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THE TWO-WELL PROBLEM IN THREE DIMENSIONS
GEORG DOLZMANN, BERND KIRCHHEIM, STEFAN MULLER AND VLADIMIR SVERAK

ABSTRACT. We study properties of generalized convex hulls of the set K = SO(3) U SO(3)H with
det H > 0. If K contains no rank-1 one connection we show that the quasiconvex hull of K is trivial
if H belongs to a certain (large) neighbourhood of the identity. We also show that the polyconvex
hull of K can be nontrivial if H is sufficiently far from the identity, while the (functional) rank-1
convex hull is always trivial. If the second well is replaced by a point then the polyconvex hull is
trivial provided that there are no rank-1 connections.

1. INTRODUCTION

Mathematical models of solid-solid phase transitions [BJ1, BJ2, CK] motivate the following
questions. Consider a compact subset K of the space of 3 x 3 matrices M?>*3, a bounded domain
Q2 C R? and a sequence of maps uj: Q— R3 that satisfies

(1.1) dist(Du;, K) — 0 in measure,
(1.2) uj = u  in WHO(Q;R?).

What is the smallest set K’ such that for every such sequence u; its limit u satisfies Du € K’ ?
For which sets K do (1.1) and (1.2) imply that Du; — Du in measure or, equivalently, in all L?,
p < oo (in a more general context these questions were already raised in the seminal paper [Tal] of
Tartar)? In applications the set K corresponds to the set of energy minimizing affine deformations
of a crystal lattice, while K’ describes the set of (macroscopic) affine boundary conditions for which
global (almost) minimizers exist.

The theory of quasiconvexity [Mo] and (gradient) Young measures [Yol, Yo2, BL, Tal, Bd, Ba]
(see [Va, Pe2, Mu] for recent reviews) gives an abstract answer to the above questions. Our goal
is to verify the abstract conditions for the simplest three-dimensional example with the physical
rotation symmetry. To explain the relevant notions let us first consider the abstract setting. A
function f : M™*™ — R is quasiconvex (in the sense of Morrey) if one has

/ J(F+Dg)dz > f(F)  Vpe CP([0,1]%R™), VF € M™",
[0,1]"

and the set K’ turns out to be exactly the quasiconvex hull of K given by
K :={F eM"™": f(F)<supf Vf quasiconvex}
K

(i.e. KY¢ consists of those points that cannot be separated from K by quasiconvex functions).
The fundamental theorem on Young measures states that for any bounded sequence of functions
v; 1 Q= R? there exists a subsequence and a map v : Q — P(R?) into probability measures on R?
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such that for all continuous functions f : R? — R and all g € L'(Q)

/ 9(2) (v () dz — / 9(@) (e, f) da,
Q Q

where (v, f) = [ fdv,. A Young measure generated by gradients of a sequence that satisfies (1.2)
is called a gradient Young measure, and Kinderlehrer and Pedregal [KP] have shown that such
measures are essentially characterized by Jensen’s inequality for quasiconvex functions, i.e. by the
condition

(1.3) (v, [) = f({vg,id)) V[ quasiconvex.

The class of homogeneous (i.e. z-independent) gradient Young measures supported on K is denoted
by M1¢(K), and it is not difficult to check (see e.g. [Sv3]; [Mu], Thm. 4.10 and Cor 3.2) that (1.1)
and (1.2) imply strong convergence of Du; if and only if M9¢(K) is trivial, i.e. contains only Dirac
masses. Moreover K%¢ consists exactly of the barycentres of measures in M?%(K) (see e.g. [Mu],
Thm. 4.10).

In application to solid-solid phase transitions in elastic crystals the set K is invariant under
(left) rotations and the simplest non-trivial example corresponds to the so-called two-well problem
K = SO(3)AUSO(3)B, det A,det B > 0. After a suitable change of coordinates it suffices to
consider the case

h1
(1.4) K = SO(3) USO(3)H, H = he B> hy>hy >0,
hs3

We say that K contains no rank-1 connection if rank(A — B) # 1 for all A,B € K. A short
calculation, see for example [Ja], shows that a set of the form (1.4) contains no rank-1 connection
if and only if

(1.5) hy # 1.
The following conjecture was raised by D. Kinderlehrer:

Conjecture 1.1. If K is of the form (1.4) and contains no rank-1 connection then
MI(K) is trivial and in particular K9 = K.

