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1 Introduction

In this paper we study Lipschitz solutions of partial differential relations of the
form
Vu(z) € K a.e.in, (1)

where u is a (Lipschitz) mapping of an open set ! C R" into R™, Vu(z) is its
gradient (i. e. the matrix Ju;(x)/0z;, 1 <i < m, 1< j < n, defined for almost
every z € 1), and K is a subset of the set M™*™ of all real m x n matrices.
In addition to relation (1), boundary conditions and other conditions on u will
also be considered.

Relation (1) is a special case of partial differential relations which have been
extensively studied in connection with certain geometrical problems, such as
isometric immersions. For example, the celebrated results of Nash [Na 54] and
Kuiper [Ku 55] and their far-reaching generalizations by Gromov [Gr 86] showed
striking and completely unexpected features of the behavior of C'-isometric
immersions of R™ to R"*!, and Lipschitz isometric immersions of R” to R*. A
general result describing a large class of Lipschitz solutions of partial differential
relations more general than (1) can be found in the book of Gromov [Gr 86],
page 218.

More recently, problems concerning solutions of relations of the form (1) have
been studied in connection with the characterization of absolute minimizers of
variational integrals describing the elastic energy of crystals exhibiting interest-
ing microstructures ([BJ 87], [CK 88]). An important observation which came
from this direction [Ba 90] is that relation (1) can have highly oscillatory so-
lutions even when the difference of any two (non-identical) matrices in K has
rank > 2. This situation, which does occur in some very interesting cases, is
not covered by the theorem of Gromov mentioned above. In technical terms
to be explained below, the reason is that Gromov’s P—convez hull of the set
K is again K in that situation. The main result of this paper, Theorem 3.2,
covers many of these cases and shows that in the Lipschitz case it seems to be
more natural to work with a different hull, which is defined in terms of rank-one
convex functions, and can be significantly larger than the P—convex hull.

As an application of the theorem we give a solution of a long-standing prob-
lem regarding regularity of weak solutions of elliptic systems. We construct an
example of a variational integral I(u) = [, F(Vu), where 0 is the unit disc in
R?, u is a mapping of 2 into R?, and F is a smooth, strongly quasi-convex func-
tion with bounded second derivatives, such that the Euler-Lagrange equation
of I has a large class of weak solutions which are Lipschitz but not C! in any
open subset of 2, and have some other “wild” features. This result should be
compared with the well-known result of Evans [Ev 86] which says that minimiz-
ers of I are smooth outside a closed subset of {2 of measure zero. Our method
also gives new conditions on F' which are necessary for regularity. The condi-
tions are expressed in terms of geometrical properties of the gradient mapping
X — DF(X). We expect that the method is applicable to other interesting
problems.



Our contruction is quite different from well-known counterexamples to reg-
ularity of solutions of elliptic systems, such as [DG 68], [GM 68], or [HLN 96].
We should emphasize, however, that our method does not apply when F' is con-
vex. Very recently we became aware of the work of Scheffer [Sch 74], in which
important partial results, including counterexamples, related to the regularity
problem for the elliptic systems described above were obtained. It seems that
the work was never published in a journal and has not received the attention
it deserves. The point of view taken in that paper is implicitly quite similar
to ours and in particular the Ty-configurations discussed in Section 4.2 play an
important role in Scheffer’s work. At the same time, the new techniques we
develop enable us to answer questions which [Sch 74] left open.

2 Preliminaries

Let us first recall the various notions of convexity related to lower-semicontinuity
of variational integrals of the form I(u) = [, f(Vu), where  is a bounded
domain in R”, u:  — R™ is a (sufficiently regular) mapping, and f: M™*" —
R is a continuous function defined on the set M™*™ of all real m x n matrices.

A function f: M™*" — R is quasi-convez if [,(f(A+ V) — f(4)) >0
for each A € M™*™ and each smooth, compactly supported ¢: Q@ — R™. This
definition was introduced by Morrey (see e. g. [Mo 66]) who also proved that the
quasi-convexity of f is necessary and sufficient for the functional I to be lower-
semicontinuous with respect to the uniform convergence of uniformly Lipschitz
functions. It is also necessary and sufficient for the weak sequential lower-
semicontinuity of I on Sobolev spaces W1P(Q, R™), if natural growth condi-
tions are satisfied, see [Ma 85] and [AF 87]. The definition of quasi-convexity
is independent of €, as can be seen be a simple scaling and covering argument
([Mo 66]). In fact, we have the following simple observation made by many
authors:

Lemma 2.1 Let T" be a flat n—dimensional torus. A function f: M™*" — R
is quasi-convez if and only if [, (f(A+ V) — f(4)) >0 for each A € M™*"
and each smooth ¢: T" — R™.

The reader is referred for example to [Sv 92a] for a proof of this statement.

We also recall that, with the notation above, f: M™*"™ — R is strongly
quasi-conveg if there exists v > 0 such that [,(f(A+ V) — f(4)) > v o |Ve[?
for each A € M™*™ and each smooth, compactly supported ¢: Q2 — R™. This
notion appears naturally in the regularity theory, see for example [Ev 86].

A function f: M™*™ — R is rank-one convez if it is convex along any line
whose direction is given by a matrix of rank one, i. e. t — f(A+tB) is convex for
each A € M™*" and each B € M™*" with rank B = 1. This class of functions
will play a particularly important role in our analysis. It can be proved that
any quasi-convex function is rank-one convex, but the opposite implication fails
when n > 2, m > 3 ([Sv 92a]). (The case n > 2, m = 2 is open.)



We will also deal with functions which are defined only on symmetric ma-
trices. We will denote by S™*™ the set of all symmetric n x n matrices. The
notions introduced above for functions on M™*" can be modified in the obvious
manner to apply to functions on symmetric matrices. For example, a function
f:8"%™ — R is quasi-convex, if [, (f(A+V?¢)— f(A))) > 0 for each A € S™*"
and each smooth, compactly supported ¢:{) — R. Again, the definition is
independent of £ and, in fact, £ can be replaced by any flat n—dimensional
torus.

In the rest of this section we look in more detail on facts related to rank-one
convexity.

Let O C M™*™ be an open and let f: O — R be a function. We say that
f is rank-one convex in O, if f is convex on each rank-one segment contained
in O. It is easy to see that every rank-one convex function f: O — R is locally
Lipschitz in O.

