
Max�Planck�Institut

f�ur Mathematik

in den Naturwissenschaften

Leipzig

Convex integration for Lipschitz

mappings and counterexamples to

regularity

by

Stefan M�uller and Vladimir �Sver�ak

Preprint�Nr�� �� ����





Convex Integration for Lipschitz Mappings
and Counterexamples to Regularity

S� M�uller�

Max Planck Institute for Mathematics in the Sciences
Inselstr� ������ ����	 Leipzig� Germany

and

V� 
Sver�ak���

Department of Mathematics
University of Minnesota

��� Church St� S�E�� Minneapolis� MN ��������	�

� Supported by a Max Planck Research Award�
� Supported by the NSF�



� Introduction

In this paper we study Lipschitz solutions of partial dierential relations of the
form

ru�x� � K a� e� in �� ���

where u is a �Lipschitz� mapping of an open set � � Rn into Rm� ru�x� is its
gradient �i� e� the matrix �ui�x���xj � � � i � m� � � j � n� de�ned for almost
every x � ��� and K is a subset of the set Mm�n of all real m � n matrices�
In addition to relation ���� boundary conditions and other conditions on u will
also be considered�

Relation ��� is a special case of partial dierential relations which have been
extensively studied in connection with certain geometrical problems� such as
isometric immersions� For example� the celebrated results of Nash �Na ��� and
Kuiper �Ku ��� and their far�reaching generalizations by Gromov �Gr ��� showed
striking and completely unexpected features of the behavior of C��isometric
immersions of Rn to Rn��� and Lipschitz isometric immersions of Rn to Rn� A
general result describing a large class of Lipschitz solutions of partial dierential
relations more general than ��� can be found in the book of Gromov �Gr ����
page ����

More recently� problems concerning solutions of relations of the form ��� have
been studied in connection with the characterization of absolute minimizers of
variational integrals describing the elastic energy of crystals exhibiting interest�
ing microstructures ��BJ ���� �CK ����� An important observation which came
from this direction �Ba ��� is that relation ��� can have highly oscillatory so�
lutions even when the dierence of any two �non�identical� matrices in K has
rank � �� This situation� which does occur in some very interesting cases� is
not covered by the theorem of Gromov mentioned above� In technical terms
to be explained below� the reason is that Gromov�s P�convex hull of the set
K is again K in that situation� The main result of this paper� Theorem 	���
covers many of these cases and shows that in the Lipschitz case it seems to be
more natural to work with a dierent hull� which is de�ned in terms of rank�one
convex functions� and can be signi�cantly larger than the P�convex hull�

As an application of the theorem we give a solution of a long�standing prob�
lem regarding regularity of weak solutions of elliptic systems� We construct an
example of a variational integral I�u� �

R
� F �ru�� where � is the unit disc in

R�� u is a mapping of � intoR�� and F is a smooth� strongly quasi�convex func�
tion with bounded second derivatives� such that the Euler�Lagrange equation
of I has a large class of weak solutions which are Lipschitz but not C� in any
open subset of �� and have some other �wild� features� This result should be
compared with the well�known result of Evans �Ev ��� which says that minimiz�
ers of I are smooth outside a closed subset of � of measure zero� Our method
also gives new conditions on F which are necessary for regularity� The condi�
tions are expressed in terms of geometrical properties of the gradient mapping
X � DF �X�� We expect that the method is applicable to other interesting
problems�
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Our contruction is quite dierent from well�known counterexamples to reg�
ularity of solutions of elliptic systems� such as �DG ���� �GM ���� or �HLN ����
We should emphasize� however� that our method does not apply when F is con�
vex� Very recently we became aware of the work of Scheer �Sch ���� in which
important partial results� including counterexamples� related to the regularity
problem for the elliptic systems described above were obtained� It seems that
the work was never published in a journal and has not received the attention
it deserves� The point of view taken in that paper is implicitly quite similar
to ours and in particular the T��con�gurations discussed in Section ��� play an
important role in Scheer�s work� At the same time� the new techniques we
develop enable us to answer questions which �Sch ��� left open�

� Preliminaries

Let us �rst recall the various notions of convexity related to lower�semicontinuity
of variational integrals of the form I�u� �

R
�
f�ru�� where � is a bounded

domain in Rn� u� �� Rm is a �su�ciently regular� mapping� and f �Mm�n �
R is a continuous function de�ned on the set Mm�n of all real m�n matrices�

A function f �Mm�n � R is quasi�convex if
R
�
�f�A � r�� � f�A�� � �

for each A � Mm�n and each smooth� compactly supported �� � � Rm� This
de�nition was introduced by Morrey �see e� g� �Mo ���� who also proved that the
quasi�convexity of f is necessary and su�cient for the functional I to be lower�
semicontinuous with respect to the uniform convergence of uniformly Lipschitz
functions� It is also necessary and su�cient for the weak sequential lower�
semicontinuity of I on Sobolev spaces W ��p���Rm�� if natural growth condi�
tions are satis�ed� see �Ma ��� and �AF ���� The de�nition of quasi�convexity
is independent of �� as can be seen be a simple scaling and covering argument
��Mo ����� In fact� we have the following simple observation made by many
authors�

Lemma ��� Let Tn be a �at n�dimensional torus� A function f �Mm�n � R
is quasi�convex if and only if

R
Tn

�f�A�r��� f�A�� � � for each A �Mm�n

and each smooth ��Tn � Rm�

The reader is referred for example to �Sv ��a� for a proof of this statement�

We also recall that� with the notation above� f �Mm�n � R is strongly
quasi�convex if there exists � � � such that

R
��f�A�r���f�A�� � �

R
� jr�j

�

for each A � Mm�n and each smooth� compactly supported �� � � Rm� This
notion appears naturally in the regularity theory� see for example �Ev ����

A function f �Mm�n � R is rank�one convex if it is convex along any line
whose direction is given by a matrix of rank one� i� e� t� f�A�tB� is convex for
each A �Mm�n and each B �Mm�n with rankB � �� This class of functions
will play a particularly important r�ole in our analysis� It can be proved that
any quasi�convex function is rank�one convex� but the opposite implication fails
when n � �� m � 	 ��Sv ��a��� �The case n � �� m � � is open��
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We will also deal with functions which are de�ned only on symmetric ma�
trices� We will denote by Sn�n the set of all symmetric n � n matrices� The
notions introduced above for functions onMm�n can be modi�ed in the obvious
manner to apply to functions on symmetric matrices� For example� a function
f �Sn�n � R is quasi�convex� if

