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Abstract

We discuss the time-discrete parametrized dynamics of two coupled re-
current neural networks. General conditions for the existence of synchro-
nized dynamics are derived for these systems, and it is demonstrated that
also the coupling of totally different network structures can result in peri-
odic, quasiperiodic as well as chaotic dynamics constrained to a synchro-
nization manifold M. Stability of the synchronized dynamics can be calcu-
lated by Lyapunov exponent techniques. In general, in addition to synchro-
nized attractors there often co-exist asynchronous periodic, quasiperiodic
and even chaotic attractors. Simulation results with respect to a minimal
coupling scheme for neuromodules of different type are presented.
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1 Introduction

There is experimental evidence that coherent firing of spatially separate neurons
in biological brains appears as a response to specific external stimuli. This lead
to the famous “binding hypothesis” which states that selective synchronization
of neural activity is a fundamental temporal mechanism for binding spatially
distributed features into a coherent object. (cf. e.g. [5], [6], [19]). In this context
conceptual discussions and biologically motivated models were mainly based on
synchronization of oscillatory dynamics in large, e.g. high-dimensional systems.
But with respect to brain theory it seems that one is often not aware of the rich
phenomenology of coupled nonlinear subsystems.

On this background we will study the parametrized time-discrete dynamics
of two coupled neural networks with recurrent connectivity. The subsystems are
called neuromodules because they are considered as basic building blocks for larger
neural networks. These neuromodules are described as low-dimensional dynam-
ical systems with nonlinearities introduced by the sigmoidal transfer functions
of standard additive neurons. As parameters we will consider bias terms and/or
stationary inputs, the synaptic strength (or weights) between module neurons,
and the coupling strength between neurons of different modules.

On the other hand, since 1990 the synchronization of chaotic systems has been
extensively investigated experimentally as well as theoretically. Although a large
part of the work has been motivated by its potential for technical applications
there is still an ongoing discussion of the theoretical aspects of this phenomenon
[7], [14], [16], [17], [18]. Most articles study coupled time-continuous systems
like Lorenz or Rossler systems; but — as in this contribution — also time-discrete
systems are considered (e.g. [3], [4], [8])-

We will use the term “synchronization” here in the sense of complete syn-
chronization; i.e. the states of the systems will coincide, while the dynamics in
time remains periodic or chaotic. Thus, the coupled networks under considera-
tion will have the same number of neurons. Often it is claimed that complete
synchronization appears only if the interacting systems are identical. But the
synchronization conditions derived in section II show that synchronization of
corresponding neurons can be achieved even if the systems are different; i.e. the
coupled networks have different recurrent architectures. Synchronous chaos in
the case of bi-directionally coupled identical neuromodules has been discussed
e.g. in [11]; for the case of driven neuromodules see [12], for two coupled chaotic
neurons [13].

As an example for synchronized dynamics in neuromodules of different types,
in section III a three neuron ring network is coupled with a bi-directional chain
of three neurons. Although the dynamical features of the isolated systems are
quite different — besides fixed point attractors 3-rings can have period-2, -3 and
period-6 attractors [9], whereas 3-chains can have p-periodic attractors for all p,
and chaotic attractors as well [10]- there are many different coupling schemes



which guarantee the existence of completely synchronized dynamics. Computer
simulations demonstrate stable synchronous chaos for the case of a “minimal”
coupling scheme. General aspects of synchronizing neuromodules are discussed
in section IV.

2 Coupled neuromodules

We are considering a neuromodule with n units as a discrete parametrized dy-
namical system on an n-dimensional activity phase space R". With respect to a
set p of parameters it is given by the map f, : R" — R" defined by

ai(t—l—l)zﬁi—l—i:wija(aj(t)), i=1,...,n, (1)

where a; € R" denotes the activity of the i-th neuron, and 6; = ; + I; denotes
the sum of its fixed bias term 6; and its stationary external input I;. The output
0; = o(a;) of a unit is given by the standard sigmoidal transfer function o(z) :=
(1+e7*)7! 2 € R, and w;; denotes the synaptic weight from unit j to unit i. If
there exists a parameter set p = (6, w) for which the dynamics (1) has at least
one chaotic attractor, the module will be called a chaotic neuromodule.

