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Abstract

The presented evolutionary algorithm is especially designed to gener�

ate recurrent neural networks with non�trivial internal dynamics� It is not

based on genetic algorithms� and sets no constraints on the number of

neurons and the architecture of a network� Network topology and param�

eters like synaptic weights and bias terms are developed simultaneously�

It is well suited for generating neuromodules acting in sensorimotor loops�

and therefore it can be used for evolution of neurocontrollers solving also

nonlinear control problems� We demonstrate this capability by applying

the algorithm successfully to the following task� A rotating pendulum is

mounted on a cart� stabilize the rotator in an upright position� and center

the cart in a given �nite interval�

�in� Proceedings� Concress on Evolutionary Computation �CEC����� Washington� July ����
����� IEEE Press	
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� Introduction

The combined application of neural network techniques and evolutionary algo�
rithms turned out to be a very e�ective tool for solving an interesting class of
problems �for a review see e�g� ���� ���� ����	� Especially� in situations where a
task involves dynamical features like generation of temporal sequences� recog�
nition� storage and reproduction of temporal patterns� or for control problems
requiring memory to compute derivatives or integrals� other learning strategies
are in general not available�

The ENS��algorithm �evolution of neural systems by stochastic synthesis	 out�
lined in section 
 is inspired by a biological theory of coevolution� Based on
a behavior�oriented approach to neural systems� the algorithm originally was
designed to study the appearance of complex dynamics and the corresponding
structure�function relationship in arti�cial sensorimotor systems� i�e� the systems
to evolve are thought of as 
brains� for autonomous robots or software agents�
The basic assumption here is that in 
intelligent� systems the essential� behav�
ior relevant features of neural subsystems� called neuromodules� are due to their
internal dynamical properties which are provided by their recurrent connectivity
structure ���� But the structure of such nonlinear systems with recurrences can
in general not be designed� Thus� the main objective of the ENS��algorithm is to
evolve an appropriate structure of �recurrent	 networks and not just to optimize
a given �feedforward	 network structure� It is applied to networks of standard
additive neurons with sigmoidal transfer functions and sets no constraints on the
number of neurons and the architecture of a network� In fact� it develops network
topology and parameters like weights and bias terms simultaneously on the basis
of a stochastic process�

In contrast to genetic algorithms� which are often only used for optimizing
a speci�c feedforward architecture ���� ����� it does not quantize the network
parameters like weights and bias terms� With respect to algorithms like� for
instance� EPNet ��
�� it does not include an individual 
learning� procedure�
which exists naturally only for feedforward networks and problems where an
error function or reinforcement signals are available�

For the solution of extended problems �more complex environments or sen�
sorimotor systems	 the synthesis of evolved neuromodules forming larger neural
systems can be achieved by evolving the coupling structure between modules�
This is done in the spirit of coevolution of interacting species� We suggest that
this kind of evolutionary computation is better suited for evolving neural net�
works than genetic algorithms�

In ��� we reported on tests of the algorithm� applying it to the pole�balancing
problem that usually serves as a benchmark problem for trainable controllers
���� Of course� the inverted pendulum is one of the simplest inherently unstable
systems� and balancing it under benchmark conditions is mainly in the domain
of linear control theory� Stabilizing a pendulum which is free to rotate� and






initially may be pointing downward� is therefore a more challenging nonlinear
control problem �
�� Here� stabilization of an unstable stationary state� and de�
stabilization of a stable stationary state have to be realized by one controller ����
����� In section � we will show that this problem is easily solved by evolved neural
network solutions if the controller has access to the full phase space information�
Two 
minimal� solutions of the feedforward type are presented� although also
recurrent networks were generated by the algorithm� If input signals are reduced
to only the cart position and the pole angle the problem can not be solved by a
pure feedforward structure because di�erentiation has to be involved in the pro�
cessing� We present a parsimonious 
�input solution to the swinging�up problem
in section ���� which utilizes a recurrent network structure�

Using continuous neurons for the controllers� di�erent from many other appli�
cations� our approach does not make use of quantization� neither of the physical
phase space variables nor of internal network parameters� like synaptic weights
and bias terms� or output values of the neurons� Section � gives a discussion of
the results�

� The ENS��Algorithm

To start the algorithm one �rst has to decide which type of neurons to use for the
network� We prefer to have additive neurons with sigmoidal transfer functions
for output and internal units� and use input units as bu�ers� The number of
input and output units is chosen according to the de�nition of the problem�
that is� it depends on the pre�processing of input and post�processing of output
signals� Nothing else is determined� neither the number of internal units nor
their connectivity� i�e� self�connections and every kind of recurrences are allowed�
as well as excitatory and inhibitory connections� Because input units are only
bu�ering data� no backward connections to these are allowed�

To evolve the desired neuromodule we consider a population p�t	 of n�t	
neuromodules undergoing a variation�evaluation�selection loop� i�e� p�t � �	 �
S E V p�t	� The variation operator V is realized as a stochastic operator� and
allows for the insertion and deletion of neurons and connections as well as for al�
terations of bias and weight terms� Its action is determined by �xed per�neuron
and per�connection probabilities� The evaluation operator E is de�ned problem�
speci�c� and it is usually given in terms of a �tness function� After evaluating the
performance of each individual network in the population the number of network
copies passed from the old to the new population depends on the selection opera�
tor S� It realizes the di�erential survival of the varied members of the population
according to evaluation results� In consequence of this selection process the av�
erage performance of the population will tend to increase� Thus� after repeated
passes through the variation�evaluation�selection loop populations with networks
solving the problem can be expected to emerge�
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To demonstrate the basic functioning of the ENS��algorithm we will discuss
its application to a toy control problem �balancing a rotator on a cart	� which
involves the handling of con�icting properties� stabilizing an unstable stationary
state �balancing	 and de�stabilizing a stable one �swinging�up	�

��� Setting the Problem

The problem to solve is given here as follows� A rotating pendulum is mounted
on a cart that can move on a ��dimensional interval� The controller has to bring
the pendulum into the upright position and then has to balance it as long as
possible� At the same time� interval boundaries have to be avoided� and the cart
has to be centered� The control signal is given by the force on the cart� Because
we use neurons with sigmoidal transfer functions the force applied to the cart
varies continuously between ��� � F � �� �N �� The cart is bound to move in
the interval �
�� � x � 
�� �m�� The initial position �� of the pendulum can be
anywhere on the circle with initial velocity ��� � �� The cart starts from positions
���� � x� � ��� with zero velocity �x� � ��

The equations for the physical system under control are given by

�� �
g sin � � cos �

mc�m
�F �ml ��� sin � 	

l ��
�
�

mcos� �

mc�m
�

�

�x �
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mc � m
�

where g � ����ms�� denotes gravitational acceleration� mc � ��� kg and m �
���kg mass of cart and pendulum� respectively� l � ���m half length of pendulum�
and F denotes the force applied to the cart� We use no friction terms because
we found these have no interesting e�ect on the evolution process or network
capabilities� The dynamics of cart and pendulum are computed by using Euler
discretization of these equations with time step � � ���� s�

For the neurocontroller we use the standard additive neuron model with sig�
moidal transfer function �� A termination signal is given after a time t � tmax�
The highest �tness of an individual network corresponds to the minimum of the
corresponding cost function C� it has the general form

C � c� � P� � c� � Px � c� �Nn � c� �Ns � c� � IF �

where the constants c�� � � � � c� are all positive� It takes into account the pendu�
lum�s integrated deviation from the upright position P�� and the cart�s integrated
deviation from the zero position Px �they de�ne the problem	� costs c� � Nn for
each neuron and for each connection c� �Ns �to select for parsimonious network
architectures	� Nn and Ns denote the number of neurons and synapses� respec�
tively� Furthermore� the applied force IF � integrated over the last 
� seconds of
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each trial� can also be added� This will optimize the applied force to balance
the pendulum by minimizing oscillations of the cart� The cost factors c�� � � � � c�
have to be appropriately chosen� and their choice will in�uence the properties of
the evolutionary process considerably� During a run of the ENS��algorithm these
cost factors can be varied on�line�

We distinguish between two classes of controllers� One� called t�class� uses
additive units with anti�symmetric transfer function ��x	 � tanh�x	� the other
one� the s�class� uses the strictly positive transfer function ��x	 � �� � e�x	���
The �rst class of controllers needs only one output neuron providing a force

F � �� � tanh�ai	�N� � ��	

where ai denotes the activity of the output unit i� The s�class needs two output
units� i and i� �� giving a force

F � �� � ���ai	� ��ai��		�N� � �
	

� Evolved neurocontrollers

For the following evolved solutions we used an average number of �� individuals
in each population� A successful run had about ����� generations� Because the
ENS��algorithm is primarily designed to study theoretical aspects of modularized
recurrent networks� we were not concerned about statistics or computation time�
The required computing time depends strongly on the parameter settings � their
optimal values in the context of a given problem are not known from the begin�
ning � and on the design of an appropriate �tness function� Parameters of the
algorithm are� for instance� the probabilities for insertion and deletion of neurons
and connections� and for alteration of bias and weight terms� furthermore� the
costs for neurons� for connections� and for the applied force� the steepness of the
selection function� the average population size� the maximal time to solve the
problem �stop criterion	� and the like�

It should be mentioned that all the probabilities �for insertion�deletion of
neurons� insertion�deletion of connections� variations of weights and bias terms�
etc�	 all can be set separately� For the evolution of the networks described
below the following typical parameter values of the algorithm had been used�
The probabilities for inserting and deleting a neuron where both set to ����� the
probability to set a connection from an inserted neuron to existing neurons where
set to ���� Probabilities for inserting and deleting synapses where both set to ����
and the probabilities for varying connection strengths and bias terms where set
to ���� But often the possibility to vary these parameters on�line during the
evolutionary process has been used� To obtain parsimonious network structures
one has to 
balance� the probabilities for inserting neurons and for setting its
connections�
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During intermediate states of the evolutionary process the �ttest modules
may become quite large � more than 
� neurons and �� synapses � and network
size and architecture are often varied� Finally there appear smaller modules with
equally good or better performance� Some of the 
minimal� solutions found by
the ENS��algorithm are described in the following�

��� A t�class Controller with Four Inputs

As sensor signals we choose the full set of state variables x� �� �x� �� of the physical
system� The corresponding four input units then receive the signals�

in� �� x�
�� � in� �� ��� � in� �� �x�
�� � in� �� ���� � ��	

The output unit � of a t�class controller provides the force F applied to the cart
according to equation ��	�

Among a family of larger modules� the ENS��algorithm came up with the
following minimal solution� The architecture of this controller w� is shown in
�gure � and its weights are given as follows�

w�
� � ��� ������ �
���� ������� �� �� �����	

w�

� � ��� ������ ������� ������ ������ �� �	

where wi � �wi�� wi�� � � � � win	 denotes the weight vector of its neuron i� with wi�

denoting the bias term of unit i�

a	 b	

Figure �� a�	 A minimal �t�class solution w� and b�	 its e�ective control� x�t	�
��t	� and F �t	 starting from x� � 
�� and �� � ��

Although this module has a very simple feedforward structure� tests revealed
that it solves the problem for all initial conditions�
�� � x� � 
�� and�� � �� �
� in less than �� seconds� This is demonstrated for instance in �gure �b where
cart position x� angel � and the applied force F are given as functions of time