We will use P to denote the set of all compactly supported probability
measures in M™*™. For a compact set K C M™*" we use P(K) to denote
the set of all probability measures supported in K. For v € P we denote by ©
the center of mass of v, i. e. 7 = [} .., Xdv(X).

Following [Pe 93], we say that a measure v € P is a laminate if (v, f) > f(?)
for each rank-one convex function f: M™*"™ — R. At the center of our attention
will be the sets P™(K) = {v € P(K), v is a laminate}, which are defined for
any compact set K C M"™*",

Let O be an open subset of M™*", We now define an important subset
L(O) of laminates, called laminates of finite order in O. The definition is by
induction:

1. For each A € O, the Dirac mass at A, denoted by d4, belongs to £(O).

2. Assume Aq,..., Ay > 0 with Y~ A; =1, and that v = 27:1 Ajd4; belongs
to £(O). Assume also that [By, Bs] is a rank-one segment contained in O, and
that there is 0 < s < 1 such that (1 — s)B; + sBy = A,,. Then the measure
u= E;n:zl Ajoa; + (1= 8)Andp, + sAndp, also belongs to £(O).

Let K be a compact subset of M™*™, The rank-one convex hull K* C
M™>" of K is defined as follows. A matrix X does not belong to K*¢ if and
only if there exists f: M™*"™ — R which is rank-one convex such that f < 0
on K and f(X) > 0. We emphasize that this definition will be used only when
K is compact. For open sets O C M™*" we define the rank-one convex hull
O™ of O as O™ = U{K™, K is a compact subset of O}. With this definition
we have the property that the rank-one convex hull of an open set is again an
open set, which will be useful for our purposes.

We refer the reader to [MP 98] for interesting results about rank-one convex
hulls of closed sets. The following lemma, which is a slight generalization a
result from [Pe 93], will play an important role.

Theorem 2.1 Let K be a compact subset of M™*™ and let v € P*(K). Let
O C M™*™ be an open set such that K*® C O. Then there exists a sequence
vj € L(O) of laminates of finite order in O such that 7; = U for each j and the
v; converge weakly” to v in P.



As a preparation for the proof of the theorem, we prove the following lemma.

Lemma 2.2 Let O be an open subset of M™>*". Let f: O — R be a continuous
function and let Rof: O — R U {—o0} be defined by Rof = sup{g, g:O —
R is rank —one convex in O and < f}. Then for each X € O we have
Rof(X)=inf{{(v,f), v€ L(O) and v = X }.

Proof. Let us denote by f the function in @ defined by f(X) =inf{{(v, f), v €
L(0) and 7 = X}. Clearly Rof < fin ©. On the other hand, we see from the
definition of the set £(O) that it has the following property: if vy,vs € L(O),
and the segment [71, 7] is a rank-one segment contained in O, then any convex
combination of v, and v, is again in O. Using this, we see immediately from
the definitions that f is rank-one convex in @ and hence Ro f = f.

Proof of Theorem 2.1. Let v € P™(K) and let 7 = A be its center of mass.
From the definitions we see that A € K™. We choose an open set U C M™*"
satisfying K™ C U C U C O and define F = {u € L(U), p = A}. We
claim the the weak* closure of F contains v. To prove the claim, we argue by
contradiction. Assume v does not belong to the weak* closure of F. Since F
is clearly convex, we see from the Hahn-Banach Theorem that there exists a
continuous function f:U — R such that (v, f) <inf{(u, f), u € L(U) and i =
A}. By Lemma 2.2, we have inf{(u, f), p € L(U) and g = A} = Ry f(A). We
see that the function f = Ry f:U — R is rank-one convex in U and satisfies
(v, f) < (v, f) < f(z?) By Lemma 2.3 below, there exists a rank-one convex
function F: M™*" — R such that F = f on K*. We conclude that v cannot
belong to P™(K), a contradiction. The proof is finished.

Lemma 2.3 Let K C M™*"™ be a compact set, let O be an open set containing
K*¢ (the rank-one convex hull of K) and let f:O — R be rank-one convex.
Then there exists F: M™*"™ — R which is rank-one convex and coincides with
f in a neighborhood of K.

Proof. We claim there exists a non-negative rank-one convex g: M™*" — R
such that K = {X, g(X) = 0}. To prove this, we choose R > 0 so that
K C Bgj» = {X,|X| < R/2} and define g;: Br — R by

91(X) = sup{f(X), f: Br = R,
f is rank-one convex in By and f < dist (-, K) in Bg}.

The function ¢, is obviously non-negative and rank-one convex in Br. Moreover,

{X € Bp, g1(X) = 0} D K and from the definition of K™ we see that g3 > 0
outside K. We now define

(X) = max (g1(X),12|X| —9R) when X € Bp
9= 121X - 9R when |X| > R

Clearly g is rank-one convex in a neighborhood of any point X with |X| # R.
Since ¢1(X) < 2|X| when |X| = R, we see that we have g(X) = 12|X| —9R in



a neighborhood of {|X| = R}. We see that ¢ is non-negative, rank-one convex
in M™*" {X,9(X) = 0} D K, and {X,9(X) > 0} n K* = (. Therefore
[X,9(X) =0} = K

We can now finish the proof of the lemma. Replacing f by f+c¢, if necessary,
we can assume that f > 0in a neighborhood of K™. For k > 0 welet U, = {X €
O, f(X) > kg(X)}. We also let Vi, be the union of the connected components
of Uy, which have a non-empty intersection with K*. It is easy to see that there
exists kg > 0 such that Vi, C 0. We now let F(X) = f(X) when X € Vj, and
F(X) = kog(X) when X € M™*™\ V. It is easy to check that the function
F defined in this way is rank-one convex on M ™*",

3 Constructions

Throughout this section, {2 denotes a fixed bounded open subset of R”. We will
use the following terminology. A Lipschitz mapping u: Q) — R™ is piecewise
affine, if there exists a countable system of mutually disjoint open sets 2; C 2
which cover Q up to a set of zero measure, and the restriction of u to each of
the sets €2 is affine.

Following Gromov ([Gr 86], page 18) we also introduce the following concept.
Let (2, R™) be a family of continuous mappings of {2 into R™. We say that a
given continuous mapping vg: Q@ — R™ admits a fine C°— approzimation by the
family F(Q, R™) if there exists, for every continuous function &: Q — (0, 00),
an element v of the family F(Q, R™) such that |v(z) — vo(z)| < e(z) for each
x € Q.