Note that if A, B € K differ by a matrix of rank 1 then Ad4 + (1 — A\)dp is a nontrival element
of M(K).

The conjecture was established by Matos [Mal] (see also [Sv2]) provided that for some 7 one has
(hi — 1)(hj—1hi+1 — 1) > 0 (here and in the following we count the index i modulo 3, i.e. hy = hy
etc.). Using elliptic regularity arguments and in particular work of F. John on BMO estimates
for gradients of deformations with finite strain Kohn and Lods [KL] recently proved the conjecture
provided that H is sufficiently close to the identity (and satisfies a certain technical condition). Our
main result gives a (rather large) explicit neighbourhood of the identity for which the conjecture
holds.

Theorem 1.2. Suppose that K is given by (1.4) and contains no rank-1 connection. Assume in

addition that one the following conditions holds:

i) there exists an i such that (h;j — 1)(hj—1hiy1 —1) >0,
ii) by >hy >1>h3 >3 or3>h; >1>hy>h3>0.

Then
MI(K) is trivial and in particular K9 = K.
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The proof is completely algebraic. In fact, instead of M?(K) we consider the larger class of
polyconvex Young measures which are obtained by restricting (1.3) to the simplest quasiconvex
functions, namely the minors. Specifically let

MP(K) = {v € P(K) : (1.6) and (1.7) hold},

(1.6) cof (v,id) = (v,cof),
(1.7) det (v,id) = (v, det).
The polyconvex hull KP¢ consists of all barycentres of measures in MP¢(K).

Theorem 1.3. Under the hypotheses of Theorem 1.2 we have
MPE(K) is trivial and in particular KP¢= K.

The following result shows that the polyconvex version of Conjecture 1.1 does not hold for all
H.

Theorem 1.4. There exists an H = diag(hy, ha, h3) with hy > hy > h3 >0, hs # 1 and det H = 1
such that K = SO(3) USO(3)H has a nontrivial polyconvex hull, i.e. KP¢+# K.

While this result indicates that Conjecture 1.1 might not be true for all H the following two
results show that a counterexample might not be so easy to find. We first consider the (functional)
rank-1 convex hull given by

K :={FeM"™": f(F) <supf Vf rank-1 convex}.
K

We recall that a function f is rank-1 convex if all its restrictions to rank-1 lines are convex. An
important example of Tartar [Ta2] (similar examples were discovered by [AH], [CT] and [NMI]
in other contexts; see also [BFJK]) shows that K™ can be non-trivial even if K has no rank-1
connections (this fact was recently exploited to construct solutions to strongly elliptic 2 x 2 systems
that are nowhere C* [MS)]).

Theorem 1.5. Suppose that K is given by (1.4) and that K contains no rank-1 connection. Then
K*e=K.

One also obtains that the corresponding class of measures defined by rank-1 convexity (the
so-called laminates [Pel]) is trivial.
If K consists of one well and one point then one has a global result for the polyconvex hull.

Theorem 1.6. Consider the set
h1
K =S03)U{H}, H= ho
hs3

with h;y > 0. If K contains no rank-1 connection then
MPE(K) is trivial and in particular KP¢= K.

This improves a result of Matos [Ma2] who showed that for each H with det(H — I) # 0
there exists an g9 > 0 such that the assertion holds for the set SO(3) U {I + ¢(H — I)} whenever
0 < e < gp. We follow Matos’ proof to establish first that all matrices in KP¢ must be diagonal.
We then conclude by a careful analysis of the three decoupled equations (1.6) and thus avoid the
somewhat lengthy asymptotic expansions in [Ma2].

Finally, for the sake of completness let us briefly consider the case that the two-well set K does
contain a rank-1 connection. By (1.5) this corresponds to ho = 1. In this case the quasiconvex
hull and the polyconvex hull are clearly nontrivial. The best we can hope for is that they can be
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obtained by successively adding rank-1 segments to the set K. We define the lamination convex
hull K¢ inductively as follows.

ch — UK(Z)a K(O) - K

KA = K'U{MA+(1-MNB:xe0,1], A,Be K% rank(A - B) =1}.

Alternatively K' can be defined as the smallest set that contains K and is invariant under the
operation of adding rank-1 segments.

In the following theorem we compare these hulls in the case when K contains a rank-1 connection.
In order to unify our proofs we formulate a result which covers (up to permutation of coordinates)
a slightly more general situation.

