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Abstract

We prove that� in the non�extreme Kerr�Newman black hole geometry� the Dirac

equation has no normalizable� time�periodic solutions� A key tool is Chandrasekhar�s

separation of the Dirac equation in this geometry� A similar non�existence theorem is

established in a more general class of stationary� axisymmetric metrics in which the

Dirac equation is known to be separable� These results indicate that� in contrast with

the classical situation of massive particle orbits� a quantum mechanical Dirac particle

must either disappear into the black hole or escape to in�nity�

� Introduction

It has recently been proved in ���� that the Dirac equation does not admit normalizable�
time�periodic solutions in a non�extreme Reissner�Nordstr�om black hole geometry� This
result shows that quantization and the introduction of spin cause a signi�cant qualitative
break�down of the classical situation� where it is well�known that there exist special choices
of initial conditions for the motion of massive test particles which give rise to closed orbits
�	�� Indeed� the above theorem implies that the quantum mechanical Dirac wave function
in the gravitational and electromagnetic �elds of a static� spherically symmetric black hole
describes a particle which must either disappear into the black hole or escape to in�nity�
It is quite natural to ask whether this result is stable under perturbations of the

background metric
 i�e�� if the non�existence theorem for normalizable periodic solutions
of the Dirac equation remains true if the background metric and electromagnetic �eld are
changed in such a way that the spherical symmetry is destroyed� This is precisely the
question that we address in this paper�
We are guided in our choice of a more general background geometry by the uniqueness

theorems of Carter� Israel� and Robinson ��� ��� from which we know that the most general
charged black hole equilibrium state is given by the Kerr�Newman solution of the Einstein�
Maxwell equations� Thus� in order to investigate the non�existence of periodic solutions
in the most general black hole geometry� we have to study the Dirac equation in the Kerr�
Newman background� The fact that this study is even possible rests on the remarkable
discovery made by Chandrasekhar that the Dirac equation is completely separable into
ordinary di�erential equations in the Kerr�Newman background geometry� even though the
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metric is stationary and axisymmetric �
�� In order to state our result� let us �rst recall
that the Kerr�Newman solution is characterized by three parameters� namely its mass M �
angular momentum aM and electric charge Q� We prove that the non�existence theorem
for normalizable solutions of the Dirac equation remains true in the case of a rotating
Kerr�Newman black hole provided that the angular momentum per unit mass and the
charge are su�ciently small relative to the total mass of the black hole� Such black holes
have both a Cauchy and an event horizon� and are thus referred to as non�extreme black
holes� Speci�cally� we prove�

Theorem ��� In a Kerr�Newman black hole for which a��Q� � M�� the Dirac equation
has no normalizable� time�periodic solutions�

In Theorem ���� we give a similar non�existence result for the most general stationary�
axisymmetric metric in which the Dirac equation can be separated by Chandrasekhar�s
method� The hypotheses of this theorem are stated as much as possible in geometric
terms� While the solutions one obtains by imposing the Einstein�Maxwell equations on
this metric are of limited physical interest� this theorem indicates that our non�existence
result applies in a broader context �e�g� for a more general energy�momentum tensor��
This paper is organized as follows� In Section ���� we derive the separability of the

Dirac equation in the Kerr�Newman geometry in a form slightly di�erent from the one
used by Chandrasekhar so as to recover the equations established in ���� in the spheri�
cally symmetric limit� by letting the angular momentum parameter a tend to zero� In
Section ���� we work out matching conditions for the spinor �eld across the horizons� This
gives rise to a weak solution of the Dirac equation in the physical region of the maximal an�
alytic extension of the Kerr�Newman solution� which is valid across the Cauchy and event
horizons� We then proceed in Section ��� to establish the non�existence of time�periodic
solutions� Just as in the spherically symmetric case� the crucial step consists in exploiting
the conservation and positivity of the Dirac current to show that because of the matching
conditions� the only way in which a time�periodic solution of the Dirac equation can be
normalizable is that each term in the Fourier expansion of the spinor �eld in time and the
angular variable around the axis of symmetry� be identically zero� While the regularity of
the angular dependence of the separable solutions is manifest in the spherically symmetric
Reissner�Nordstr�om case� this is not so in the axisymmetric case treated in this paper�
The regularity is therefore established in the Appendix� Finally� we consider in Section �
the extension of Theorem ��� to more general stationary axisymmetric metrics�

� The Kerr�Newman Black Hole

��� The Dirac Equation in Boyer�Lindquist Coordinates

Recall that� in Boyer�Lindquist coordinates �t� r� �� ��� the Kerr�Newman metric takes the
form ���

ds� � gjk dx
jxk

�
�

U
�dt � a sin� � d��� � U

�
dr�

�
� d��

�
� sin� �

U
�a dt � �r� � a�� d��� � �����

where
U�r� �� � r� � a� cos� � � ��r� � r� � �Mr � a� �Q� �
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and the electromagnetic potential is of the form

Aj dx
j � �Q r

U
�dt � a sin� � d�� � �����

The metric is singular at the origin r � � and at the zeros of the function �� We shall
consider the so�called non�extreme case M� � a� � Q�� In this case� � has two distinct
zeros

r� � M �
q
M� � a� �Q� and r� � M �

q
M� � a� �Q� �

The two radii r� and r� correspond to the Cauchy horizon and the event horizon for the
non�extreme Kerr�Newman metric� respectively�
We brie�y recall some elementary facts about the Dirac operator in curved space�time�

The Dirac operator G is a di�erential operator of �rst order�

G � iGj�x�
�

�xj
� B�x� � �����

where B and the Dirac matrices Gj are �� � ���matrices� The Dirac matrices are related
to the Lorentzian metric via the anti�commutation relations

gjk�x� �� �
�

�
fGj�x�� Gk�x�g � �

�

�
Gj�x�Gk�x� � Gk�x�Gj�x�

�
� �����

The matrix B is determined by the spinor connection and the electromagnetic potential
through minimal coupling� As such� it is determined by the Levi�Civita connection of the
background Lorentzian metric ����� and the potential ������ The Dirac matrices are not
uniquely determined by the anti�commutation rules ������ The ambiguity in the choice of
Dirac matrices adapted to a given metric is formulated naturally in terms of the spin and
frame bundles ��
�� A convenient method for calculating the Dirac operator in this bundle
formulation is provided by the Newman�Penrose formalism �	�� More generally� it is shown
in ���� that all choices of Dirac matrices satisfying ����� yield unitarily equivalent Dirac
operators� Furthermore� in ����� explicit formulas for the matrix B in terms of the Dirac
matrices Gj are given� In the following� we attempt to combine the advantages of these
di�erent approaches
 namely� we �rst choose the Dirac matrices using a Newman�Penrose
frame� and then construct the matrix B using the explicit formulas in �����
We choose the so�called symmetric frame �l� n�m�m� of ����

l �
�p
�U j�j

�
�r� � a��

�

�t
� �

�

�r
� a

�

��

�

n �
����p
�U j�j

�
�r� � a��

�

�t
� �

�

�r
� a

�

��

�

m �
�p
�U

�
ia sin�

�

�t
�

�

��
�

i

sin�

�

��

�

m �
�p
�U

�
�ia sin� �

�t
�

�

��
� i

sin�

�

��

�
�

where � is the step function ��x� � � for x � � and ��x� � �� otherwise� �Because of its
symmetry properties� this frame is somewhat more convenient than the Kinnersley frame
used in �	�� Also� the notation with the step function allows us to give a uni�ed form of the
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frame both inside and outside the horizons�� The symmetric frame is a Newman�Penrose
null frame
 i�e�

�l� n� � � � �m�m� � �� �

and all other scalar products between the elements of the frame vanish� From this complex
null frame� we can form a real frame �ua�a�������� by setting

u� �
����p
�
�l � n� � u� �

�p
�
�l � n�

u� �
�p
�
�m�m� � u� �

�p
� i
�m�m� �

This frame is orthonormal
 i�e�

gjk u
j
a u

k
b � 	ab � 	ab uja u

k
b � gjk � �����

where 	ab � 	ab � diag������������ is the Minkowski metric� We choose the Dirac
matrices 
a� a � �� � � � � � of Minkowski space in the Weyl representation