3.1 The basic construction

The main building block of all the solutions of relation (1) which we construct
in this paper is the following simple lemma.

Lemma 3.1 Let A,B € M™*" be two matrices with rank (B — A) = 1, let
be R, 0<A<1landC = (1-AN)A+AB. Then, for any0 < § < |A—B|/2, the
affine mapping x — Cz +b admits a fine C°—approzimation by piecewise affine
mappings u: Q2 — R™ such that dist (Vu(z), {4, B}) < § almost everywhere in
Q) and meas {z € Q, |Vu(z) — A] <} = (1 — A)meas .

Proof. We first note that it is enough to prove the lemma only for a special case
when the function e(x) appearing in the definition of a fine C°—approximation
is constant and the function approximating the function u satisfies the boundary
condition u(z) = Cx+b for z € 9. This can be seen by considering a sequence
of open sets ; which are mutually disjoint, satisfy ; C Q, and cover Q up to
a set of full measure.

To prove the special case, we note that we can assume without loss of gen-
erality that A = —Aa®e,, B = (1 —Aa®e,, and C = 0, where a € R™
and e, = (0,...,0,1) € R". We define h:R — R and w:R™ — R™ by
h(s) = (|s| + (2A —1)s)/2 and w(z) = amax(0,1 — |z1| — ... — |Zp_1]| — h(zy)).



We choose a small ¢’ > 0, and set v(z) = §'w(xy,...,Tn_1,2,/d"). We also let
w = {z, v(z) > 0}. We check by a direct calculation that dist (Vv(z), {4, B}) <
(n—1)|ald’ for almost every z € w. We clearly also have v(z) = 0 when z € Jw.
By Vitali’s theorem we can cover () up to a set of measure zero by a countable
family {w;} of mutually disjoint sets of the form w; = y; + rw (with y; € R”
and r; € (0,€)). We let u(z) = rjv(r; ' (z — y;) when z € w;, and u(z) = 0 if
x € Q\ Ujw;. It easy to check that u satisfies the required conditions, provided
0" is sufficiently small.

Lemma 3.2 Let v € P(M™*"™) be a laminate of finite order, let A = v be
its center of mass. Let us write v = Z;Zl Ajba; with Aj > 0 and A; # Aj
for i # j. Then, for each b € R™, and each 4, > 0, the mapping © —
Az+b admits a fine C°—approzimation by piecewise affine mappings u satisfying
dist (Vu(z),{A1,..., 4;}) < J a.e. in Q and meas {z € Q, dist (Vu(z), 4;)} =
Njmeas 0, with 1 — 6" < X;/A; <144

Proof. This can be easily proved by applying iteratively Lemma 3.1 in a way
which is naturally suggested by the definition of the laminate of finite order.

3.2 Open relations

We recall that the rank-one convex hull O™ of an open set O C M™*"™ is, by
definition, the union of the rank-one convex hulls of all compact subsets of O.
The main result of this subsection is the following.

Theorem 3.1 Let O C M™*™ be open, and let P C O™ be compact. Let
ug: Q@ — R™ be a piecewise affine Lipschitz mapping such that Vuo(z) € P
for a. e. x € Q. Then uy admits a fine C°—approzimation by piecewise affine
Lipschitz mappings u: Q — R™ satisfying Vu(z) € O a. e. in Q.

Proof. As a first step, we prove the following lemma.

Lemma 3.3 Let K C M™*"™ be a compact set and let U C M™*"™ be an open
set containing K. Let v € P*(K) and denote A = v. Then, for any given
d > 0, the mapping © — Ax admits a fine C'—approzimation by piecewise
affine mappings u satisfying Vu(xz) € U™ a.e. in Q and meas{z € Q, Vu(z) €
U} > (1 —9d)meas(.

Proof. We use Theorem 2.1 to approximate v by a laminate of finite order u
which is supported in a finite subset of U™ and satisfies i = 7 and p(U) >
(1 —46/2). Then we apply Lemma 3.2 to p and the proof is finished.

Theorem 3.1 can now be proved by repeatedly applying Lemma 3.3 in the fol-
lowing way. We first choose a sequence of compact sets Ky, Ko,... C M™*" a
sequence of open sets Uy, Us, ... C M™*™ and a compact set Q C M™*"™ such
that P=K; CU CKy CUs C...C Q C O. We also choose 0 < § < 1. Let
e = e(z) > 0 be a continuous function on 2. In the first step we apply Lemma 3.3
to approximate ug up to £/2 by a mapping u; satisfying Vu,(z) € Uf¢ a. e.in (,



together with meas{z € Q, Vu;(z) € U1} > (1 — §)meas(2. We now modify
u; on on those subregions of @ where Vu;(z) does not belong to Uy by ap-
plying Lemma 3.3 again. We obtain a new mapping, us, which approximates
uy up to £/4, coincides with wu; a. e. in the set {z € Q, Vu;(z) € Uy}, and
satisfies Vua(z) € Us® a.e. in Q together with meas {z € Q, Vua(z) € Uy} >
((1—=46)+ (1 — d))meas 2. By continuing this procedure we get a sequence uy,
of mappings which is easily seen to converge to a mapping u which gives the
required approximation of wug.

3.3 Closed relations and in-approximations

When considering relation (1) for closed sets K, it is natural to try to construct
solutions by combining Theorem 3.1 and a suitable limit procedure. For sim-
plicity we will assume in this section that K is compact. Following Gromov
([Gr 86]) we say that a sequence of open sets {U;}32, is an in-approzimation of
K if U; C Ujy, for each i, and supx, dist (X, K) — 0 as i — oo.

Theorem 3.2 Assume that a compact set K C M™*" admits an in-approzi-
mation by open sets U; in the sense of the definition above. Then any
Cl—mapping v: Q) — R™ satisfying Vv(z) € Uy in Q admits a fine C°-approxi-
mation by Lipschitz mappings u: Q@ — R™ satisfying Vu(z) € K a.e. in ().

Proof. By the same argument as in the proof of Lemma 3.1 it is enough to
prove the statement only in the case when the function € = £(z) in the definition
of a fine C%-approximation is constant.

Let p:R™ — R be the usual mollifying kernel, i.e. we assume that p is
smooth, non-negative, supported in {z, |z| <1}, and [ p =1. For ¢ > 0 we let
pe = € "p(z/e). For a function w € L' () we define p. x w in the usual way,
by considering w as a function on R™ with w = 0 outside Q. In other words,
pe xw(z) = [ w(y)p:(z —y) dy.

