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Abstract

We discuss the time�discrete parametrized dynamics of two coupled re�

current neural networks� General conditions for the existence of synchro�

nized dynamics are derived for these systems� and it is demonstrated that

also the coupling of totally di�erent network structures can result in peri�

odic� quasiperiodic as well as chaotic dynamics constrained to a synchro�

nization manifoldM � Stability of the synchronized dynamics can be calcu�

lated by Lyapunov exponent techniques� In general� in addition to synchro�

nized attractors there often co�exist asynchronous periodic� quasiperiodic

and even chaotic attractors� Simulation results with respect to a minimal

coupling scheme for neuromodules of di�erent type are presented�

�in� Proceedings IJCNN���� July ����	� ����� Washington� USA� to appear�

�



� Introduction

There is experimental evidence that coherent �ring of spatially separate neurons
in biological brains appears as a response to speci�c external stimuli� This lead
to the famous �binding hypothesis� which states that selective synchronization
of neural activity is a fundamental temporal mechanism for binding spatially
distributed features into a coherent object� �cf� e�g� ���	 �
�	 ������ In this context
conceptual discussions and biologically motivated models were mainly based on
synchronization of oscillatory dynamics in large	 e�g� high
dimensional systems�
But with respect to brain theory it seems that one is often not aware of the rich
phenomenology of coupled nonlinear subsystems�

On this background we will study the parametrized time
discrete dynamics
of two coupled neural networks with recurrent connectivity� The subsystems are
called neuromodules because they are considered as basic building blocks for larger
neural networks� These neuromodules are described as low
dimensional dynam

ical systems with nonlinearities introduced by the sigmoidal transfer functions
of standard additive neurons� As parameters we will consider bias terms and�or
stationary inputs	 the synaptic strength �or weights� between module neurons	
and the coupling strength between neurons of di�erent modules�

On the other hand	 since ���� the synchronization of chaotic systems has been
extensively investigated experimentally as well as theoretically� Although a large
part of the work has been motivated by its potential for technical applications
there is still an ongoing discussion of the theoretical aspects of this phenomenon
���	 ����	 ��
�	 ����	 ����� Most articles study coupled time
continuous systems
like Lorenz or R�ossler systems� but � as in this contribution � also time
discrete
systems are considered �e�g� ���	 ���	 �����

We will use the term �synchronization� here in the sense of complete syn�

chronization� i�e� the states of the systems will coincide	 while the dynamics in
time remains periodic or chaotic� Thus	 the coupled networks under considera

tion will have the same number of neurons� Often it is claimed that complete
synchronization appears only if the interacting systems are identical� But the
synchronization conditions derived in section II show that synchronization of
corresponding neurons can be achieved even if the systems are di�erent� i�e� the
coupled networks have di�erent recurrent architectures� Synchronous chaos in
the case of bi
directionally coupled identical neuromodules has been discussed
e�g� in ����� for the case of driven neuromodules see ����	 for two coupled chaotic
neurons �����

As an example for synchronized dynamics in neuromodules of di�erent types	
in section III a three neuron ring network is coupled with a bi
directional chain
of three neurons� Although the dynamical features of the isolated systems are
quite di�erent � besides �xed point attractors �
rings can have period
�	 
� and
period

 attractors ���	 whereas �
chains can have p
periodic attractors for all p	
and chaotic attractors as well ����� there are many di�erent coupling schemes

�



which guarantee the existence of completely synchronized dynamics� Computer
simulations demonstrate stable synchronous chaos for the case of a �minimal�
coupling scheme� General aspects of synchronizing neuromodules are discussed
in section IV�

� Coupled neuromodules

We are considering a neuromodule with n units as a discrete parametrized dy

namical system on an n
dimensional activity phase space Rn� With respect to a
set � of parameters it is given by the map f� � R

n � R
n de�ned by

ai�t� �� � �i �
nX

j��

wij ��aj�t�� � i � �� � � � � n � ���

where ai � R
n denotes the activity of the i
th neuron	 and �i � �i � Ii denotes

the sum of its �xed bias term �i and its stationary external input Ii� The output
oi � ��ai� of a unit is given by the standard sigmoidal transfer function ��x� ��
�� � e�x���	 x � R	 and wij denotes the synaptic weight from unit j to unit i� If
there exists a parameter set � � ��� w� for which the dynamics ��� has at least
one chaotic attractor	 the module will be called a chaotic neuromodule�

