� 	 Hs

�s�X� � �� we have ��s�f�X�� x� 	 � at Hs�a�e�
x � Rd� Therefore� we �nd a set Y � f�X� with Hs�Y � � � � 
 and a j� such
that

Hs�Z� 	 ���sdiam�Z�s if Z � Y and diam�Z� 	 ��mj�
�s	

Next� we choose an integer N and a positive � such that

N � s

q
���s 
 �d�� 


p
d and � � minf s

q
�����s��N

p
d�� ����Nd�g

�����

and we select j� � maxfj�� j�g where j� was introduced in Fact ��
Obviously� there is a �� � X such that

B � Tmj�
���� satis�es Hs�f�B� � Y � � ���mj� 	

��



Since diam�f�B�� 	 diam�B� � ��mj�
�s� we �nd a cube Q of size q 	 ��mj�

�s

containing f�B� � Y � Let F be the family of Nd disjoint subcubes of Q of size
q�N � We denote by Fs the subfamily of those �Q � F ful�lling Hs� �Q � f�B� �
Y � � �

��
�mj�N�d� Obviously Hs�

SFs � f�B� � Y � 	 �
��

�mj� � so

Hs�
�
�F n Fs� � f�B� � Y � � �

�
��mj� 	

We also know that for each �Q � F

Hs� �Q � f�B� � Y � 	 ���s


q

N

�s
ds�� 	 ���sds����mj�N�s 	

Consequently� based on our choice of N we conclude

card�F n Fs� � �

�
��mj� �����sds����mj�N�s� �

�

���sds��
N s � �d 	

In particular� there are Q�� Q� � F n Fs with

dist�Q�� Q�� � q

N
�

s
p
���mj�

����s

N
p
d

� � 
 ��mj�
�s � �����

since q
p
d � diam�f�B� � Y � � s

pHs�f�B� � Y �����s�
Denote Mi � f���Qi�Y ��B� Ai � f� Ij��� � � �Mig � X�j����	 Since

Qi �� Fs� we see that Hs�Mi� � Hs �Qi � Y � f�B�� � ���mj�
��N�d� More�

over� the de�nition of B and ����� ensure that Hs
�s�Mi� 	 card�Ai� 
 ��mj��� �

Therefore�

card�Ai� � ��j�N�d � � 
 card�X�j� � ��� for i � �� � 	

Since j� � j�� we conclude from Fact � that dist�j����A�� A�� 	 �� which in turn
implies

dist�s�M��M�� 	 ��mj�
�s 
 � 	

However� this combined with Lip�f� 	 � obviously contradicts ������

	 Tangential di�erentiability and general area for


mula

In this section we prove a general area formula for Lipschitz maps de�ned on
general countably Hk�recti�able subsets S of a metric space E� We consider
�rst the case when E � Y is the dual of a separable Banach space and then we
recover the general case using an isometric embedding�
The jacobian appearing in the general area formula depends on a "tangential

di�erential#� seen as a linear map de�ned on Tan�k��S� x�� whose existence is
ensured by the following theorem�

�




Theorem ��� 
Tangential di�erential on recti�able sets� Let Y � G��
Z � H� be duals of a separable Banach spaces G� H� let S � Y be countably

Hk�recti�able and let g � Lip�S�Z�� Let � � S � �
��� be integrable with

respect to Hk S and set � � �Hk S�
Then� for Hk�a�e� x � S there exist a linear and w��continuous map L �

Y � Z and a Borel set Sx � S such that ��k�� Sx� x� � 
 and

lim
y�SnSx�x

dw �g�y�� g�x� � L�y � x��

jy � xj � 
 	 �����

The map L is uniquely determined on Tan�k��S� x�� and its restriction to this

space� denoted by dSgx� satis�es the chain rule

wd�g � h�y � dSgh�y� � wdhy for Lk�a�e� y � A �����

for any Lipschitz function h � A � Rk � S�

Proof� We �rst assume Z � R and� without loss of generality� S � f�Rk�
for some Lipschitz map f � Rk � Y � Let Si � f�Bi� be as in the proof of
Proposition ���� we will prove that ����� holds� for a suitable w��continuous
map L � Y � R and with Sx � S n Si� at any point x � S � Si where the
following conditions hold�

�a� f is metrically and w��di�erentiable at z � f���x� � Bi� Jk�mdfz� � 

and Tan�k��Si� x� � wdfz�R

k��

�b� g � f is di�erentiable at y and

lim
���

��B��x� � Si�
�k�k

� ��x� � 
 � lim
���

��B��x� n Si�
�k�k

� 
 	

We de�ne L�v� � d�g � f�z �wdfz��� �v� for any v � Tank�Si� x�� and extend
L to a linear and w��continuous map on the whole of Y � Under the above
density assumptions� ����� is implied by the pointwise limit

lim
y�x� y�Si

g�y�� g�x� � L�y � x�

jy � xj � 
 	

Writing y � f�w�� the limit above is equivalent to

lim
k��

g�f�zk��� g�f�z��� L�f�zk�� f�z��

jf�zk�� f�z�j � 
 �����

for any sequence �zk� � Bi n fzg converging to z� Assuming with no loss of
generality that �zk � z��jzk � zj converge to some unit vector �� we infer that
the limit above is equal to

d�g � f�y�v� � L�wdfy�v��

mdfz�v�

��



which is 
 by the construction of L� A similar argument based on ����� also
proves that the restriction of L to Tan�k��Si� x� is uniquely determined by �����
with A � Bi� h � f and S � Si�
In the general case� let Z � H�� withH separable� and let D � H be a dense

and countable vector space over Q� by using the tangential di�erentiability
of the real valued functions gd�x� � hg�x�� di we can recover� arguing as in
Theorem ���� the existence for ��a�e� x � Y of a linear and w��continuous map
Lx � Y � �Z� dw� such that

hLx�v�� gi � dSgdx�v� �d � D� v � Y 	

By construction it can be easily checked that Lx satis�es ����� and ����� with
h � f �
Finally ����� with a generic function h follows by the uniqueness of L� re�

peating the argument above with h in place of f �

Consider now a Lipschitz map g � S � F � with E� F separable metric
spaces and S � E countably Hk�recti�able� We can embed isometrically E� F
respectively in duals of separable Banach spaces Y� Z with maps jE � jF and
de�ne the "lifted# map

�g �� jF � g � j��E � jE�S� � Y � Z 	

Then� we can de�ne

Jk�d
Sgx� �� Jk

�
djE�S��gjE�x�

�
for Hk�a�e� x � S 	 �����

Notice that �g and its tangential di�erential depend of course on the choice of the
spaces Y� Z and the embeddings jE � jF � However� the following result shows
that Jk�d

Sgx� has an intrinsinc character�

Theorem ��� 
General area formula� Let g � E � F be a Lipschitz func�

tion and let S � E be a countably Hk�recti�able set� Then Jk�d
Sg� is well

de�ned Hk�a�e� by ������ MoreoverZ
S
��x�Jk�d

Sgx� dHk�x� �

Z
F

X
x�S�g���y�

��x� dHk�y�

for any Borel function � � S � �
��� andZ
A
��g�x��Jk�d

Sgx� dHk�x� �

Z
F
��y�H�

�
A � g���y�

�
dHk�y�

for any A � B�E� and any Borel function � � F � �
����

Proof� We �rst assume E � Y and F � Z� so that �g � g� By the locality
properties of the approximate tangent space �and of x �� dSgx as well� we can
assume S � f�Rk� for some f � Lip�Rk� E�� Arguing as in Theorem ����� of
���� the proof follows by the area formula for Lipschitz maps de�ned in Rk once
we prove the chain rule