We start the proof by choosing d; > 0 (the exact value of which will be
specified later) and by approximating v by a piecewise affine u;: Q2 — R™ with
|lug — o] < 01 in Q, u; = v on 0N, and Vu; € U; a.e. in Q. (We recall that in
this paper “piecewise affine” allows for countably many affine pieces.) We also
choose £1 > 0 so that ||[Vuy * pe, — Vur||p1g) < 271

Using Theorem 3.1 together with an obvious inductive argument, we con-
struct a sequence of mappings u;: 2 — R™ and numbers 0 < &; < 27%, 6; > 0
satisfying

Vu; € U; a.e. in ,
U = v on 012,
[Vui % pe, — Vuillpio) < 275,
diy1 = &idi,
[wig: —uil < dipa in Q.

The mappings u; converge uniformly to a Lipschitz function u: Q2 — R™. We
also have |u —v| < 37, |ujp1 — ui| + Jug —v|] < 26;. It remains to prove that



Vu € K a.e. in Q. This will be clear if we establish that Vu; — Vu in L*().
We can write

||V’U,,'—V’U,||L1(Q) < ||Vui—Vui*pEi||L1(Q)
+ ||Vu * Pe; — Vu||L1(Q)

+ IVuix pe; = Vs pe,[|11(e)-

The first two terms on the right-hand side of this inequality clearly converge
to zero as ¢ — oo. Defining Q; = {z € Q,dist(z,0Q) > 2¢;} we can estimate
the third term as

C
(s = )+ Vpeillus oy + 1V = Vullponan < < lus = ulloc + Cmeas (@ \ ),

where ¢ and C are constants depending only on p and the Lipschitz constant of
u; — u, respectively.
We have

o0 o0
lui = ulloo < DMy = ujnlloo < D 85 < 26541
j=i Jj=i+1

Hence the third term can be estimated by 2¢d;y1/e; + Cmeas (Q2\ Q;) < 2¢d; +
Cmeas (2 \ ©;) which converges to zero as i — oo. The proof is finished.

Remark: The explanation of the strong convergence of Vu; is more or less
the following. We can achieve a very fast convergence of u; in the sup-norm. It
may seem that this is not enough to say much about the convergence of Vu;.
However, in the proof we choose the parameters in such a way that ||u; — u||
is very small in comparison with a typical length over which Vu; changes sig-
nificantly (in an integral sense). This is the main reason we get the strong
convergence. The above argument is taken from [MS 96]. A different approach
can be found in [DM 97].

4 Applications to elliptic systems

Let @ C R? be a disc. For (sufficiently regular) mappings u:Q — R?2 we
consider the functional I(u) = [, F(Vu(z)) dz, where F is a (smooth) function
on the set M?2*2 of all real 2 x 2 matrices, which satisfies certain “ellipticity
conditions”. More precisely, we will require that F' be strongly quasiconvex and
that its second derivatives be uniformly bounded in M?2*2.

The purpose of this section is to show how we can apply the results above
to construct weak solutions of the Euler-Lagrange equation

div DF(Vu) = 0 2)

of the functional I which are Lipschitz, but not continuously differentiable on
any open subset of ). This is in sharp contrast with regularity properties of
minimizers of I, see, for example [Ev 86]. In fact, we prove the following slightly
stronger statement.



Theorem 4.1 There exists a smooth strongly quasiconvexr function
Fo: M**%2 — R with |D*Fy| < ¢ in M?**2, four matrices Ay,..., Ay € M?*2,
e > 0 and 6 > 0 such that the following is true. Let F:M?*? — R be a C?-
function satisfying |DF(A;)—DFy(A;)| < 6 and |D*F(A;)—D?Fy(A;)| <6 for
j = 1,2,3,4. Then each piecewise C'-function v:Q — R? satisfying |Vv| < e
a. e. in Q admits a fine C°—approximation by Lipschitz mappings u: Q) — R?
which are not C' on any open subset of Q0 and are weak solutions of the equation
divDF(Vu) =0 in Q.

The theorem will be proved in Section 4.4, after we establish some useful
facts about quasiconvex functions and rank-one convex hulls. The idea of the
construction is the following. We rewrite the equation (2) as a first-order system

VU € K (3)

and then show that the strong quasiconvexity does not prevent the rank-one
convex hull of K from being large. (We remark that the strong quasi-convexity
does exclude any non-trivial rank-one connections in K, see [Ba 80].) We can
then use the methods developed in the previous sections to construct the desired
solutions. Moreover, it turns out the situation is stable under the perturbations
of Fy which are allowed in the theorem.

One way to write equation (2) in the form (3) is the following. We denote

. -1 "

by J the matrix ( ? 0 ) The condition that the 2 x 2 tensor DF(Vu) be
divergence-free is equivalent to the condition that DF (Vu)J be the gradient of

a function v: Q — R2. We now introduce U:Q — R* by U = < Z > We also
X
DF(X)J
runs through all 2 x 2 matrices. It is clear that, in this notation, system (2) is

equivalent to system (3).

let K to be the set of all 4 x 2 matrices of the form ( >, where X

4.1 Quasiconvex functions

We begin by describing a quasi-convex function which will play an important
role in our construction. We will be using notation introduced in Section 2.
We define fo: S2*2 — R by fo(X) = det X when X is positive definite and by
fo(X) = 0 otherwise.

Lemma 4.1 The function fo is quasiconvex on S?*2.

Proof. This result is proved in [Sv 92b]. In that paper the proof is actually
carried out for a more general class of functions. We give a simple version of
the proof here, for the convenience of the reader. Let = {z € R?, |z| < 1}
and let ¢: () — R be smooth and compactly supported in 2. We must prove
that for each A € 52*2 we have [, (fo(A + V?¢) — fo(A4)) > 0. This is obvious
if A is not positive definite, since then we integrate a non-negative function. If



A is positive definite, we can assume A = I by a simple change of variables. Let
up(x) = |z|?/2 and u(z) = ug(x) + ¢(z). We also set ¢ = Vu, which will be
viewed as a map ¢: ) — R?. Finally, we let E = {z € Q, det Vyp(z) > 0}. We
must prove that fE det Vo > meas (). Since det ¢ > 0 on E, we can use the
area formula ([Fe 69]) to infer that it is enough to prove Q C ¢(E). Consider
an arbitrary b €  and let a €  be a point where the function z — u(z) —b- =z
attains its minimum in Q. It is easy to verify that a € Q and hence ¢(a) = b
and a € E. We see that 2 C ¢(F) and the proof is finished.

