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Abstract

The preceding Part I of this paper has introduced a class of matrices (H-matrices) which are data-sparse
and allow an approximate matrix arithmetic of almost linear complexity. The matrices discussed in Part
I are able to approximate discrete integral operators in the case of one spatial dimension.

In the present Part II, the construction of H-matrices is explained for FEM and BEM applications in
two and three spatial dimensions. The orders of complexity of the various matrix operations are exactly
the same as in Part I. In particular, it is shown that the applicability of H-matrices does not require a
regular mesh. We discuss quasi-uniform unstructured meshes and the case of composed surfaces as well.
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1 Introduction

In Part I [6], the class of H-matrices is introduced and it is shown that this technique provides an efficient tool
for sparse hierarchical approximation to large and fully populated stiffness matrices arising in BEM (boundary
element method) and FEM! applications. In particular, the storage, the matrix-vector multiplication and
standard matrix operations like the (truncated) matrix-matrix product and matrix inversion of H-matrices
have a complexity between O(n) and O(nlog® n), where n is the problem size®. For example, the arithmetic
of H-matrices can be applied to Schur-complements of H-matrices.

The construction of H-matrices involves the same cluster tree of the underlying domain as the panel
clustering technique (see [7] or [4, 8, 10]). The panel clustering matrix representation uses a row-wise clustering
procedure and provides a matrix-vector multiplication of the complexity O(n logd+1 n) for boundary element
problems posed in R?, d = 2,3. However, these panel clustering matrices cannot cheaply be multiplied or
inverted. For this purpose, the 7{-matrices are based on a further block-cluster tree, which leads to a rather
general block decomposition of the matrix. Such a block decomposition is discussed in Part I [6] for a regular
one-dimensional mesh. Here we concentrate on the corresponding construction of H-matrices for 2D and 3D
applications. In particular, these matrices approximate dense matrices arising in 2D and 3D boundary element
Galerkin /collocation methods. Our assumption (12) on the kernel is also typical for the reliability of wavelet
approximation techniques (cf. [1, 2, 11]). However, different from wavelet applications, we do not require
(global or piecewise) smoothness of the surface (normal direction).

The practical implementation of the H-matrices is uniquely defined by the cluster tree and the choice of
the far field condition (9). A general construction of the block-cluster trees is presented in §2 and §3. The
reliability of H-matrix approximations in BEM will be briefly discussed in §3.5. The complexity analysis
is prepared in several steps. First, the case of a regular 2D tensor-product mesh is analysed, see §4. In a
second step, quasi-uniform and shape-regular unstructured triangulations are admitted (§5.1). In this way,

1In the FEM case, the inverse matrix is the full one which needs a data-sparse representation.
2If rank-k matrices are used for the block matrices, the constant in O(...) depends on k.



the results obtained for the tensor-product meshes are used for the construction of an asymptotically optimal
approximation to the minimal admissible cluster tree on the given unstructured grid. More complicated case
like manifolds composed from smooth patches are discussed in §5.2. Concerning the 3D case, we describe the
‘H-matrices for regular 3D meshes in §6. Generalisations to unstructured meshes are completely analogous to
the 2D case. Although the same techniques can be applied also to any dimension d > 3, we omit this case.
The discussion of the H-matrix arithmetic is to completed by further papers about the numerical perfor-
mance, the applicability to adaptive (non-quasi-uniform) grids, and the analysis of anisotropic kernels etc.

2 The Cluster Tree

We recall the definitions of an H-tree and of the particular partitionings introduced in [6]. Let I be a finite
index set. Consider the vector space K! consisting of vectors v = (v;);es over the field K € {R,C}. The
usual block partitioning of a vector is described by a (fixed) partitioning of I into disjoint subsets, i.e.,
P={I;:1<j <k} with

I=\ I. (1)

In the following, we consider many different partitionings including (locally) coarse or fine partitionings. The
set of these partitionings is hierarchically structured and is uniquely defined by the tree ' = T'(I). The name
‘H-tree is due to its hierarchical structure. The exact description of T is given in Definition 2.1. Therein we
use the notation

S(t) :=={s €T :sisson of t} forteT (2)
for the sons of a vertex. A leaf is characterised by S(t) = 0 (or #S(t) = 0).

Definition 2.1 Let I be an index set. A tree T is called an H-tree (based on I) if the following conditions
hold:

(i) IeT.

(i) If t € T is no leaf, S(t) contains disjoint subsets of I and t is the union of its sons, i.e.,

t= U s (3)

seS(t)

We conclude that I is always the root of T' and ¢t C I holds for all ¢ € T. Usually, the tree is constructed
such that #5S(t) # 1, i.e., either ¢ is a leaf or it has at least two sons (cf. Definition 2.1 in [6]). Note that
#S(t) =1 and s € S(t) imply s = ¢ because of (3). However, in view of later theoretical constructions, we do
not require #S5(t) # 1 in Definition 2.1.

Since the subsets t C I which form the vertices of T, are called clusters, the H-tree T is also named cluster
tree.

As in [6], the set of all leaves is denoted by

LT):={teT:S(t)=0}.

In the following, we restrict all partitionings to those which are built by sets contained in the tree T.
For these we use the name H-partitioning (or, T -partitioning, if we want to refer to the tree T), i.e., P =
{I; :1<j <k} with (1) is a T-partitioning of I if I; € T (or equivalently, P C T). The set of all such
T-partitionings is denoted by P(T).

Remark 2.2 (i) P(T) = {L(T") : T is a subtree of T and an H-tree}.
(ii) There is a one-to-one mapping between T -partitionings and H-subtrees T', given by T' — P := L(T") €
P(T).

Proof. Part (i) follows from (ii). For the proof of (ii) let an #H-subtree T' be given. Then (3) ensures

I= UseL(T,) s; hence, P := L(T") is a T-partitioning. If a T-partitioning P is given, consider the subtree 7"

of T' consisting of all ¢t € T' with tNI; = I; or tN1; =0 for all I; € P. [
Remark 2.2(ii) allows to define a partial ordering.



Definition 2.3 If P' = L(T') and P" = L(T") are two T -partitionings, P’ is called coarser (finer) than P"
if and only if T' D T" (T' CT").

So far, we have admitted arbitrary subsets of I as vertices of the tree 7. Later, each index ¢ € I will carry
a position z; € R? (e.g., d = 3). We may also identify the index i with the position z;. This allows to define a
diameter

diam(t) := max [[o; — 2|~ forteT (4)
2,J€

)

using the Euclidean norm in R?. Since we want to have many indices in ¢ with ¢ possessing a diameter as small
as possible, the naming cluster for t € T makes sense and leads to the name cluster tree for T. Further, we
will need the distance of two clusters:

dist(s, t) := Zergujrét s — ;]| for s,t € T. (5)

Remark 2.4 For Galerkin discretisations it is more reasonable to associate each index i with the support?
X; C RY of the corresponding basis functions. We introduce the notation

Xty =JXxX; forteT. (6)

i€t

In this case, the definitions (4) and (5) become

diam(t) = max |z —yl|| forteT, (7)
z,yeX (t)
dist(s,t) = min [|lz — yll fors,teT. (8)

zeX(t), yeX(s)

The construction of the cluster tree T is the essential part of the 7{-matrix construction. In §4 we describe
the cluster tree for a particular two-dimensional grid. This gives rise to a more general cluster tree for general
two-dimensional manifolds (§5). The three-dimensional case is discussed in §6. Other algorithms for generating
the cluster tree can be considered as well (compare, e.g., Lage [9]).