Theorem 1.7. Consider the set
hy
K =S0(3)USO(3)H, with H = ho ,
hs

where the only restrictions on the h;’s are
ho # 1,(h1ha — 1)(hs — 1) = 0 and hy, he, hg are positive.
Then KP€ is trivial unless hg = 1 and (hy — 1)(he — 1) < 0. In this case

~

KZC:K’"C:K“:KPC:{Q<F 1) : Qe S0(3), Fele},

where

K =8S0(2) USO(2) < i hy ) c M2*2,

An explicit formula for K = K¢ = K% = KP° is given in [Sv2]. Indeed K = K®). In the
special case det H = 1 one has K = {F € conv K : det F = 1}.

2. SUFFICIENT CONDITIONS THAT POLYCONVEX YOUNG MEASURES ARE TRIVIAL

In this section we first prove Theorem 1.3 which obviously also implies Theorem 1.2. We then
show that the polyconvex hull is still trivial if almost all the mass of the Young measure is concen-
trated on one of the two wells.

Proof of Theorem 1.3. Assume that v is a polyconvex Young measure supported on K =
SO(3) USO(3)H. Then v can be written as

v=(1—Xpo+ \oH,
where A € [0,1] and p and o are probability measures on SO(3). Here o H denotes the measure
given by cH(E) = o(EH ') where EH ' = {F : FH € E}; in particular 64H = §4y. Since
cof G = G for G € SO(3), the minors relations are equivalent to

F = (1-)AR+ \SH,
(2.1) cof ' = (1-X)R+ AScof H,

det F = (1—)\)+ AdetH,
where F' = (v,id), R = (p,id) and S = (o,1d). We will frequently use the following expansions
(2.2) cof(F—1I) = cof F— (tr F)I +F" +1,
det(F—1) = detF —trcof F+trF —det I,
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which hold for all F € M?*3 and the inequality
(2.3) trQ —2e'Qe <1 Ve € S2, VQ € conv SO(3),

which was proven in [Ja]. A simple calculation shows that the identity F7 cof F = (det F)I can be
rewritten using (2.1) as

(1—=MN2RTR—1)+ NHT(STS —I)cof H
(2.4) + A1 =N{(R"S—I)cof H+ H"(S"R—1)}
= A1 =N (H" = I)(cof H - I).
Multiplication of (2.4) by e; from the right and by e! from the left shows that
(1= N)2(|Rei]* — 1) + X*(|Sei|* — 1) det H
(2.5) + X1 = A)(hi—1his1 + hi) ((Re;, Se;) — 1)
= A1 =N (hi = 1)(hj—1hit1 — 1)
for i =1,2,3. Since R, S € conv(SO(3)) we deduce
|Re;|> —1 <0, |Se;|> —1 <0, (Re;, Se;) —1 <0,
and in particular the right hand side of (2.5) must be less than or equal to zero:
(2.6) (hi — 1)(hj—1hiz1 —1) <0, 1=1,2,3.
Since all terms on the left hand side of (2.5) have the same sign we conclude in addition that
(hi —1)(hi—1hit1 —1)|
|hi—1hit1 + hil '
The proof of Theorem 1.3 with assumption i) follows now from Theorem 1.7.
Regarding assumption ii) we may assume that the first set of inequalities holds as the other case

can be reduced to this by replacing H by H~!. Let K = H — I = diag(ky, k2, k3). Then ky, ko > 0,
k3 < 0 and (2.6) implies

(2.7) [(Re;, Se;) — 1] < |

(2.8) hihs <1, hohs < 1.
It follows from (2.3) with e = e3 that
(2.9) (R — 1)11 + (R — 1)22 — (R — 1)33 <0 VR € conv SO(3)

A short calculation using
hi +hi—1hipr =tr K+ 2+ ki_1kip1 > ki—1kit
and
(hi = 1)(hi—1hiy1 — 1) = det K + ki(ki—1 + kit1)
shows that (2.9) applied to RTR, ST'S, RT'S € conv SO(3) yields in connection with (2.4)
AL = N{((R"S)11 — 1)koks + ((RTS)22 — 1) ksky — ((RT'S)33 — 1) k1ko }
> A1 — N)(2k1 ko + k1koks).
This inequality implies with (2.7) and k3 < 0

3
|hi—1hit1 — 1]
2k k k1ko ks — |k — | <0.
1k2 + K1 2[ 3| 3|Z-Zzl|hi—1hi+1+hi|] <