In what follows we will use the following notation: for X € M?*? we let
Xygm = (X + X1)/2 and Xagym = (X — X)/2.

Lemma 4.2 Let f: 52?2 — R be a smooth function such that |D*f| < ¢ in
S2%2. Assume that f is strongly quasi-convex in the sense that for some v > 0
we have [p.(f(A + V?¢) — f(A)) > v [ge V| for all smooth, compactly

supported ¢: RN2 — R. Then for sufficiently large & > 0 the function f: M2*? —
R defined by f(X) = f(Xsym) + K| Xasym|® is strongly quasi-convez.

Proof. Let T? be the two-dimensional torus R*/Z?. Let ¢:T? — R? be

a smooth function and let A € M?**?. We want to prove that [.(f(4 +
Vo) — f(A) > v/2 Jp2 V|, Let us consider the Helmholtz decomposition
@ = V¢ + V1in +a of ¢, where ¢ and 7 are scalar functions, Vi = JVp
(with J as above), and a a constant vector. We have Vi = V2¢ + VV=11. Set
Y = (VV49)sym- A standard calculation (involving integration by parts and the
use of the identity [1. det V21 =0) gives [ |Y|* = |[V?n|?/2 = [L.(An)?*/2 =
Sz (V V1) asym|?. We can write

| (Vo) - fla)
= [ (Gl + V28) = F(Aeym)
4 [ (6l + (VD = )
T2

+ [ (F g+ F94Y) = (i + 720)
=I+II+1III

We have I >~y [ |[V?¢|* by our assumptions and Lemma 2.1. The second
term can be evaluated as IT = [, k|Y|* by using the calculation above and the
fact that [, V?n = 0. Finally, the third term can be written as

III = / (f(Asym + v2¢ + Y) - f(Asym + V2¢) - Df(ASym + V2¢)Y)
T2

+ /112 (Df(Asym + V2¢) - Df(ASym))Y

10



> = [ el +dvaly)
> = [PV 2V E + IV )

We see that we get the right inequality when & > /2 + ¢/2 + ¢*/(27). The
proof is finished.

Lemma 4.2 cannot be directly applied to the function fy from Lemma 4.1.
However, we can modify fy in the following way. We consider a smooth mollifier
w on 82*2 which is supported in the ball of radius 1/8 centered at 0 and satisfies
Jozxaw = 1, [goue Xw(X)dX = 0, and [gor, det(X)w(X)dX = 0. We let
fl(X) = max(fo(X), |)(|2 — 25) and fg = f1 * w. We note that fg(X) = fo(X)
when |X| < 5 and the open ball By 1 is contained in the set of the positive
definite matrices. We choose a small v > 0 (to be specified later) and set
f3(X) = fo(X) + 7| X|2. We denote by f3 the strongly quasi-convex extension
of f3 to M?*? obtained in Lemma 4.2 (for a suitable k).

Let T = < (1) (1) > We define : M2%2 — M?*2 by - X = TX Jt, where J
is the rotation by 7/2 introduced above. We note that the diagonal matrices are
invariant under 6 and that 6 restricted to the diagonal matrices can be thought
of as a rotation by /2.

5
LetH:( 0

% B ) We define f4: M?*? — R by

3
fo(X) =D fs(07%- X - H).
k=0

It is easy to see that f; satisfies f4(6 - X) = f4(X) for each X € M?*% and
therefore D f4(0 - X) = 6 - D f4(X) for each X € M?*2,

We now let A; = ( g _(1J ) and Ay = 6% - A,. By a direct calculation
L+ 14y 0

we get D fs(Ar) = < ) . By considering functions of the form

0 IT+4+2y

1
1a| X |?+3f4(X) we can easily obtain the following lemma, by choosing suitable
a, 3, and .

Lemma 4.3 There exist a smooth, strongly quasiconvex function Fy: M?*? —
R with uniformly bounded D?F; which satisfies (in the notation introduced

above) Fy(0 - X) = Fi(X) for each X and DFy(A;) = < (1) g )

Proof. See above.
The set K corresponding the the function F' = F; (see the beginning of

Ay ),k:l,...,4. These are the

the section) contains the matrices <DF1 (Ap)J
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Figure 1: T, configuration with P, = P, P, = P+ C1, P3 = P + Cy + (s,
Py = P + C1 + Cy + (5. The lines indicate rank-1 connections. Note that the
figure need not be planar

matrices
3 0 10 -3 0 -1 0
0 -1 0 3 01 0 -3
0 _ 0 _ 0 _ 0 _
My = 0 -1 Mz = 0 3 My = 01 My = 0 -3
3 0 10 -3 0 -1 0
4.2 Deformations of 7,—configurations
Let us consider four m x n matrices My, ..., My. We say that My, ..., M, are
in Ty —configuration (see Figure 1) if rank (M; — M) # 1 for all ¢, j, and if there
exist rank-one matrices C1,...,Cy with ), Cp = 0, real numbers k1, --- k4 > 1,

and a matrix P € M™*™ such that

M; = P+kiC,

M, = P+C)+kCy,

Ms; = P+Ci+Cs+r3Cs,

My = P+Cy+Cy+Cs+ keCy.

This configuration was discovered independently by several authors. We
are aware of [Sch 74], where it is used in a similar context as below, [AH 86],
and [Ta 93], where it is used in a different context. Slightly different exam-
ples exhibiting similar features were also independently discovered in [NM 91]

12



and [CT 93]. The paper [BFJK 94] contains an interesting example using a
Ty—configuration. The following observation appears in [AH 86], [Ta 93] and
implicitly also in the other papers.

Lemma 4.4 If M,,..., M, are in Ty— configuration, the rank-one convex hull
of the set {M,..., My} contains the points P, = PP, = P+ Cy,P; = P +
Ci+Cy,PL=P+Cy+Cs+Cjs.

Proof. To see this, let us consider a rank-one convex function f: M™*" — R
which vanishes at the points My,..., My. We have f(Piy1) < 1/kif(M;) +
(1=1/ki)f(P;) = (1 — 1/k;) f(F;) for each i, where the indices are considered
modulo 4. Applying this recursively, we get that f(F;) < 0 for each i.