3 The Block-Cluster Tree

While the vector components are indexed by ¢ € I, the matrix entries have indices from the index set I x I.
The block-cluster tree is nothing but the cluster tree for I x I instead of I. Its notation is To = T'(I x I), while
we write Ty = T'(I) for the previous cluster tree corresponding to I. We will describe a mapping 7 : 71 — T»
which constructs the block-cluster tree T5 in a unique way from the cluster tree T} discussed above. Therefore,
the block-cluster tree T5 is fixed as soon as the cluster tree T is defined. In any case, the vertices of T3 belong
to the Cartesian product 7" x 7.

The H-matrices will be constructed on the basis of a particular (optimal) block partitioning Py C T5.

3.1 Construction of T, from T

We describe two mappings 7 : 7' — T5. The simpler one is given in

Construction 3.1 Start with I x I € Ty and define the sons of b= (t1,t2) € Ts (where t1,t2 € T') recursively
by

o (s1,s2) with s1 € S(t1), s2 € S(t2), provided these sons exist,
o (t1,5) with s2 € S(t), if S(t1) = 0 and S(t2) # 0,

o (s1,t2) with s; € S(t1), if S(t2) # 0 and S(tz) =0,

o So(b) =0 if S(t1) =0 and S(ts) = 0.

3Replace X; C RY by X; C T' C R4+! in the case of a manifold T'.

0
0




In the latter case, Sy denotes the set function (2) for T5 instead of Ty = T'(I). We collect some trivial
results in the next remark.

Remark 3.2 a) The depth of the tree T» equals the depth of T.
b) If all branches of T have the same length k, only the first and fourth cases of Construction 3.1 occur.
¢) Assume the case of b). If T is a binary tree, then Ty is a quadiree.

Due to Part ¢) of the remark, we might like to modify Construction 3.1. The second construction tries
to ensure that the components t1,t2 € T in b = (¢1,t2) € T5 do not have too different diameters, while the
degree of the vertices b = (¢1,t2) equals the degree of either ¢; or ¢, € T'. This leads to the

Construction 3.3 Start with I x I € Ty and define the sons of b = (t1,t2) € T (where t1,t2 € T') recursively
by

o (s1,t2) with s1 € S(t1), if S(t2) = 0 or diam(¢;) > diam(t2), provided S(t1) # 0,
o (t1,s2) with s2 € S(t2), if S(t1) = 0 or diam(¢;) < diam(t2), provided S(ts) # 0,
L] Sg(b) :(D Zf S(tl) :(D and S(tg) = @

Similarly, one can replace the goal diam(¢;) ~ diam(¢s) by other options, e.g., #t1 ~ #ta (i.e., t; and to
should contain a similar number of indices). In the latter case, a binary tree T} leads to a binary tree T5.

It is an easy exercise to check that 75 satisfies the conditions of Definition 2.1, i.e., in both cases we obtain
an H-partitioning of the product set I x I.

3.2 Admissible Blocks, Admissible T5-Partitionings
To guarantee a sufficient approximation, we need the admissibility condition
min{diam(¢;), diam(t2)} < 2ndist(ty, t2) 9)
for the block b = (t1,t2). Here, n < 1 is a constant which will be fixed later (see, e.g., (16)).
Definition 3.4 A block b = (t1,t2) € Ts is called admissible if either b is a leaf or (9) holds.

In §2, we have introduced a Ty-partitioning of I x I. It can be regarded as the set £(T"), where T" is a
subtree of T, with the properties I x I € T" and (3) with respect to I x I. Another name for the T»-partitioning
would be a covering of I x I, since it is a subset P = {b1,... ,b,} C T of disjoint blocks with Ui<;<, b; = I x I.

Definition 3.5 A Ts-partitioning P of I x I is called admissible, if all blocks t € P are admissible.
A trivial example for an admissible T-partitioning is P = L(T3).

Remark 3.6 Let P' = L(T') and P" = L(T") be two different admissible T-partitionings, then the intersec-
tion T' NT" yields an admissible Ta-partitioning P = L(T' NT"), which is finer than P' and P" in the sense
of Definition 2.3. Furthermore, #P < min{# P’ ,#P"} holds for the number of blocks.

Due to this remark, we can ask for the smallest admissible partitioning. This leads to

Definition 3.7 The minimal admissible Ts-partitioning of I X I is the admissible Ts-partitioning with the
minimal number of blocks.

The minimal admissible T5-partitioning can be obtained by a simple search in the tree T5.

Algorithm 3.8 The construction of the minimal admissible Ts-partitioning Punin of I X I is obtained as
Py := ({1 x I}) with ® from

function ®(P); comment P C Ty;

begin P' .= P;
for all vertices t € P do
if t is not admissible then P’ := (P'\{t}) U ®(S2(t));
® =P

end;



Proof. The proof that (10) yields the minimal admissible Ts-partitioning is based on the following observation:
If b = (t1,t2) € Ty is admissible, then also all sons of ¢ are admissible. This is due to the fact that the left-hand
side in (9) weakly decreases if ¢; or t» are replaced by the (smaller) sons, while the right-hand side dist(¢;,12)
weakly increases. [

Remark 3.9 If one likes to replace the admissibility condition (9) by another condition Adm(b) (a Boolean-
valued function), one should ensure that Adm(b) = Adm(s) holds for all s € Sy (b).

Remark 3.10 The minimal admissible Ts-partitioning is coarser (cf. Definition 2.3) than any other admis-
sible Ts-partitioning.

3.3 Complexity Considerations

In [6] we described two particular partitionings P» C T». Similarly, we will describe a Th-partitioning in §4.
This partitioning is admissible (the minimality is not discussed but can be shown if 7 is of appropriate size).
For the fixed partitioning, one can study the complexity of the various arithmetical operations.

In the general case, the Th-partitioning is determined as the minimal admissible T5-partitioning resulting
from Algorithm 3.8. In order to ensure the desired complexity, it is sufficient to prove the complexity for some
admissible Ty-partitioning. The existence of such a Ty-partitioning is sufficient, a constructive description is
not needed. The proof uses Remark 3.10.

Lemma 3.11 Assume that (i) the computational work increases if the Ts-partitioning becomes finer (cf. Def-
inition 2.8), (ii) the complexity of some admissible Ts-partitioning is known. Then the complezity of the
minimal admissible Ts-partitioning is at least as good.

3.4 Hierarchical H-Matrices

In the following definition, P» is a general Ty-partitioning of I x I, although in practical applications we shall
use only admissible Th-partitionings P,. Each b € P, corresponds to a location of a matrix block. Given a
matrix M = (mi;) (i jyerxs € K'*7, the matrix block corresponding to b is denoted by M® = (m;) i jyeo-

Definition 3.12 Let P> be a block partitioning of I x I and k € N. The underlying field of the vector space
of matrices is K. The set of H-matrices induced by P is

Mo (I x I, Py) = {M € K'*T : each block M®, b € P», satisfies rank(M®) < k}. (11)

We call a matrix A an Rk-matriz if rank(A) < k. The properties of Rk- and, in particular, RI-matrices
are discussed in [6].

Remark 3.13 All considerations about H-matrices do not refer to a special ordering of the unknowns. The
index set is allowed to possess no ordering at all. Only if we visualise the block partitioning as in §4.3, we
introduce a numbering of the blocks.

Remark 3.14 In Definition 3.12 the upper bound of the rank is assumed to be the same for all submatrices.
One may consider variable bounds. Then k is a function k : Py — N of the block and the inequality in (11)
becomes rank(M?®) < k(b). For the sake of simplicity, we regard k as a constant for the rest of the paper.

