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Abstract

The preceding Part I of this paper has introduced a class of matrices �H�matrices� which are data�sparse
and allow an approximate matrix arithmetic of almost linear complexity� The matrices discussed in Part
I are able to approximate discrete integral operators in the case of one spatial dimension�

In the present Part II� the construction of H�matrices is explained for FEM and BEM applications in
two and three spatial dimensions� The orders of complexity of the various matrix operations are exactly
the same as in Part I� In particular� it is shown that the applicability of H�matrices does not require a
regular mesh� We discuss quasi�uniform unstructured meshes and the case of composed surfaces as well�

AMS Subject Classi�cation� ��F��� ��F��� ��F��
Key words� fast algorithms� hierarchical matrices� hierarchical block partitioning� sparse matrices� matrix
inversion� BEM� FEM

� Introduction

In Part I ���� the class of H�matrices is introduced and it is shown that this technique provides an e�cient tool
for sparse hierarchical approximation to large and fully populated sti	ness matrices arising in BEM 
boundary
element method� and FEM� applications� In particular� the storage� the matrix�vector multiplication and
standard matrix operations like the 
truncated� matrix�matrix product and matrix inversion of H�matrices
have a complexity between O�n� and O�n log� n�� where n is the problem size�� For example� the arithmetic
of H�matrices can be applied to Schur�complements of H�matrices�

The construction of H�matrices involves the same cluster tree of the underlying domain as the panel
clustering technique 
see �
� or ��� �� ����� The panel clustering matrix representation uses a row�wise clustering
procedure and provides a matrix�vector multiplication of the complexity O�n logd�� n� for boundary element
problems posed in Rd � d � �� �� However� these panel clustering matrices cannot cheaply be multiplied or
inverted� For this purpose� the H�matrices are based on a further block�cluster tree� which leads to a rather
general block decomposition of the matrix� Such a block decomposition is discussed in Part I ��� for a regular
one�dimensional mesh� Here we concentrate on the corresponding construction of H�matrices for �D and �D
applications� In particular� these matrices approximate dense matrices arising in �D and �D boundary element
Galerkin�collocation methods� Our assumption 
��� on the kernel is also typical for the reliability of wavelet
approximation techniques 
cf� ��� �� ����� However� di	erent from wavelet applications� we do not require

global or piecewise� smoothness of the surface 
normal direction��

The practical implementation of the H�matrices is uniquely de�ned by the cluster tree and the choice of
the far �eld condition 
��� A general construction of the block�cluster trees is presented in �� and ��� The
reliability of H�matrix approximations in BEM will be brie�y discussed in ����� The complexity analysis
is prepared in several steps� First� the case of a regular �D tensor�product mesh is analysed� see ��� In a
second step� quasi�uniform and shape�regular unstructured triangulations are admitted 
������ In this way�

�In the FEM case� the inverse matrix is the full one which needs a data�sparse representation�
�If rank�k matrices are used for the block matrices� the constant in O�� � � � depends on k�
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the results obtained for the tensor�product meshes are used for the construction of an asymptotically optimal
approximation to the minimal admissible cluster tree on the given unstructured grid� More complicated case
like manifolds composed from smooth patches are discussed in ����� Concerning the �D case� we describe the
H�matrices for regular �D meshes in ��� Generalisations to unstructured meshes are completely analogous to
the �D case� Although the same techniques can be applied also to any dimension d � �� we omit this case�

The discussion of the H�matrix arithmetic is to completed by further papers about the numerical perfor�
mance� the applicability to adaptive 
non�quasi�uniform� grids� and the analysis of anisotropic kernels etc�

� The Cluster Tree

We recall the de�nitions of an H�tree and of the particular partitionings introduced in ���� Let I be a �nite
index set� Consider the vector space K I consisting of vectors v � �vi�i�I over the �eld K � fR� C g� The
usual block partitioning of a vector is described by a 
�xed� partitioning of I into disjoint subsets� i�e��
P � fIj � � � j � kg with

I �
kS�

j��
Ij � 
��

In the following� we consider many di	erent partitionings including 
locally� coarse or �ne partitionings� The
set of these partitionings is hierarchically structured and is uniquely de�ned by the tree T � T �I�� The name
H�tree is due to its hierarchical structure� The exact description of T is given in De�nition ���� Therein we
use the notation

S�t� �� fs � T � s is son of tg for t � T 
��

for the sons of a vertex� A leaf is characterised by S�t� � � 
or �S�t� � ���

De�nition ��� Let I be an index set� A tree T is called an H�tree �based on I� if the following conditions
hold�

�i� I � T �
�ii� If t � T is no leaf� S�t� contains disjoint subsets of I and t is the union of its sons� i�e��

t �
S�

s�S�t�
s� 
��

We conclude that I is always the root of T and t � I holds for all t � T� Usually� the tree is constructed
such that �S�t� �� �� i�e�� either t is a leaf or it has at least two sons 
cf� De�nition ��� in ����� Note that
�S�t� � � and s � S�t� imply s � t because of 
��� However� in view of later theoretical constructions� we do
not require �S�t� �� � in De�nition ����

Since the subsets t � I which form the vertices of T� are called clusters� the H�tree T is also named cluster
tree�

As in ���� the set of all leaves is denoted by

L�T � �� ft � T � S�t� � �g �

In the following� we restrict all partitionings to those which are built by sets contained in the tree T�
For these we use the name H�partitioning 
or� T �partitioning� if we want to refer to the tree T �� i�e�� P �
fIj � � � j � kg with 
�� is a T �partitioning of I if Ij � T 
or equivalently� P � T �� The set of all such
T �partitionings is denoted by P�T ��

Remark ��� �i� P�T � � fL�T �� � T � is a subtree of T and an H�treeg�
�ii� There is a one�to�one mapping between T �partitionings and H�subtrees T �� given by T � �� P �� L�T �� �
P�T ��

Proof� Part 
i� follows from 
ii�� For the proof of 
ii� let an H�subtree T � be given� Then 
�� ensures
I �

S� s�L�T �� s	 hence� P �� L�T �� is a T �partitioning� If a T �partitioning P is given� consider the subtree T �

of T consisting of all t � T with t 	 Ij � Ij or t 	 Ij � � for all Ij � P�
Remark ���
ii� allows to de�ne a partial ordering�
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De�nition ��� If P � � L�T �� and P �� � L�T ��� are two T �partitionings� P � is called coarser ��ner� than P ��

if and only if T � 
 T �� �T � � T ����

So far� we have admitted arbitrary subsets of I as vertices of the tree T� Later� each index i � I will carry
a position xi � Rd 
e�g�� d � ��� We may also identify the index i with the position xi� This allows to de�ne a
diameter

diam�t� �� max
i�j�t

kxi � xjk for t � T 
��

using the Euclidean norm in Rd � Since we want to have many indices in t with t possessing a diameter as small
as possible� the naming cluster for t � T makes sense and leads to the name cluster tree for T� Further� we
will need the distance of two clusters�

dist�s� t� �� min
i�s�j�t

kxi � xjk for s� t � T� 
��

Remark ��� For Galerkin discretisations it is more reasonable to associate each index i with the support�

Xi � R
d of the corresponding basis functions� We introduce the notation

X�t� ��
�
i�t

Xi for t � T� 
��

In this case� the de�nitions ��� and ��� become

diam�t� � max
x�y�X�t�

kx� yk for t � T� 

�

dist�s� t� � min
x�X�t�� y�X�s�

kx� yk for s� t � T� 
��

The construction of the cluster tree T is the essential part of the H�matrix construction� In �� we describe
the cluster tree for a particular two�dimensional grid� This gives rise to a more general cluster tree for general
two�dimensional manifolds 
���� The three�dimensional case is discussed in ��� Other algorithms for generating
the cluster tree can be considered as well 
compare� e�g�� Lage �����

� The Block�Cluster Tree

While the vector components are indexed by i � I� the matrix entries have indices from the index set I � I�
The block�cluster tree is nothing but the cluster tree for I� I instead of I� Its notation is T� � T �I� I�� while
we write T� � T �I� for the previous cluster tree corresponding to I� We will describe a mapping � � T� �� T�
which constructs the block�cluster tree T� in a unique way from the cluster tree T� discussed above� Therefore�
the block�cluster tree T� is �xed as soon as the cluster tree T� is de�ned� In any case� the vertices of T� belong
to the Cartesian product T � T�

The H�matrices will be constructed on the basis of a particular 
optimal� block partitioning P� � T��

��� Construction of T� from T

We describe two mappings � � T �� T�� The simpler one is given in

Construction ��� Start with I�I � T� and de�ne the sons of b � �t�� t�� � T� �where t�� t� � T � recursively
by


 �s�� s�� with s� � S�t��� s� � S�t��� provided these sons exist�


 �t�� s�� with s� � S�t��� if S�t�� � � and S�t�� �� ��

 �s�� t�� with s� � S�t��� if S�t�� �� � and S�t�� � ��

 S��b� � � if S�t�� � � and S�t�� � ��

�Replace Xi � Rd by Xi � � � Rd�� in the case of a manifold ��

�



In the latter case� S� denotes the set function 
�� for T� instead of T� � T �I�� We collect some trivial
results in the next remark�

Remark ��� a� The depth of the tree T� equals the depth of T�
b� If all branches of T have the same length k� only the �rst and fourth cases of Construction 	�
 occur�
c� Assume the case of b�� If T is a binary tree� then T� is a quadtree�

Due to Part c� of the remark� we might like to modify Construction ���� The second construction tries
to ensure that the components t�� t� � T in b � �t�� t�� � T� do not have too di	erent diameters� while the
degree of the vertices b � �t�� t�� equals the degree of either t� or t� � T � This leads to the

Construction ��� Start with I� I � T� and de�ne the sons of b � �t�� t�� � T� �where t�� t� � T � recursively
by


 �s�� t�� with s� � S�t��� if S�t�� � � or diam�t�� � diam�t��� provided S�t�� �� ��

 �t�� s�� with s� � S�t��� if S�t�� � � or diam�t�� � diam�t��� provided S�t�� �� ��

 S��b� � � if S�t�� � � and S�t�� � ��
Similarly� one can replace the goal diam�t�� � diam�t�� by other options� e�g�� �t� � �t� 
i�e�� t� and t�

should contain a similar number of indices�� In the latter case� a binary tree T� leads to a binary tree T��
It is an easy exercise to check that T� satis�es the conditions of De�nition ���� i�e�� in both cases we obtain

an H�partitioning of the product set I � I�

��� Admissible Blocks� Admissible T��Partitionings

To guarantee a su�cient approximation� we need the admissibility condition

minfdiam�t��� diam�t��g � �� dist�t�� t�� 
��

for the block b � �t�� t��� Here� � � � is a constant which will be �xed later 
see� e�g�� 
�����

De�nition ��� A block b � �t�� t�� � T� is called admissible if either b is a leaf or ��� holds�

In ��� we have introduced a T��partitioning of I � I� It can be regarded as the set L�T ��� where T � is a
subtree of T� with the properties I�I � T � and 
�� with respect to I�I� Another name for the T��partitioning
would be a covering of I�I� since it is a subset P � fb�� � � � � bpg � T� of disjoint blocks with ���i�p bi � I�I�
De�nition ��� A T��partitioning P of I � I is called admissible� if all blocks t � P are admissible�

A trivial example for an admissible T��partitioning is P � L�T���
Remark ��� Let P � � L�T �� and P �� � L�T ��� be two di�erent admissible T��partitionings� then the intersec�
tion T � 	 T �� yields an admissible T��partitioning P � L�T � 	 T ���� which is �ner than P � and P �� in the sense
of De�nition 
�	� Furthermore� �P � minf�P ���P ��g holds for the number of blocks�

Due to this remark� we can ask for the smallest admissible partitioning� This leads to

De�nition ��� The minimal admissible T��partitioning of I � I is the admissible T��partitioning with the
minimal number of blocks�

The minimal admissible T��partitioning can be obtained by a simple search in the tree T��

Algorithm ��	 The construction of the minimal admissible T��partitioning Pmin of I � I is obtained as
Pmin �� 
�fI � Ig� with 
 from

function 
�P �	 comment P � T�	
begin P � �� P 	

for all vertices t � P do
if t is not admissible then P � �� �P �nftg� � 
�S��t��	

 �� P �

end�


���

�



Proof� The proof that 
��� yields the minimal admissible T��partitioning is based on the following observation�
If b � �t�� t�� � T� is admissible� then also all sons of t are admissible� This is due to the fact that the left�hand
side in 
�� weakly decreases if t� or t� are replaced by the 
smaller� sons� while the right�hand side dist�t�� t��
weakly increases�

Remark ��
 If one likes to replace the admissibility condition ��� by another condition Adm�b� �a Boolean�
valued function�� one should ensure that Adm�b� �� Adm�s� holds for all s � S��b��

Remark ���� The minimal admissible T��partitioning is coarser �cf� De�nition 
�	� than any other admis�
sible T��partitioning�

��� Complexity Considerations

In ��� we described two particular partitionings P� � T�� Similarly� we will describe a T��partitioning in ���
This partitioning is admissible 
the minimality is not discussed but can be shown if � is of appropriate size��
For the �xed partitioning� one can study the complexity of the various arithmetical operations�

In the general case� the T��partitioning is determined as the minimal admissible T��partitioning resulting
from Algorithm ���� In order to ensure the desired complexity� it is su�cient to prove the complexity for some
admissible T��partitioning� The existence of such a T��partitioning is su�cient� a constructive description is
not needed� The proof uses Remark �����

Lemma ���� Assume that �i� the computational work increases if the T��partitioning becomes �ner �cf� Def�
inition 
�	�� �ii� the complexity of some admissible T��partitioning is known� Then the complexity of the
minimal admissible T��partitioning is at least as good�

��� Hierarchical H�Matrices

In the following de�nition� P� is a general T��partitioning of I � I� although in practical applications we shall
use only admissible T��partitionings P�� Each b � P� corresponds to a location of a matrix block� Given a
matrix M � �mij��i�j��I�I � K I�I � the matrix block corresponding to b is denoted by M b � �mij��i�j��b�

De�nition ���� Let P� be a block partitioning of I � I and k � N� The underlying �eld of the vector space
of matrices is K � The set of H�matrices induced by P� is

MH�k�I � I� P�� �� fM � K
I�I � each block M b� b � P�� satis�es rank�M b� � kg� 
���

We call a matrix A an Rk�matrix if rank�A� � k� The properties of Rk� and� in particular� R
 �matrices
are discussed in ����

Remark ���� All considerations about H�matrices do not refer to a special ordering of the unknowns� The
index set is allowed to possess no ordering at all� Only if we visualise the block partitioning as in ���	� we
introduce a numbering of the blocks�

Remark ���� In De�nition 	�

 the upper bound of the rank is assumed to be the same for all submatrices�
One may consider variable bounds� Then k is a function k � P� � N of the block and the inequality in �

�
becomes rank�M b� � k�b�� For the sake of simplicity� we regard k as a constant for the rest of the paper�

��� Approximation by H�Matrices

The reliability of H�matrices for the approximation of the integral operators

�Au��x� �

Z
�

k�x� y�u�y�dy� x � ��

is essentially based on smoothness properties of the kernel� k�x� y�� In the boundary element method� integral
operators occur with k�x� y� being Green�s function associated with the partial di	erential equation under
consideration or with k�x� y� replaced by a suitable directional derivatives Dk of k�x� y�� Here � is either a
bounded d�dimensional manifold 
surface� � � Rd�� or a bounded domain 
 in Rd � d � �� �� The single layer

�Note that the rank k � N and the kernel function k�x� y� are both written as k�

�



potential for the Laplace equation in R� gives the familiar example k�x� y� �� �
�� jx � yj�� for x� y � �� The

smoothness of k�x� y� with respect to both x and y depends in a typical manner on the distance jx� yj� Note
that both the panel clustering method and the H�partitioning approach exploit only the approximation of
k�x� y� by a degenerate kernel 
cf� ��� De�nition �������� This holds for k�x� y� as well as for �k�x� y���n�x�
or �k�x� y���n�y� 
double layer kernel and its adjoint� cf� ��� 
������a�b��� even if the normal direction n
is nonsmooth because of the non�smoothness of the surface �� since only the smoothness properties of the
singularity function k�x� y� are involved� More precisely� we assume that the singularity function k�x� y�
satis�es�

j��x ��y k�x� y�j � c�j�j� j	j�jx� yj�j�j�j�jjk�x� y�j for all �� 	 � Nd	 � x� y � Rd � 
���

where �� 	 are multi�indices with j�j � �� � � � � � �d and N	 � N � f�g� Note that similar assumptions are
usually required in the wavelet or multi�resolution technique 
cf� ��� �� �����

By De�nition ����� H�matrices consist locally 
blockwise� of rank�k matrices� As in the panel clustering
method� these low rank matrices can be constructed via a Taylor expansion� of k�x� y�� Let x� y vary in the
respective sets X�tx� and X�ty� 
cf� 
��� corresponding to the clusters tx� ty � T and assume without loss of
generality that diam�X�ty�� � diam�X�tx��� The optimal centre of expansion is the Chebyshev centre� y� of

X�ty�� since then ky � y�k � �
� diam�X�ty�� for all y � X�ty�� The Taylor expansion reads k�x� y� � ek�x� y��R

with the polynomial

ek�x� y� � m��X
j�j�	

�


�
�y� � y��

��k�x� y��
�y�


���

and the remainder R� which can be estimated by

jRj � jk�x� y�� ek�x� y�j � �

m�
ky� � ykm max

��X�ty�� j�j�m

������k�x� �����

���� � 
���

Lemma ���� Assume �

� and ��� involving the su�ciently small parameter � � �� Then for m � �� the
remainder �
�� satis�es the estimate

jk�x� y�� ek�x� y�j � c�m��mjk�x� y�j for x � X�tx�� y � X�ty�� 
���

Proof� The estimate ky � y�k � �
� diam�X�ty�� for y � X�ty� is already stated� All x � X�tx� and y� � � X�ty�

satisfy kx� �k � dist�X�tx�� X�ty�� � �
�� minfdiam�X�tx��� diam�X�ty��g � �

�� diam�X�ty�� � �
� ky � y�k �

Therefore�

jRj � jk�x� y�� ek�x� y�j � c���m�

m�

ky� � ykm jk�x� ��j
kx� �km � c���m�jk�x� ��j

m�
�m

for some � � X�ty�� In the upper estimate� we may choose � with max fjk�x� ��j � � � tyg � jk�x� ��j and
use jjk�x� y�j � jk�x� ��jj � jk�x� y�� k�x� ��j � jy � �j

����k�x�
���y

��� � c��� ���jy � �j �jx � ��j�jk�x� ���j for some ��

between y and � � Together with jy � �j �jx � ��j � �
� diamX�ty�� dist�X�tx�� X�ty�� � �� we conclude that

jk�x� ��j � jk�x� y�j���� c��� ����� Hence� 
��� holds with c�m� �� c���m���m���� c��� ������

Let eA be the integral operator with k�x� y� replaced by ek�x� y�� provided that �tx� ty� � T� is an admissible

block and no leaf 
i�e�� 
�� holds�� Construct the collocation or Galerkin system matrix from eA instead of

A� The perturbation of the matrix induced by eA � A yields a perturbed discrete solution� The e	ect of this
perturbation is studied in several papers on the panel clustering method 
cf� �
�� ������ Perturbations in the
case of a negative order operator A are considered in ����

�Estimate ���� is a bit simpli�ed� It covers most of the situations� e�g�� the case of the singularity function �

��
jx � yj�� for

d � �� As soon as logarithmic terms appear �as for d � �� k�x� y� � log�x� y������ one has to modify �����
�This does not require that the practical implementation has to use the Taylor expansion� If the singular�value decomposition

technique from �	
 is applied� the estimates are at least as good as the particular ones for the Taylor expansion�
�Given a set X� the Chebyshev sphere is the minimal one containing X� Its centre is called the Chebyshev centre�

�



��� On the Choice of � and m

In order to obtain a small error� �m � � � � must be ensured for a suitable �� The rank k corresponding
to the expansion 
��� equals k � �f
 � Nd	 � � � j
j � m � �g � md� We may �x m 
and k� and choose
� � ��	m� On the other hand� � can be �xed while the polynomial degree m is chosen� m � log �� log �� The
�rst case reminds to the h�version of the FEM� while the latter corresponds to the p�version� The optimal
choice is determined by the arising cost of the H�matrix operations� In the case of quasi�uniform meshes� one
may conclude from �
� 
therein 
���a�� that the number of admissible clusters �t�� t�� � P� on each level 
 may
be estimated by O���d�d
� 
see also ������ This result implies that the leading term in the cost has a factor
proportional to ��dmd � ��dk� Hence� one has to minimise ��dmd under the side condition �m � �� Allowing
for simplicity real�valued m� the result is

m � j log �j and � � ��e� 
���

The constant value of � expresses the fact that the choice 
��� corresponds to the p�version�

� The Two�Dimensional Model Case

In 
 � ��� ��� ��� �� we consider the regular grid

I � f�i� j� � � � i� j � Ng� N � �p� 
�
�

Each index �i� j� � I is associated with the 
collocation� point �ij � ��i� �
� �h� �j� �

� �h� � R� � where h �� ��N�
The positions �ij are used in 
�� and 
���

��� The Cluster Tree T� � T �I�

The natural partitioning of I uses a division of the underlying squares into four quarters� The clusters

t
��� �� f�i� j� � �p�
�� � � i � �p�
�� � ��� �p�
	 � � � j � �p�
�	 � ��g 
���

with �� 	 � f�� � � � � �
� �g belong to level 
� Hence� the tree T consisting of all clusters of level 
 � f�� � � � � pg
is a quadtree� The number of clusters on level 
 equals O���
��

Each index �i� j� � I is associated with the square�

Xij �� f�x� y� � �i� ��h � x � ih� �j � ��h � y � jhg� 
���

which may be regarded as the support of the piecewise constant function for the index �i� j�� Note that on
level 
 � � �t			 � I� we have one big square X�t			� 
cf� 
���� while for 
 � p we have �p tiny squares X�tp�����
Using the de�nitions 

� and 
��� we obtain the diameter

diam�t� �
p
� �p�
h �

p
���
 
���

for clusters of level 
� Let t� t� be two clusters of level 
 characterised by ��� 	� and ���� 	�� 
cf� 
����� Then

dist�t� t�� � ��

q
��� � ���� � ��	 � 	��� with ��k� �� maxf�� jkj � �g� 
���

��� The Block�Cluster Tree T� � T �I � I�

Let T� � T �I � I� be de�ned according to Construction ���� An obvious result is stated in

Remark ��� Let b � �t�� t�� � T �I � I�� Then t�� t� � T belong to the same level 
 � f�� � � � � pg�
Usingminfdiam�t��� diam�t��g �

p
d��
 and dist�t�� t�� from 
���� we observe that b � T �I�I� is admissible

for the choice �� �
p
�� if the squares t�� t� � T �I� have a relative position as indicated in Fig� �a� The square

X� corresponding to t� is the crossed square� while X� must be outside the bold area� In the case of d � �
and � � ��

p
�� the admissible T��partitioning P� is described in the following subsection�

�The grid can also be associated with a regular triangulation and� e�g�� the supports Xij of piecewise linear functions� This
would lead to another cluster tree� The asymptotic complexity bounds turn out to be the same as for the present choice�






� �

a� � �
p
�
� b� � � ���

Figure �� Unacceptable clusters for a given cluster ��� depending on the threshold constant �

��� H�Matrices

The admissible T��partitioning P� is to be de�ned� Because of the regular structure of the grid� the block
partitioning P� � L�T ��� corresponds to a well�structured subtree T �� � T�� This allows the direct construc�
tive de�nition of the T��partitioning P� and the corresponding H�matrices based on the following recursive
procedure 
cf� ��� Subsection ������

In ��� Section ��� we have introducedH�matrices which could be explained by the three formats H 
diagonal
format��N 
right�neighbour format� and N � 
left�neighbour format�� Now the diagonal format is denoted
by the symbol � and instead of two �neighbour formats� we have eight types denoted by the directions
���� �� ��������� �

For any t � T�� H�matrices over the index set t� t have the ��format de�ned as follows� If t is a leaf 
level

 � p� �t � ��� the matrix is �� �� Otherwise� t has four sons si 
� � i � ��� The related square X�t� splits
into the four smaller squares Xi �� X�si�� In the following visualisations� the � sons of a square are numbered

as follows�
X� X�

X� X�
� Correspondingly� the matrix A� over t� t has a �� ��block structure�

A� �

b�� b�� b�� b��
b�� b�� b�� b��
b�� b�� b�� b��
b�� b�� b�� b��

�

� � � �
� � � �
� � � �
� � � �

� 
���

If t is of level 
 � p� �� all blocks bij are of level p and of trivial size �� �� In the following� we assume that
the bij are nontrivial� i�e�� 
 � p� ��

All squaresX�si� andX�sj� touch by at least one corner point� hence dist�X�si�� X�sj�� � �� Therefore� the
vertices �si� sj� � T� are not admissible and deserve a further decomposition� The type of block decomposition
depends on the relative position of si� sj �

The diagonal blocks bii 
� � i � �� belong to the index pairs �si� si� and have again format ��
The block b�� has a block format denoted by the arrow � directing from s� to the right neighbour s��
The squares X�s�� and X�s�� are diagonally neighboured� The corresponding symbol of block b�� is � �
The block b�� corresponds to the squares X�s�� and X�s�� 
the latter one is situated below the former

one�� This leads to the ��format�
Similarly� the formats of bij 
i � �� are determined 
see 
�����
Next� we have to describe the formats di	erent from �� We start with the ��format�

A� �

ba� ba� ba� ba�
bb� bb� bb� bb�
bc� bc� bc� bc�
bd� bd� bd� bd�

�

R R R R
� R R �
� R R �
R R R R

� 
���

The matrix A� corresponds to the index pair �s� s�� � T�� where X�s�� is the right neighbouring square of
X�s�� The sons fa� b� c� dg of s and the sons f�� 	� �� �g of s� correspond to the squares situated as follows�
a b � 	
d c � �

� The squares X�a� and X��� satisfy diam�a� � diam��� �
p
�h
�� 
h
�� � ���
� and

dist�a� �� � h
��� Hence� 
�� holds with � �
p
��� and the pair �a� �� � T� is admissible� By de�nition� the

block ba� can be represented by an Rk�matrix 
this format is denoted by �R��� A di	erent situation arises

�



for �b� �� � T�� where X��� is the direct right neighbouring square of b� Therefore� the block bb� has the
��format� The complete result is described in 
����

The format

A� �

R � � R
R R R R
R R R R
R � � R


���

is transposed to 
���� Similarly�

A� �

R R � �
R R � �
R R R R
R R R R

� A	 �

R R R R
R R R R
� 	 R R

	 � R R

� 
���

The format of A
 is even simpler� The blocks ba�� � � � correspond to pairs of squares situated as follows�
� 	
� �

a b
d c

� Only the �b� ���block leads to dist�X�b�� X���� � � and requires a further decomposition�

All other pairs of squares have a su�ciently large distance� therefore� those blocks ba�� � � � are de�ned to be
Rk�matrices�

A
 �

R R R R
R R R �
R R R R
R R R R

� A� �

R R R R
R R R R
R R R R
R � R R

� 
���

Similarly�

A� �

R R � R
R R R R
R R R R
R R R R

� A
 �

R R R R
R R R R
� R R R
R R R R

� 
�
�

The recursions 
����
�
� de�ne a subtree T �� of T�� The root I � I is of type � 
level 
 � �� and has
�� sons 
the �� blocks of A��� According to 
���� � sons are of type � 
level 
 � ��� � sons of each of the
types ���� �� � and � son of each of the types ������� 
see Fig� �a�� A vertex of type � has �� sons
of rank�k�type 
R�� � sons of type � and � son of each of the types ��� 
see Fig� �b�� Figs� �c�d show
the tree structure for the remaining types� The leaves of the subtree T �� are reached if the vertex has type
R 
i�e�� condition 
�� satis�ed� or if level p is reached 
blocks of size � � ��� In this particular situation� the
T��partitioning P� � L�T ��� is the minimal admissible partitioning which also results from Algorithm ��� for
the choice � �

p
����

Figure � gives rise to the graph of Fig� �� whose vertices are the formats� This graph is a tree except the
cycles induced by the edges of all formats �� R to itself� The edges are weighted by the multiplicity already
shown in Fig� �� The discussion in the next Subsection will demonstrate the following remark�

Remark ��� a� For the following complexity considerations it is essential that only the format � has a self�
reference with weight �� whereas all other weights are � ��
b� The complexity order does not depend on the number of di�erent formats� For instance� choosing � smaller
than ��

p
� �as in Fig� 
b� one would need more formats� but again only format � has a self�reference with

weight ��

Formally� the recursions 
����
�
� must be used to de�ne the T��partitioning P�� while in a second step
the H�matrix set MH�k�I � I� P�� is de�ned by De�nition ����� Instead� we can give a direct de�nition of the