The matrices M} at the end of subsection 4.1 are in Ty—configuration and
they also lie on the set

— X . 2X2 4x2
k= {( prtyy ) xear) car

given by the quasi-convex function Fj constructed in Lemma 4.3. This shows
that the rank-one convex hull K¢ of K is non-trivial. We now wish to establish
that Ki¢ is sufficiently large, so that we can apply Theorem 3.2. We will see
later that rather than trying to work with the specific function Fi, it is more
convenient to work with a small perturbation F' = F} 4+ €V of F}, where V is a
compactly supported smooth function, the properties of which will be specified
later. For the moment we will only assume that F' satisfies DF (Ay) = DFy(Ayg)
for k = 1,2,3,4, where the matrices A; are the same as in Subsection 4.1.
We also denote by K C M**? the set corresponding to F. By our assump-
tions we know that K contains a Ty—configuration given by the matrices M},
k = 1,2,3,4 defined above. It is natural to investigate deformations of this
Ty—configuration. In other words, we will investigate four-tuples M, ... My
such that, for k = 1,...,4, My, is close to My, My, € K, and My, ... M, are in
T, —configuration.

We introduce the following notation.

€1 = (1,0) €y = (0,1)
f1:(2707072) f2:(0727270)
C?:f1®€1 Cg:f2®€2
¢t ==cy cd - =cy
PO = —(CY +CY)/2

k) =2 Ky =2

Ky =2 Ky =2

We parameterize the rank-one matrices Cj in a small neighborhood of Cj as
follows.

Ci = (fi+a)®(er+ Pres)

13



Co = (fo+a2)®(e2 — Prer)

C3 = (—fi+a3)®(e1+ Pze2)
Ci = (—fa+as4) @ (e2 — Puer),
where ay,...,aq are (small) vectors in R*, and f3i,..., 3 are (small) real num-

bers. We linearize the equation Y, Cx = 0 around the solution CP. The
linearized equation is equivalent to

ai+az+ (Bs—pP2)f2 = 0
as+as+ (P —0B3)fr = 0.

Using these formulae and the above expressions for My, we easily check (with
the help of the implicit-function theorem) that the four-tuples (M, ..., M4) of

the 4 x 2 matrices which are close to (M?, ..., M) and form T;—configuration
such that the parameters P, Cj, s; are close to P?,C7, &9 form a 24-dimensional

manifold M. The tangent space L of M at the point (M7, ..., M) can be
identified with four-tuples (Z1,...,Z4) of 4 X 2 matrices of the form

P11+ 2a11 + Ky pi2 + 206

7 = P21 + 2a2; P22
1 - )
D31 + 2a3; D32
P41 + 2a41 + K} pao + 28]
p11 + a1 P12 + 2a12 + 1
7, = P21+ a21 — 235 paz + 2a93 + kY
P31 +az — 2By ps2+2az+ Ky |7
P41 + Qa1 Daz + 2a42 + O]
P11 — Qi1 — Kj P12 + a1z — 205 + B4
Zs = P21 — a1 + By — 2B)  poz +az
p31 —az1 + 05 — 203 ps2 +azs ’
Pa1 — Qa1 — Kb Dao + ass — 205 + 01
P11 P12 — a1z + G5 — B
7, = o1+ By P22 — a2 — K
4 = ! ! ’
p31+ By P32 —aze — Ky
Pa1 Paz — aa2 + G5 — B

where the values of all the 24 parameters run through all real numbers. More-
over, there is a well-defined mapping (M, ..., My) — (Py,...,Py) from M to
the four-tuples of 4 x 2 matrices, where (in the notation introduced in the defi-
nition 0fT4—c0nﬁguration) Pl = P, PQ = P1+C1, P3 = P2+C2, P4 = P3+C3
as above.

We now consider the additional constraint M; € K, where K is the set
determined by F. The four-tuples (Mi,...,M,) satisfying M} € K clearly
form a 16-dimensional manifold X = K x K x K x K. The tangent space Ly
of K at (M?,..., MJ) can be identified with the four-tuples

( DQF()fi)le > : < DQF()fiz)XQJ ) : < DQF(ﬁi)X3J ) : < D2F(§1)X4J >

14



where X, ..., X, run through all 2 x 2 matrices.

We now consider the maps (M, ..., My) — (My, P}), where Py is defined
as above and where we denote (with a slight abuse of notation) by F; the
orthogonal projection of the point P, into the space (T4, K)*, the normal space
of K at A;. We would like to establish the following non-degeneracy conditions,
which will be important later when we construct in-approximations.

Condition (C): M and K intersect transversely at (M?,..., MY) and, (after
perhaps replacing M by a sufficiently small neighborhood of (MY, ... MJ) in
M) the map (M, ..., Msy) — (My, P|) is, for each k, a non-degenerate diffeo-
morphism of M N K and a neighborhood of (MY, (P)') in K x (T4, K)*.

Rather than trying to decide whether these non-degeneracy conditions are sat-
isfied for an explicitly given function F', it seems to be more natural to verify
that the conditions are satisfied in the generic case. More specifically, we note
that F' = F; + eV is strongly quasi-convex for sufficiently small . (We recall
that V' is assumed to be smooth and compactly supported.) By choosing V' in
a suitable way, we can perturb D?F(A;),... D?F(Ay) to any prescribed values
which are close enough to the original values, without changing the values of
DF(A,),...,DF(A,), and without affecting the strong quasi-convexity. For the
purpose of the construction of the counter-example announced at the beginning
of this section, we can therefore restrict our considerations to the generic case.

Lemma 4.5 Assume that DF(Ay) = DF(Ay) for k = 1,2,3,4. Then condi-
tion (C) above is satisfied for the generic values of D*F(Ay), k=1,...,4.

Proof. The condition that M and K intersect transversely at (M?,..., MJ)
and that the map (My,..., M) — (M, P/) is a non-degenerate diffeomorphism
of a small neighborhood of (M?,..., M?) in M N K and a neighborhood of
(M?P,(PP)") in K x (Ta,K)?* is easily seen to be equivalent to the condition
that the following linear homogeneous system of 40 equations for 40 unknowns
has no non-trivial solutions.