3.5 Approximation by H-Matrices

The reliability of H—matrices for the approximation of the integral operators
()@ = [ My, zes,
b

is essentially based on smoothness properties of the kernel* k(z,y). In the boundary element method, integral
operators occur with k(z,y) being Green’s function associated with the partial differential equation under
consideration or with k(z,y) replaced by a suitable directional derivatives Dk of k(xz,y). Here X is either a
bounded d-dimensional manifold (surface) I' C R¢+! or a bounded domain €2 in R¢, d = 2, 3. The single layer

4Note that the rank k € N and the kernel function k(z,y) are both written as k.



potential for the Laplace equation in R® gives the familiar example k(z,y) := |z — y|™" for 2,y € X. The
smoothness of k(x,y) with respect to both « and y depends in a typical manner on the distance |z —y|. Note
that both the panel clustering method and the #-partitioning approach exploit only the approximation of
k(z,y) by a degenerate kernel (cf. [5, Definition 3.3.3]). This holds for k(z,y) as well as for 0k(z,y)/on(x)
or Ok(z,y)/0n(y) (double layer kernel and its adjoint; cf. [5, (8.1.31a,b)]) even if the normal direction n
is nonsmooth because of the non-smoothness of the surface I', since only the smoothness properties of the
singularity function k(z,y) are involved. More precisely, we assume that the singularity function k(z,y)
satisfies®

105205 k(z,9)| < ellal,1B)]z —y| TV k(z,y)]  foralla,f€NF, 2,y € RY, (12)

where «, 3 are multi-indices with |a] = a3 + ...+ a4 and Ny = N U {0}. Note that similar assumptions are
usually required in the wavelet or multi-resolution technique (cf. [1, 2, 11]).

By Definition 3.12, H-matrices consist locally (blockwise) of rank-k matrices. As in the panel clustering
method, these low rank matrices can be constructed via a Taylor expansion® of k(z,y). Let x,y vary in the
respective sets X (t,) and X(t,) (cf. (6)) corresponding to the clusters ¢,,t, € T and assume without loss of
generality that diam(X (t,)) < diam(X (¢,)). The optimal centre of expansion is the Chebyshev centre” y, of
X (t,), since then |ly — y.|| < 1 diam(X(t,)) for all y € X (t,). The Taylor expansion reads k(z,y) = k(z,y)+R
with the polynomial

— 1 a”k(m,y*)
z_: " By (13)
and the remainder R, which can be estimated by
7 1 m 8vk($,g)
R| = |k(z,y) — k(z,y)| < — ||y — L YA 14
1= (o)~ o)l < ol =™ _ |78 14

Lemma 3.15 Assume (12) and (9) involving the sufficiently small parameter n < 1. Then for m > 1, the
remainder (14) satisfies the estimate

k(2. y) = k(z,y)| < clm)n™ [k(z,y)|  for v € X(t,), y € X(t,). (15)

Proof. The estimate ||y — y.|| <
satisfy ||z — ¢|| > dist(X(¢,), X
Therefore,

diam(X (t,)) for y € X (t,) is already stated. All 2z € X(¢,) and y,{ € X(t,)

(t,) > & min{diam(X (t,)), diam(X(t,))} = & diam(X(t,)) > L ly - y..

c(O,m) ||y* _y||m|k(x7€)| C(O,m)|k($,(;)|nm

m! |z —¢|I™ m!

R| = |k(z,y) — k(z,y)| <

for some ¢ € X(t,). In the upper estimate, we may choose ¢ with max{|k(z,n)|:n € t,} = |k(z,()| and

use |[k(a,y)] = [k, Ol < k(e,9) = k@, Ol < ly = ¢ | 25| < e(0, 1)1y = ¢l /e = Clk(a, O] for some ¢
between y and ¢. Together with |y — (| /|z — | < $ diam X (t,)/ dist(X (¢,), X (t,)) < n, we conclude that

|k(z, Q)| < [k(z,y)[/(1 = c(0,1)n). Hence, (15) holds with c(m) := ¢(0,m)/(m!(1 — ¢(0,1)n)). |
Let A be the integral operator with k(z,y) replaced by k(z,y), provided that (¢, ty) € T» is an admissible
block and no leaf (i.e., (9) holds). Construct the collocation or Galerkin system matrix from A instead of

A. The perturbation of the matrix induced by A-—4A yields a perturbed discrete solution. The effect of this
perturbation is studied in several papers on the panel clustering method (cf. [7], [10]). Perturbations in the
case of a negative order operator A are considered in [3].

5Estimate (12) is a bit simplified. It covers most of the situations, e.g., the case of the singularity function ﬁ\ax —y|~?! for
d = 3. As soon as logarithmic terms appear (as for d = 2; k(z,y) = log(z — y)/27), one has to modify (12).

6This does not require that the practical implementation has to use the Taylor expansion. If the singular-value decomposition
technique from [6] is applied, the estimates are at least as good as the particular ones for the Taylor expansion.

7Given a set X, the Chebyshev sphere is the minimal one containing X. Its centre is called the Chebysheuv centre.



3.6 On the Choice of n and m

In order to obtain a small error, n™ < ¢ < 1 must be ensured for a suitable €. The rank k corresponding
to the expansion (13) equals k = #{v € N¢ : 0 < |v| < m — 1} < m?. We may fix m (and k) and choose
n < €'/™. On the other hand, 7 can be fixed while the polynomial degree m is chosen: m > loge/logn. The
first case reminds to the h-version of the FEM, while the latter corresponds to the p-version. The optimal
choice is determined by the arising cost of the H-matrix operations. In the case of quasi-uniform meshes, one
may conclude from [7] (therein (3.9a)) that the number of admissible clusters (¢1,t2) € P2 on each level ¢ may
be estimated by O(n~%2%¢) (see also §4.1). This result implies that the leading term in the cost has a factor
proportional to n~%m? ~ n~%k. Hence, one has to minimise n~%m? under the side condition n™ = ¢. Allowing
for simplicity real-valued m, the result is

m = |loge| and n = 1/e. (16)

The constant value of 1 expresses the fact that the choice (16) corresponds to the p-version.

4 The Two-Dimensional Model Case
In Q =(0,1) x (0,1) we consider the regular grid

I={(i,j):1<ij<N}, N=2°. (17)
Each index (i, j) € I is associated with the (collocation) point &;; = ((i— 3)h, (j — $)h) € R?, where h := 1/N.

The positions ¢;; are used in (4) and (5).

4.1 The Cluster Tree T} = T'(I)

The natural partitioning of I uses a division of the underlying squares into four quarters. The clusters
tog i =1{00,4): 2" fa+1<i<2a+1), 227 B+ 1< <22 (B+1)} (18)

with «, 8 € {0,...,2 — 1} belong to level £. Hence, the tree T' consisting of all clusters of level £ € {0, ... ,p}
is a quadtree. The number of clusters on level £ equals O(2%).
Each index (i,j) € I is associated with the square®

which may be regarded as the support of the piecewise constant function for the index (i,j). Note that on
level £ =0 (&3, = I) we have one big square X (3;) (cf. (6)), while for £ = p we have 4 tiny squares X (5 5)-
Using the definitions (7) and (8), we obtain the diameter

diam(t) = V22~ ‘h = v/2/2° (20)

for clusters of level £. Let t,t' be two clusters of level £ characterised by (a, 3) and (o, 8) (cf. (18)). Then

dist(t, ') = 24\/5(@ —a)2+8(8—p)2  with 8(k) := max{0, |k| — 1}. (21)

4.2 The Block-Cluster Tree T, = T'(I x I)
Let T = T'(I x I) be defined according to Construction 3.1. An obvious result is stated in

Remark 4.1 Let b = (t1,t2) € T(I x I). Then t1,ts € T belong to the same level £ € {0,... ,p}.

