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Abstract

The elastic energy of a sequence of splitting particles is computed in the limit of
infinite splitting. The calculation combines the mathematical tool of H-measures with
the calculation of Khachaturyan et al. [1] for the elastic energy of cuboidal particles,
doublets and octets. In the infinite splitting limit, the elastic energy of particles that
split in one spatial dimension (a sequence of plates) decreases monotonically with
particle separation, while the elastic energy of particles that split in all three dimensions

(a sequence of cubes) exhibits a minimum at a particular interparticle separation.
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1 Introduction

It is well known that minimization of elastic energy can act to refine microstructure in
multiphase crystalline solids. An example of such refinement is the laminated martensite
twin structures observed in shape memory alloys, see for example [2]. Another interesting
case of refinement is the particle splitting observed in diffusional transformations of Ni-
based superalloys, see e.g. [3, 4]. Such splitting has been used as evidence for the possibility
of elastically driven microstructures consisting of small, roughly equally sized precipitates
embedded in a surrounding matrix.

The formation of fine phase microstructures has been studied extensively in the mathe-
matics community by modeling a phase transformation with a nonconvex free energy that
depends on a compatible deformation gradient field. The wells in the energy correspond
to the different phases observed in the system, while the compatibility constraint on the
deformation leads to solutions with coherent interfaces (continuous displacements). Be-
cause the solutions to this problem are not smooth, techniques beyond the Euler-Lagrange
equations must be used to describe the energy minimizing microstructures. In particular,
microstructures are associated with a minimizing sequence such that the energy decreases as
the sequence (or microstructure) refines. However, the limit of the sequence, computed in a
weak or average sense, is not itself a minimizer of the energy. Therefore, a set of mathemat-
ical tools has been developed to characterize the macroscopic properties of a microstructure
described by an infinitely fine sequence of functions. One such tool is the H-measure, which
was developed independently by Tartar [5] and Gérard [6] (under the name ‘microlocal defect
measure’) as a way to calculate certain macroscopic properties associated with the minimiz-
ing sequence.

In this paper, we apply H-measures to the problem of splitting particles. The elastic
energies of systems of splitting particles was first considered by Khachaturyan et al. [1].
They used Fourier methods to show that the elastic energy of a cuboidal particle in an
elastic matrix decreases as it splits first into two plates and then into eight self-similar

cubes. Khachaturyan et al. postulated that under further splitting, the elastic energy



decrease would continue were it not for the stabilizing influence of surface energy. However,
they did not attempt to compute the limiting elastic energy associated with infinitely split
particles.

Using H-measures, we calculate the elastic energy of a particle-matrix system in the limit
of infinite particle splitting. Following [1], we consider two cases in the limit of infinite
splitting: plate-shaped precipitates and identical cube-shaped precipitates. We find that
the energy associated with a cluster of infinitely fine cube-shaped precipitates has a nonzero
minimum for a particular cluster size and recovers to the single particle energy as the cluster
size tends to infinity. This is consistent with elasticity scaling. In contrast, the energy of
splitting into plates tends to zero as the cluster size tends to infinity, consistent with the
result that the elastic energy of a thin plate with a (1,0, 0) habit plane vanishes [1].

In section 2, we present, following [1], the set-up and solution for the elastic energies of
a system of rectangular parallelepipeds. In section 3 we briefly discuss the H-measure and
show how it can be used to calculate the elastic energy for infinite splitting. In section 4 we

discuss the results.

2 Elasticity Formulation

We want to compute the elastic energy of a two-phase system consisting of particles embed-
ded coherently in a matrix. Both phases are taken to be linearly elastic with cubic symmetry
and identical elastic constants. In reduced notation, these constants are given by the stiffness

values C'1, C15 and Cyy. The anisotropy factor is
A=Cy—Cp—20y

and is taken to be negative.
For a dilatational misfit strain ¢y between the particle and matrix phases, Khachaturyan

et al. [1] have shown that the elastic energy of the system is

B =5 [ B@XEP@k/@n)) (1)
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where

w(K) = [ x(e 2)
is the Fourier transform of the characteristic function y(x) describing the shape of the particle
or particles, k is a vector in Fourier space, and n = k/|k|. Throughout the paper, we use
boldface to denote a vector, e.g., k = (ky, ko, k3) and we use hats to denote a function defined
in Fourier space.