_ X _
Z]' = <D2F(Aj)XjJ>’ j=123,4
< P31 P32 ) _ DQF(Al) < b1 P12 ) J
P41 P42 D21 P22
X1 - 0,

where Z; = Z;(pri, aw, By, &,) (with k =1,2,3,4, 1 = 1,2) are the 4 x 2 matrices
introduced above and X;, X5, X3, X4 are 2 X 2 matrices. The determinant of
the corresponding 40 x 40 matrix is a polynomial expression in the entries of
the matrices D*F(A;) (which are now considered as parameters), and will be
denoted by (1. The polynomial @), is not identically zero, since for

D2F(A)) =1, D2F(A;)=1, D?F(43)=0, D?F(Ay) =1
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we can check by a straightforward calculation that the system has no non-trivial
solutions.

By using symmetry we see that, for each k = 1,2, 3,4, the condition that M
and K intersect transversely at (M7, ..., M) and that the map (M, ..., M) —
(M, P|) is a non-degenerate diffeomorphism of a small neighborhood of
(M?,..., M) in M NK and a neighborhood of (MP, (P2)") in K x (T4, K)*
can be expressed as @, # 0, where @)}, is a suitable non-zero polynomial in the
entries of the matrices D?F(A;). Hence all of our non-degeneracy conditions
will be satisfied at all values of D?F(A4;) where the polynomial Q = Q10Q2Q3Q4
does not vanish. Since @) is not identically zero, the result follows.

4.3 In-approximation
To be able to use Theorem 3.2, we need to have a suitable in-approximations.

Lemma 4.6 Using the notation above, assume that condition (C) is satisfied.
Let v > 0. Then there exists an in-approzimation {U;}32, of K, = Uj_ {X €
M*2 | X — MJ| <r}N K such that Uy contains a (small) neighborhood of the
rank-one convez hull of the points P, ..., Py.

Proof. We consider a sequence Oy, 01,0 ... of open neighborhoods of
(M?,...,M?) in M NK, such that each O; is diffeomorphic to the eight-
dimensional unit ball and that, for each j = 0,1,2,... we have @j C Ojt1.
We also consider a sequence of numbers 0 = Ao, 1/2 < A < ... <A <... <1
converging to 1 as j — oo. For j = 0,1,2,... we let Uyp; = {(1 — X\j)Px +
AjMy, (My,...,Ms) € O;}, where P, = Py(M,...,Mys) is the map consid-
ered in subsection 4.2. We also let &; = UK=11;, ;. Condition (C) implies that
there exists jo such that the sets U/; are open when j > jo and the sets O; are
contained in a sufficiently small neighborhood O of (MY, ..., MY). To see this,
consider for example £ = 1 and let us write points M; € K which are close to
M as My = MY + X + £(X), with X € T4, K and £(X) € (Ta, K)t. We can
also write P, = P? +Y + 1 with Y € (T4, K)* and € T4, K. If Condition
(C) is satisfied, we know that, in a small neighborhood of (M?, ..., MY), we can
take X and Y as local coordinates in MNK. For (M, ..., Ms) € M NK which
is close to (M?,..., M) and P, = P,(M,,...,M,;), we can therefore write the
n—component of P; in the above decomposition as 7 = n(X,Y’), where 7 is a
smooth function of X and Y with 7(0,0) = 0. In the coordinates (X,Y"), the
derivative of the map (X,Y) — (1 — A\)P; + AM; is given by the block matrix

< M+ (1=Xoxn (1-X)dyn )
Adx & (1-N1 )

Since 9x£(0) = 0, we see that the matrix is regular when X is small and A is
close to 1. The openess of U, ; for large j, A close (but not equal) to 1, and
small O follows.

We can see from the definitions that, for each j = 0,1, ... the closure of the
rank-one convex hull of #/; is contained in the rank-one convex hull of i;;.
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Moreover, the rank-one convex hull of Uy contains a neighborhood of the square
given by the convex hull of the points P},..., P (which coincides with the
rank-one convex hull of these points, since the points lie in a two-dimensional
plain). The required in-approximation has therefore been established.

4.4 Solutions with nowhere continuous gradients

Proof of Theorem 4.1. The main idea of the proof is described in heuristic
terms in the remarks immediately following the theorem. In the proof below we
will be freely using the notation introduced earlier in Section 4.

The matrices Aq,..., A4 are the matrices

30 10 ~3 0 1 0
w=(6 4 )=(on) =0 1) =00 )

as in Section 4.1. We let Fj be a suitable small perturbation of the quasiconvex
function F; from Lemma 4.3 such that DFy(Ag) = DFy(Ag) for k=1,...,4
and condition (C) is satisfied. Since the transversality and the other non-
degeneracy conditions are stable under small perturbations, a version of (C)
with M, ... MY replaced by close-by matrices M? ..., M? will also be satis-
fied for any F' as in the statement of the theorem, provided ¢ is sufficiently small.
Moreover, we see easily that by choosing ¢ sufficiently small we can also achieve
that Lemma 4.6 can be applied (with M7, ..., M replaced by close-by matrices
MO ... MY) with a fixed small 7 > 0 to any set K arising from a function F
satisfying the assumptions of the theorem. In addition, we see easily that the
in-approximations can be constructed so that U; contains a fixed small neigh-
borhood of the zero matrix for any F' satisfying the assumptions. We see that
the assumptions of Theorem 3.2 are satisfied in our situation. However, it does
not seem to be immediately clear that the solutions obtained from Theorem 3.2
are not continuously differentiable on any open subset of ). To obtain such
solutions, we will analyze the construction more closely.

We first look in more detail at the in-approximation introduced in Lemma 4.6.
Since the map (My,...,My) = (1 — Aj)Prx + Aj M}, considered there is (for a
good choice of parameters) a diffeomorphism of O; and Uy, ;, we can define
¢;:P(U;) — P(Uj11) as follows. The map ¢; is first defined on Dirac masses:
given X = (1 — X\j)Py + \jM;, € Z/_{ij, we let ¢;(0x) = Eﬁizll,ulyl, where
Vi = 1= XNp)P + Ajpa My € Upjya, and pa, ..., pa are determined by re-
quiring that the measure ¢;(X) be a laminate with center of mass X. (These
conditions determine py, ..., g uniquely. This is obvious if the affine span of
Yi,...,Y, is three-dimensional. If it is two-dimensional, we must use the con-
dition that ¢;(X) is a laminate to get the uniqueness.) We can now extend
¢; to P(U;) by requiring that ¢; be affine and continuous in the w*-topologies
on P(U;) and P(Uj+1). The measure ¢;(6x) can be thought of as a result of
splitting the Dirac mass dx into a convex combination of the four Dirac masses

5Y17~-~75Y4'
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An easy calculation shows that when X € Uy ; and ¢;(dx) = Z;j wYy,
then, for sufficiently large j, we have pp > 1 — (A\jy1 — A;) and g > 0 for all
1=1,2,3,4.