Using min{diam(t,), diam(t,)} = v/d/2¢ and dist(t,, t5) from (21), we observe that b € T'(IxI) is admissible
for the choice 2n = /2, if the squares t,,t5 € T'(I) have a relative position as indicated in Fig. 1la: The square
X, corresponding to t; is the crossed square, while X, must be outside the bold area. In the case of d = 2
and 1 = 1/4/2, the admissible Ty-partitioning P, is described in the following subsection.

8The grid can also be associated with a regular triangulation and, e.g., the supports X;j of piecewise linear functions. This
would lead to another cluster tree. The asymptotic complexity bounds turn out to be the same as for the present choice.
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a)n= b)n=1/2

Figure 1: Unacceptable clusters for a given cluster ”x” depending on the threshold constant 7

4.3 H-Matrices

The admissible Th-partitioning P is to be defined. Because of the regular structure of the grid, the block
partitioning P» = L£(T;) corresponds to a well-structured subtree Ty C T». This allows the direct construc-
tive definition of the Ts-partitioning P> and the corresponding #-matrices based on the following recursive
procedure (cf. [6, Subsection 2.3]).

In [6, Section 5], we have introduced H-matrices which could be explained by the three formats H (diagonal
format), N (right-neighbour format) and N* (left-neighbour format). Now the diagonal format is denoted
by the symbol O and instead of two ‘neighbour formats’ we have eight types denoted by the directions
=T Ne NG A

For any ¢ € T, H-matrices over the index set ¢ x t have the O-format defined as follows. If ¢ is a leaf (level
£ =p, #t = 1), the matrix is 1 x 1. Otherwise, ¢ has four sons s; (1 <14 < 4). The related square X (t) splits
into the four smaller squares X; := X (s;). In the following visualisations, the 4 sons of a square are numbered

as follows: §1 §2 . Correspondingly, the matrix Ag over ¢ X ¢ has a 4 x 4-block structure:
4 3
bi1 | bia | b1z | bus O =21 N4
ba1 | b2z | baz | boy <~ 0ld v
A = = 22
H b3 | b3z | b3z | b3y N[O« (22)
bar | baz | baz | bus Tt~ 10

If ¢ is of level £ = p — 1, all blocks b;; are of level p and of trivial size 1 x 1. In the following, we assume that
the b;; are nontrivial, i.e., £ <p—1.

All squares X (s;) and X (s;) touch by at least one corner point, hence dist(X (s;), X (s;)) = 0. Therefore, the
vertices (s;,s;) € T» are not admissible and deserve a further decomposition. The type of block decomposition
depends on the relative position of s;, s;.

The diagonal blocks b; (1 < < 4) belong to the index pairs (s;, s;) and have again format 0.

The block b12 has a block format denoted by the arrow — directing from s; to the right neighbour ss.

The squares X (s1) and X (s3) are diagonally neighboured. The corresponding symbol of block b3 is -

The block b4 corresponds to the squares X (s1) and X (s4) (the latter one is situated below the former
one). This leads to the |-format.

Similarly, the formats of b;; (i > 2) are determined (see (22)).

Next, we have to describe the formats different from . We start with the —-format:

bac | Dag | bay | Das RIR|R[R
_ bba bbg bbfy bb5 I s R | R \

A_>_ bea bcg bcry bes - /‘ R|R| — (23)
bda bdg bdw bd5 R R|R|R

The matrix A_, corresponds to the index pair (s,s’) € T, where X (s') is the right neighbouring square of
X (s). The sons {a,b,c,d} of s and the sons {«,8,7,d} of s’ correspond to the squares situated as follows:

Z E ? 5 . The squares X (a) and X(a) satisfy diam(a) = diam(a) = v2h, 1 (he 1 = 2'7¢) and

dist(a, @) = hy_;. Hence, (9) holds with 5 = v/2/2 and the pair (a,«) € T is admissible. By definition, the
block b,q can be represented by an Rk-matrix (this format is denoted by ‘R’). A different situation arises




for (b,a) € T, where X («) is the direct right neighbouring square of b. Therefore, the block by, has the
—-format. The complete result is described in (23).

The format
R|+~ |V |R
R|R|R |R
Ae = R|R |R |R (24)
R|N |+ | R
is transposed to (23). Similarly,
R|R| /|7 R|R |R|R
R R|T |N |R|R |R|R
AT_RRRR’Ai_/¢ R|R (25)
R|R|R |R 1 || R|R
The format of A » is even simpler. The blocks bgq,... correspond to pairs of squares situated as follows:
a | p
T ] . Only the (b, 6)-block leads to dist(X(b), X (d)) = 0 and requires a further decomposition.
d|c
All other pairs of squares have a sufficiently large distance; therefore, those blocks by, ... are defined to be

Rk-matrices:

RIR|R|E RIR | E|R
RIRE|R| 7 A RNAN
A =RITRIEE "R E RIR| (26)
R R | R R AWANAN:
Similarly,
RIRE|~R RIR[E|R
RIE|R [ R R R|E|R
AN=TRTRTR TR " I~NTRIER (27)
RIE| R [R R|R|E|R

The recursions (22)-(27) define a subtree T3 of T5. The root I x I is of type O (level £ = 0) and has
16 sons (the 16 blocks of An). According to (22), 4 sons are of type O (level £ — 1), 2 sons of each of the
types —, <, 1, ] and 1 son of each of the types \, /", (see Fig. 2a). A vertex of type — has 12 sons
of rank-k-type (R), 2 sons of type — and 1 son of each of the types N\, " (see Fig. 2b). Figs. 2c-d show
the tree structure for the remaining types. The leaves of the subtree T3 are reached if the vertex has type
R (i.e., condition (9) satisfied) or if level p is reached (blocks of size 1 x 1). In this particular situation, the
T»-partitioning P» = £(T3) is the minimal admissible partitioning which also results from Algorithm 3.8 for
the choice 7 = v/2/2.

Figure 2 gives rise to the graph of Fig. 3, whose vertices are the formats. This graph is a tree except the
cycles induced by the edges of all formats # R to itself. The edges are weighted by the multiplicity already
shown in Fig. 2. The discussion in the next Subsection will demonstrate the following remark.

Remark 4.2 a) For the following complezity considerations it is essential that only the format O has a self-
reference with weight 4, whereas all other weights are < 3.

b) The complezity order does not depend on the number of different formats. For instance, choosing n smaller
than 1/+/2 (as in Fig. 1b) one would need more formats, but again only format O has a self-reference with
weight 4.

Formally, the recursions (22)-(27) must be used to define the T-partitioning P,, while in a second step
the H-matrix set My (I x I, P») is defined by Definition 3.12. Instead, we can give a direct definition of the



a) level £ —1

4 2 2 2 2 1 1 1 1
2 1 1 12 2 1 1 12 1 15
b) c) d)

Figure 2: The subtrees of the diagonal and typical auxiliary formats

ine

Figure 3: The graph of the involved formats
matrix sets My , with upper index * € {R,0,—,+, 1,4\, N\, '} and level number 0 < £ < p € Ny (note
that by (17), the index set I depends on p). First we define

My p(t1,t2) = Kl xt2 where t1,t5 € T} belong to level £,

i.e., i € t; are the row indices and j € ¢» the column indices of A € M(t1,t2) (note that by Remark 4.1, the
block matrices are of this kind). For £ =0, t; = to = I is the only vertex of that level, but in general ¢ # to
is possible. The level-f-matrices and the corresponding Rk-matrices are denoted by

Mgy i={A € My,p(ti,t2) : t1,t2 € Ty belong to level £},
pr = {A € My, : rank(A) = k}.