The elasticity kernel B(n) is given by [1]

B(n) = 2§° (On = Cra) = 22%?171(2) B (20112—75AA)(2;3(§)— 22) ¥
with
B = Ch1 + 2C,
y(n) = ninz +n2n? + nzni (4)
and
Y2(n) = ngngn?. )

As noted in [1], 7; and 7, vanish for n = {1,0,0}. Hence the elastic energy may be
decomposed into a shape independent piece corresponding to the energy of a thin plate with
a {1,0,0} facet, plus a piece that depends explicitly on the shape function y(x). Subtracting

the first piece gives the elastic energy relative to a thin plate,
AEel = VEl [4[1 + 54A12/(3011 - QA)] (6)

where V' is the total volume of precipitate phase,

1 B2Ael

By =—= 7
! 2011 (20 — A) (7)

is a positive material constant. The shape function enters through the integrals

1= 5 [ @0 P/ @n) )
and
= 5 [ 2a(m) X(R) P/ 2m)° )
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Dividing Eq. (6) by V E; gives a dimensionless measure of the elastic energy per unit volume,

. AE,
Aa =g

=411 + 54A1,/(3C}; — 2A) (10)

Khachaturyan et al. [1] evaluate the energy (10) for different particle configurations,
including: (1) a spherical particle with total volume 8a*; (2) a cuboidal particle with di-
mensions 2a X 2a x 2a; (3) a doublet consisting of two plates with dimensions 2a x a x 2a
separated by a distance (a in the x5 direction; and (4) an octet of cubes with dimensions
a X a X a equally separated by Ca in all three spatial directions. The energy for the sphere is
found analytically, while for the other three cases the Fourier transforms of the shapes are
computed explicitly and the elastic energy is found by evaluating the integrals (8) and (9)
numerically.

In our calculations, we use the trapezoidal rule in three dimensions, with a fine grid in
a cube near the origin and a coarser grid away from the origin; this is efficient because the
Fourier transforms of the shape functions involve terms of the form sinz/z. Our numerical
results have been tested both by refining the grid and increasing the size of the cube on which
we use the finest grid size; they also compare well to the H-measure calculation for cubes
presented below. Our calculations are also in agreement with [1], though we consistently
find energies about 5% higher, for example we compute AE?* = 0.593 for a single cuboidal
particle while [1] report AE?, = 0.558.

The elastic energies for a doublet of plates and an octet of cubes are shown in Figures
1 and 2. One finds that the elastic energy decreases on splitting from a cube to a doublet,
and from a cube to an octet of cubes. Khachaturyan et al. postulate that this decrease
would continue with further splitting, but they do not calculate it. They argue that splitting
beyond the first generation is unlikely from surface energy considerations.

However, as mentioned in the introduction, recent mathematical techniques now allow
one to explicitly compute the elastic energy associated with infinite splitting. This limit is
important because it gives the total elastic driving force for particle refinement and inverse
coarsening. We note that the results of Khachaturyan et al. predict about a 13% decrease in

elastic energy in going from a cube to a doublet, and a 22% decrease from a cube to an octet.



Hence there is still a significant elastic contribution to the total energy after such transitions,
and so one might expect further evolution of the microstructure to further reduce the elastic

energy.

3 H-measures

H-measures were introduced independently by Tartar [5] and Gérard [6] as a way to extract
macroscopic information from a sequence of functions that converges weakly to zero. In
the present context the sequence of functions that we consider will be the sequence of shape
functions as splitting proceeds; e.g the sequence of shape functions for two plates, four plates,
eight plates, etc. By subtracting the average shape function from this sequence, we generate
a new sequence that converges weakly to zero and so is consistent with the definition of
the H-measure. The energy associated with the splitting particles in the limit can then be
calculated from the H-measure, see Eq. (14) below.