�
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Figure �� The subtrees of the diagonal and typical auxiliary formats
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Figure �� The graph of the involved formats

matrix setsM�

�p with upper index � � fR������� �� ���������g and level number � � 
 � p � N	 
note

that by 
�
�� the index set I depends on p�� First we de�ne

M
�p�t�� t�� �� K
t��t� � where t�� t� � T� belong to level 
�

i�e�� i � t� are the row indices and j � t� the column indices of A � M
�t�� t�� 
note that by Remark ���� the
block matrices are of this kind�� For 
 � �� t� � t� � I is the only vertex of that level� but in general t� �� t�
is possible� The level�
�matrices and the corresponding Rk �matrices are denoted by

M
�p �� fA � M
�p�t�� t�� � t�� t� � T� belong to level 
g�
MR


�p �� fA �M
�p � rank�A� � kg�

Here k � � is �xed� The following recursive de�nition starts from 
 � p and ends with 
 � �� Since
�t� � �t� � � for level 
 � p� we have that

M�
p�p is the set of �� ��matrices for all � � fR������� �� ���������g�

��



For 
 � p� the sons S�t�� � fa� b� c� dg� S�t�� � f�� 	� �� �g of the vertices t�� t� are assumed to have the
geometric constellation as described in the beginning of this Subsection 
i�e�� b �	� is the right neighbour of a
���� etc���


 De�nition of M


�p � For 
 � p� a matrix A � M
�p�t�� t�� belongs to M



�p� if its block matrices in

A � fAijgi�fa�b�c�dg�j�f�������g satisfy Ab�� � M


���p and Aij � MR


���p� otherwise 
cf� 
�����


 Similarly� M


�p�M�


�p�M�

�p are de�ned 
cf� 
���� 
�
���


 De�nition of M�

�p � For 
 � p� a matrix A � M
�p�t�� t�� belongs to M�


�p� if its block matrices in A �

fAijgi�fa�b�c�dg�j�f�������g satisfy Ab�� Ac� � M�

���p� Ac� � M



���p� Ab� � M


���p� and Aij � MR


���p

otherwise 
cf� 
�����


 Similarly� M�

�p� M	


�p� M�

�p are de�ned�


 De�nition of M�

�p � For 
 � p� a matrix A � M
�p�t�� t�� belongs to M�


�p� if its block matrices in

A � fAijgi�j�fa�b�c�dg satisfy Aii � M�

���p� Aab� Adc � M�


���p� Aba� Acd �M�

���p� Aad� Abc �M	


���p�

Aac � M


���p� Aca � M�


���p� Abd � M�

���p� Adb � M



���p�

Then MH�k�I � I� P�� �M�
	�p holds�

When using the grid 
�
� for di	erence or �nite element discretisations of di	erential equations� we obtain
a �ve�� seven�� or nine�point formula as discretisation matrix� The next lemma implies that such a matrix can
be exactly represented by an H�matrix 
see also the later Lemma ��
��

Lemma ��� If the matrix A has a nine�point or an even sparser pattern� it is in the set MH�k�I � I� P�� for
any k � ��

Proof� By de�nition� a nine�point matrix has non�zero entries only for index pairs �p� q� � I � I� where
Xp 	 Xq �� � holds for the squares introduced in 
���� Let b � �t�� t�� � P� � I � I be the block of
the partitioning with �p� q� � b� The previous characterisation yields dist�t�� t�� � dist�Xp� Xq� � �� Hence�
condition 
�� cannot be satis�ed� Since b belongs to an admissible partitioning� it must be leaf� i�e�� it is a
�� � block� Obviously� a �� � block represents the matrix entry Apq exactly�

��� Complexity

In the following� we discuss the storage requirementsN�st and the costN�MV of the matrix�vector multiplication�
The complexity discussion for the format � �rst requires the study of the expenses for the other formats� Since
matrices from M



�p�M


�p�M�


�p�M�

�p behave similarly� we denote their format by the collective symbol ���


diagonal neighbourhood�� while ��� refers to M�

�p�M�


�p� M	

�p� M�


�p�
Note that the maximal level number p does not exceed O�j log hj�� The rank number k is chosen to be

k � �� in order to present concrete constants in the leading terms�

����� Storage

Below� the number N �
st�p� describes the storage requirements of an matrix A � M�

	�p of the format � �
f�����g�
Lemma ��� Let k � � and n � �I � �p� The storage size of matrices of the di�erent formats amounts to

N�st �p� � �� � ��p�n�O�p��

N�
st �p� � ��n�O����

N�
st �p� � ��n�O����

Proof� Note that NR�
st �p� � �n � � � �p� Due to De�nition ����� we obtain the recurrence formulae

N�
st �p� � N�

st �p� �� � ��NR�
st �p� ���

N�
st �p� � �N�

st �p� �� � �N�
st �p� �� � ��NR�

st �p� ��� 
���

N�st �p� � �N�st �p� �� � �N�
st �p� �� � �N�

st �p� ���

��



with starting value Nst��� � � for all formats� The �rst equation in 
��� implies N�
st �p� � ��n� �� Inserting

this result into the second recurrence yields N�
st �p� � ��n � O���� Therefore� the last recurrence becomes

N�st �p� � �N�st �p� �� � ��n�O���� Its solution is N�st �p� � �� � ��p�n�O�p��

����� Matrix�Vector Multiplication

Lemma ��� The cost for the matrix�vector multiplication is

N�MV �p� � �� � ��p�n�O�p�� 
���

N�
MV �p� � ��n�O����

N�
MV �p� � ��n�O����

Proof� We recall NR�
MV �p� � �n� Consider type ���� The multiplication of the �� blocks at level p� � with the


partial� vector costs N�
MV �p � �� � ��NR�

MV �p � ��� The summation of the results costs �n additions� This
leads to N�

MV �p� � N�
MV �p� ��� ��NR�

MV �p� ��� �n � N�
MV �p� ��� ��

� np and N�
MV ��� � �� Its solution is

N�
MV �p� � ��n� ���
Similarly� N�

MV �p� � �N�
MV �p � �� � �N�

MV �p � �� � ��NR�
MV �p � �� � �n yields N�

MV �p� � ��n� O����
Finally� N�MV �p� � �N�MV �p� �� � �N�

MV �p� �� � �N�
MV �p� �� � �n � �N�MV �p� �� � ��n�O��� implies

the result of the Lemma�
The estimate 
��� is similar to the bound NMV �p� � ��pn� O�n� obtained in ��� for the �D index set I

with � � ���� Clearly� the corresponding constant in 
��� depends on the spatial dimension 
compare also
Theorem ��� for the �D case��

����� Matrix Addition
 Multiplication and Inversion

As in ���� one can introduce the approximate addition ��� multiplication ��� and inversion of matrices from
M�

p�p retaining the corresponding hierarchical matrix structure� The formatted operations �� and �� are
de�ned similarly to the case of �D�H�matrices considered in ���� In fact� the complexity analysis of �� is
rather simple and yields N����p� � O�pn��

The proof of N����p� � O�p�n� is more lengthy� since various combinations of factors occur�
The inversion is based on blockwise transformations involving the addition and multiplication addressed

above� While in the case of ��� the H�matrix was treated as a �� � block matrix� the matrix 
��� has now a
�� � block pattern� This does not change the complexity order NInversion�p� � O�p�n� obtained in ����

� Construction for General �D�Meshes

We consider an 
unstructured� quasi�uniform triangulation Th of 
 � R
� characterised by the maximal mesh

size h �� maxfd� � � � Thg� where d� is the diameter of the Chebyshev sphere of the triangle � 
cf� Footnote