Jk �wd�g � f�y� � Jk�d
Sgf�y��Jk�wdfy� �����

��



for jacobians� The identity ����� follows by ����� �with h � f� and ������
In the general case� if we choose di�erent embeddings jE�� jE� to de�ne �g�

and �g�� by applying the formula just proved we getZ
S�
��j���E �y��Jk�d

S��g�y� dHk�y� �

Z
F

X
x�S�g���w�

��x� dHk�w�

�

Z
S�
��j���E �z��Jk�d

S��g�z� dHk�z�

for any Borel function � � S � �
���� with S� � j�E�S� and S� � j�E�S��
Being � arbitrary� we get

Jk�d
S��g�y� � Jk�d

S��g�z� with y � j�E�x�� z � j�E�x�

for Hk�a�e� x � S� This proves that Jk�d
Sg� is well de�ned Hk�a�e� and that

the area formula holds�

� Coarea formula

In this section we prove a coarea formula for Rk�valued Lipschitz maps de�ned
on countably Hn�recti�able subsets S of a metric space E�

De�nition ��� 
Coarea factor� Let X� Y be �nite dimensional linear spaces

with dimX � n � dimY � k and f � X � Y linear� We de�ne Ck�f� as the
unique constant such that

Ck�f�Hn�A� �

Z
Y
Hn�k

�
A � f���y�

�
dHk�y� �A � B�X� 	

�����

The de�nition is well posed because the right side in ����� is shift invariant�
hence coincides with a constant multiple of Hn�A�� Notice that� by the area
formula� Ck�f� � Jn�f� if n � k� By Theorem ���
��� of ��� the coarea factor
can be estimated from above with �k�n�k �Lip�f��

k ��n� By applying Fubini
theorem and a polar decomposition it is not hard to see �see for instance ����
that in the case Y � Rn the coarea factor can be computed by

Ck�f� � �det�f � f������ 	 �����

We will prove the coarea formula using the Euclidean one and a parametriza�
tion of the recti�able set� the following general chain rule will be useful�

Lemma ��� Let f � X � Y � g � Y � Z be linear maps� with dimX � dimY �
n � dimZ � k� Then

Ck�g� 
 Jn�f� � Ck�g � f� 
 Jn�k
�
f jKer�g	f�

�
	 �����

��



Proof� Let K � Ker�g � f�� using the identity

dimf�X� � dimKer�gjf�X�� � dim Im�gjf�X��

� dim f�K� � dim g � f�X�

it can be easily checked that if either f is not injective or g is not surjective
then both sides in ����� are zero� Hence� in the following we assume that f is
bijective and g is surjective� and thus that dimK � n � k� We �x a vector
space X � � X such that X � K � X � and choose Borel sets B � K� C � X �

such that Hn�k�B� � Hn�A� � �� with A � B �C� The de�nition of Ck gives

Ck�g � f� �

Z
Z
Hn�k

�
A � �g � f����z�

�
dHk�z�

� Hk�g � f�C�� 
 Hn�k�B� � Hk�g � f�A��

because A � �g � f��� �g�f�x��� � B � x for any x � g � f�C�� and is empty
otherwise� On the other hand

Ck�g� 
 Jn�f� � Ck�g� 
 Hn�f�A��

�

Z
Z
Hn�k

�
f�A� � g���z�

�
dHk�z�

�

Z
Z
Hn�k

�
f�A � �g � f����z��

�
dHk�z�

� Hn�k�f�B�� 
 Hk�g � f�A��
� Jn�k�f jKer�g	f�� 
Ck�g � f� 	

By using a similar decomposition argument we can also obtain a di�erent
representation of Ck�f��

Lemma ��� Let X� Y and f be as in De�nition ���� let K be the kernel of f �
assume that dimK � n�k� Let p � X � Rn�k be a linear map injective on K�

Then

Ck�f� �
Jn�q�

Jn�k�pjK�
�

where q � X � Rn is given by q�x� � �p�x�� f�x���

Proof� Choosing K � � Ker p� we have X � K � K �� Again we �x B � K
and C � K � compact such that for A � B � C the normalization condition
Hn�A� � Hn�k�B� � � holds� Since we have the orthogonal sum

q�A� � q�B� � q�C� � �p�B�� f
g� � �f
g � f�C���

we conclude

Jn�q� � Ln �q�A�� � Hn�k �p�B��Hk �f�C�� � Jn�k�pjK�Ck�f� 	

��



Let S � E be a countably Hn�recti�able set and let g � Lip�E�Rk�� with
k 	 n� Arguing as in the previous section we can de�ne Ck�d

Sg� �rst in
the case when E is contained in the dual of a separable Banach space �using
Theorem ���� and then in the general case� using an isometric embedding�

Theorem ��� 
General coarea formula� Under the above assumptions the

following properties hold


�a� for Hk�a�e� y � Rk the set g���y� � S is countably Hn�k�recti�able�

�b� for Hk�a�e� y � Rk and Hn�k�a�e� x � g���y��S is Tan�n�k��g���y�� x� �
KerdSgx�

�c� for every Borel function � � S � �
��� we have

Z
S
��x�Ck�d

Sgx� dHn�x� �

Z
Rk

�Z
g���y�

��x� dHn�k�x�

�
dHk�y� 	

Proof� We assume �rst that E is the dual of a separable Banach space� We
know that S can be written as a disjoint union S� �

S
i Si where Hn�S�� � 


and each Si is a bilipschitz image of a compact set in R
n� Due to Theorem

���
��� of ��� we have

Hn�k
�
S� � g���y�

�
� 
 for Hk�a�e� y � Rk 	

Consequently� by the ��additivity of the integral and the locality properties of
approximate tangent spaces we can restrict our attention the case S � f�P ��
with P � Rn compact and f � P � S bilipschitz� We set h � g � f � P � Rk�
Theorem ��� and Theorem ��� ensure that the conditions
�i� the di�erential dhx � R

n � Rk exists
�ii� the w��di�erential wdfx � R

n � $E exists and is injective
�iii� the approximate tangential di�erential dSgf�x� � Tan

�n��S� f�x�� � Rk

exists
�iv� Tan�n��S� f�x�� � wdfx�R

n� and dhx � dSgf�x� � wdfx
are satis�ed for Hn�a�e� x � P � Consequently� Lemma ��� gives

Ck�dhx�
Jn�k
�
wdfxjKer�dhx�

�
� Ck�d

Sgf�x��
Jn�wdfx� for Hn�a�e� x � P 	

The Euclidean coarea formula �see Theorem ������ of ���� ensures that for Hk�
a�e� y � Rk the level set h���y� is compact and countably Hn�k�recti�able� So
the same holds true for g���y� � f�h���y��� This estabilishes statement �a��
Moreover� the same theorem implies that for Hk�a�e� y � Rk we have

dhx�R
n� � Rk and Tan�n�k��h���y�� x� � Ker�dhx�

for Hn�k�a�e� x � h���y�� Hence� wdfxjKer�dhx� � dh
���y�fx� which ensures �b��

and the area formula givesZ
g���y�

��x� dHn�k�x� �

Z
h���y�

��f�x��Jn�k�d
h���y�fx� dHn�k�x�

��



for Hk�a�e� y � Rk� Finally� we apply the Euclidean coarea formula once more
and Lemma ��� to �ndZ

Rk

Z
g���y�

��x� dHn�k�x� dHk�y�

�

Z
Rk

Z
h���y�

��f�x��Jn�k�wdfxjKer�dhx�� dHn�k�x� dHk�y�

�

Z
P
��f�x��Jn�k�wdfxjKer�dhx��Ck�dhx� dHn�x�

�

Z
P
��f�x��Ck�d

Sgf�x��Jn�wdfx� dHn�x�

�

Z
S
��x�Ck�d

Sgx� dHn�x� 	

In the general metric case we argue exactly as in Theorem ����

It should be noted that a construction in ���� shows that even for C��
functions f � �
� ��� � �
� �� the level sets f���t� can in general be covered
by countably many lipschitz curves only up to H��zero sets�
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