We first present a simplified version of Tartar’s result for the H-measures for periodic

functions [5] appropriate to the present situation. Consider a sequence of scalar functions

u;(x) = X, (x)v(jx) (11)

where v(y) is periodic in y with period P. The function v represents a periodic array of
particles and y_, is a cutoff function to keep the total particle volume finite. If v has average
zero then u; converges weakly to zero as j — oo; i.e., as the period of the array goes to zero.
As a periodic function v has the Fourier expansion
o(y) = Y e, (12)
kez3

where k is a vector in Fourier space and Z3 is the integer lattice. The condition that v has

zero average amounts to vg = 0. Then, the H-measure of the sequence u; is

(1) = X, (x)dx ® Y [oel G- (13)
k



A fundamental property of the H-measure is that for any continuous function ®(k/|k|)
defined on the unit sphere S?,
k k k
lim <I>—1l-2://<1>—dx,k:/ dx 37 (g2 14
Jim [ Bl = [, [ oGinteio = [ xix el (1)
In the example of particle splitting it is clear that the sequence u; corresponds to the
shape functions of the splitting particles and the function ® corresponds to the elastic energy

kernel B(n) (or v;(n) and 73(n)). We now compute the H-measure in detail, first for splitting

into a sequence of plates, and then for splitting into a sequence of cubes.

3.1 Splitting into plates

We consider splitting into a sequence of plates with habit planes in a (0,1,0) orientation.
We denote the oscillating part of the shape function as follows. Consider a periodic function

p with period 2aL such that on the interval [—aL, aL],

1 for |z] <a
p(x) = : (15)

0 otherwise

The function p(jxs) represents an infinite array of plates with (0, 1,0) habit and with period
%. The variable L is a dimensionless cluster size, and ( = L — 1 is a dimensionless particle

separation. If we define

1 forep <n<e
X(ChCQ)(n) = ) (16)
0 otherwise

then the sequence of splitting particles is represented by

Xj (21, 02, 12) = X,, (X)p(jT2) (17)

where the cutoff function is

Xeo (X) - X(—a,a) (l‘l)X(—aL,aL) (l‘Z)X(—a,a) (1‘3) (18)

Introduce the average characteristic function

1

—X(=a,0)(T1) X(=aL,ar) (Z2) X (a,a) (T3)- (19)

Xoo:L
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Then, because p(zy) — % has zero average over a period 2aL, x; — X converges weakly to
zero. Noting that the calculation of AEY () involves the integrals I; and I, given in Eqgs.

el

(8) and (9), we compute for i = 1,2

L@ = Xe 4 xeld = [ uml Tl dk + [ i(m) Kol Pdk

+2Re ([ 24(m) (G ) Raedh ) (20)

—

One can show that the cross-term vanishes as j — oo because x; — X« approaches zero

weakly in this limit, and both ~; and Y are sufficiently smooth. See [5] for details. Hence

AE;(xj) = AE(Xj — Xoo) + AEZ (Xoo) (21)

as j — oo, where the energy associated with x; — xo can be computed using H-measures
and the energy associated with x, can be computed numerically as in [1].

We compute the H-measure from the Fourier series coefficients of

v(w2) = p(w2) — % (22)

following Eqs. (12)-(14). However we notice immediately that because the oscillations are
only in zo, this Fourier series has components only in ks. Hence the H-measure (13) of the

sequence X; — Xoo 18
1
1= Xeo (X)AX ® 3 [0y = Xeo (X)X @ F00,10) (23)
k
from Plancherel’s theorem. Hence from Eq. (14)

lim [ ()| = oo + Xoo'd% = 0 (24)

j—00

because v;(0,1,0) = 0. This result is a manifestation of the result that AE} = 0 for an
infinitely thin plate with a (0,1,0) habit. Note however that while the energy computed
from the H-measure vanishes, the energy associated with particle splitting has a non-zero
contribution from X, see Eq. (21). This energy depends on the cluster size L, and is plotted
in Figure 1 along with the energy for splitting into two plates. Note that as L — oo, the

elastic energy associated with infinite splitting goes to zero.
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3.2 Splitting into cubes

We next consider splitting into sequences of cubes. In this case the splitting is in all three

spatial dimensions, so we represent the splitting particles by

Xi (71, T2, ¥2) = X, (X)p(j21)p(J22)p(j23) (25)

where the cutoff function is

Xeoo (X) = X(—aL,al) (xl)X(—aL,aL) (xQ)X(—aL,aL) (z3) = X(—aL,aL)3 (21, 22, x3) (26)

and where p is given by Eq. (15). Note that the average characteristic function in this case
is
1
Xoo = T5X(-aL.aL) (21)X(=aL,ar) (T2) X(=aL,ar) (23) (27)
such that x; — Xoo converges weakly to zero. As in the previous case, we want to compute
AE}(xj) = AE}(Xj — Xoo) + AE} (Xoo) as j — 00, using H-measures for the first term and
numerical integration for the second.
In this case, the fact that splitting is in all three spatial dimensions implies that that the