Let us now go back to the construction in the proof of Theorem 3.2.

Let us consider A € U;*, and assume that u; is a countably piecewise affine
function on 2 with Vu; = A in an open set U C Q. Let us write ¢;(4) =
Zij prda,, where we use the map ¢; defined above. The inductive step in
the construction described in Section 3 is to replace u; by u 41 which satisfies
ujp1 = u;j on OU, supy |ujy1 — ;| small, Vujiq () close to the set A;,..., Ay
for a. e. ¢ € U, and the ratio meas {z € U, Vu(z) is close to A}/measU close
to pg- (More precisely, U should be thought of as one set of a countable disjoint
family which covers Q up to the set of measure zero - see Section 3 for details.)
Because pp > 1 — (A\jy1 — Aj), we see that we can do the construction so
that meas {z € U, Vujq1 € Uy, j4+1} < (Ajy1 — Aj)measU. Following the same
procedure at each inductive step, we conclude that meas{z € U, Vuji, &
Ur j+p} < (Njp — Aj)measU.

On the other hand, in the construction of u;;; we have to use a matrix
B € U j41 with | # k. Moreover, we can carry out the construction in such a
way that any ball of radius 1/j has a non-empty intersection with an open set
where a matrix from f; ;11 is used. Let V' C U be a maximal open connected
subset of U on which wu;; is affine with Vu;;; = B. Then the same argument
as above gives meas{z € V, Vujyp € Ui jrp} < (Aj4p — Ajy1)meas V.

Using this we see easily that the limit function us, = limu; has the property
that the essential oscillation of Vu., over any open subset of {2 is bounded
from below by a fixed strictly positive constant. This finishes the proof of
Theorem 4.1.

Remark: The above construction is quite similar to the following simpler
example. Let us consider a sequence 0 < Ag < A1 < ...J; < ... < 1, with
limj,ooAj = 1. Let X C L*(0,1) be the space of all piecewise constant
functions. For a function f € X with |f| < A; we define T;f € X in the
following way. Let (a,b) be a maximal open interval on which f is constant.
Let ¢ = (a + b)/2. We find d € (a,c) and e € (c¢,b) such that the function
g: (a,b) = R defined by g(z) = —A; when z € (a,d), g(z) = A; when z € (d,¢),
g(xz) = —Aj when z € (c,e), and g(z) = A; when « € (e, b) has the same average
as f over the intervals (a, c) and (c,b). We then set T} f(z) = g(z) for « € (a,b),
and repeat the same construction on the other maximal intervals on which f is
constant. Let 0 < A < Ag and let fo = A in (0,1). Set fjt1 = Tj+1f;. It is
not difficult to see that the sequence f; converges in L'(0,1) to a function feo.
Moreover, the essential oscillation of f., over any open set is 2.

4.5 Linear Systems

The examples above can be used to answer open questions (raised in [GS 85])
concerning solutions of linear 2 x 2 systems of the form

0aal (2)9pv; =0,  i=1,2 (4)
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where the coefficients are in L and satisfy the strong Legendre-Hadamard
condition o
aff (@)abpu'a’ > v|EP |af?

for each ¢, u € R? and almost every z. (As usual, v > 0.) In what follows we
will write the system (4) as div A(z)Vv = 0.

There is a well known procedure for passing from solutions of non-linear
equations to solutions of linear equations with measurable coefficients (see e.
g. [Mo 66]). We will use it to construct our examples. These examples will be
based on the following proposition.

Proposition 4.1 There exists a smooth strictly quasiconvexr function
F: M?*? — R with uniformly bounded D>F and a non-trivial Lipschitz function
u:R? — R? which vanishes for |x| > 1 and satisfies (weakly) the equation
div DF(Vu) = 0 is R?.

Proof. We will use the notation introduced earlier in Section 4. We note that
the function F; from Lemma 4.3 satisfies DF;(0) = 0 and therefore the zero
matrix belongs to the set K; C M**2 corresponding to Fy. Therefore we see
that the function Fp in Theorem 4.1 can be taken so that D Fy(0) = 0. Hence the
set K corresponding to F' = Fp in Theorem 4.1 can be taken so that it contains
the zero matrix. We know that there are non-trivial solutions of DU € K a. e.
in Q which vanish at 99Q). Extending U by zero outside (2, we get solutions with
the required properties.

Proposition 4.2 There exist L°°— coefficients A(x) defined in R? which satisfy
the strong Legendre-Hadamard condition such that weak solutions of the linear
system div A(x)Vv = 0 exhibit the following behavior.

(i) There ezists a compactly supported solution v belonging to the Sobolev space
W2 but not to W12+ for any 6 > 0.

(i) There exists a sequence vj, j = 1,2,... of Lipschitz solutions which are
supported in {z,|z| < 1}, and converge to zero weakly but not strongly in W12,

Proof. Let F and u be as in Proposition 4.1 and let
~ 1
Ax) = / D?*F(tVu(z)) dt.
0
Since F is smooth and |D?F| < ¢, A(z) is a well-defined L*°—function. Since F

is strongly quasiconvex, it is also strongly rank-one convex, and therefore A(X)
satisfies the Legendre-Hadamard condition. Moreover, we have

div A(z)Vu = div (DF(Vu(z)) — DF(0)) =0 in R?

in the weak sense.
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Let us consider a sequence By, ,; C {z € R?, |z| < 1} of mutually disjoint
balls centered at a; with radius 7; > 0 so that a; — 0 in R? and 7; — 0. We
let

The coefficients A(x) are again bounded and satisfy the strong Legendre--

Hadamard condition. We also have divA(z)Vv; =0, j = 1,2,.... The
sequence vy, Ve, - - - gives (ii). To obtain (i), we consider a sequence ¢, ¢a, . . . sat-
isfying Z;’il ¢; < oo and Z;‘;l C?—HS = oo for each § > 0. Then v = Z;‘;l ¢V

has the required properties.
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