�� Assuming also shape regularity� there are generic constants c�� c� � � such that

c� d� � h � c� d� for all � � Th � 
���

where d� denotes the diameter of the inscribed circle for an 
closed� element � of Th� In fact� we are not
restricted to triangles � � Any elements satisfying 
��� are allowed 
isoparametric triangles� quadrangles� etc���

For simplicity� we consider piecewise constant functions on � � Th� Then each index � � I corresponds to
a basis function with support X� � �� � Th� The Chebyshev centre of � is denoted by �� 
or �� if � � ����

In order to construct H�matrix structures� we have to de�ne a suitable cluster tree T �I� 
cf� Subsection
����� Proposals can be found in ���� Here� we give a construction based on the uniform tensor�product grid
discussed in the previous section� Since the regular grid is needed only for reference� we call it the �ctitious
grid� We do not claim that the presented construction of T �I� is optimal� but it leads to a straightforward
proof of the complexity bounds�

��� How to Map the Fictitious Hierarchy onto the Unstructured Grid

Without loss of generality we may assume 
 � 
f �� ��� ��� ��� �� and

��
� � c ��
f � � c � �� 
���

��



where � denotes the two�dimensional measure� In 
f we consider the uniform tensor�product grid Th from
Section �� Its index set is denoted by If �� f�i� j� � � � i� j � Ng� N � �p 
the superscript �f � stands for
��ctitious��� while I is the index set of the unknowns of the unstructured grid�

The grid size of Th is assumed to be the largest h � ��p satisfying

h �
�

�
p
�

min
����I� ����� ���

�d� � d�� 
���

with d� �� d�� from 
���� For each index � � I� the Chebyshev centre �� belongs to at least one of the
squares Xij of Th 
�i� j� � If 	 cf� 
����� Selecting one of the possible indices in the multiple case� we are able
to de�ne a mapping F � I � If �� �� F ��� � �i� j�� via �� � XF ���� The following remark allows us to de�ne

F�� on F �I� � If �

Remark ��� Under condition �	
�� the mapping F is injective�

Proof� Let � �� 	� Then j�� � �� j � �
� �d� � d�� �

p
�h � diamXij contradicts F ��� � F �	� � �i� j� � If �

For any subset tf � If �not only for tf � F �I��� we de�ne

F���tf � �� f� � I � F ��� � tfg � I�

Since If is the regular grid from Section �� the cluster tree T �If � is already described� F gives rise to the
cluster tree for the index set I �

T �I� � fF���tf � � tf � T �If �g�
The arising tree T �I� meets the conditions of De�nition ���� but is unusual since some of the vertices t � T �I�
may represent the empty set 
F���tf � � � if tf 	 F �I� � ��� Moreover� if only one of the sons s � S�t� is
non�empty� this son s represents the same subset as the father t� Although� in practice� this tree T �I� could
be simpli�ed� we use the tree in the given form since then T �I� and T �If � are isomorphic�

As seen in Section ���� the cluster tree T �I� determines the block�cluster tree T� � T �I � I�� which de�nes
the H�matrix structure� The elements of T� are pairs �t�� t�� with t�� t� � T �I�� In the case of Construction

���� T� � F���T f
� � holds� where T f

� � T �If � If � and F����t�� t��� �� �F���t��� F���t��� for t�� t� � If �

Otherwise� we use T� �� F���T f
� � as de�nition for T��

Let P f
� � T �If�If � be any admissibleH�partitioning for the �ctitious grid satisfying 
�� with the constant

�f � �� Below we will characterise the tolerance constant � � �f needed for the de�nition of admissible clusters
from the induced partitioning P� � T �I � I��

Lemma ��� All t�� t�� t � T� � T �I� satisfy

diam t � diamF �t� � h � 
���

dist�t�� t�� � dist�F �t��� F �t���� h� 
���

Proof� Let x � �x � Th and y � �y � Th for triangles �x� �y � t with the Chebyshev centres �x � �x� �y � �y�

Then j�x � �yj � diamF �t�� while j�x � xj � diam��x��� � h�� and j�y � yj � diam��y��� � h��� Hence�

jx� yj � diamF �t� � h yields 
���� Similarly� 
��� is proved�
Since the image F �t� � fF ��� � � � tg of a cluster t � T �I� is in general di	erent from the clusters in

T �If �� we introduce mappings F
 for all levels � � 
 � p� The sets

T 
�If � �� ftf � T �If � � tf is a cluster of level 
g �� � 
 � p�

can also be de�ned by T 	�If � �� fIfg� T 
���If � ��
S

tf�T ��If �S�tf � for � � 
 � p and yield a level�wise

decomposition of the tree T �If � �
S

	�
�pT 
�If �� For t � I� we de�ne level�t� �� minf� � 
 � p � F �t� � tf

for some tf � T 
�If �g�
The mapping F
 is de�ned on all subsets t � I with level�t� � 
 and its value is F
�t� � tf if tf � T 
�If �

satis�es F �t� � tf � Hence� F
�t� denotes the �rounding up� of F �t� to an If �cluster of level 
� Note that
F���F
�t�� � t�

We recall that �F
�t��� F
�t��� � P f
� is either a leaf of T f

� � T �If � If � or satis�es the admissibility
condition 
��� min�diamF
�t��� diamF
�t��� � ��f dist�F
�t��� F
�t��� for the corresponding level 
� Because
of Remark ���� the clusters ti �i � �� �� belong to the same level 
say 
�� Assuming the latter inequality� we
are interested in the question whether �t�� t�� also satis�es condition 
�� for a suitable parameter ��

��



Lemma ��� Assume t�� t� � T�� level�t�� � level�t�� � 
 and
p
���
 � �� � ��f �h� Then the admissibility

condition

min�diamF
�t��� diamF
�t��� � ��f dist�F
�t��� F
�t���

implies min�diam�t��� diam�t��� � �� dist�t�� t�� for � �� ��f �

Proof� Set A �� diamF
�t�� � diamF
�t�� �
p
���
 
cf� 
���� and B �� dist�F
�t��� F
�t���� The inequalities


��� and 
��� together with diamF �ti� � A and dist�F �t��� F �t��� � B show

min�diam�t��� diam�t���

dist�t�� t��
� A� h

B � h
�

Note that A
B � ��f � The assumption A � �� � ��f �h allows us to bound

A� h

B � h
� A

B
� h

A�B

B�B � h�
�

A�B � �

B�h� �
� � � ��f

A����fh�� �

by ��f � Hence� min�diam�t��� diam�t��� � ��f dist�t�� t�� � �� dist�t�� t�� for the choice � � ��f �

Corollary ��� The modi�ed assumption diamF �t�� � diamF �t�� � � �
 � �� � �

�f ��h for some � � � leads

to min�diam�t��� diam�t��� � �� dist�t�� t�� with � �� �� � ���f � Hence� any �f � � allows a choice � � ��

The condition
p
���
 � �� � ��f �h from Lemma ��� is not satis�ed in general� e�g�� for 
 � p we havep

���p �
p
�h � h 
cf� 
����� However� there is a constant �p such that all clusters t of level 
 � p� �p ful�lp

���
 � �� � ��f �h as stated in the next lemma� where we may insert c �� � � � � ��f �

Lemma ��� Given a constant c� there is a constant �p � N independent of p so that
p
���
 � ch for all

clusters t � T of level 
 � p� �p�

Proof� Let t be of level 
 � p� �p� The de�nition of h � ��p by 
��� together with 
��� yields ���p � �h �
�

�
p
�
min�d� � d�� � �

c�
p
�
h� Hence�

p
���p��p � ���p���c��h� Choose �p such that ��p���c� � c�

We have to describe an admissible T��partitioning P�� where the parameter � from 
�� is de�ned by

� � ��f 
see Lemma ����� The �rst trial is to use P ��� �� F���P f
� �� where P

f
� is the admissible T ���partitioning

corresponding to �f � Due to the preceding lemmata� this leads to admissible blocks �t�� t��� provided they
belong to a level 
 � p � �p� It remains to modify P ��� at the levels 
 with p � �p � 
 � p� By Remark ����
there is a subtree T ��� of T �I � I� with P ��� � L�T ��� �� Construct the smaller tree T �� in the following way�

�� Delete all vertices belonging to levels 
 � p� �p and
�� insert the sons �i� j�� i � t�� j � t� for all non�admissible blocks �t�� t�� � T ��� at level 
 � p� �p�

Then the �nal T��partitioning P �� is P �� � L�T �� �� The matrix interpretation is that all non�admissible blocks
of level p� �p are full submatrices�

Finally� M� �� MH�k�I � I� P �� � de�nes the H�matrix set corresponding to the unstructured mesh 
cf�

�����

Lemma ��� There holds nf � constn� where nf �� �If and n � �I� Moreover�

N �
st�n� � O�n logn� and N �

MV �n� � O�n logn�

are the respective costs of the storage and the matrix�vector multiplication for matrices from M��

Proof� First we consider the auxiliary partitioning P ��� � F���P f
� � � L�T ��� � from above� Since T ��� is

isomorphic to a subtree of T f
� �� T �If � If �� the expenses N ��

st � N ��
MV corresponding to the format M�� ��

MH�k�I � I� P ��� � are less or equal to the bounds O�nf log nf � in Lemmata �������� Since �p is a constant�
the costs N �

st� N �
MV are also bounded by O�nf log nf � 
note that the same recurrence formulae hold� but the

starting value may be increased��
It remains to replace the �ctitious dimension nf in the latter bound by the true dimension n� By 
���

we have nf � h�� � ��
f � � h�� � ��
�
c h��� The proof of Lemma ��� has shown �h � h��c�

p
��� so that

nf � ��
�
�c�

�

c h
��
� The left inequality in 
��� yields ��
� �

P
��T

h
��� � � P��T

h

�
� d

�

� � n �
�c�

�

h
�
� The last

two estimates prove nf � const �n with const � ��
c �

c�
c�
���

Lemma ��� and its proof generalise to all FE sti	ness matrices�

Lemma ��� A �nite element sti�ness matrix belongs to the set M� �MH�k�I � I� P �� � for any k � ��

��



��� Two�Dimensional Manifolds

The above de�ned matrix formatsM�
	�p andM� enable data�sparseH�approximations for a wide class of �nite

element sti	ness matrices corresponding to boundary value problems in 
 � R� � Applications in boundary
element methods 
BEM� are based on manifolds 
surfaces� instead of �at domains�

In a �rst step we study the surface of a polyhedron 
�������� Curvilinear surfaces are considered in �������

����� H�Formats for Polyhedrons

Consider a polyhedron � � R� composed of M plane faces �i �� � i �M�� On each �i a quasi�uniform mesh
is given which meets the conditions required in ��� We assume that all pairs of adjacent faces form an angle
� � ��	� �� � �	�� where � � �	 � ��

To begin with� we assume that for a given admissibility parameter � � � the inequality

min�diam�i� diam�j� � �� dist��i��j� 
���

holds for all disjoint and non�adjacent faces �i��j � Note that the distance is measured by the Euclidean
distance in R� �

In this situation we construct the cluster tree as follows� Let T i be the H�tree for the face �i� i�e�� the root
of T i is the index set I i corresponding to the unknowns� associated with �i �� � i � M�� The global set of
indices is I � �Mi��I i� The cluster tree T� � T �I� is de�ned as the union of the disjoint trees T i together with
the new root I possessing the M sons I i �� � i �M�� The block�cluster tree is again denoted by T��

In the following� we propose a matrix format corresponding to the index set I� Given a block b � �t�� t�� �
T�� three di	erent cases can occur�

�i� t�� t� belong to the same face� i�e�� t�� t� � I i for some i �M�

�ii� t�� t� belong to adjacent faces�

�iii� t�� t� belong to disjoint and non�adjacent faces�

Case 
i� corresponds to the plane case of ���
In Case 
ii�� two faces ����� with a common edge e are involved� Turning �� into the plane of ��� we

obtain �� and ��� contained in 
 �� �� � ��� � R
� � Choose the matrix structure as in �� with admissibility

parameter � sin �
� � where � is the angle between �� and ��� Let t� � ��� t� � �� and denote the corresponding

cluster in the rotated copy ��� by �t�� One checks that min�diam t�� diam �t�� � �� sin �
� dist�t�� �t�� implies

min�diam t�� diam t�� � �� dist�t�� t��� Therefore� the chosen partitioning is admissible�
Case 
iii� is trivial� since assumption 
��� ensures min�diam t�� diam t�� � �� dist�t�� t���
Altogether� we have obtained an admissible partitioning P� comparable to the plane case of �� with �


partially� replaced by the smaller parameter � sin �
� �

It remains to discuss the case� where the chosen constant � does not satisfy 
���� In this case divide each
face into several smaller ones ��i �� � i �M �� with M � � M� If the subdivision is �ne enough� we have

min�diam��i� diam��j� � �� dist���i��
�
j� for ��i � �i� �

�
j � �j �

where �i��j are disjoint and non�adjacent 
unre�ned� faces� Since � is a �xed constant� also M � is �xed� The
same arguments as above can be used to construct an admissible partitioning with similar structure as in the
plain case� As in Lemmata ��� and ��� we derive

Corollary ��	 Under the assumption from above� the costs for storage� matrix�vector multiplication� and the
further operations have the same complexity as in the plane case of ���

The assumption � � ��	� �� � �	� may lead to the impression that small angles cause di�culties� This is
not the case� An important example is a slender aerofoil� Here it is well�known that the cluster tree must be
constructed di	erently� The clusters should contain the neighbouring parts from the upper and lower side of
the wing�

Finally� we mention a special case� where the complexity is even better than mentioned before�

�According to the example of piecewise constant functions� we assume the index sets Ii to be disjoint� If Ii � Ij �� � �i �� j�
due to unknowns belonging to the edges� obvious modi�cations are required�

��



Remark ��
 Consider the double�layer potential for the second order PDEs with constant coe�cients in the
case of piecewise �at surfaces� De�ne the structure of the approximating H�matrix as before� Then Nst and
NMV are of the order O�n� instead of O�n logn��

The reason is the fact that the kernel function satis�es �k�x� y���n�x� � � for x� y � �i on any plane face
�i of the surface ��

����� Curved Manifold

A general manifold is described by an atlas of mappings� The usual practice is to start from a 
reference�
polyhedron �ref and to de�ne a bi�Lipschitz mapping � � �ref � � 
cf� ���� with Lipschitz constants c�� c��

c� jx� yj � j��x� � ��y�j � c� jx� yj for all x� y � �ref �

Let T ref be the cluster tree from ������ for the reference boundary �ref � The corresponding tree for � is then

de�ned by T � ��T ref �� Choose an admissible T ref �partitioning P ref
� with admissibility parameter �ref �

Then the resulting T �partitioning P� � ��P ref
� � is admissible with the parameter � � c�

c�
�ref � as

min�diam��t��� diam��t��� � c� min�diam�t��� diam�t��� � �c��ref dist�t�� t�� �
�c�
c�

�ref dist���t��� ��t����

Since the matrix�formats corresponding to P ref
� and P� are identical� we obtain the same complexity bounds

of the computational cost as in �������

� The Three�Dimensional Case

In this section� we introduce the formats for matrices operating in the vector space associated with an index
set I for the cell�centred tensor product grid I�h � Ih � Ih � Ih in 
 � ��� ��� with the mesh size h � ��p and
�I � �p� Similar to the �D�case� the cluster tree T � T� is de�ned by the regular re�nement 
subdivision into
eight equal parts� of the initial index set I � T��I� gives rise to the block�cluster tree T �I � I�� in which we
determine the admissible partitioning according to the admissibility condition 
��� In De�nition ��� below� we
choose the constant � �

p
��� which corresponds to the �D counterpart of Fig� �a�

The natural notation of indices from I�h uses triples �i� j� k� � N� with � � i� j� k � �p� As in the �D case� we

can describe the partitioning by a number of formatsM�����

�p � where ��� 	� �� with �� 	� � � f��� �� �g indicates

the shift in the following sense� Let b � �t� t�� be a block� where t� t� � I are clusters� If t � t�� we have a
diagonal block and the shift is given by ��� 	� �� � ��� �� ��� For these blocks we introduce the �top format�
M	�	�	


�p � If t � �i	� j	� k	��f�i� j� k� � � � i� j� k � �p�
g and t� � �i	��p�
� j	� k	��f�i� j� k� � � � i� j� k � �p�
g
are two clusters 
cubes of length �p�
 in Z��� their relation is given by the shift ��� �� �� indicating the direct
neighbourhood in x�direction� Then� for b � �t� t�� we use the format M��	�	


�p � Similarly� the other formats

M���	�	

�p �M	����	


�p �M	�	���

�p 
�next neighbours���M����	


�p �� � � 
��D�diagonal neighbours�� andM��������

�p 
��D�

diagonal neighbours�� are involved� In De�nition ��� these formats contain the same format at the next level

�self�reference�� and other formats as depicted in the graph corresponding to Fig� ��

top format 
������ self�reference��

� �
next neighbours� 
������ � � � self�reference��

� �
�D�diagonal neighbours� 
������ � � � self�reference��

� �
�D�diagonal neighbours� 
������ � � � self�reference��

�
leaves Rk self�reference��

��




see also Fig� �b�� Let � � fa� b� c� d� e� f� g� hg be the set of the eight sons of a cluster situated as shown in
Fig� �a� For example the block�matrix with columns from a and rows from b is denoted by Aab�
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Figure �� 
a� Indexing for the �D clusters� where a � ��� �� ��� b � ��� �� ��� c � ������ ��� d � ��� ������ e �
������� ��� f � ��� ������ g � ���������� h � ���������� 
b� Graph of the �D formats Mm �� � m � ��
corresponding to j�j� j	j� j�j � m�

In the following� we de�ne the matrix formatsM�����

�p recursively with respect to the degree j�j� j	j� j�j�

The notations M
�p�t�� t��� M
�p� and MR

�p have the same meaning as in Subsection ����

De�nition ��� a� For 
 � p� M�����
p�p is the set of � � ��matrices for all �� 	� � � f��� �� �g� For 
 � p� the

formats are described in b�e��
b� Let � � fa� b� c� d� e� f� g� hg be the � cubes as indicated in Fig� �a and �� � fa�� b�� c�� d�� e�� f �� g�� h�g the

similar set of clusters shifted in the �
�
�
��direction so that b and g� have one corner point in common� A
matrix A � M
�p��� �

�� belongs toM�����

�p � if its block matrices in A � fAijgi���j��� satisfy Abg� �M�����


���p and

Aij � MR

���p� otherwise� Similarly� one de�nes M�����


�p for other combinations subject to j�j � j	j � j�j � ��
c� Let �� � fa�� b�� c�� d�� e�� f �� g�� h�g result from a shift of � � fa� b� c� d� e� f� g� hg in the direction �
�
���

so that the pairs �b� c��� �f� g�� of cubes have a common edge� Then A � fAijgi���j��� � M����	

�p holds if the

submatrices have the formats Ab�c� � Af�g� � M����	

���p� Af�c� � M�����


���p� Ab�g� � M������

���p � and Aij � MR


���p�

otherwise� Similarly� one de�nes M�����

�p for other combinations with j�j� j	j� j�j � ��

d� Let �� � fa�� b�� c�� d�� e�� f �� g�� h�g be resulting from a shift of � � fa� b� c� d� e� f� g� hg in the direction
�
����� so that� e�g�� b and a� have a common face� Then A � fAijgi���j��� �M��	�	


�p holds if Ab�a� � Af�d� � Ae�c� �

Ah�g� � M��	�	

���p� Ae�a� � Ah�d� � M����	


���p� Ab�c� � Af�g� � M�����	

���p � Ab�d� � Ae�g� � M��	���


���p � Af�a� � Ah�c� � M��	��

���p�

Ah�a� � M�����

���p� Af�c� � M������


���p � Ab�g� �M�������

���p � Ae�d� �M������


���p � and Aij �MR

���p� otherwise� Similarly�

for other combinations with j�j� j	j� j�j � ��
e� Finally� let �� � �� Then A � fAijgi�j�� � M	�	�	


�p holds if Aii � M	�	�	

���p� Aab� Ace� Adf � Agh �

M��	�	

���p� Aca� Aeb� Agd� Ahf � M	���	


���p� Ada� Ahe� Afb� Agc � M	�	��

���p� Acb� Agf � M����	


���p� Aae� Adh � M�����	

���p �

Aga� Ahb � M	����

���p� Acd� Aef � M	�����


���p � Aaf � Ach � M��	���

���p � Adb� Age � M��	��


���p� Agb � M�����

���p� Acf �

M������

���p � Aah � M�������


���p � Ade � M������

���p � and Aji �M��������


���p if Aij �M�����

���p�

The calculation of the storage and matrix�vector multiplication complexity for the described formats is
a result of four staggered recurrence formulae� Below� we give the results 
with exact constants� for the

corresponding matrix�vector multiplication�	� Here� we use the notationMm
p �� �fM�����

q�p�q � q � 
� j�j� j	j�
j�j � mg� Note that all A � Mm

p are �p � �p matrices�

�	More details will be in a forthcoming report�

�




Theorem ��� Let n � �p and let k � � be the rank of the Rk�blocks� Then forMm
p �matrices the matrix�vector

multiplication costs Nm
MV �p� equal

N �
MV �p� � �� � n�O���	 N �

MV �p� � �� � n�O����

N �
MV �p� � ��� � n�O���	 N 	

MV �p� � ��� � pn�O�p��

Proof� The desired estimate for N 	
MV �p� follows from the recurrence

N 	
MV �p� � �N 	

MV �p� �� � �� N �
MV �p� �� � ��N �

MV �p� �� � �N �
MV �p� �� � �n

taking into account N 	
MV ��� � � and substituting the results for the auxiliary formats�

In the case of a general �nite element mesh in a �D�domain 
 � R
� � we can extend the considerations of

�� to three dimensions as well� We conclude that the H�matrix format is also applicable to general �D �nite
element problems as well as for volume integral formulations�
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