Now	 let A and B denote two neuromodules ��� with parameter sets �A �
��A� wA� and �B � ��B� wB�	 respectively� Connections going from module B

to module A are given by an �n � n�
coupling matrix wAB� Correspondingly	
connections from module A to module B are given as a matrix wBA� Thus	 the
architecture of the �n
dimensional coupled system is given by a matrix w of the
form

w �
�
wA wAB

wBA wB

�
� ���

The neural activities of module A and B will be denoted ai	 bi	 i � �� � � � � n	
respectively� and F� � R�n � R

�n denotes the parametrized dynamics of the
coupled systems with respect to � �� ��A� �B� wAB� wBA��

In the following we will consider the process of complete synchronization	
which means that there exists a subset D � R

�n such that �a�� b�� � D implies

lim
t��

j a�t� a��� b�t� b�� j � � �

where �a�t� a��� b�t� b��� denotes the orbit under F� through the initial condition
�a�� b�� � R

�n� Thus we are interested in the case where corresponding neurons
of the modules have identical activities during a process� A synchronized state s

of the coupled system is de�ned by s �� a � b � R
n	 and the synchronization

manifold M �� f�s� s� � R
�n j s � a � bg of synchronized states corresponds to

an n
dimensional hyperspace M �� R
n � R

�n�
A straight forward calculation will prove the following general synchronization

condition�

�



Lemma � Let the parameter sets �A� �B of the modules A and B satisfy

�A � �B � �wA � wBA� � �wB � wAB� � ���

Then every orbit of F� through a synchronized state s � M is constrained to M

for all times� i�e� M is an F��invariant manifold�

The condition ��� shows that synchronization can be achieved for modules with
di�erent weight matrices wA and wB	 as well as with di�erent coupling matrices
wAB and wBA	 as long as ��� is satis�ed� Using the de�nitions � �� �A � �B and

w�

ij �� �wA
ij � wAB

ij � � �wB
ij � wBA

ij � � ���

the corresponding synchronized dynamics F s
� � M � M is then given by the n

equations

si�t� �� � �i �
nX

j��

w�

ij � ��sj�t�� � i � �� � � � � n � ���

Thus	 the synchronized dynamics corresponds to that of an n
module with weight
matrix w�	 and it depends on the choice of the coupling matrices wAB and wBA

satisfying ����
Although the persistence of the synchronized dynamics is guaranteed by con


dition ���	 it is not at all clear that the dynamics constrained to the manifold
M is asymptotically stable with respect to the dynamics F�� i�e� if a small per

turbation of the system in a synchronous mode will desynchronize the system or
not� A periodic or chaotic orbit in M may be an attractor for the synchronized
dynamics F s

� but not for the dynamics F� of the coupled system ���� We therefore
have to discuss stability aspects of the synchronized dynamics with the help of
Lyapunov exponents	 and will discerne between synchronization exponents �si and
transversal exponents ��i 	 i � �� � � � � n �compare e�g� ������ They are derived from
the linearizations L��s�t�� and L��s�t��	 respectively	 of the systems dynamics
F� along synchronized orbits s�t� constrained to M � for i� j � �� � � � � n we have

L�

ij�s� �� w�

ij � �
��sj� � L�ij�s� �� w�ij � �

��sj� � �
�

with �� denoting the derivative of the sigmoid �	 w� as in equation ���	 and w�

given by
w�ij �� �wA

ij � wBA
ij � � �wB

ij � wAB
ij � � ���

Synchronized chaotic dynamics will be characterized by the largest synchroniza

tion exponent satisfying �s� � �� On the other hand	 a positive transversal ex

ponent ��� indicates unstable synchronized dynamics� Thus	 if an unstable syn

chronous chaotic orbit exists in M then the system naturally must have entered
a hyperchaotic regime ����� i�e� at least two Lyapunov exponents of the system
F� are positive�
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Figure �� A minimal coupling con�guration for complete synchronization of a
�
ring �module A� with a bidirectional �
chain �Module B��

� Example� Coupled ��neuron modules

To demonstrate the complete synchronization of two di�erent types of networks	
we will study the following setup where an �oscillatory� �
ring is coupled to a
�chaotic� bi
directional �
chain� The modules and their couplings are shown in
�gure �	 and the dynamics of the coupled system is given by

a��t� �� �� �A� � wA
�� ��a��t�� � wAB

�� ��b��t�� �

a��t� �� �� �A� � wA
�� ��a��t�� � wAB

�� ��b��t�� �

a��t� �� �� �A� � wA
�� ��a��t�� �

b��t� �� �� �B� � wB
�� ��b��t�� � wBA

�� ��a��t�� �

b��t� �� �� �B� � wB
�� ��b��t�� � wB

�� ��b��t�� �

b��t� �� �� �B� � wB
�� ��b��t�� �

A possible realization of the synchronization condition ��� for this special case
together with the corresponding parameter values reads