Here £ > 1 is fixed. The following recursive definition starts from ¢ = p and ends with £ = 0. Since
#t1 = #ty = 1 for level £ = p, we have that

M, , is the set of 1 x 1-matrices for all x € {R,00, =, <, 1,1, \, ", N\, '}
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For ¢ < p, the sons S(t1) = {a,b,¢,d}, S(t2) = {«,B,7,0} of the vertices t1,t> are assumed to have the
geometric constellation as described in the beginning of this Subsection (i.e., b [] is the right neighbour of a
[a], etc.).

e Definition of pr : For ¢ < p, a matrix A € My p(t1,t2) belongs to /\/lfp, if its block matrices in
A ={Aij}iefabedy,jelas.0) Satisfy Ays € M7y, and A; € ME,  otherwise (cf. (26)).

o Similarly, M %, M;> MY are defined (cf. (26), (27)).

e Definition of M’ : For £ < p, a matrix A € My,,(t1,t2) belongs to M;” . if its block matrices in A =
{Aij}ie{a,b,c,d},je{a,ﬁ,w,d} satisfy Aba;Ac(5 S MZH,W Ao € Mﬁer, Aps € ME\J‘FLP, and A,’j S Mﬁer
otherwise (cf. (23)).

e Similarly, My, Mz » MEP are defined.

e Definition of MM For ¢ < p, a matrix A € M, ,(t1,t1) belongs to /\/l[p, if its block matrices in
A= {Am}z7]€{a,b7c7d} Satley An € MEJrL;D’ Aab: Adc € MEJrL;D’ Abaa cd € M{+1’p: Aad: Abc € M‘l!:%l,p’
Ay € MK—H » A, € MZH,IJ’ Apg € Mil/—i-l,zﬂ Ag € Mf/-‘i-l,p'

Then My (I x I, P,) = M, holds.

When using the grid (17) for difference or finite element discretisations of differential equations, we obtain
a five-, seven-, or nine-point formula as discretisation matrix. The next lemma implies that such a matrix can
be ezxactly represented by an H-matrix (see also the later Lemma 5.7).

Lemma 4.3 If the matriz A has a nine-point or an even sparser pattern, it is in the set My (I x I, Py) for
any k > 1.

Proof. By definition, a nine-point matrix has non-zero entries only for index pairs (p,q) € I x I, where
X, N X, # 0 holds for the squares introduced in (19). Let b = (t1,t2) € P» C I x I be the block of
the partitioning with (p,q) € b. The previous characterisation yields dist(t1,¢2) < dist(X,, X;) = 0. Hence,
condition (9) cannot be satisfied. Since b belongs to an admissible partitioning, it must be leaf, i.e.; it is a
1 x 1 block. Obviously, a 1 x 1 block represents the matrix entry A,, exactly. ]

4.4 Complexity

In the following, we discuss the storage requirements N SEt] and the cost A/ EIV of the matrix-vector multiplication.
The complexity dlscussmn for the format O first requires the study of the expenses for the other formats. Since
matrices from M7 T M o MY L M behave similarly, we denote their format by the collective symbol “x”

(diagonal neighbourhood), while “+” refers to My, M, /\/l /\/lT
Note that the maximal level number p does not exceed O(| log hf The rank number k is chosen to be
k =1, in order to present concrete constants in the leading terms.

4.4.1 Storage

Below, the number Ng;(p) describes the storage requirements of an matrix A € Mg, of the format * €
{0, +, x}.

Lemma 4.4 Let k =1 and n = #1 = 4P. The storage size of matrices of the different formats amounts to

NEp) = (1+54p)n+ O(p),
NE(p) = 22n+0(1),
Ni(p) = 10n+ O(1).

Proof. Note that N5!(p) = 2n = 2 4P. Due to Definition 3.12, we obtain the recurrence formulae

N;;(p) = s?(p_1)+15/\/£1(p_1):
Nilp) = 2Ni(p-1)+2N5(p—1)+ 12V (p - 1), (28)
Ni) = NG —1) +8N i —1) +4Ni(p - 1),
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with starting value N (0) = 1 for all formats. The first equation in (28) implies NV (p) = 10n — 9. Inserting
this result into the second recurrence yields N} (p) = 22n + O(1). Therefore, the last recurrence becomes
NE(p) = 4NH (p — 1) + 54n + O(1). Its solution is N (p) = (1 + 54p)n + O(p). [
4.4.2 Matrix-Vector Multiplication

Lemma 4.5 The cost for the matriz-vector multiplication is

Niv(p) = (1+82p)n+O0(p), (29)
Niv(p) = 30n+0(1),
av(®) = 19n+0(Q1).

Proof. We recall N, (p) = 3n. Consider type ‘x’. The multiplication of the 16 blocks at level p— 1 with the

(partial) vector costs N3j, (p — 1) + 15N, (p — 1). The summation of the results costs 3n additions. This

leads to Ny () = Ny (p— 1) + IBNTH (p— 1) + 3n = Ny (p— 1) + 5ny, and N3y, (0) = 1. Its solution is
v (p) =19n —18.

Similarly, Ny, () = 2N, (p — 1) + 2N, (p — 1) + 12NV (p — 1) + 3n yields N}y, (p) = 30n + O(1).
Finally, N}y (p) = 4N5y (p — 1) + 8Ny (p — 1) + 4N35 (p — 1) + 3n = AN} (p — 1) + 82n + O(1) implies
the result of the Lemma. [

The estimate (29) is similar to the bound Ny (p) = 11pn + O(n) obtained in [6] for the 1D index set I
with 7 = 1/2. Clearly, the corresponding constant in (29) depends on the spatial dimension (compare also
Theorem 6.2 for the 3D case).

4.4.3 Matrix Addition, Multiplication and Inversion

As in [6], one can introduce the approximate addition +pg, multiplication *0, and inversion of matrices from
MEP retaining the corresponding hierarchical matrix structure. The formatted operations + and g are
defined similarly to the case of 1D-H-matrices considered in [6]. In fact, the complexity analysis of +p is
rather simple and yields N, o(p) = O(pn).

The proof of Ng,o(p) = O(p*n) is more lengthy, since various combinations of factors occur.

The inversion is based on blockwise transformations involving the addition and multiplication addressed
above. While in the case of [6] the H-matrix was treated as a 2 x 2 block matrix, the matrix (22) has now a

4 x 4 block pattern. This does not change the complexity order Nipversion (p) = O(p*n) obtained in [6].

5 Construction for General 2D-Meshes

We consider an (unstructured) quasi-uniform triangulation 7; of Q C R? characterised by the maximal mesh

size h := max{d, : T € T;}, where d; is the diameter of the Chebyshev sphere of the triangle 7 (cf. Footnote
7). Assuming also shape regularity, there are generic constants c;,co > 0 such that

cd, <h<ecyd for all 7 € T, (30)

T

where d_ denotes the diameter of the inscribed circle for an (closed) element 7 of 7;. In fact, we are not
restricted to triangles 7. Any elements satisfying (30) are allowed (isoparametric triangles, quadrangles, etc.).