H-measure will be supported on all unit vectors k/|k|, where k = (ky, ks, k3) runs through

the integer lattice. To find u, we compute the Fourier series coefficients of

1
v(x) = p(z1)p(z2)p(23) — 73
This yields vy = 0 and
1 . 7Tk1 . 7Tk2 . 7Tk3
v = ey sin( 7 )sm(T) sm(T) (28)
for k # 0. Hence from Eq. (13),
1 ,27Tk1 _27'(]{/'2 ,27'(]{/'3
M(X, k) = XcodX X N kQZk;BGZ W Sin (T) sSin (T) Sin (T)(Sk”k‘ (29)
Applying Eq. (14) to the integrals (8) and (9), we find (for i = 1,2)
1 —
sim > [ 5i(m) ;= Xk (2m)7 = (30)
1 Vik/K|) . o mhy oo Thay oy Thy
— d — — )0k /[k|-
(27_‘_)3‘/ R3 Xco thkgk:?)ez ﬂ_ﬁk%k%kg) S ( L )Sln ( L )Sln ( L ) k/‘k|
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This gives AEY(xj — Xoo)- It is also straightforward to compute AE}(xc); indeed but
for a scaling by L this is identical to the calculation for the elastic energy of a cube. The
results are shown in Figure 2 as a function of cluster size L. Also plotted is the elastic energy
associated with splitting into an octet of cubes. Note that in this case, as L — 0o, the elastic
energy approaches the elastic energy of a single cube, consistent with elasticity scaling for

this self-similar splitting geometry.

4 Discussion

In this paper, we have extended the calculation of Khachaturyan et al. [1] to calculate the
elastic driving force for a cuboidal particle to split into both an infinitely fine laminate and an
infinitely fine dispersion of cubes. While Khachaturyan et al. use an explicit shape function
to compute the elastic energy of a cube, two plates and eight cubes, we compute the limiting
energy by calculating the H-measure associated with a sequence of splitting particles. We
then find the elastic energy in the limit of infinite splitting by using the elastic energy kernel
of [1] together with the results of Tartar [5].

The calculation of the H-measures for particle splitting naturally separates the elastic

*

energy into two pieces, denoted AE},

(Xoo) and AEY(Xj — Xoo). The first term is associated
with the average characteristic function for the particle cluster. Essentially the cluster is
considered as a homogeneous but diffuse particle, with strength proportional to the ratio
of particle volume to cluster volume. One then calculates the energy directly from Eq. (1)
using the shape function for the cluster, scaled by its strength. The second term gives the
energy associated with the (zero average) rapid oscillations. This contribution to the energy
is calculated directly from the H-measure of the sequence using Eq (14).

The elastic energies of the two geometries considered— splitting into plates and splitting
into cubes —show very different behavior in the H-measure limit. Consider first splitting

into plates. As expected, the energy AE¥ (o) equals the energy of a single cube at zero

particle separation (i.e. the cluster size is identical to the particle size), and decreases as
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the separation increases. This decrease is inversely proportional to the cluster size as the
splitting only occurs in one direction. However, the energy AEY (x; — Xoo) associated with
oscillations is always zero. This is because the H-measure for particle splitting is non-zero
only when n = k/|k| = (0,1,0), the direction of the splitting, and both ~; and v, (Egs. (8)
and (9) vanish for this n. Essentially we recover in this infinite splitting limit the result that
a thin plate with a (0,1, 0) facet is the optimal elastic energy shape.

Consider next splitting into cubes. Here again, AEY (x) equals the energy of a single
cube at zero particle separation and decreases as the separation increases. In this case, the
decrease is inversely proportional to the cluster size cubed, as splitting occurs in all three
directions. More interestingly, the energy AE}(X; — Xoo) associated with the H-measure
does not vanish, but instead is an increasing function of cluster size. At very large cluster
sizes, this H-measure energy is identical to the energy of a single particle, as expected from
elasticity scaling. We note that the total energy associated with a sequence of cube splitting
has a minimum at a finite cluster size, and so is similar in behavior to splitting into octets.
We find for octets AEY, = 0.467 at a cluster size of 1.37 (equivalently, a separation of 0.37),
while for the infinite splitting limit the minimum AE} = 0.349 at a cluster size of 1.39.
Thus, infinite splitting into cubes provides at most about a 25% decrease below the elastic
energy of an octet.