Now, let A and B denote two neuromodules (1) with parameter sets p?* =
(04, w?) and p? = (62, wP), respectively. Connections going from module B
to module A are given by an (n x n)-coupling matrix w*Z. Correspondingly,
connections from module A to module B are given as a matrix w?4. Thus, the
architecture of the 2n-dimensional coupled system is given by a matrix w of the

form
o= < UJA U)AB> (2)
=\wBA wB |-
The neural activities of module A and B will be denoted a;, b;, ¢« = 1,...,n,

respectively; and F, : R*™ — R denotes the parametrized dynamics of the
coupled systems with respect to p := (p?, p?, w8, wP4).

In the following we will consider the process of complete synchronization,
which means that there exists a subset D C R?" such that (ag,by) € D implies

tli>rcr>10| a(t;ag) — b(t;00) | =0,

where (a(t; ag),b(t; b)) denotes the orbit under F, through the initial condition
(ag, by) € R*. Thus we are interested in the case where corresponding neurons
of the modules have identical activities during a process. A synchronized state s
of the coupled system is defined by s := a = b € R", and the synchronization
manifold M := {(s,s) € R*™ | s = a = b} of synchronized states corresponds to
an n-dimensional hyperspace M = R" C R*".

A straight forward calculation will prove the following general synchronization
condition:



Lemma 1 Let the parameter sets p, pP of the modules A and B satisfy
QA — 0B 7 (wA o wBA) — (wB o wAB) ) (3)

Then every orbit of F, through a synchronized state s € M s constrained to M
for all times; i.e. M is an F,-invariant manifold.

The condition (3) shows that synchronization can be achieved for modules with

different weight matrices w* and w?, as well as with different coupling matrices

wAB and wP4, as long as (3) is satisfied. Using the definitions 6 := 64 = 6P and
A A A

the corresponding synchronized dynamics F; : M — M is then given by the n

equations
n

sz(t+1):91+2w$a(sj(t)), 221,,n (5)
j=1
Thus, the synchronized dynamics corresponds to that of an n-module with weight
matrix w', and it depends on the choice of the coupling matrices w*? and w?4
satisfying (3).

Although the persistence of the synchronized dynamics is guaranteed by con-
dition (3), it is not at all clear that the dynamics constrained to the manifold
M is asymptotically stable with respect to the dynamics F}; i.e. if a small per-
turbation of the system in a synchronous mode will desynchronize the system or
not. A periodic or chaotic orbit in M may be an attractor for the synchronized
dynamics F}; but not for the dynamics F), of the coupled system [2]. We therefore
have to discuss stability aspects of the synchronized dynamics with the help of
Lyapunov exponents, and will discerne between synchronization exponents A and

transversal exponents A, i = 1,...,n (compare e.g. [11]). They are derived from

(]
the linearizations LT (s(t)) and L~ (s(t)), respectively, of the systems dynamics
F, along synchronized orbits s(t) constrained to Af; for 4,5 =1,...,n we have

L?;-(s) = w;; ~o'(sj), Li;(s) = wj; - a'(s;), (6)
with ¢’ denoting the derivative of the sigmoid o, w™ as in equation (4), and w™
given by
— i (A BAy _ (, B AB

Wy = (wij — Wy, )= (wij — Wy ) - (7)
Synchronized chaotic dynamics will be characterized by the largest synchroniza-
tion exponent satisfying A > 0. On the other hand, a positive transversal ex-
ponent \{ indicates unstable synchronized dynamics. Thus, if an unstable syn-
chronous chaotic orbit exists in M then the system naturally must have entered
a hyperchaotic regime [15]; i.e. at least two Lyapunov exponents of the system
F, are positive.



Figure 1: A minimal coupling configuration for complete synchronization of a
3-ring (module A) with a bidirectional 3-chain (Module B).

3 Example: Coupled 3-neuron modules

To demonstrate the complete synchronization of two different types of networks,
we will study the following setup where an (oscillatory) 3-ring is coupled to a
(chaotic) bi-directional 3-chain. The modules and their couplings are shown in
figure 1, and the dynamics of the coupled system is given by

a(t+1) 07t + wiy o(as(t)) +wi a(by(t))
ar(t+1) = 04 4+ wi o(ar(t)) + wif o(bs(t)) ,
as(t +1) = 04 +wiyo(ax(t)),

bi(t+1) = 08 +who(b(t) +wio(as(t)),
bo(t+1) = 0F +wl o(bi(t)) +wE o(bs(t)),
bs(t+1) = 07 +wd o(ba(t)) .