Since k1ko > 0 by assumption we obtain the desired contradiction if

° Jhicihizs — 1
(2.10) 2+k3[1+;|hi1hi+1+hi|} "
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By (2.8) we may estimate

|h2h3 — 1| 1

— - < — =g,

hohs +h1 = M

[

hihi +hy = hy

|h1h2 — 1| 1

—c — < 1- =1 —ab.
hihy +hsy — hihg ¢

Sincea+b—ab=1—(a—1)(b—1) <1 we conclude that the expression in the brackets in (2.10)

is estimated by 3 from above and thus (2.10) holds for k3 > —%, ie., hg > % This concludes the

proof of Theorem 1.3. O

We now turn towards proving an asymptotic result for polyconvex Young measures the mass of
which is almost concentrated on one well.

Theorem 2.1. Assume that K = SO(3) USO(3)H with H = diag(hy,ho,hs), h1 > hy > 1 >
hs > 0. Then there exists a A\g > 0 which only depends on H such that the following holds: If
v=(1-MXo+ \oH is a polyconvex Young measure supported on K with 0 < X\ < Ao, then v is
trivial, i.e., A =0 and v = g for some Q € SO(3).

Proof. Assume that there exists a sequence A\, — 0 and corresponding polyconvex Young mea-
sures v, = (1 — A\p)on + Ao H supported on K. The minors relations imply
F, = (1—-X\)R,+ \,ShH,
(2.11) cof F, = (1 —Xy)Ry + A\ySpcof H,
detF,, = (1—X\,)+ \,detH,

where F, = (v, id), R, = {on,id), Sy = {(oy,4d). In particular, R,, RL, S, € convSO(3) and it
follows from (2.3) with e = e3 that

(2.12) (Sn)11 + (Sn)22 — (Sn)ss < 1.
Identity (2.4) applied to R, yields
[(RY Ry — 1)ii| < codn,

where ¢y depends only on H. Since M = I — RI'R,, is positive semidefinite we have 2|M;;| <
M;; + Mj; < 2co\, and hence RERH — I = O(\,). Therefore the eigenvalues of RSRH are of order
1+ O(A\,) and since \/z = 14+ O(xz — 1) we conclude that

R, = Qn(I + O(N\,)), where @, € O(3).

We also have det F,, = (1 — \,)3(det R,,) + O(\,) — 1 which implies det R,, > 0 and Q,, € SO(3).
Premultiplication of v, by QL shows that we may assume Q,, = I and R, —I = O()\,). This allows
us to choose a subsequence (again denoted by A,) such that F,, - F =1, S,, — S and

1 . .
— (R, — I , —(F,— 1 F.
(B D) = R, (Fa D)

n n
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Then the minors relations (2.11) and the expansion (2.2) show

R+ Scof H—1 + /\i{(l —An)(Rp — I) 4+ Ap(Spcof H— 1)}

1
= E(COan — COfI)
1 1

— (tr )T —F7,

and similarly —1 + det H = tr F'. In the limit we obtain thus the following system of equations

(2.13) F = R—1I+SH,
(2.14) (tr F)I — FT = R—1I+ ScofH,
(2.15) trF = detH —1,

and from (2.12) the inequalities

(2.16) (R+R")11 + (R+ R")p — (R+ R")33 <0,
(2.17) S11+ S22 — S33 < L.

We will show that an algebraic manipulation of this system leads to a contradiction.
Substitution of (2.13) and (2.15) into the left hand side of (2.14) gives

(2.18) R+ RT = (det H+1)I — Scof H — (SH)",
while substracting (2.13) from (2.14) and taking the trace yields
tr F' = tr(Scof H — SH).
Thus (2.15) implies
(2.19) det H — 1+ tr (S(H — cof H)) = 0.
Inequality (2.16) yields with (2.18)
det H + 1 — tr (S(cof H + H)) +2(S(cof H + H)),, < 0.
If we add this to (2.19) we obtain
det H — tr(S cof H) 4 (S(cof H + H)),, < 0.
Since H and cof H are diagonal, we deduce
hs(hihg — S11ha — S22h1 + S33) < 0.
Because hs > 0 we obtain from (2.17)
hihg — S11hg — Saohy < —S33 <1 — 511 — S22
and substracting s;1$99 we conclude that
(h1 — S11)(h2 — S22) < (1 — S11)(1 — Sa2).