R
��f�A�r����f�A��� � � for each A � Sn�n

and each smooth� compactly supported �� � � R� Again� the de�nition is
independent of � and� in fact� � can be replaced by any �at n�dimensional
torus�

In the rest of this section we look in more detail on facts related to rank�one
convexity�

Let O � Mm�n be an open and let f �O � R be a function� We say that
f is rank�one convex in O� if f is convex on each rank�one segment contained
in O� It is easy to see that every rank�one convex function f �O � R is locally
Lipschitz in O�

We will use P to denote the set of all compactly supported probability
measures in Mm�n� For a compact set K � Mm�n we use P�K� to denote
the set of all probability measures supported in K� For � � P we denote by  �
the center of mass of �� i� e�  � �

R
Mm�n Xd��X��

Following �Pe �	�� we say that a measure � � P is a laminate if h�� fi � f� ��
for each rank�one convex function f �Mm�n � R� At the center of our attention
will be the sets Prc�K� � f� � P�K�� � is a laminateg� which are de�ned for
any compact set K �Mm�n�

Let O be an open subset of Mm�n� We now de�ne an important subset
L�O� of laminates� called laminates of �nite order in O� The de�nition is by
induction�
�� For each A � O� the Dirac mass at A� denoted by �A� belongs to L�O��
�� Assume 	�� 
 
 
 � 	m � � with

P
	j � �� and that � �

Pm
j�� 	j�Aj belongs

to L�O�� Assume also that �B�� B�� is a rank�one segment contained in O� and
that there is � � s � � such that �� � s�B� � sB� � Am� Then the measure

� �
Pm��

j�� 	j�Aj � ��� s�	m�B�
� s	m�B�

also belongs to L�O��

Let K be a compact subset of Mm�n� The rank�one convex hull Krc �
Mm�n of K is de�ned as follows� A matrix X does not belong to Krc if and
only if there exists f �Mm�n � R which is rank�one convex such that f � �
on K and f�X� � �� We emphasize that this de�nition will be used only when
K is compact� For open sets O � Mm�n� we de�ne the rank�one convex hull
Orc of O as Orc � �fKrc� K is a compact subset of Og� With this de�nition
we have the property that the rank�one convex hull of an open set is again an
open set� which will be useful for our purposes�

We refer the reader to �MP ��� for interesting results about rank�one convex
hulls of closed sets� The following lemma� which is a slight generalization a
result from �Pe �	�� will play an important r�ole�

Theorem ��� Let K be a compact subset of Mm�n and let � � Prc�K�� Let
O � Mm�n be an open set such that Krc � O� Then there exists a sequence
�j � L�O� of laminates of �nite order in O such that  �j �  � for each j and the
�j converge weakly� to � in P�

	



As a preparation for the proof of the theorem� we prove the following lemma�

Lemma ��� Let O be an open subset of Mm�n� Let f �O � R be a continuous
function and let ROf �O � R � f��g be de�ned by ROf � supfg� g�O �
R is rank� one convex in O and � fg� Then for each X � O we have
ROf�X� � inffh�� fi� � � L�O� and  � � Xg�

Proof� Let us denote by !f the function in O de�ned by !f�X� � inffh�� fi� � �
L�O� and  � � Xg� Clearly ROf � !f in O� On the other hand� we see from the
de�nition of the set L�O� that it has the following property� if ��� �� � L�O��
and the segment � ���  ��� is a rank�one segment contained in O� then any convex
combination of �� and �� is again in O� Using this� we see immediately from
the de�nitions that !f is rank�one convex in O and hence ROf � !f �

Proof of Theorem ���� Let � � Prc�K� and let  � � A be its center of mass�
From the de�nitions we see that A � Krc� We choose an open set U � Mm�n

satisfying Krc � U �  U � O and de�ne F � f� � L�U��  � � Ag� We
claim the the weak� closure of F contains �� To prove the claim� we argue by
contradiction� Assume � does not belong to the weak� closure of F � Since F
is clearly convex� we see from the Hahn�Banach Theorem that there exists a
continuous function f �  U � R such that h�� fi � inffh�� fi� � � L�U� and  � �
Ag� By Lemma ���� we have inffh�� fi� � � L�U� and  � � Ag � RUf�A�� We
see that the function !f � RUf �U � R is rank�one convex in U and satis�es
h�� !fi � h�� fi � !f� ��� By Lemma ��	 below� there exists a rank�one convex
function F �Mm�n � R such that F � !f on Krc� We conclude that � cannot
belong to Prc�K�� a contradiction� The proof is �nished�

Lemma ��� Let K �Mm�n be a compact set� let O be an open set containing
Krc �the rank�one convex hull of K� and let f �O � R be rank�one convex�
Then there exists F �Mm�n � R which is rank�one convex and coincides with
f in a neighborhood of Krc�

Proof� We claim there exists a non�negative rank�one convex g�Mm�n � R
such that K � fX� g�X� � �g� To prove this� we choose R � � so that
K � BR�� � fX� jX j � R��g and de�ne g��BR � R by

g��X� � supff�X�� f �BR � R�

f is rank�one convex in BR and f � dist � 	 �K� in BRg


The function g� is obviously non�negative and rank�one convex in BR� Moreover�
fX � BR� g��X� � �g 
 K and from the de�nition of Krc we see that g� � �
outside Krc� We now de�ne

g�X� �

�
max �g��X�� ��jX j � �R� when X � BR

��jX j � �R when jX j � R

Clearly g is rank�one convex in a neighborhood of any point X with jX j �� R�
Since g��X� � �jX j when jX j � R� we see that we have g�X� � ��jX j � �R in

�



a neighborhood of fjX j � Rg� We see that g is non�negative� rank�one convex
in Mm�n� fX� g�X� � �g 
 K� and fX� g�X� � �g � Krc � � Therefore
fX� g�X� � �g � Krc

We can now �nish the proof of the lemma� Replacing f by f�c� if necessary�
we can assume that f � � in a neighborhood ofKrc� For k � � we let Uk � fX �
O� f�X� � kg�X�g� We also let Vk be the union of the connected components
of Uk which have a non�empty intersection with Krc� It is easy to see that there
exists k� � � such that  Vk� � O� We now let F �X� � f�X� when X � Vk� and
F �X� � k�g�X� when X � Mm�n n Vk� � It is easy to check that the function
F de�ned in this way is rank�one convex on Mm�n�

� Constructions

Throughout this section� � denotes a �xed bounded open subset of Rn� We will
use the following terminology� A Lipschitz mapping u� � � Rm is piecewise
a�ne� if there exists a countable system of mutually disjoint open sets �j � �
which cover � up to a set of zero measure� and the restriction of u to each of
the sets �j is a�ne�

Following Gromov ��Gr ���� page ��� we also introduce the following concept�
Let F���Rm� be a family of continuous mappings of � into Rm� We say that a
given continuous mapping v�� �� Rm admits a �ne C��approximation by the
family F���Rm� if there exists� for every continuous function � � � ������
an element v of the family F���Rm� such that jv�x� � v��x�j � �x� for each
x � ��

��� The basic construction

The main building block of all the solutions of relation ��� which we construct
in this paper is the following simple lemma�

Lemma ��� Let A�B � Mm�n be two matrices with rank �B � A� � �� let
b � Rm� � � 	 � � and C � ���	�A�	B� Then� for any � � � � jA�Bj��� the
a�ne mapping x� Cx� b admits a �ne C��approximation by piecewise a�ne
mappings u� � � Rm such that dist �ru�x�� fA�Bg� � � almost everywhere in
� and meas fx � �� jru�x��Aj � �g � ��� 	�meas��

Proof� We �rst note that it is enough to prove the lemma only for a special case
when the function �x� appearing in the de�nition of a �ne C��approximation
is constant and the function approximating the function u satis�es the boundary
condition u�x� � Cx�b for x � ��� This can be seen by considering a sequence
of open sets �j which are mutually disjoint� satisfy  �j � �� and cover � up to
a set of full measure�

To prove the special case� we note that we can assume without loss of gen�
erality that A � �	a � en� B � �� � 	�a � en� and C � �� where a � Rm

and en � ��� 
 
 
 � �� �� � Rn� We de�ne h�R � R and w�Rn � Rm by
h�s� � �jsj� ��	� ��s��� and w�x� � amax��� �� jx�j � 
 
 
� jxn��j � h�xn���

�



We choose a small �� � �� and set v�x� � ��w�x�� 
 
 
 � xn��� xn��
��� We also let

� � fx� v�x� � �g� We check by a direct calculation that dist �rv�x�� fA�Bg� �
�n���jaj�� for almost every x � �� We clearly also have v�x� � � when x � ���
By Vitali�s theorem we can cover � up to a set of measure zero by a countable
family f�ig of mutually disjoint sets of the form �i � yi � ri� �with yi � Rn

and ri � ��� ���� We let u�x� � riv�r
��
i �x � yi� when x � �i� and u�x� � � if

x � � n �i�i� It easy to check that u satis�es the required conditions� provided
�� is su�ciently small�

Lemma ��� Let � � P�Mm�n� be a laminate of �nite order� let A �  � be
its center of mass� Let us write � �

Pr
j�� 	j�Aj with 	j � � and Ai �� Aj

for i �� j� Then� for each b � Rm� and each �� �� � �� the mapping x �
Ax�b admits a �ne C��approximation by piecewise a�ne mappings u satisfying
dist �ru�x�� fA�� 
 
 
 � Arg� � � a�e� in � and meas fx � �� dist �ru�x�� Aj�g �
	�jmeas�� with �� �� � 	�j�	j � � � ���

Proof� This can be easily proved by applying iteratively Lemma 	�� in a way
which is naturally suggested by the de�nition of the laminate of �nite order�

��� Open relations

We recall that the rank�one convex hull Orc of an open set O � Mm�n is� by
de�nition� the union of the rank�one convex hulls of all compact subsets of O�
The main result of this subsection is the following�

Theorem ��� Let O � Mm�n be open� and let P � Orc be compact� Let
u�� � � Rm be a piecewise a�ne Lipschitz mapping such that ru��x� � P
for a� e� x � �� Then u� admits a �ne C��approximation by piecewise a�ne
Lipschitz mappings u� �� Rm satisfying ru�x� � O a� e� in ��

Proof� As a �rst step� we prove the following lemma�

Lemma ��� Let K � Mm�n be a compact set and let U � Mm�n be an open
set containing K� Let � � Prc�K� and denote A �  �� Then� for any given
� � �� the mapping x � Ax admits a �ne C��approximation by piecewise
a�ne mappings u satisfying ru�x� � U rc a�e� in � and meas fx � �� ru�x� �
Ug � ��� ��meas��

Proof� We use Theorem ��� to approximate � by a laminate of �nite order �
which is supported in a �nite subset of U rc and satis�es  � �  � and ��U� �
��� ����� Then we apply Lemma 	�� to � and the proof is �nished�

Theorem 	�� can now be proved by repeatedly applying Lemma 	�	 in the fol�
lowing way� We �rst choose a sequence of compact sets K��K�� 
 
 
 �Mm�n� a
sequence of open sets U�� U�� 
 
 
 �Mm�n� and a compact set Q �Mm�n such
that P � K� � U� � K� � U� � 
 
 
 � Q � O� We also choose � � � � �� Let
 � �x� � � be a continuous function on �� In the �rst step we apply Lemma 	�	
to approximate u� up to �� by a mapping u� satisfying ru��x� � U rc

� a� e� in ��

�



together with meas fx � �� ru��x� � U�g � �� � ��meas�� We now modify
u� on on those subregions of � where ru��x� does not belong to U� by ap�
plying Lemma 	�	 again� We obtain a new mapping� u�� which approximates
u� up to ��� coincides with u� a� e� in the set fx � �� ru��x� � U�g� and
satis�es ru��x� � U rc

� a�e� in � together with meas fx � �� ru��x� � U�g �
���� �� � ���� ���meas�� By continuing this procedure we get a sequence uk
of mappings which is easily seen to converge to a mapping u which gives the
required approximation of u��

��� Closed relations and in�approximations

When considering relation ��� for closed sets K� it is natural to try to construct
solutions by combining Theorem 	�� and a suitable limit procedure� For sim�
plicity we will assume in this section that K is compact� Following Gromov
��Gr ���� we say that a sequence of open sets fUig�i�� is an in�approximation of
K if Ui � U rc

i�� for each i� and supX�Ui dist �X�K�� � as i���

Theorem ��� Assume that a compact set K � Mm�n admits an in�approxi�
mation by open sets Ui in the sense of the de�nition above� Then any
C��mapping v� �� Rm satisfying rv�x� � U� in � admits a �ne C��approxi�
mation by Lipschitz mappings u� �� Rm satisfying ru�x� � K a�e� in ��

Proof� By the same argument as in the proof of Lemma 	�� it is enough to
prove the statement only in the case when the function  � �x� in the de�nition
of a �ne C��approximation is constant�

Let ��Rn � R be the usual mollifying kernel� i�e� we assume that � is
smooth� non�negative� supported in fx� jxj � �g� and