A possible realization of the synchronization condition (3) for this special case
together with the corresponding parameter values reads

wh =wiy =8, w=wi'=-8,
wﬁzwizS , w?Q:waZS,
wh = wyf = -8,
01:—1, 02 - —36, 03:—4

For these parameter values the coupled system has a stable synchronized 2-cyclic
chaotic attractor, which is depicted in figure 2. Recall [1], that a chaotic attractor



is called p-cyclic if it has p connected components which are permuted cyclically

by the map F); i.e. every component of a p-cyclic attractor is an attractor of
F?. Figure 2 shows the projections of the chaotic attractor onto the (02, 04)-
subspace and onto the subspaces (07, 07), (03, 0%), and (04, 04'), demonstrating
that the chaotic orbit is in fact constrained to M (main diagonal in the last three

subspaces).
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Figure 2: Completely synchronized chaos for two coupled 3-modules having dif-
ferent architectures. Parameters: see text.

Furthermore, we simulated the system with parameters from a neighbourhood
of the values given above. The completely synchronized 3-dimensional dynamics
of this coupled sytem is given by equation (5). That it has interesting dynamical
features can be read from the bifurcation sequence with repect to the variation

of 0y := 03 = 68 shown in figure 3. The parameters are here given by wi, =
Wy = wih = —wyiy = —wiy =8, 0 = —1, 03 = —4. Starting from a fixed point
attractor for f; = —8, the systems jumps into a period doubling route to chaos

followed by windows of periodic, quasi-periodic and chaotic dynamics. There are
also fy-intervals where we observe coexisting synchronous periodic and chaotic
attractors. In fact, for this special coupled system the synchronized dynamics
will always be stable; this can be easily seen by the fact that the only nonzero
elements of w™ in (7) are wy; and wsy, and thus the matrices L~ (s) in (6) have
zero eigenvalues for all synchronous states s. Therefore the largest transversal
Lyapunov exponent A\{ will be negativ for all orbits constrained to M.
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Figure 3: Bifurcation sequence for the completely synchronized dynamics of cou-
pled 3-modules. Parameters: see text.

4 Conclusions

It has been shown that also in systems of two coupled neuromodules with the
same number of neurons but different architectures synchronous chaos as well
as synchronized periodic or quasiperiodic dynamics can exist. The configuration
discussed in section III is a special case in the sense that the coupling structure
is minimal. This had the effect that the synchronized dynamics is stable for all
parameter values. Thus, even coexisting attractors are always constrained to the
synchronization manifold M. Introducing only one more coupling connection,
witB for instance, satisfying the synchronization condition (3), will generate all
the phenomena described e.g. in [11]; i.e. depending on module parameters,
orbits constrained to a synchronization manifold can be globally or locally stable,
or unstable. For large parameter domains stable synchronous dynamics will co-
exist with asynchronous periodic, quasiperiodic or even chaotic attractors. Thus,
whether a system ends up asymptotically in a synchronous mode or not depends
crucially on initial conditions, i.e. on the internal state of the system. In this
sense the reaction to external signals depends also on the history of the system
itself. This may introduce memory effects into the behavior of coupled systems.

The conditions (3) for the existence of complete synchronization require that
the sum of bias terms and stationary external inputs of corresponding module
neurons are identical. A synchronized mode of the coupled system persists even
if parameters, like corresponding external inputs, are varying slowly. Thus, the
synchronized dynamics may pass through a whole bifurcation sequence, and this
can be understood as a sign for time-varying input signals with amplitudes having
a fixed ratio (recall that inputs may correspond to the weighted outputs of other



units of a larger system).

Analysis as well as computer simulations show, that de-synchronization of
module dynamics can be achieved in various ways: Diverging external inputs
or other diverging parameters (like module weights or the strength of couplings
between modules) will immediately de-synchronize the modules.

The presented results can stimulate new dynamical models for networks
with higher information processing (or cognitive) capabilities. The rather typi-
cal co-existence of synchronized modes with modes of asynchronous dynamics
relativices functional properties (like “feature binding”) attributed to synchro-
nization, but at the same time introduces memory aspects into these systems
through generalized hysteresis effects. Furthermore, since synchronization and
de-synchronization of modules can be controlled by different parameters, atten-
tion guided synchronization of subsystems is an additional interesting functional
feature of coupled neuromodules.
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