This is a contradiction since hy, hy > 1.
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3. TWO INCOMPATIBLE WELLS WITH NONTRIVIAL POLYCONVEX HULL

In this section we construct a matrix H with det H = 1 such that SO(3) and SO(3)H are
not rank-one connected, but K = SO(3) U SO(3)H supports a nontrivial Young measure v which
satisfies the minors relations (1.6) and (1.7). We also show that K G KP¢.

Assume that v = (1—X)p+ Ao H where p and o are probability measures on SO(3) and XA € (0, 1).
Let

R=| Qde(@, S=[ Qdo(Q).

SO(3) SO(3)

Then R, S € conv(SO(3)), a set which is given in terms of the eigenvalues A1, A2, A3 of the symmetric
part in the polar decomposition by

conv(SO(3)) = {QU: Q€s0(3),U=U", Zsi)\i <1 for |g;| =1 and e1e9e3 = —1}
i

(see [Ja]). It follows that F' = (v,id) = (1 — A\)R+ ASH, and the minors relations are equivalent to

(3.1) cof F— F = MAS(cof H—- H),

(3.2) det F—1 = A(detH —1).

The idea is to show that for A > 0 small enough, A\ = % and H = diag(h,h,h 2) there exists
)

an s3 € [{5,1] and a solution F = diag(fi, f2, f3) of (3.1) and (3.2) with S = diag(s1, s, s3) =
(3,1, 535) € conv(SO(3)) which satisfies

1

(3.3) OgrlzrggiandOSTP,Sl,
where

S Ji — Asih;

‘ 1—X
Thus R = 55 (F — ASH) € conv(SO(3)); if then p and o are arbitrary probability densities
supported on SO(3) with (g,id) = R and (o,id) = S, then
1
v= 5(@ +oH)

is the desired Young measure supported on K. It should also be mentioned that the proof of the
description of conv(SO(3)) in [Ja] shows that we can assume the measures p and o to be supported
on the four diagonal matrices in SO(3). On the other hand, since I is the only positive definite
diagonal matrix in SO(3) it follows from Proposition 1 in [Svl] that this v cannot be a Gradient
Young measure provided both p and o are supported in the diagonal rotations.

We will use the following inequalities:

i) Assume that f,h > 0 and c € (0,1) satisfy f — % = ¢(h — #). Then f > ch. If in addition

c=1tand h< \/% then f € (3h,4h).
ii) Assume that A > 0 and that f > 0 satisfies f — % = As(h — +). Then for ¢y > 0

_ f—Ash
"TTIa

(3.4) € [0, C()]
holds if and only if

1
Ms?<1and 1<\ +cosA(1— ) (h+ =)+ @Al — N2
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e

We choose h € (0, %) with h + % =14 and A = 51 = 59 = % By (3.4) we infer 0 < r; =79 < %
and fi = fo € (3h,4h) due to i). Moreover, (3.4) applied for h3 = h~2 also ensures that 0 < r3 < 1
whenever s3 € [é,l]. Finally for the same hg, the estimates in i) give f3 > %ff2 for s3 = 1,
and one easily verifies that f3 < % if s3 = 11—0. Consequently, flfzfg(%) <1< fifafs(1l). The
1
27

continuity of f3 as a function of s3 now implies the existence of the desired S = diag(%,
which the corresponding F' fulfills det F' = 1. Since f; € (3h,4h) clearly F' ¢ K.

s3) for

4. POLYCONVEX YOUNG MEASURES SUPPORTED ON A POINT AND A WELL
In this section we prove Theorem 1.6. Assume that v is given by
(4.1) v=(1—-Xpo+ Ag,

where g is a probability measure on SO(3), A € (0,1) and H = diag(hq, ho, h3) with h; > 0. Then
the minors relations are equivalent to

(4.2) cof F —F = Xcof H— H),
(4.3) det F — 1 = \(det H — 1).

The fact that F' = (v,id) must be diagonal if A\ ¢ {0,1} was already proven in [Ma2], Proposition
1.7. We include the proof for the convenience of the reader. With different techniques we first show
that F' is symmetric and then follow the proof in [Ma2] to show that F' is diagonal.

Lemma 4.1. Suppose that X € (0,1) and that v given by (4.1) satisfies the minors relations (4.2)
and (4.3). Let F = (v,id). Then either F is symmetric or one eigenvalue of H is equal to one.