R
� � �� For  � � we let

�� � �n��x��� For a function w � L���� we de�ne �� � w in the usual way�
by considering w as a function on Rn with w � � outside �� In other words�
�� � w�x� �

R
�
w�y����x� y� dy�

We start the proof by choosing �� � � �the exact value of which will be
speci�ed later� and by approximating v by a piecewise a�ne u�� �� Rm with
ju� � vj � �� in �� u� � v on ��� and ru� � U� a�e� in �� �We recall that in
this paper �piecewise a�ne� allows for countably many a�ne pieces�� We also
choose � � � so that jjru� � ��� �ru�jjL���� � ����

Using Theorem 	�� together with an obvious inductive argument� we con�
struct a sequence of mappings ui� � � Rm and numbers � � i � ��i� �i � �
satisfying

rui � Ui a�e� in ��

ui � v on ���

jjrui � ��i �ruijjL���� � ��i�

�i�� � i�i �

jui�� � uij � �i�� in �


The mappings ui converge uniformly to a Lipschitz function u� � � Rm� We
also have ju � vj �

P
i jui�� � uij � ju� � vj � ���� It remains to prove that

�



ru � K a�e� in �� This will be clear if we establish that rui � ru in L�����
We can write

jjrui �rujjL���� � jjrui �rui � ��i jjL����

� jjru � ��i �rujjL����

� jjrui � ��i �ru � ��i jjL����


The �rst two terms on the right�hand side of this inequality clearly converge
to zero as i � �� De�ning �i � fx � �� dist�x� ��� � �ig we can estimate
the third term as

jj�ui � u� � r��i jjL���� � jjrui �rujjL���n�i� �
c

i
jjui � ujj� � Cmeas �� n�i��

where c and C are constants depending only on � and the Lipschitz constant of
ui � u� respectively�

We have

jjui � ujj� �
�X
j�i

jjuj � uj��jj� �
�X

j�i��

�j � ��i��


Hence the third term can be estimated by �c�i���i �Cmeas �� n�i� � �c�i �
Cmeas �� n�i� which converges to zero as i��� The proof is �nished�

Remark� The explanation of the strong convergence of rui is more or less
the following� We can achieve a very fast convergence of ui in the sup�norm� It
may seem that this is not enough to say much about the convergence of rui�
However� in the proof we choose the parameters in such a way that jjui � ujj�
is very small in comparison with a typical length over which rui changes sig�
ni�cantly �in an integral sense�� This is the main reason we get the strong
convergence� The above argument is taken from �MS ���� A dierent approach
can be found in �DM ����

� Applications to elliptic systems

Let � � R� be a disc� For �su�ciently regular� mappings u� � � R� we
consider the functional I�u� �

R
�
F �ru�x�� dx� where F is a �smooth� function

on the set M��� of all real � � � matrices� which satis�es certain �ellipticity
conditions�� More precisely� we will require that F be strongly quasiconvex and
that its second derivatives be uniformly bounded in M����

The purpose of this section is to show how we can apply the results above
to construct weak solutions of the Euler�Lagrange equation

divDF �ru� � � ���

of the functional I which are Lipschitz� but not continuously dierentiable on
any open subset of �� This is in sharp contrast with regularity properties of
minimizers of I � see� for example �Ev ���� In fact� we prove the following slightly
stronger statement�

�



Theorem ��� There exists a smooth strongly quasiconvex function
F��M

��� � R with jD�F�j � c in M���� four matrices A�� 
 
 
 � A� � M����
 � � and � � � such that the following is true� Let F �M��� � R be a C��
function satisfying jDF �Aj��DF��Aj�j � � and jD�F �Aj��D�F��Aj�j � � for
j � �� �� 	� �
 Then each piecewise C��function v� � � R� satisfying jrvj � 
a� e� in � admits a �ne C��approximation by Lipschitz mappings u� � � R�

which are not C� on any open subset of � and are weak solutions of the equation
divDF �ru� � � in ��

The theorem will be proved in Section ���� after we establish some useful
facts about quasiconvex functions and rank�one convex hulls� The idea of the
construction is the following� We rewrite the equation ��� as a �rst�order system

rU � K �	�

and then show that the strong quasiconvexity does not prevent the rank�one
convex hull of K from being large� �We remark that the strong quasi�convexity
does exclude any non�trivial rank�one connections in K� see �Ba ����� We can
then use the methods developed in the previous sections to construct the desired
solutions� Moreover� it turns out the situation is stable under the perturbations
of F� which are allowed in the theorem�

One way to write equation ��� in the form �	� is the following� We denote

by J the matrix

�
� ��
� �

�
� The condition that the �� � tensor DF �ru� be

divergence�free is equivalent to the condition that DF �ru�J be the gradient of

a function v� � � R�� We now introduce U � � � R� by U �

�
u
v

�
� We also

let K to be the set of all � � � matrices of the form

�
X

DF �X�J

�
� where X

runs through all �� � matrices� It is clear that� in this notation� system ��� is
equivalent to system �	��

��� Quasiconvex functions

We begin by describing a quasi�convex function which will play an important
role in our construction� We will be using notation introduced in Section ��
We de�ne f��S

��� � R by f��X� � detX when X is positive de�nite and by
f��X� � � otherwise�

Lemma ��� The function f� is quasiconvex on S����

Proof� This result is proved in �Sv ��b�� In that paper the proof is actually
carried out for a more general class of functions� We give a simple version of
the proof here� for the convenience of the reader� Let � � fx � R�� jxj � �g
and let �� � � R be smooth and compactly supported in �� We must prove
that for each A � S��� we have

R
�
�f��A�r���� f��A�� � �� This is obvious

if A is not positive de�nite� since then we integrate a non�negative function� If

�



A is positive de�nite� we can assume A � I by a simple change of variables� Let
u��x� � jxj��� and u�x� � u��x� � ��x�� We also set � � ru� which will be
viewed as a map �� � � R�� Finally� we let E � fx � �� detr��x� � �g� We
must prove that

R
E detr� � meas ���� Since det� � � on E� we can use the

area formula ��Fe ���� to infer that it is enough to prove � � ��E�� Consider
an arbitrary b � � and let a �  � be a point where the function x� u�x�� b 	 x
attains its minimum in  �� It is easy to verify that a � � and hence ��a� � b
and a � E� We see that � � ��E� and the proof is �nished�

In what follows we will use the following notation� for X � M��� we let
Xsym � �X �Xt��� and Xasym � �X �Xt����

Lemma ��� Let f �S��� � R be a smooth function such that jD�f j � c in
S���� Assume that f is strongly quasi�convex in the sense that for some � � �
we have