As noted by Khachaturyan et al. [1], the elastic energy decrease upon splitting is coun-
tered by the increase in surface energy. It seems reasonable that the small gain in elastic
energy associated with splitting beyond an octet of cubes will not be sufficient to overcome
the increased surface energy. A more intriguing possibility is splitting into a laminate of plate-
shaped particles, as the elastic energy can be decreased to zero for such a microstructure.
It is interesting to note that such a microstructure has been observed in some simulations
using isotropic elasticity but with different elastic constants for the two phases [7]. In con-
trast, splitting has been observed in other other simulations using anisotropic homogeneous
elasticity as considered here [8].

Finally, we note that the simplest alternative to particle splitting is particle ‘plating,’
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in which a cube undergoes a morphological transition in which two sides lengthen while
the third side shrinks. Khachaturyan et al. [1] consider such a possibility, though they do
not calculate the elastic energy of a plate with flat sides (their ‘platelet’ has the shape of a
circular disk). The results of such a calculation for a plate with dimensions 2an x 2—‘2‘ X 2amn are
shown in Figure 3 as a function of 1. Following [1] we also calculate the critical size for the
transition from a cube to a plate; this is shown in Figure 4. We scale by a length 7o = 0/ E},
where o is surface energy and E) is the elastic energy given by Eq. (7). Of particular interest
is the value (a/ro)|,=1 = 4.39. This compares to critical values of (a/r) = 13 for splitting
from a cube to a doublet, and (a/ry) = 25 for splitting from a cube to an octet, see [1].
Hence, at least on energetic grounds, the formation of plates seems more likely than particle

splitting.

Acknowledgments

PHL would like to thank the Max Planck Institute for Mathematics in the Sciences in Leipzig,

Germany for their hospitality during the course of this work.

12



References

1

8]

A.G. Khachaturyan, S.V. Semenovskaya, and J.W. Morris. Theoretical analysis of strain-
induced shape changes in cubic precipitates during coarsening. Acta metall., 36:1563—

1572, 1988.
Z. Nishiyama. Martensitic transformation. Academic Press, 1978.

T. Miyazaki, M. Imamura, and T. Kozaki. The formation of gamma’ precipitate doublets

in Ni-Al alloys and their energetic stability. Mater. Sci. Eng., 54:9-15, 1982.

M. Doi, T. Miyazaki, and T. Wakatsuki. The effect of elastic interaction energy on the
morphology of gamma’ precipitates in nickel-based alloys. Mater. Sci. Eng., 67:247-253,
1984.

L. Tartar. H-measures, a new approach for studying homogenization, oscillations and con-
centration effects in partial differential equations. Proc. Roy. Soc. Edinburgh A, 115:193—
230, 1990.

P. Gérard. Microlocal defect measures. Comm. PDE, 16:1761-1794, 1991.

P.H. Leo, J.S. Lowengrub, and Herng-Jeng Jou. A diffuse interface model for microstruc-

tural evolution in elastically stressed solids. Acta mater., 46:2113-2130, 1998.

D.Y. Li and L.Q. Chen. Shape evolution and splitting of coherent particles under applied
stress. Acta mater., 47:247-257, 1998.

13



0.6

0.55

0.5

0.45 \ solid line: doublet of plates

04r \ dashed line: infinite splitting (H-measure limit)

wo.35 \
<

T
7/

0.3

0.25 h

02 B ~

0.15 T~

1 1.5 2 2.5 3 3.5 4 4.5
cluster size L

Figure 1: The elastic energy AFE,; plotted against cluster size L for a doublet of plates and

in the H-measure limit of infinite splitting into plates.
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Figure 2: The elastic energy AFE,; plotted against cluster size L for an octet of cubes and in

the H-measure limit of infinite splitting into cubes.
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Figure 3: The elastic energy AFE, plotted against aspect ratio n for a single plate with

dimensions 2an x 2a/n? X 2an.
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a plate with dimensions 2an x 2a/n? x 2an plotted against aspect ratio . The parameter
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