For simplicity, we consider piecewise constant functions on 7 € 73. Then each index « € I corresponds to
a basis function with support X, = 7, € T5. The Chebyshev centre of 7 is denoted by &, (or &, if 7 = 74).

In order to construct H-matrix structures, we have to define a suitable cluster tree T'(I) (cf. Subsection
4.1). Proposals can be found in [9]. Here, we give a construction based on the uniform tensor-product grid
discussed in the previous section. Since the regular grid is needed only for reference, we call it the fictitious
grid. We do not claim that the presented construction of T'(I) is optimal, but it leads to a straightforward
proof of the complexity bounds.

5.1 How to Map the Fictitious Hierarchy onto the Unstructured Grid
Without loss of generality we may assume Q C Qf := (0,1) x (0,1) and

w() > cp(@) =c>0, (31)

12



where p denotes the two-dimensional measure. In Qf we consider the uniform tensor-product grid 7; from
Section 4. Its index set is denoted by I := {(i,j) : 1 < i,j < N}, N = 2P (the superscript ‘f’ stands for
‘fictitious’), while I is the index set of the unknowns of the unstructured grid.

The grid size of 7}, is assumed to be the largest h = 27P satisfying

1

h<—— min
22 a,B€l, TaNTa#0

(dy +ds) (32)

with d, := d._ from (30). For each index a € I, the Chebyshev centre £, belongs to at least one of the
squares X;; of Ty, ((i,4) € I7; ¢f. (19)). Selecting one of the possible indices in the multiple case, we are able
to define a mapping F : I = I/ (o F(a) = (i,7)) via £, € Xp(a)- The following remark allows us to define
F~Yon F(I) C I’.

Remark 5.1 Under condition (32), the mapping F is injective.

Proof. Let a # 3. Then [€, — £5] > $(d,, + djg) > V2h = diam X;; contradicts F(a) = F(3) = (i,j) € I/. =
For any subset t/ C I’ (not only for t/ C F(I)), we define

Fl(t)y:={acl: Fla)et/}C 1.

Since I7 is the regular grid from Section 4, the cluster tree T'(17) is already described. F' gives rise to the
cluster tree for the index set I :

T(I) ={F'@t)): tf eTU)}.

The arising tree T'(I) meets the conditions of Definition 2.1, but is unusual since some of the vertices ¢t € T'(I)
may represent the empty set (F~'(tf) = 0 if t/ N F(I) = (). Moreover, if only one of the sons s € S(t) is
non-empty, this son s represents the same subset as the father ¢. Although, in practice, this tree T'(I) could
be simplified, we use the tree in the given form since then 7'(I) and T'(I/) are isomorphic.

As seen in Section 3.1, the cluster tree T'(I) determines the block-cluster tree T5 = T'(I x I), which defines
the H-matrix structure. The elements of Ty are pairs (t1,t2) with ¢1,t2 € T'(I). In the case of Construction
3.1, Ty = FY(TY) holds, where T = T(I7 x I7) and F~Y((t1,t5)) := (F 1(t), F1(t2)) for t1,t, C I7.
Otherwise, we use 15 := F‘l(TQf ) as definition for T5.

Let P2f € T(I7 x I’) be any admissible H-partitioning for the fictitious grid satisfying (9) with the constant
ny < 1. Below we will characterise the tolerance constant n > 7, needed for the definition of admissible clusters
from the induced partitioning P, € T(I x I).

Lemma 5.2 All ty,ts,t € Ty = T(I) satisfy

diam F(t) + h, (33)
dist(F(t1), F(ts)) — h. (34)

diam ¢

<
dist (tl s t2) Z

Proof. Let x € 7, € Ty and y € 7y € Ty for triangles 7,7, C t with the Chebyshev centres {, € 74, , € 7.
Then [{, — ¢,| < diam F'(t), while |{, — 2| < diam(7,)/2 < h/2 and |{, — y| < diam(7,)/2 < h/2. Hence,
|z — y| < diam F(t) + h yields (33). Similarly, (34) is proved. |

Since the image F(t) = {F(a) : a € t} of a cluster ¢ € T(I) is in general different from the clusters in
T(1'), we introduce mappings Fy for all levels 0 < £ < p. The sets

THI?) .= {tf e T(17) : t/ is a cluster of level £} (0<t<p)

can also be defined by T°(I7) := {17}, T*"'(I7) := UprerenStF) for 0 < £ < p and yield a level-wise
decomposition of the tree T'(I7) = |Jo<¢<,T*(I7). For t C I, we define level(t) := min{0 < ¢ < p: F(t) C t/
for some tf € T(17)}.

The mapping F; is defined on all subsets ¢t C I with level(t) < £ and its value is Fy(t) =t/ if t¥ € T*(1/)
satisfies F(t) C tf. Hence, Fy(t) denotes the ‘rounding up’ of F(t) to an I'-cluster of level £. Note that
F7L(Fy(t)) =t.

We recall that (Fy(t1), Fy(ts)) € PJ is either a leaf of T = T(I x I) or satisfies the admissibility
condition (9): min(diam Fy(¢1),diam Fy(t2)) < 21, dist(Fy(t1), Fy(t2)) for the corresponding level £. Because
of Remark 4.1, the clusters t; (i = 1,2) belong to the same level (say £). Assuming the latter inequality, we
are interested in the question whether (¢1,%2) also satisfies condition (9) for a suitable parameter 7.
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Lemma 5.3 Assume ti,ta € T1, level(t)) = level(ts) = € and /2/2° > (1 + 4ns)h. Then the admissibility
condition

min(diam Fy(t1), diam Fy(t2)) < 2n; dist(Fy(t1), Fi(t2))
implies min(diam(t, ), diam(tz)) < 2ndist(t1,t2) for n = 21;.

Proof. Set A := diam Fy(t;) = diam Fy(t2) = v/2/2¢ (cf. (20)) and B := dist(Fy(t1), Fi(t2)). The inequalities
(33) and (34) together with diam F'(t;) < A and dist(F'(t1), F(t2)) > B show

min(diam(¢;), diam(¢2)) < A+h
dist(ty, t5) ~B-h
Note that % < 27;. The assumption A > (1 + 477f)ﬁ allows us to bound

A+h A_+ A+B _A/B+1 _ 142
B-h B " B(B-h) B/h-1~ A/(2n;h) -1
by 2n;. Hence, min(diam(t,), diam(t)) < 4n; dist(t1,t2) = 2ndist(t1, ) for the choice n = 27, . ]

Corollary 5.4 The modified assumption diam F(t;) = diam F(t;) > (L + (2 + %nf))ﬁ for some € > 0 leads
to min(diam(t,), diam(tz)) < 2ndist(t1,t2) with n:= (1 +¢€)n;. Hence, any n; < 1 allows a choice n < 1.

The condition v2/2¢ > (1 + 4n,)h from Lemma 5.3 is not satisfied in general, e.g., for £ = p we have

V2/2P =/2h < E_(cf. (32)). However, there is a constant dp such that all clusters ¢ of level £ < p — dp fulfil
V2/28 > (1+ 4n)h as stated in the next lemma, where we may insert ¢ := 5 > 1 + 4.

Lemma 5.5 Given a constant c, there is a constant ép € N independent of p so that \/5/2’Z > ch for all
clusters t € T of level £ < p — ép.