R
R��f�A � r��� � f�A�� � �

R
R� jr

��j� for all smooth� compactly

supported ��R� � R� Then for su�ciently large � � � the function !f �M��� �
R de�ned by !f�X� � f�Xsym� � �jXasymj� is strongly quasi�convex�

Proof� Let T� be the two�dimensional torus R��Z�� Let ��T� � R� be
a smooth function and let A � M���� We want to prove that

R
T�� !f�A �

r�� � !f�A�� � ���
R
T� jr�j

�� Let us consider the Helmholtz decomposition

� � r� � r�� � a of �� where � and � are scalar functions� r�� � Jr�
�with J as above�� and a a constant vector� We have r� � r���rr��� Set
Y � �rr���sym� A standard calculation �involving integration by parts and the
use of the identity

R
T� detr

�� � �� gives
R
T� jY j

� � jr��j��� �
R
T��"��

��� �R
T� j�rr

���asymj�� We can write

Z
T�

� !f�A�r��� !f�A��

�

Z
T�

�f�Asym �r���� f�Asym��

�

Z
T�

��jAasym � �rr���asymj
� � �jAasymj

��

�

Z
T�

�f�Asym �r��� Y �� f�Asym �r����

� I � II � III


We have I � �
R
T� jr

��j� by our assumptions and Lemma ���� The second
term can be evaluated as II �

R
T� �jY j

� by using the calculation above and the
fact that

R
T� r

�� � �� Finally� the third term can be written as

III �

Z
T�

�f�Asym �r��� Y �� f�Asym �r��� �Df�Asym �r���Y �

�

Z
T�

�Df�Asym �r����Df�Asym��Y

��



� �

Z
T�

�c��jY j� � cjr��jjY j�

� �

Z
T�

����jr��j� � c��jY j� � c������jY j��


We see that we get the right inequality when � � ��� � c�� � c������� The
proof is �nished�

Lemma ��� cannot be directly applied to the function f� from Lemma ����
However� we can modify f� in the following way� We consider a smooth molli�er
� on S��� which is supported in the ball of radius ��� centered at � and satis�esR
S��� � � ��

R
S��� X��X� dX � �� and

R
S��� det�X���X� dX � �� We let

f��X� � max�f��X�� jX j� � ��� and f� � f� � �� We note that f��X� � f��X�
when jX j � � and the open ball BX� �

�

is contained in the set of the positive

de�nite matrices� We choose a small � � � �to be speci�ed later� and set
f	�X� � f��X� � �jX j�� We denote by !f	 the strongly quasi�convex extension
of f	 to M��� obtained in Lemma ��� �for a suitable ���

Let T �

�
� �
� �

�
� We de�ne ��M��� �M��� by � 	X � TXJ t� where J

is the rotation by ��� introduced above� We note that the diagonal matrices are
invariant under � and that � restricted to the diagonal matrices can be thought
of as a rotation by ����

Let H �

�


� �
� � 


�

�
� We de�ne f��M

��� � R by

f��X� �
	X

k��

!f	��
�k 	X �H�


It is easy to see that f� satis�es f��� 	 X� � f��X� for each X � M��� and
therefore Df��� 	X� � � 	Df��X� for each X �M����

We now let A� �

�
	 �
� ��

�
and Ak � �k 	 A�� By a direct calculation

we get Df��A�� �

�
�
� � ��� �

� �
� � ��

�
� By considering functions of the form

�
��jX j

���f��X� we can easily obtain the following lemma� by choosing suitable
�� �� and ��

Lemma ��� There exist a smooth� strongly quasiconvex function F��M
��� �

R with uniformly bounded D�F� which satis�es �in the notation introduced

above� F��� 	X� � F��X� for each X and DF��A�� �

�
� �
� 	

�
�

Proof� See above�

The set K corresponding the the function F � F� �see the beginning of

the section� contains the matrices

�
Ak

DF��Ak�J

�
� k � �� 
 
 
 � �
 These are the

��
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Figure �� T� con�guration with P� � P � P� � P � C�� P	 � P � C� � C��
P� � P � C� � C� � C	� The lines indicate rank�� connections� Note that the
�gure need not be planar
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M�
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�
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	 �
� ��
� ��
	 �

�
CCA �M�

� �

�
BB�

� �
� 	
� 	
� �

�
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	 �

�
BB�
�	 �
� �
� �

�	 �

�
CCA �M�

� �

�
BB�
�� �
� �	
� �	

�� �

�
CCA 


��� Deformations of T��con�gurations

Let us consider four m� n matrices M�� 
 
 
 �M�� We say that M�� 
 
 
 �M� are
in T��con�guration �see Figure �� if rank �Mi�Mj� �� � for all i� j� and if there
exist rank�one matrices C�� 
 
 
 � C� with

P
k Ck � �� real numbers ��� 	 	 	�� � ��

and a matrix P �Mm�n such that

M� � P � ��C� �

M� � P � C� � ��C� �

M	 � P � C� � C� � �	C	 �

M� � P � C� � C� � C	 � ��C�


This con�guration was discovered independently by several authors� We
are aware of �Sch ���� where it is used in a similar context as below� �AH ����
and �Ta �	�� where it is used in a dierent context� Slightly dierent exam�
ples exhibiting similar features were also independently discovered in �NM ���

��



and �CT �	�� The paper �BFJK ��� contains an interesting example using a
T��con�guration� The following observation appears in �AH ���� �Ta �	� and
implicitly also in the other papers�

Lemma ��� If M�� 
 
 
 �M� are in T��con�guration� the rank�one convex hull
of the set fM�� 
 
 
 �M�g contains the points P� � P� P� � P � C�� P	 � P �
C� � C�� P� � P � C� � C� � C	�

Proof� To see this� let us consider a rank�one convex function f �Mm�n � R
which vanishes at the points M�� 
 
 
 �M�� We have f�Pi��� � ���if�Mi� �
�� � ���i�f�Pi� � �� � ���i�f�Pi� for each i� where the indices are considered
modulo �� Applying this recursively� we get that f�Pi� � � for each i�

The matrices M�
k at the end of subsection ��� are in T��con�guration and

they also lie on the set

K� �

��
X

DF��X�J

�
# X �M���

�
�M���

given by the quasi�convex function F� constructed in Lemma ��	� This shows
that the rank�one convex hull Krc