�



Figure 
� Performance of controller w� on �x� �	�initial conditions� White������
black����

t� Starting with initial conditions x� � 
�� �cart close to boundary at x � 
��	�
�� � � �pendulum pointing down	� and �x� � ��� � � we observe that the controller
needs only three swings to get the pendulum into the upright position� and then
it balances the pendulum by centering the cart at the same time� That the
controller w� has a comparable good performance for almost all initial conditions
is demonstrated in �gure 
 where the �x� �	�space is divided into ���x��� squares�
The grey scale represents the output performance of the controller during the
�rst �
 seconds� with black representing �� and white� ����� start velocities
are �x � �� � �� The rotator is balanced for almost all �x� �	�positions of the
cart�rotator system �not black	� Grey shades correspond mainly to small cart
oscillations which still occur after some seconds if the rotator had to be swung
up from an almost downward position� Black squares indicate failure before the
end of the maximal evaluation time tmax � �
 seconds�

The module in �gure � displays already an interesting feature� it can be
understood as composed of two submodules� The structure of the one given by
neuron � with its four inputs is known as that of a pole balancing module ����
The module given by neuron � with its three inputs swings up the pole from
downward positions when isolated� They are coupled through the connection
w���

��� An s�class Controller with Four Inputs

Sensor signals are again given by equation ��	� The force on the cart is applied
according to equation �
	 for output units � and �� Again several neurocon�
trollers emerged during the evolution process and one of the minimal examples�
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the controller w�� is shown in �gure � with weights given by

w�

� � ���
� �� ������� ������ �� �� �� ������	

w�

� � ������� 
����� �
���� �
���� �� ��
�
� �� 
����	

w�

� � ���
�� �
���� ������ ���
�� ������ �� �� �	

where again wi � �wi�� wi�� � � � � win	 denotes the weight vector neuron i� with wi�

the bias term�

a	 b	

Figure �� a�	 A �s�class solution w� and b�	 its e�ective control� x�t	� ��t	� and
F �t	 starting from x� � 
�� and �� � ��

Also this neurocontroller uses only one internal neuron and a no recurrent
connections to solve the problem� The output neuron � gets a 
lateral� connection
from output neuron �� Figure �b reveals that it is even faster than the t�class
controller� It needs only two swings to get the pendulum into the upright position�
starting from x� � 
�� and �� � �� Stabilizing the pendulum and centering the
cart is done with a small oscillating force signal� The origin of these oscillation is
not given by an internal oscillator of the neural structure� but it results from the
feedback loop via the environment� The performance of controller w� on other
initial conditions is roughly comparable to that of w�� as is displayed in �gure
�� The main di�erence is that the performance of w� is not symmetric on �x� �	�
space because the bias terms of its output units are not �ne tuned� to give zero
force for zero inputs�

Again� this system can be viewed as composed of two submodules� The mod�
ule given by neuron � with its two inputs acts on the module given by the con�
nections from the inputs to the output neurons plus the connection w���
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Figure �� Performance of controller w� on �x� �	�initial conditions� White������
black����

� A t�class Controller with Two Inputs

Reducing the input signals to only cart�position x and angle � makes the the
problem more sophisticated� The control module now has to compute derivatives�
and therefore evolving recurrent connections have to be expected� The claim is�
that there exists no feedforward network which is able to solve the task �and�
to our knowledge� there is no solution of this kind described in the literature	�
Solving the problem under these restrictive input conditions seems to be a much
harder problem� In fact� we can not present an evolved neurocontroller� which
acts as successfully for all initial conditions of the physical system as� for instance�
controller w�� But it was quite easy to evolve a controller which is able to solve
the swinging�up problem ����� i�e� starting the cart�rotator system from initial
conditions x� � �� �� � �� The architecture of this controller w� is shown in
�gure �� and its weights are given as follows�

w�

� � ����

� ������ ����� ������ ���
� ����� �����	

w�

� � ������� ������ ������ ������ ������ ���
� �	

w�

� � ������� ����� 
���� �� �� �� �	

w�
� � ������� �� ������ �� �� �� �	

Figure �b shows that controller w�� although having only two inputs� is able
to swing up the rotator from x� � �� �� � �� �x� � ��� � � and to balance it in
less than �ve seconds� But then balancing is achieved by a strong periodic force
signal to the cart� This spoils of course the overall performance of the controller�
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Figure �� a�	 The 
t�controller w� solving the swinging�up problem� and b�	 cart
position and pole angle under its action� starting from x� � �� �� � ��

The performance of w� during the last �� seconds of the maximal evaluation
time tmax � 
� �s� on all of the �x� �	�initial conditions is displayed in �gure �� It
shows that there are some isolated start positions for which the controller is able
to solve the task �white squares	� Especially the central light region indicates that
the controller acts there as a pole balancer� Black dots again represent positions
where the controller fails before the maximal evaluation time tmax is reached�
For grey shaded initial conditions the controller keeps the pendulum swinging
or rotating� Black dots correspond to situations where the cart hits the interval
boundary before the end of the maximal evaluation time tmax�

As expected� the controllerw� uses recurrent connections to solve the problem�
Two self�connections� w�� and w��� and the loop w��� w��� In fact� the module
composed of neurons � and � has complex dynamical properties� for accessible
�stationary	 inputs it has quasiperiodic attractors as well as attractors of high
periodicity� Several delay lines for input signals along neurons � and � probably
do also contribute to the successful operation of the controller�

� Conclusions

We have demonstrated that the ENS��algorithm can be applied successfully to
a challenging nonlinear control problem like balancing a rotating pendulum� The
evolved network solutions for the four input problem are remarkably small in size
�compare e�g� with network solutions derived in ����	� They solve the problem
very e�ectively by getting the pendulum in upright position� stabilizing it and
centering the cart in less then �� seconds� without hitting interval boundaries�
and they do that for almost all initial conditions from intervals �� � �� � � and
�
�� � x � 
��� Because they have full access to physical phase space variables�
they do not need recurrences to compute derivatives� Remarkable is that both
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Figure �� Performance of controller w� on �x� �	�initial conditions� White������
black����

four input solutions w� and w� can be described as a composition of interacting
subsystems � one is more or less responsible for the destabilization of the stable
stationary state� the other for the balancing� i�e� the stabilization of the unstable
stationary state�

As for the pole�balancing problem discussed in ���� the problem becomes much
harder if controllers get only information about cart position and angle of the pen�
dulum� Then the problem is no longer solvable with a pure feedforward network�
because di�erentiation now has to be done by the controller itself� The evolved
controller w� presented in section ��� swings�up the pendulum from the downward
position� i�e� x� � �� �� � �� but it does not operate with comparable success on
all other initial conditions� We suggest� that the type of �tness function used for
this problem or the chosen combination of cost factors is not yet appropriate for
generating general solutions with a performance comparable to that of controller
w��

The ENS��algorithm is of course capable of generating networks for classical
network problems � usually solved by feedforward networks� This was reported in
���� In terms of required computation time �which is large for evolutionary algo�
rithms	 ENS� can not compete with learning algorithms like backpropagation�
Instead� it is used mainly for the development of network structures� optimiz�
ing parameters as well� and it has the advantage of producing unconventional
topological solutions which may be worthwhile to study in their own right�

The algorithm still can be optimized� For instance the evaluation operator
in the variation�evaluation�selection cycle may be substituted by an evaluation�
learning cycle� if an appropriate learning procedure is at hand� This is done�
for example� in the EPNet�approach in ��
� for the case of feedforward networks�
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For recurrent networks� and using a behavior based approach to neurocontrollers�
there is no universal learning rule to apply� Using only the internal states of a
neural network� we are trying to optimize a given recurrent network structure by
using ideas outlined in ���� Furthermore� equivalents to other additional features
of evolutionary algorithms � like e�g� crossing over � are not yet implemented in
the ENS��algorithm�
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