Proof. Let t be of level £ < p — dp. The definition of h = 277 by (32) together with (30) yields 2'7 = 2h >
21% min(d,, +dg) > cz;\/iﬁ' Hence, v/2/2P~9 > (297~1 /¢y )h. Choose &p such that 2°P~1 /¢y > c. [

We have to describe an admissible Th-partitioning P», where the parameter 1 from (9) is defined by
n = 2n; (see Lemma 5.3). The first trial is to use P := F’l(PZf), where sz is the admissible Ty-partitioning
corresponding to n,. Due to the preceding lemmata, this leads to admissible blocks (t1,t2), provided they
belong to a level £ < p — dp. It remains to modify P;* at the levels ¢ with p — 0p < ¢ < p. By Remark 2.2,
there is a subtree T5* of T'(I x I) with Py* = L(T5*). Construct the smaller tree T5 in the following way:

1) Delete all vertices belonging to levels £ > p — dp and

2) insert the sons (i,j), i € t1, j € t2 for all non-admissible blocks (¢1,2) € T5* at level £ = p — Jp.
Then the final T>-partitioning Py is Py = L£(T5). The matrix interpretation is that all non-admissible blocks
of level p — dp are full submatrices.

Finally, M* := My (I x I,P;) defines the H{-matrix set corresponding to the unstructured mesh (cf.

(11)).
Lemma 5.6 There holds ny < constn, where ny := #I' and n = #I. Moreover,
w(n) =0(nlogn) and Ny (n)=0(nlogn)
are the respective costs of the storage and the matriz-vector multiplication for matrices from M*.

Proof. First we consider the auxiliary partitioning P;* = F~*(PJ) = L£(T3*) from above. Since Ty* is
isomorphic to a subtree of T2f = T(I/ x I7), the expenses N, N5, corresponding to the format M** :=
My (I x I,P5*) are less or equal to the bounds O(nylog ny) in Lemmata 4.4-4.5. Since dp is a constant,
the costs N7y, N, are also bounded by O(nyslog ns) (note that the same recurrence formulae hold, but the
starting value may be increased).

It remains to replace the fictitious dimension n; in the latter bound by the true dimension n. By (31)

we have ny = h™2 = p(Qf) - h2 < “Ap=2 The proof of Lemma 5.5 has shown 2k > h/(cav/2), so that

(4
ny < u(Q) %Eiz. The left inequality in (30) yields u(Q2) = ZreTg”(T) < ZreTg %Ei < nﬁﬁz. The last

two estimates prove ny < const-n with const = 27”(%)2 |

Lemma 4.3 and its proof generalise to all FE stiffness matrices.

Lemma 5.7 A finite element stiffness matriz belongs to the set M* = My (I x I, Py) for any k > 1.

14



5.2 Two-Dimensional Manifolds

The above defined matrix formats MODJ) and M* enable data-sparse H—approximations for a wide class of finite
element stiffness matrices corresponding to boundary value problems in Q C R2. Applications in boundary
element methods (BEM) are based on manifolds (surfaces) instead of flat domains.

In a first step we study the surface of a polyhedron (§5.2.1). Curvilinear surfaces are considered in §5.2.2.

5.2.1 7H-Formats for Polyhedrons

Consider a polyhedron I' C R® composed of M plane faces I'; (1 <4 < M). On each I'; a quasi-uniform mesh
is given which meets the conditions required in §5. We assume that all pairs of adjacent faces form an angle
w € [wo, 2™ — wp], where 0 < wo < 7.

To begin with, we assume that for a given admissibility parameter < 1 the inequality

min(diam I';, diamI';) < 2ndist(I';, I';) (35)

holds for all disjoint and non-adjacent faces I';,I';. Note that the distance is measured by the FEuclidean
distance in R3.

In this situation we construct the cluster tree as follows. Let T be the H-tree for the face I';, i.e., the root
of T is the index set I’ corresponding to the unknowns? associated with I'; (1 < i < M). The global set of
indices is I = UM, I'. The cluster tree Ty = T'(I) is defined as the union of the disjoint trees 7" together with
the new root I possessing the M sons I’ (1 < i < M). The block-cluster tree is again denoted by T5.

In the following, we propose a matrix format corresponding to the index set I. Given a block b = (t1,12) €
Ts, three different cases can occur:

(i) t1,t2 belong to the same face, i.e., t;,ts C I for some i < M.
(ii) t1,t2 belong to adjacent faces.

(iii) ¢1,t2 belong to disjoint and non-adjacent faces.

Case (i) corresponds to the plane case of §5.

In Case (ii), two faces I'y,I's with a common edge e are involved. Turning I's into the plane of Iy, we
obtain I'y and fg contained in  :=T'; U fg C R%. Choose the matrix structure as in §5 with admissibility
parameter 7 sin %, where w is the angle between I'y and I's. Let t; C I'y, t5 C I'; and denote the corresponding
cluster in the rotated copy I'> by f>. One checks that min(diam t;,diam f>) < 2nsin £ dist(t1,%2) implies
min(diam t;,diam ¢2) < 2ndist(¢;,t2). Therefore, the chosen partitioning is admissible.

Case (iii) is trivial, since assumption (35) ensures min(diam ¢;,diam t5) < 2ndist(¢1, t2).

Altogether, we have obtained an admissible partitioning P, comparable to the plane case of §5 with 5
(partially) replaced by the smaller parameter 7 sin %.

It remains to discuss the case, where the chosen constant 1 does not satisfy (35). In this case divide each

face into several smaller ones I'} (1 <4 < M') with M’ > M. If the subdivision is fine enough, we have
min(diam I}, diam I'}) < 2ndist(I';, I';) for I} C Ty, I C Ty,

where I';,I'; are disjoint and non-adjacent (unrefined) faces. Since 7 is a fixed constant, also M' is fixed. The
same arguments as above can be used to construct an admissible partitioning with similar structure as in the
plain case. As in Lemmata 4.4 and 4.5 we derive

Corollary 5.8 Under the assumption from above, the costs for storage, matriz-vector multiplication, and the
further operations have the same complezity as in the plane case of §5.

The assumption w € [wo, 27 — wp] may lead to the impression that small angles cause difficulties. This is
not the case. An important example is a slender aerofoil. Here it is well-known that the cluster tree must be
constructed differently: The clusters should contain the neighbouring parts from the upper and lower side of
the wing.

Finally, we mention a special case, where the complexity is even better than mentioned before.

9 According to the example of piecewise constant functions, we assume the index sets I’ to be disjoint. If I N 17 # () (i #37)
due to unknowns belonging to the edges, obvious modifications are required.
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Remark 5.9 Consider the double-layer potential for the second order PDEs with constant coefficients in the
case of piecewise flat surfaces. Define the structure of the approximating H-matriz as before. Then N and
Ny are of the order O(n) instead of O(nlogn).

The reason is the fact that the kernel function satisfies 0k(x,y)/0n(x) = 0 for =,y € I'; on any plane face
T'; of the surface T'.

5.2.2 Curved Manifold

A general manifold is described by an atlas of mappings. The usual practice is to start from a (reference)
polyhedron I';..¢ and to define a bi-Lipschitz mapping ¢ : ['yey = I (cf. [3]) with Lipschitz constants ci, ca:

alr—yl <o) —e) <c2lz—yl  forall z,y € Tyeyp.

Let 77¢/ be the cluster tree from §5.2.1 for the reference boundary I',;. The corresponding tree for I' is then
defined by T = ¢(T"¢f). Choose an admissible T"¢/-partitioning P;ef with admissibility parameter 7, ;.
Then the resulting T-partitioning P» = cp(P;ef) is admissible with the parameter n = g—f Nyefs S

2
min(diam ¢(t1), diam ¢(t2)) < ¢ min(diam(t;), diam(t2)) < 2cam,.; dist(t1,t2) < ?nref dist(p(t1), o(t2))-
1

Since the matrix-formats corresponding to Py / and P are identical, we obtain the same complexity bounds
of the computational cost as in §5.2.1.