� of K� is non�trivial� We now wish to establish
that Krc

� is su�ciently large� so that we can apply Theorem 	��� We will see
later that rather than trying to work with the speci�c function F�� it is more
convenient to work with a small perturbation F � F� � V of F�� where V is a
compactly supported smooth function� the properties of which will be speci�ed
later� For the moment we will only assume that F satis�es DF �Ak� � DF��Ak�
for k � �� �� 	� �� where the matrices Ak are the same as in Subsection ����
We also denote by K � M��� the set corresponding to F � By our assump�
tions we know that K contains a T��con�guration given by the matrices M�

k �
k � �� �� 	� � de�ned above� It is natural to investigate deformations of this
T��con�guration� In other words� we will investigate four�tuples M�� 
 
 
M�

such that� for k � �� 
 
 
 � �� Mk is close to M�
k � Mk � K� and M�� 
 
 
M� are in

T��con�guration�

We introduce the following notation�

e� � ��� �� e� � ��� ��
f� � ��� �� �� �� f� � ��� �� �� ��
C�
� � f� � e� C�

� � f� � e�
C�
	 � �C�

� C�
� � �C�

�

P � � ��C�
� � C�

� ���
��� � � ��� � �
��	 � � ��� � �

We parameterize the rank�one matrices Ck in a small neighborhood of C�
k as

follows�

C� � �f� � a��� �e� � ��e��

�	



C� � �f� � a��� �e� � ��e��

C	 � ��f� � a	�� �e� � �	e��

C� � ��f� � a��� �e� � ��e���

where a�� 
 
 
 � a� are �small� vectors in R�� and ��� 
 
 
 � �� are �small� real num�
bers� We linearize the equation

P
k Ck � � around the solution C�

k � The
linearized equation is equivalent to

a� � a	 � ��� � ���f� � �

a� � a� � ��� � �	�f� � � 


Using these formulae and the above expressions for Mk� we easily check �with
the help of the implicit�function theorem� that the four�tuples �M�� 
 
 
 �M�� of
the �� � matrices which are close to �M�

� � 
 
 
 �M
�
� � and form T��con�guration

such that the parameters P�Cj � �j are close to P
�� C�

j � �
�
j form a ���dimensional

manifold M� The tangent space LM of M at the point �M�
� � 
 
 
 �M

�
� � can be

identi�ed with four�tuples �Z�� 
 
 
 � Z�� of �� � matrices of the form

Z� �

�
BB�

p�� � �a�� � ��� p�� � ����
p�� � �a�� p��
p	� � �a	� p	�
p�� � �a�� � ��� p�� � ����

�
CCA �

Z� �

�
BB�

p�� � a�� p�� � �a�� � ���
p�� � a�� � ���� p�� � �a�� � ���
p	� � a	� � ���� p	� � �a	� � ���
p�� � a�� p�� � �a�� � ���

�
CCA �

Z	 �

�
BB�

p�� � a�� � ��	 p�� � a�� � ���	 � ���
p�� � a�� � ��� � ���� p�� � a��
p	� � a	� � ��� � ���� p	� � a	�
p�� � a�� � ��	 p�� � a�� � ���	 � ���

�
CCA �

Z� �

�
BB�

p�� p�� � a�� � ��	 � ���
p�� � ��� p�� � a�� � ���
p	� � ��� p	� � a	� � ���
p�� p�� � a�� � ��	 � ���

�
CCA �

where the values of all the �� parameters run through all real numbers� More�
over� there is a well�de�ned mapping �M�� 
 
 
 �M�� � �P�� 
 
 
 � P�� from M to
the four�tuples of �� � matrices� where �in the notation introduced in the de��
nition of T��con�guration� P� � P� P� � P��C�� P	 � P��C�� P� � P	�C	

as above�

We now consider the additional constraint Mk � K� where K is the set
determined by F � The four�tuples �M�� 
 
 
 �M�� satisfying Mk � K clearly
form a ���dimensional manifold K � K �K �K �K� The tangent space LK
of K at �M�

� � 
 
 
 �M
�
� � can be identi�ed with the four�tuples�

X�

D�F �A��X�J

�
�

�
X�

D�F �A��X�J

�
�

�
X	

D�F �A	�X	J

�
�

�
X�

D�F �A��X�J

�

��



where X�� 
 
 
 � X� run through all �� � matrices�

We now consider the maps �M�� 
 
 
 �M�� � �Mk� P
�
k�� where Pk is de�ned

as above and where we denote �with a slight abuse of notation� by P �k the
orthogonal projection of the point Pk into the space �TAkK��� the normal space
of K at Ak � We would like to establish the following non�degeneracy conditions�
which will be important later when we construct in�approximations�

Condition �C�� M and K intersect transversely at �M�
� � 
 
 
 �M

�
� � and� �after

perhaps replacing M by a su�ciently small neighborhood of �M�
� � 
 
 
 �M

�
� � in

M� the map �M�� 
 
 
 �M�� � �Mk� P
�
k� is� for each k� a non�degenerate di�eo�

morphism of M�K and a neighborhood of �M�
k � �P

�
k �
�� in K � �TAkK���

Rather than trying to decide whether these non�degeneracy conditions are sat�
is�ed for an explicitly given function F � it seems to be more natural to verify
that the conditions are satis�ed in the generic case� More speci�cally� we note
that F � F� � V is strongly quasi�convex for su�ciently small � �We recall
that V is assumed to be smooth and compactly supported�� By choosing V in
a suitable way� we can perturb D�F �A��� 
 
 
 D

�F �A�� to any prescribed values
which are close enough to the original values� without changing the values of
DF �A��� 
 
 
 � DF �A��� and without aecting the strong quasi�convexity� For the
purpose of the construction of the counter�example announced at the beginning
of this section� we can therefore restrict our considerations to the generic case�

Lemma ��� Assume that DF �Ak� � DF��Ak� for k � �� �� 	� �� Then condi�
tion �C� above is satis�ed for the generic values of D�F �Ak�� k � �� 
 
 
 � ��

Proof� The condition that M and K intersect transversely at �M�
� � 
 
 
 �M

�
� �

and that the map �M�� 
 
 
 �M��� �M�� P
�
�� is a non�degenerate dieomorphism

of a small neighborhood of �M�
� � 
 
 
 �M

�
� � in M � K and a neighborhood of

�M�
� � �P

�
� �
�� in K � �TA�

K�� is easily seen to be equivalent to the condition
that the following linear homogeneous system of �� equations for �� unknowns
has no non�trivial solutions�

Zj �

�
Xj

D�F �Aj�XjJ

�
� j � �� �� 	� �

�
p	� p	�
p�� p��

�
� D�F �A��

�
p�� p��
p�� p��

�
J

X� � ��

where Zj � Zj�pkl� akl� �
�
k� �

�
k� �with k � �� �� 	� �� l � �� �� are the ��� matrices

introduced above and X�� X�� X	� X� are � � � matrices� The determinant of
the corresponding �� � �� matrix is a polynomial expression in the entries of
the matrices D�F �Aj� �which are now considered as parameters�� and will be
denoted by Q�� The polynomial Q� is not identically zero� since for