Proof. Let K = H—1, G = F — 1. If we take the trace in (4.2) and subtract the resulting
equation from (4.3) we obtain

det F —trcof F+tr FF — 1= A\(det H — trcof H + tr H — 1);
from det(F' — I) = det F' — trcof F'+ tr F' — 1 we conclude
(4.4) det G = A det K.

To prove the lemma it thus suffices to show that G is symmetric assuming that det G # 0.
Expanding both sides of (4.2) we obtain

cof [ +G)—(IT+G) = IT+cof G+ (trG)I -G —(I+G)
= cof G+ (tr G)I — (G + GT), and equals
Acof (I+ K) = (T+K)) = A(cof K + (tr K)T — (K + K")).
Hence, cof G is symmetric. Since det G # 0, both
G = (det @)~ (cof )T

and G are also symmetric. O

Lemma 4.2. Suppose that v given by (4.1) satisfies the minors relations (4.2) and (4.3). If F' =
(v,id) is symmetric, then F is diagonal.
Proof. Let R = (p,id). Then F = (1 — A\)R + AH and the minors relations can be written as
cof F = (1—XA)R+ Acof H,
det ' = (1—\)+ Adet H.
The identity (det F)I = F''(cof F') thus implies
(1 =X +Adet H)I = (1 - N R'R+ X1 — \)(R"H + (cof H)'R) + X(cof H)'H
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and by the symmetry of R and H
(4.5) (1+Adet H)I = (1 — A\)R"R + A\(RH + (cof H)R).
It follows that RH + (cof H)R is symmetric; therefore (with the convention e4 = e; and ey = e3)
((RH + (cof H)R)e;, ex) = (s, (RH + (cof H)R)ey,)
or
hi(Re;, er) + hr1hk1(Re;, ex) = hi(ei, Rey) + hi—1hi1(ei, Rey,).
This is for £ = ¢+ 1 equivalent to
(4.6) (hix1 — hi)(hi—1 + 1)(Re;, ei+1) = 0.

Case 1: All eigenvalues of H are distinct. Then R must be diagonal.
Case 2: Assume that two eigenvalues of H are equal, i.e., H = diag(h, h, hg). Then (4.6) implies
Ro3 = R3; = 0 while we deduce from (4.5)

(1 = A\)(RTRey, e9) + AM((RH + (cof H)R)ey,e3) = 0
& Ri2((1 = A)(Ri1 + Ra2) + Ah(1 + hg)) = 0.
We claim that Ry1, Rgo > 0 and thus Ryo = 0, i.e. R is diagonal. Indeed, it follows from (4.5) and
(RTR)11 <1 that
1+ Adet H = (1—=X)(R"R)11 + RuAh(1 + h3)
< (I =X) 4+ RutAh(1 + hy).
Thus 0 < A(1 + det H) < Ah(1 + h3)R1; and we conclude similarly that Rgy > 0.

Case 3: All eigenvalues of H are equal. In this case (hg —1)(h1hs—1) > 0 and hence by Theorem
1.3 there exists no solution of (4.2) and (4.3) with A € (0,1). O

Proof of Theorem 1.6. Assume that A € (0,1) and that v = (1—\)p+ Ay is a (nontrivial) Young
measure which satisfies the minors relations (4.2) and (4.3). Since due to Theorem 1.3 (or see also
[Mal]) the conclusion of Theorem 1.6 holds whenever one of the h;’s equals one, we can exclude
this case from our considerations. By Lemma 4.1 and Lemma 4.2 we infer that F' = diag(f1, fo, f3)-
Thus (4.2) reduces to the system of three equations

We claim that this system has a solution only if at least one of the h;’s is equal to one, which is
the desired contradiction. To prove our claim, note that (4.3) implies that det F > 0 and thus we
may rewrite (4.2) as

fi  VdetF _ )\\/detH( hi Vdet H)

Jdet F fi  VdetF \VdetH  h;
Let
Adet H
o= 76, h(z) = arcsinh(a sinh(x)).
Vdet F

By (4.3) a < 1 and it is easy to see that A’ is strictly increasing on [0, 00). Thus h is strictly convex
on [0,00) and satisfies h(z) = —h(—x). Let
hi ln(fi/\/ det F) if  f; >0, 1 if  f; >0,
y Y= . , O = .
Vdet H In(—Vdet F/f;) if f; <O, -1 it f; <O0.