wB
�� � wAB

�� � � � wA
�� � wBA

�� � �� �

wA
�� � wB

�� � � � wA
�� � wB

�� � � �

wB
�� � wAB

�� � ���

�� � �� � �� � ���
 � �� � ���

For these parameter values the coupled system has a stable synchronized �
cyclic
chaotic attractor	 which is depicted in �gure �� Recall ���	 that a chaotic attractor
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is called p�cyclic if it has p connected components which are permuted cyclically
by the map F�� i�e� every component of a p
cyclic attractor is an attractor of
F p
� � Figure � shows the projections of the chaotic attractor onto the �oA� � o

A
� �


subspace and onto the subspaces �oA� � o
B
� �	 �o

A
� � o

B
� �	 and �oA� � o

A
� �	 demonstrating

that the chaotic orbit is in fact constrained to M �main diagonal in the last three
subspaces��

Figure �� Completely synchronized chaos for two coupled �
modules having dif

ferent architectures� Parameters� see text�

Furthermore	 we simulated the system with parameters from a neighbourhood
of the values given above� The completely synchronized �
dimensional dynamics
of this coupled sytem is given by equation ���� That it has interesting dynamical
features can be read from the bifurcation sequence with repect to the variation
of �� �� �A� � �B� shown in �gure �� The parameters are here given by w�

�� �
w�
�� � w�

�� � �w�
�� � �w�

�� � �	 �� � ��	 �� � ��� Starting from a �xed point
attractor for �� � ��	 the systems jumps into a period doubling route to chaos
followed by windows of periodic	 quasi
periodic and chaotic dynamics� There are
also ��
intervals where we observe coexisting synchronous periodic and chaotic
attractors� In fact	 for this special coupled system the synchronized dynamics
will always be stable� this can be easily seen by the fact that the only nonzero
elements of w� in ��� are w��� and w���	 and thus the matrices L��s� in �
� have
zero eigenvalues for all synchronous states s� Therefore the largest transversal
Lyapunov exponent ��� will be negativ for all orbits constrained to M �






Figure �� Bifurcation sequence for the completely synchronized dynamics of cou

pled �
modules� Parameters� see text�

� Conclusions

It has been shown that also in systems of two coupled neuromodules with the
same number of neurons but di�erent architectures synchronous chaos as well
as synchronized periodic or quasiperiodic dynamics can exist� The con�guration
discussed in section III is a special case in the sense that the coupling structure
is minimal� This had the e�ect that the synchronized dynamics is stable for all
parameter values� Thus	 even coexisting attractors are always constrained to the
synchronization manifold M � Introducing only one more coupling connection	
wAB
�� for instance	 satisfying the synchronization condition ���	 will generate all

the phenomena described e�g� in ����� i�e� depending on module parameters	
orbits constrained to a synchronization manifold can be globally or locally stable	
or unstable� For large parameter domains stable synchronous dynamics will co

exist with asynchronous periodic	 quasiperiodic or even chaotic attractors� Thus	
whether a system ends up asymptotically in a synchronous mode or not depends
crucially on initial conditions	 i�e� on the internal state of the system� In this
sense the reaction to external signals depends also on the history of the system
itself� This may introduce memory e�ects into the behavior of coupled systems�

The conditions ��� for the existence of complete synchronization require that
the sum of bias terms and stationary external inputs of corresponding module
neurons are identical� A synchronized mode of the coupled system persists even
if parameters	 like corresponding external inputs	 are varying slowly� Thus	 the
synchronized dynamics may pass through a whole bifurcation sequence	 and this
can be understood as a sign for time
varying input signals with amplitudes having
a �xed ratio �recall that inputs may correspond to the weighted outputs of other
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units of a larger system��
Analysis as well as computer simulations show	 that de
synchronization of

module dynamics can be achieved in various ways� Diverging external inputs
or other diverging parameters �like module weights or the strength of couplings
between modules� will immediately de
synchronize the modules�

The presented results can stimulate new dynamical models for networks
with higher information processing �or cognitive� capabilities� The rather typi

cal co
existence of synchronized modes with modes of asynchronous dynamics
relativices functional properties �like �feature binding�� attributed to synchro

nization	 but at the same time introduces memory aspects into these systems
through generalized hysteresis e�ects� Furthermore	 since synchronization and
de
synchronization of modules can be controlled by di�erent parameters	 atten

tion guided synchronization of subsystems is an additional interesting functional
feature of coupled neuromodules�
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