D�F �A�� � I� D�F �A�� � I� D�F �A	� � �� D�F �A�� � I

��



we can check by a straightforward calculation that the system has no non�trivial
solutions�

By using symmetry we see that� for each k � �� �� 	� �� the condition thatM
and K intersect transversely at �M�

� � 
 
 
 �M
�
� � and that the map �M�� 
 
 
 �M���

�Mk� P
�
k� is a non�degenerate dieomorphism of a small neighborhood of

�M�
� � 
 
 
 �M

�
� � in M�K and a neighborhood of �M�

k � �P
�
k �
�� in K � �TAkK��

can be expressed as Qk �� �� where Qk is a suitable non�zero polynomial in the
entries of the matrices D�F �Aj�� Hence all of our non�degeneracy conditions
will be satis�ed at all values of D�F �Aj� where the polynomial Q � Q�Q�Q	Q�

does not vanish� Since Q is not identically zero� the result follows�

��� In�approximation

To be able to use Theorem 	��� we need to have a suitable in�approximations�

Lemma ��	 Using the notation above� assume that condition �C� is satis�ed�
Let r � �� Then there exists an in�approximation fUig

�
i�� of Kr � ��j��fX �

M���� jX �M�
j j � rg �K such that U� contains a �small� neighborhood of the

rank�one convex hull of the points P �
� � 
 
 
 � P

�
� �

Proof� We consider a sequence O��O��O� 
 
 
 of open neighborhoods of
�M�

� � 
 
 
 �M
�
� � in M � K� such that each Oj is dieomorphic to the eight�

dimensional unit ball and that� for each j � �� �� �� 
 
 
 we have  Oj � Oj���
We also consider a sequence of numbers � � 	�� ��� � 	� � 
 
 
 � 	j � 
 
 
 � �
converging to � as j � �� For j � �� �� �� 
 
 
 we let Uk�j � f�� � 	j�Pk �
	jMk� �M�� 
 
 
 �M�� � Ojg� where Pk � Pk�M�� 
 
 
 �M�� is the map consid�
ered in subsection ���� We also let Uj � �k��k��Uk�j � Condition �C� implies that
there exists j� such that the sets Uj are open when j � j� and the sets Oj are
contained in a su�ciently small neighborhood O of �M�

� � 
 
 
 �M
�
� �� To see this�

consider for example k � � and let us write points M� � K which are close to
M�

� as M� � M�
� �X � ��X�� with X � TA�

K and ��X� � �TA�
K��� We can

also write P� � P �
� � Y � � with Y � �TA�

K�� and � � TA�
K� If Condition

�C� is satis�ed� we know that� in a small neighborhood of �M�
� � 
 
 
 �M

�
� �� we can

take X and Y as local coordinates inM�K� For �M�� 
 
 
 �M�� �M �K which
is close to �M�

� � 
 
 
 �M
�
� � and P� � P��M�� 
 
 
 �M��� we can therefore write the

��component of P� in the above decomposition as � � ��X�Y �� where � is a
smooth function of X and Y with ���� �� � �� In the coordinates �X�Y �� the
derivative of the map �X�Y �� ��� 	�P� � 	M� is given by the block matrix

�
	I � ��� 	��X� ��� 	��Y �

	�X� ��� 	�I

�



Since �X���� � �� we see that the matrix is regular when X is small and 	 is
close to �� The openess of U��j for large j� 	 close �but not equal� to �� and
small O follows�

We can see from the de�nitions that� for each j � �� �� 
 
 
 the closure of the
rank�one convex hull of Uj is contained in the rank�one convex hull of Uj���

��



Moreover� the rank�one convex hull of U� contains a neighborhood of the square
given by the convex hull of the points P �

� � 
 
 
 � P
�
� �which coincides with the

rank�one convex hull of these points� since the points lie in a two�dimensional
plain�� The required in�approximation has therefore been established�

��� Solutions with nowhere continuous gradients

Proof of Theorem ���� The main idea of the proof is described in heuristic
terms in the remarks immediately following the theorem� In the proof below we
will be freely using the notation introduced earlier in Section ��

The matrices A�� 
 
 
 � A� are the matrices

A� �

�
	 �
� ��

�
� A� �

�
� �
� 	

�
� A	 �

�
�	 �
� �

�
� A� �

�
�� �
� �	

�

as in Section ���� We let F� be a suitable small perturbation of the quasiconvex
function F� from Lemma ��	 such that DF��Ak� � DF��Ak� for k � �� 
 
 
 � �
and condition �C� is satis�ed� Since the transversality and the other non�
degeneracy conditions are stable under small perturbations� a version of �C�
with M�

� � 
 
 
 �M
�
� replaced by close�by matrices !M�

� 
 
 
 � !M�
� will also be satis�

�ed for any F as in the statement of the theorem� provided � is su�ciently small�
Moreover� we see easily that by choosing � su�ciently small we can also achieve
that Lemma ��� can be applied �with M�

� � 
 
 
 �M
�
� replaced by close�by matrices

!M�
� 
 
 
 �

!M�
� � with a �xed small r � � to any set K arising from a function F

satisfying the assumptions of the theorem� In addition� we see easily that the
in�approximations can be constructed so that U� contains a �xed small neigh�
borhood of the zero matrix for any F satisfying the assumptions� We see that
the assumptions of Theorem 	�� are satis�ed in our situation� However� it does
not seem to be immediately clear that the solutions obtained from Theorem 	��
are not continuously dierentiable on any open subset of �� To obtain such
solutions� we will analyze the construction more closely�

We �rst look in more detail at the in�approximation introduced in Lemma ����
Since the map �M�� 
 
 
 �M�� � �� � 	j�Pk � 	jMk considered there is �for a
good choice of parameters� a dieomorphism of  Oj and  Uk�j � we can de�ne
�j �P�  Uj� � P�  Uj��� as follows� The map �j is �rst de�ned on Dirac masses�

given X � �� � 	j�Pk � 	jMk �  Uk�j � we let �j��X � �
Pl��

l�� �lYl� where
Yl � �� � 	j���Pl � 	j��Ml � Ul�j��� and ��� 
 
 
 � �� are determined by re�
quiring that the measure �j�X� be a laminate with center of mass X � �These
conditions determine ��� 
 