z; = In
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Then
s o £ !
4.7 z; = —InVdet H, e%iYi — v , el1y1tozy2tos3ys
(4.7 ; ' Vdet F Vdet F
and we conclude that
3
(4.8) ZUiyi = —InVvdet F.
i=1
Since sinh(z) = —sinh(—z) and h(Inz) = arcsinh(%(z — 1)) we have
3 3
(4.9) > hlow) = ow.
i=1 i=1
On the other hand by (4.3)
(4.10) h(—=Invdet H) = —Invdet F
and combining (4.7) - (4.10) we obtain
3 3
> h(oizi)) = —InVdet F = h(—InVdet H) = h() _ z;).
i=1 =1

Moreover, o10903 = 1 since det F' > 0. It follows from Lemma 4.3 below that there exists an
i € {1,2,3} such that

3
h:
—InvVdet H = Tz, =z; = In ’ =Inh; —InvVdet H.
j; ! vdet H
So indeed h; = 1. O

In the proof of the theorem we used the following observation:

Lemma 4.3. Let g : R — R satisfy g(—x) = —g(x) for all x and suppose g to be continuous,
strictly convezr and nonnegative on [0,00). Assume that z; € R and that there exist o; € {—1,1}
with 010903 = 1 such that

3

(4.11) g(ZxZ) = Zg(aiwi).

i=1 i=1
Then z = Y° | x; € {z1, 22,23}

Proof. In the proof we will use the following two facts:

i) Since g is strictly convex on [0,00) and ¢g(0) = 0 we conclude

9(y1 +y2) > g(y1) +g(y2) for y1, y2 > 0.

Thus g(y1 + y2 + y3) = g(y1) + 9(y2) + 9(y3), and y1, y2, y3 > 0 implies that at least two of
the y; are equal to zero.

ii) Assume that y; > 0,4 = 1,...,4 and that y1 +y2 = y3 + va, 9(y1) + 9(y2) = 9(y3) + g(ya).
Then {y1,y2} = {y3,ya}. This follows from the fact that the function A : [0,y3 + ya] — R,
h(z) = g(ys + ya — x) + g(z) is strictly decreasing on [0, %(yg + y4)] and strictly increasing on
[3(ys + y4). ys + ya]. Thus h(z) = g(y1) + g(y2) = 9(y3) + g(ya) implies z € {y3,y4}. The
assertion follows now from h(y1) = g(y1) + g(y2).
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Now, suppose first that (o1, 09,03) # (1,1,1). Then after a permutation of indices o7 = 09 = —1
and o3 = 1. So (4.11) implies
(4.12) g(z1 + z2 + 13) + g(21) = g(—22) + g(23).

Let h(z) = g(z + z2+ 3) + g(x). Since g is strictly monotone on R the same holds for h. It follows
from (4.12) that

h(—=x2) = g(x3) + g(—x2) = g(z1 + T2 + 23) + g(z1) = h(z1)

and thus z1 = —z9 and z3 = .

It remains to consider the situation that o; = 1,4 = 1,2,3. We assume that 1 + z9 + z3 > 0
(otherwise replace z; by —z;) and, after permutation if necessary, that z; < zo < z3. By hypothesis
g(z1 + z2 + x3) = g(z1) + g(z2) + g(z3). We have to distinguish three cases:

Case 1: If 1 > 0 we conclude from i) that 1 = o = 0 and z3 = z.

Case 2: If 1 < 0 < xo, then

9(z1 + 22 + 23) + g(—21) = g(22) + g(73)

and it follows from ii) that {—z1, 21 + z2 + 23} = {z2, 23}.
Case 8: If 1 < 29 < 0 < z3 then

9(z1 + 22 + 23) + g(—21) + 9(—22) = g(23) = g(21 + 22 + 23 — 71 — T2)

and it follows again from i) that at least two of the numbers {—z1, —x9, z1 + z2 + 23} are equal to
zero, a contradiction.
This proves the lemma. O

5. THE RANK-1 CONVEX HULL OF TWO WELLS

Here we derive Theorem 1.5 and Theorem 1.7. These two results easily yield a complete descrip-
tion of the rank-1 convex hull of two arbitrary SO(3)-wells.

Proof of Theorem 1.5. All we need to do here is to combine two ingredients. The first one is the
asymptotic result for the polyconvex hull obtained in Theorem 2.1. The other one is a certain con-
nectedness property of the rank-1 convex hull (see [Pel] or [MP], a more detailed consideration can
be found in [Ki]). It says in particular that if K¢ consists of two metrically separated components
C1, Cs then the generation of the rank-1 convex hull is done in each of the C; locally and therefore
independent of the situation in the other component. In short, K™ N C; = (K N C;)™. While this
statement is also trivially true for the ordinary convex hull K¢, well-known examples show that it
can fail for KP¢. A counterexample for the quasiconvex case (situated in MC*?) is due to Sverdk,
see e.g. [Mu], Section 4.7.