6 The Three-Dimensional Case

In this section, we introduce the formats for matrices operating in the vector space associated with an index
set I for the cell-centred tensor product grid I,B; =1, x I x I, in Q = (0, 1)3 with the mesh size h = 27P and
#I = 8P. Similar to the 2D-case, the cluster tree T' = T} is defined by the regular refinement (subdivision into
eight equal parts) of the initial index set I. T3(I) gives rise to the block-cluster tree T(I x I), in which we
determine the admissible partitioning according to the admissibility condition (9). In Definition 6.1 below, we
choose the constant 1 = 1/3/2 which corresponds to the 3D counterpart of Fig. la.

The natural notation of indices from I} uses triples (7,7, k) € N* with 1 <1i,j,k < 2P. As in the 2D case, we
can describe the partitioning by a number of formats M} f’v where (a, 8,7) with a, 8,7 € {—1,0,1} indicates
the shift in the following sense. Let b = (¢,t') be a block, where ¢,¢' C I are clusters. If ¢t = ¢/, we have a
diagonal block and the shift is given by («, 3,7v) = (0,0, 0). For these blocks we introduce the ‘top format’
MO Tt = (io, jo, ko) +{(6,5,k) : 1 < i,k < 2P~ and ¢ = (io+2P, jo, ko) +{(i, 5, k) : 1 < i, j, k < 2P=¢}
are two clusters (cubes of length 2P~¢ in Z?), their relation is given by the shift (1,0, 0) indicating the direct
neighbourhood in z-direction. Then, for b = (¢,t") we use the format /\/l1 0.9 Similarly, the other formats

M,y 10,0 Mg ELO MO O:EL (“pext neighbours”™), MLLO,. (“2D-diagonal nelghbours”) and Mil ELEL (3.
dlagonal nelghbours ) are involved. In Definition 6. 1 these formats contain the same format at the next level
(“self-reference”) and other formats as depicted in the graph corresponding to Fig. 3:

top format (0,0,0) self-reference=8
{ hY

next neighbours: (1,0,0) e self-reference=4
\ N\

2D-diagonal neighbours: (1,1,0) .. self-reference=2
\ N\

3D-diagonal neighbours: (1,1,1) .. self-reference=1
1

leaves RE self-reference=0
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(see also Fig. 4b). Let 0 = {a,b,c,d, e, f, g, h} be the set of the eight sons of a cluster situated as shown in
Fig. 4a. For example the block-matrix with columns from a and rows from b is denoted by Agp.

/ a/ b
| |
e o
| |
- :dl :
A AT AT o
e P
| ! | | f
| ' |
| Lo gL -
| |
~ ~
J R D
7 g ~ h
a) b)

Figure 4: (a) Indexing for the 3D clusters, where a = (0,0,0), b = (1,0,0), ¢ = (0,—1,0), d = (0,0,-1), e =
(-1,-1,0), f =(1,0,-1), g = (0,—1,-1), h = (1,—1,—1). (b) Graph of the 3D formats M™ (0 < m < 3)
corresponding to |a| + |8] + || =

By

In the following, we define the matrix formats My’ """ recursively with respect to the degree |a| + 8]+ 7.

The notations My ,(t1,t2), My, and pr have the same meaning as in Subsection 4.3.

Definition 6.1 a) For { = p, Mgf"y is the set of 1 x 1-matrices for all a, 3,y € {—1,0,1}. For £ < p, the
formats are described in b-e).

b) Let 0 = {a,b,c,d,e, f,g,h} be the 8 cubes as indicated in Fig. 4a and o' = {a',b',c,d',e', f',g', '} the
similar set of clusters shifted in the (1,1,1)-direction so that b and g’ have one corner point in common. A

matriz A € My ,(0,0") belongs to M%’l’l, if its block matrices in A = {A;j}ico,jeq satisfy Apg € M%iilp and

A € M£+1 p» Otherwise. Stmzlarly, one defines ./\/la By for other combinations subject to |a| = |5 = |y| = 1.
c) Let o' = {a', V', ,d €, f',g',h'} result from a shift of o = {a,b,c,d,e, f,g,h} in the dzrectwn (1,1,0)
so that the pairs (b,c ), (f, ) of cubes have a common edge. Then A = {AZJ}Z@J@ € /\/l 170 holds if the

submatrices have the formats Ay o, As g € M;_fiop, Ap e € M;_ﬁilp, Apg € M%_’:ip , and A” € /\/l“_lp,

otherwise. Szmzlarly, one deﬁnes Mz @B for other combinations with |a| + | 6] + || = 2.
d) Let ' = {a',b,c,d e, f', g, h’} be resulting from a shift of o = {a,b,c, d e, f,g,h} in the direction
(1,0,0) so that, e.g., b anda have a common face. Then A = {AZJ}zea Jeo’ € /\/l/ 0 holds if Aparys Arar, Aeers

Ah7g/ € Mé_:_)lop, e,al s Ah a € M%_}:iop, Ab ¢ Af g € M%-&jl Ab ds 79/ € MZ-H D Af7a/ Ah o € Méfilp,
Apa € M;_ﬁilp, Af o € /\/l“_ll LAy € MZ—H » L Aoa € M%_ﬁi oo and Ay € M, otherwise. Similarly,
for other combinations with |ozr+ 18] + |y = 1.

e) Finally, let o' = 0. Then A = {A;j}ijec € /\/12’0’0 holds if Ay; € M0 Agp, Ace, Agr, Agn €

£+1,p?
1,0,0 1,1,0 1,—1,0
Mz+1 D’ Aca:Aeb:Agd:Ahf € MEJrl .’ Ada;Ahe:AfbaAgc € MEJrl .’ Acb;Agf € MEJrl .’ AaeaAdh € MHLP

0,1, 1,0,1 1,1,1
AgaaAhb € MEJrl p7 AcdaAef € M{+1p7 AavaCh € MEJrlp’ Adb7 ge € M{+17p7 gb € M{+1p: cf €
1,1,—1 1 ,— a,B,y
/\/l“_lp,AahE/\/l“_lp AdeEMHlp,a"dAngMHlp zfA,JGMHlp

The calculation of the storage and matrix-vector multiplication complexity for the described formats is
a result of four staggered recurrence formulae. Below, we give the results (with exact constants) for the
corresponding matrix-vector multiplication'®. Here, we use the notation M= U{MZ‘L’%ZI cq >4 o)+ 18]+
|7| = m}. Note that all A € M are 8 x 8 matrices.

10More details will be in a forthcoming report.
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Theorem 6.2 Letn = 8 and let k = 1 be the rank of the Rk-blocks. Then for M}'-matrices the matriz-vector
multiplication costs N}, (p) equal

NJ%/IV (p)
NJ%/IV (p)

Proof. The desired estimate for N9,y (p) follows from the recurrence

35-n+ O(1); v (P) =51-n+0(1),
187 -n + O(1); Yy (P) = 756 - pn + O(p).

Ny () =8Npy (p—1) 424 Ny (p—1) + 24 N3, (p— 1) + 8N (p— 1)+ Tn

taking into account Ny (0) = 1 and substituting the results for the auxiliary formats. ]

In the case of a general finite element mesh in a 3D-domain Q C R?®, we can extend the considerations of
§5 to three dimensions as well. We conclude that the H-matrix format is also applicable to general 3D finite
element problems as well as for volume integral formulations.
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