 
 � �� uniquely� This is obvious if the a�ne span of
Y�� 
 
 
 � Y� is three�dimensional� If it is two�dimensional� we must use the con�
dition that �j�X� is a laminate to get the uniqueness�� We can now extend
�j to P�  Uj� by requiring that �j be a�ne and continuous in the w��topologies
on P�  Uj� and P�  Uj���� The measure �j��X� can be thought of as a result of
splitting the Dirac mass �X into a convex combination of the four Dirac masses
�Y� � 
 
 
 � �Y� �

��



An easy calculation shows that when X � Uk�j and �j��X� �
Pl��

l�� �lYl�
then� for su�ciently large j� we have �k � � � �	j�� � 	j� and �l � � for all
l � �� �� 	� ��

Let us now go back to the construction in the proof of Theorem 	���
Let us consider A � U rc

j � and assume that uj is a countably piecewise a�ne
function on � with ruj � A in an open set U � �� Let us write �j�A� �Pk��

k�� �k�Ak � where we use the map �j de�ned above� The inductive step in
the construction described in Section 	 is to replace uj by uj�� which satis�es
uj�� � uj on �U � supU juj�� � uj j small� ruj���x� close to the set A�� 
 
 
 � A�

for a� e� x � U � and the ratio meas fx � U� ru�x� is close to Akg�measU close
to �k� �More precisely� U should be thought of as one set of a countable disjoint
family which covers � up to the set of measure zero � see Section 	 for details��
Because �k � � � �	j�� � 	j�� we see that we can do the construction so
that meas fx � U� ruj�� �� Uk�j��g � �	j�� � 	j�measU � Following the same
procedure at each inductive step� we conclude that meas fx � U� ruj�p ��
Uk�j�pg � �	j�p � 	j�measU �

On the other hand� in the construction of uj�� we have to use a matrix
B � Ul�j�� with l �� k� Moreover� we can carry out the construction in such a
way that any ball of radius ��j has a non�empty intersection with an open set
where a matrix from Ul�j�� is used� Let V � U be a maximal open connected
subset of U on which uj�� is a�ne with ruj�� � B� Then the same argument
as above gives meas fx � V� ruj�p �� Ul�j�pg � �	j�p � 	j���measV �

Using this we see easily that the limit function u� � limuj has the property
that the essential oscillation of ru� over any open subset of � is bounded
from below by a �xed strictly positive constant� This �nishes the proof of
Theorem ����

Remark� The above construction is quite similar to the following simpler
example� Let us consider a sequence � � 	� � 	� � 
 
 
 	j � 
 
 
 � �� with
limj�� 	j � �� Let X � L���� �� be the space of all piecewise constant
functions� For a function f � X with jf j � 	j we de�ne Tjf � X in the
following way� Let �a� b� be a maximal open interval on which f is constant�
Let c � �a � b���� We �nd d � �a� c� and e � �c� b� such that the function
g� �a� b�� R de�ned by g�x� � �	j when x � �a� d�� g�x� � 	j when x � �d� c��
g�x� � �	j when x � �c� e�� and g�x� � 	j when x � �e� b� has the same average
as f over the intervals �a� c� and �c� b�� We then set Tjf�x� � g�x� for x � �a� b��
and repeat the same construction on the other maximal intervals on which f is
constant� Let � � A � 	� and let f� � A in ��� ��� Set fj�� � Tj��fj � It is
not di�cult to see that the sequence fj converges in L���� �� to a function f��
Moreover� the essential oscillation of f� over any open set is ��

��� Linear Systems

The examples above can be used to answer open questions �raised in �GS ����
concerning solutions of linear �� � systems of the form

��a
��
ij �x���vj � � � i � �� � ���

��



where the coe�cients are in L� and satisfy the strong Legendre�Hadamard
condition

a��ij �x����� u
i uj � �j�j�j uj�

for each ��  u � R� and almost every x� �As usual� � � ��� In what follows we
will write the system ��� as divA�x�rv � ��

There is a well known procedure for passing from solutions of non�linear
equations to solutions of linear equations with measurable coe�cients �see e�
g� �Mo ����� We will use it to construct our examples� These examples will be
based on the following proposition�

Proposition ��� There exists a smooth strictly quasiconvex function
F �M��� � R with uniformly bounded D�F and a non�trivial Lipschitz function
u�R� � R� which vanishes for jxj � � and satis�es �weakly� the equation
divDF �ru� � � is R��

Proof� We will use the notation introduced earlier in Section �� We note that
the function F� from Lemma ��	 satis�es DF���� � � and therefore the zero
matrix belongs to the set K� � M��� corresponding to F�� Therefore we see
that the function F� in Theorem ��� can be taken so that DF���� � �� Hence the
set K corresponding to F � F� in Theorem ��� can be taken so that it contains
the zero matrix� We know that there are non�trivial solutions of DU � K a� e�
in � which vanish at ��� Extending U by zero outside �� we get solutions with
the required properties�

Proposition ��� There exist L��coe�cients A�x� de�ned in R� which satisfy
the strong Legendre�Hadamard condition such that weak solutions of the linear
system divA�x�rv � � exhibit the following behavior�

�i� There exists a compactly supported solution v belonging to the Sobolev space
W ��� but not to W ����� for any � � ��

�ii� There exists a sequence vj � j � �� �� 
 
 
 of Lipschitz solutions which are
supported in fx� jxj � �g� and converge to zero weakly but not strongly in W ����

Proof� Let F and u be as in Proposition ��� and let

!A�x� �

Z �

�

D�F �tru�x�� dt


Since F is smooth and jD�F j � c� !A�x� is a well�de�ned L��function� Since F
is strongly quasiconvex� it is also strongly rank�one convex� and therefore !A�X�
satis�es the Legendre�Hadamard condition� Moreover� we have

div !A�x�ru � div �DF �ru�x�� �DF ���� � � in R�

in the weak sense�

��



Let us consider a sequence Baj �rj � fx � R�� jxj � �g of mutually disjoint
balls centered at aj with radius rj � � so that aj � � in R� and rj � �� We
let

A�x� � D�F ��� �

�X
j��

�
!A�r��j �x� aj���D�F ���

�
and

vj�x� � u�r��j �x � aj�� � j � �� �� 
 
 


The coe�cients A�x� are again bounded and satisfy the strong Legendre��
Hadamard condition� We also have divA�x�rvj � �� j � �� �� 
 
 
� The
sequence v�� v�� 
 
 
 gives �ii�� To obtain �i�� we consider a sequence c�� c�� 
 
 
 sat�
isfying

P�
j�� c

�
j � � and

P�
j�� c

���
j � � for each � � �� Then v �

P�
j�� cjvj

has the required properties�
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