So, let K be given by (1.4) and suppose that K does not contain any rank-1 connection. If all h;
are bigger than one then we are done by Theorem 1.2 i). Since (K - H=1)™¢ = K- H~!, it suffices
to consider the case hy > ho > 1 > hs > 0. Hence the assumptions of Theorem 2.1 are satisfied.

First, we note that

dist(KP¢\ SO(3),S0(3)) > 0.
Indeed, otherwise we find a sequence F,, = (1 — A\,)R,, + \ySpH ¢ SO(3) such that R,,S, €
conv SO(3) and dist(£),,50(3)) — 0. Since we know that A, > Aoz > 0 for all n, we infer the
existence of Ao > 0, Roo, Seo € conv SO(3) which satisfy

Fy = (1 —Ax)Ro + AocScH € SO(3).
This implies that
1 = |[Fes|| < (1 — Ao [ Roces|| 4+ Aoohs | Scesl| <1 — Aso(l — h3),

which is a contradiction.
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Because K™ C KP¢ we find disjoint compact sets C; D SO(3) and Cy D SO(3)H such that
C1 U (Cy = K. By the already mentioned topological considerations, see e.g. Corollary 2.9 in
[MP], we conclude that

K= (KNC)"“U(KNCy)™=80(3)"U(SO(3)H)" = K. a
Proof of Theorem 1.7. Let us fix an arbitrary matrix in KP¢\ K of the form /' = (1-A\)R+ASH
such that A € (0,1) and the minor relations (2.1) hold. Now (2.5) ensures that
(R"R—1)33 = (S"S — I)zz = (R"S — I)33 = 0.

This implies that Rez = Ses € S Since M = I — RTR is positive semidefinite and Mzz = 0
we deduce that 0 = Mj3 = Mg = Res - Rey = Res - Res. We choose Q € SO(3) such that
QRes = QQSes = e3. Hence R, and similarly @).S, is of block structure. We postmultiply the
identity for F' by () to obtain

aran (% (5 ) ("

It is easily checked that the minor relations (2.1) hold true also for this new representation. We
have

3

QR :/ QXdo(X).
SO(3)
Since QX € SO(3) and hence (QX)33 < 1 g-a.e while (QR)33 = 1 we deduce
supp(e) = (X €80 : (@x) = (| ) v eso@p.

Thus R € conv(SO(2)) and similarly S € conv(SO(2)). Of course, QF is also of block structure.
Next we will shoYv that Ahg =1 Ifhg #1 t}len hiho = 1 and the assumption hy # 1 yields
hi1 # hy. Since R and S are conformal and H = diag(h1, hs) is not conformal, we either have
SH — R+#0or S=R=0. The latter situation cannot arise since it would yieldAthe contradiction
0 =det(QF) = (1=X)+ Adet H. Thus there exist 4, j € {1,2} such that S;;h; — R;; # 0. Choosing
i’ =3 —1, j' =3 — j, the cofactor relation implies
(cof(QF))iryr = (=1)"7(X(Sijhy — Rij) + Rij)(A(hs — 1) + 1)
= (L= NRij + ASujihjhs.

Since equality in this nondegenerate quadratic equation occurs for both A = 1 and A = 0, we obtain
a contradiction with X € (0,1). Therefore, we conclude hg = 1.

Moreover, the minor relation for (cof(QF))s3 ensures that the first block F' = ((QF)ij)ij<2
satisfies

detF:(l—)\)+)\det<h1 L )
2

Thus F € K?¢. Moreover F ¢ K because otherwise F' € K as hs = 1. By Sverdk’s result we
conclude (h; —1)(he —1) <0 and

F:Q_1<F 1 ) E{Q< r ) . Qes0®), Fefdc}.
R On the other hand, if the h;’s fulfill the conditions mentioned above then it is known that
KP¢ = K is nontrivial. Since the set of rank-1 segments is invariant under rotations and the same
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holds true for K, we obtain the remaining inclusion

KlCD{Q<F 1) : Qe S0(3), FeKlC}.

This finishes our proof. O
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