� �

�
� ���
��� �

�
� �
 �

�
� ���
�� �

�
�

where �� are the usual Pauli matrices

�� �

�
� �
� �

�
� �� �

�
� �i
i �

�
� �� �

�
� �
� ��

�
� ���	�

The 
a satisfy the anti�commutation relations

	ab �
�

�

n

a� 
b

o
� ���
�

We choose as Dirac matrices Gj associated to the Kerr�Newman metric the following linear
combinations of the 
a�

Gj�x� � uja�x� 

a �����

As an immediate consequence of ����� and ���
�� these Dirac matrices satisfy the anti�
commutation relations ������ Next� we must calculate the matrix B in ������ In ����� it is
shown that the Dirac matrices induce a spin connection D� which has the general form

Dj �
�

�xj
� iEj � ieAj with �����

Ej �
i

�

��j
� � i

�	
Tr�Gm rjG

n�GmGn �
i

�
Tr�
Gj rmG

m� 
 � ������

where 
 � i
���jklmG

jGkGlGm is the pseudoscalar matrix� �jklm is the Levi�Civita symbol
of curved space�time� and Aj is the electromagnetic potential� Using the spin connection�
the Dirac operator ����� can be written in the alternative form G � iGjDj� Thus the
matrix B is given by B � Gj�Ej � eAj�� Since� in our context� the Dirac matrices G

j are
linear combinations of the 
a� the matrix 
 is simply the constant 
 � 
� � i
�
�
�
��
As a consequence� the �rst and last summands in ������ vanish� and we obtain

B � � i

�	
Tr�Gm rjG

n�GjGmGn � eGjAj � ������
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Using Ricci�s lemma�

� � �rjg
mn � rjTr�G

m Gn� � Tr��rjG
m�Gn� � Tr�Gm �rjG

n�� �

and the commutation rules of the Dirac matrices� we can simplify the trace term as

Tr�Gm rjG
n�GjGmGn

� Tr�Gm rjG
n�
�
�jm Gn � �jn Gm � Gj gmn � i�jmnp 


�Gp
�

� ��rjG
j � i�jmnp Tr�Gm rjGn� 


�Gp � ������

Since the Levi�Civita connection is torsion�free� we can replace the covariant derivative in
the last summand in ������ by a partial derivative� We thus conclude that

B �
i

�
pjgj �j�

q
jgjuja� 
a

� i

�
�jmnp 	ab uam ��jubn� ucn 


�
c � eAju
j
a 


a

�g denotes as usual the determinant of the Lorentzian metric�� This formula for B is
particularly convenient� because it only involves partial derivatives� so that it becomes
unnecessary to compute the Christo�el symbols of the Levi�Civita connection� Next� we
substitute the derived formulas for Gj and B into ����� and obtain for the Dirac operator

G �

�
BBB�

� � �� ��
� � �� ���� ��

���� �� ��� � �

��� �� � �

�
CCCA with ������

�� �
�p
U

�
i
�

��
� i

cot �

�
�

a sin�

�U
�r � ia cos��

�
� �p

U

�
a sin�

�

�t
�

�

sin�

�

��

�

�� �
�p
U

�
i
�

��
� i

cot �

�
� a sin�

�U
�r � ia cos��

�
� �p

U

�
a sin�

�

�t
�

�

sin�

�

��

�

�� � � ����p
U j�j

�
i�r� � a��

�

�t
� ia

�

��
� eQr

�

�
s
j�j
U

�
i
�

�r
� i

r �M

��
�

i

�U
�r � ia cos��

�

�� � � ����p
U j�j

�
i�r� � a��

�

�t
� ia

�

��
� eQr

�

�
s
j�j
U

�
i
�

�r
� i

r �M

��
�

i

�U
�r � ia cos��

�
�

The four�component wave function � of a Dirac particle is a solution of the Dirac
equation

�G�m� � �

�
BBB�

�m � �� ��
� �m �� ���� ��

���� �� ��� �m �

��� �� � �m

�
CCCA� � � � ������

It is a remarkable fact that this equation can be completely separated into ordinary di�er�
ential equations� This was �rst shown for the Kerr metric by Chandrasekhar �
�� and was
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later generalized to the Kerr�Newman background ��	� ���� We shall now brie�y recall how
this is done� since we will need the explicit form of the corresponding ordinary di�erential
operators for the proof of Theorem ���� We closely follow the procedure in ���� Let S�r� ��
and ��r� �� be the diagonal matrices�

S � j�j �� diag
�
�r � ia cos��

�

� � �r � ia cos��
�

� � �r � ia cos��
�

� � �r � ia cos��
�

�

�
� � �i diag ��r � ia cos��� ��r � ia cos��� ��r � ia cos��� �r � ia cos��� �

Then the transformed wave function

�� � S � ������

satis�es the Dirac equation

�S �G�m� S�� �� � � � ����	�

This transformation is useful because the di�erential operator ����	� can be written as a
sum of an operator R� which depends only on the radius r� and an operator A� which
depends only on the angular variable �� More precisely� an explicit calculation gives

�S �G�m� S�� � R�A
with

R �

�
BBB�

imr �
pj�j D� �

� �imr � ����
pj�j D�

����
pj�j D� � �imr �

�
pj�j D� � imr

�
CCCA

A �

�
BBB�
�am cos� � � L�

� am cos� �L� �
� L� �am cos� �

�L� � � am cos�

�
CCCA �

where

D� �
�

�r
� �

�

	
�r� � a��

�

�t
� a

�

��
� ieQr




L� �
�

��
�
cot �

�
� i

	
a sin�

�

�t
�

�

sin�

�

��



�

Now for �� we �rst employ the ansatz

���t� r� �� �� � e�i�t e�ik� ���r� �� � � � IR� k � Z ����
�

with a function ��� which is composed of radial functions X��r� and angular functions
Y���� in the form

���r� �� �

�
BBB�

X��r� Y����
X��r� Y����
X��r� Y����
X��r� Y����

�
CCCA � ������

�We mention for clarity that this transformation of the spinors di
ers from that in ��� by the factor

j�j
�

� in the de�nition of S� Our transformation simpli�es the radial Dirac equation� moreover	 it will make
the form of our matching conditions easier�

	



By substituting ����
� and ������ into the transformed Dirac equation ����	�� we obtain
the eigenvalue problems

R �� � � �� � A �� � �� �� � ������

whereby the Dirac equation ����	� decouples into the system of ODEs� pj�j D� imr � �
�imr � � ����

pj�j D�
��

X�

X�

�
� � ������

�
L� �am cos�� �

am cos�� � �L�

��
Y�
Y�

�
� � � ������

where D� and L� reduce to the radial and angular operators

D� �
�

�r
� i

�

h
� �r� � a�� � ka � eQr

i
������

L� �
�

��
�
cot �

�
�
	
a� sin� �

k

sin�



� ������

For a� �� the Kerr�Newman metric goes over to the spherically symmetric Reissner�
Nordstr�om metric� We now describe how one can recover the Dirac operator of ���� in
this limit� First of all� in ���� the Dirac �and not the Weyl� representation of the Dirac
matrices is used� Furthermore� instead of working with orthonormal frames� the Dirac
matrices are constructed in ���� by multiplying the Dirac matrices of Minkowski space
in polar coordinates 
t� 
r� 
�� 
� with appropriate scalar functions� Because of these
di�erences� the operator Ga�� obtained from ������ in the limit a� � coincides with the
Dirac operators Gin	out in ���� only up to a unitary transformation� More precisely� we
have� in the notation of �����

Gin	out � V Ga�� V �� with

V ��� �� �
�p
�

�
�� ���
�� ��

�
�

�

�
� � i��� � �� � ���

�
exp

�
�i �
�
��
�
exp

�
�i �
�
��
�

�

In the limit a � �� Chandrasekhar�s separation of variables corresponds to the usual
separation of the angular dependence in a spherically symmetric background� The angular
operator A then has the explicit eigenvalues � � ��j� �

� � with j �
�
� �

�
� � � � �� The regularity

of the eigenfunctions of the angular operator A for general a is established in the Appendix�

��� Matching of the Spinors Across the Horizons

Let us consider the Dirac wave function � � S�� �� with �� according to the ansatz
����
��������� Then the Dirac equation ������ separately describes the wave function in
the three regions r � r�� r� � r � r�� and r � r�
 for clarity� we denote � in these
three regions by �I � �M � and �O� respectively� Since the ODEs ������������� and the
transformation S�� are regular for r �� f�� r�� r�g� the functions �I � �M � and �O are
smooth� However� the di�culty is that the coe�cients in the Dirac equation have poles at
r � r� and r � r�� As a consequence� the Dirac wave function will in general be singular
for r � r���� Furthermore� is not clear how to treat the Dirac equation across the horizons�
In this section� we shall derive matching conditions which relate the wave functions inside
and outside each horizon� For the derivation� we shall �rst remove the singularities of






the metric on the horizons by transforming to Kerr coordinates� In these coordinates� we
can also arrange that the Dirac operator is regular� This will allow us to derive a weak
solution of the Dirac equation valid across the Cauchy and event horizons� In the end� we
will transform the derived conditions back to Boyer�Lindquist coordinates�
First� we must choose coordinate systems where the metric becomes regular on the

horizons� One possibility is to go over to the Kerr coordinates �u�� r� �� ��� given in
in�nitesimal form by ���

du� � dt �
r� � a�

�
dr � d�� � d��

a

�
dr �

Alternatively� we can choose the coordinates �u�� r� �� ��� with

du� � dt � r� � a�

�
dr � d�� � d�� a

�
dr �

The variables u� and u� are the incoming and outgoing null coordinates� respectively�
Along the lines u� � const� the variables t and r are related to each other by

dt � �r
� � a�

�
dr �

By integration� we see that� for r � r�� we have t � �	� Similarly� limr�r� t � �	�
The fact that t becomes in�nite in the limit r � r��� means that the Kerr coordinates
describe extensions of the original Boyer�Lindquist space�time� whereby the Cauchy and
event horizons have moved to points at in�nity� More precisely� the Cauchy horizon
corresponds to the points �r � r�� u� � 	� and �r � r�� u� � �	�
 the event horizon
is at �r � r�� u� � �	� and �r � r�� u� � 	�� In other words� the chart �u�� r� �� ���
extends the Boyer�Lindquist space�time across the points �r � r�� t � �	� and �r �
r�� t �	�� whereas the chart �u�� r� �� ��� gives an extension across �r � r�� t �	� and
�r � r�� t � �	��
We next work out the transformation of the wave functions from Boyer�Lindquist

to Kerr coordinates� We �rst consider the chart �u�� r� �� ���� The transformation of
the Dirac equation consists of a transformation of the space�time coordinates and of the
spinors� For clarity� we perform these transformations in two separate steps� Changing
only the space�time coordinates transforms the Dirac matrices to

Gu� � Gt �u�
�t

� Gr �u�
�r

� �a sin�p
U


� �
r� � a�p
U j�j �


� � 
��

Gr � �
s
j�j
U

�
 ��� 
� �  ���� 
�

�

G� � � �p
U

�

G�� � G� ���

��
� Gr ���

�r
� � �

sin�
p
U

� �

ap
U j�j �


� � 
�� �

where  is the Heaviside function  �x� � � for x � � and  �x� � � otherwise� The
matrices Gu� and G�� are singular on the horizons� Therefore we transform the spinors
and Dirac matrices according to

� � !� � V �r� � � Gj � !Gj � V �r�Gj V �r��� ������

�



with

V �r� �
�

�

�
j�j� �

� � j�j ��
�
�� � �

�

�
j�j� �

� � j�j ��
�

�
� � ������

The transformed Dirac matrices are

!Gu� � �a sin�p
U


� �
r� � a�p

U
�
� � 
��

!Gr � � �

�
p
U

h
����� 
� � �� ��� 
�

i
!G� � � �p

U

�

!G�
� � � �

sin�
p
U

� �

p
a

U
�
� � 
�� �

Now the Dirac matrices are regular except at the coordinate singularities � � �� � and
at the origin r � �� The anti�commutation relations ����� allow us to check immediately
that the metric is indeed regular across the horizons� The transformed Dirac operator !G
can be constructed from the Dirac matrices !Gj with the explicit formulas ������ and �����
�these formulas are valid in the same way with an additional tilde� because the matrices
!Gj are again linear combinations of the Dirac matrices 
j of Minkowski space�� From this�
we see that all the coe�cients of the Dirac operator !G are regular across the horizons�
According to the transformation ������ of the wave functions� the Dirac operators G and
!G are related to each other by

!G � V G V �� �

Since the operator !G is regular across the horizons� we can now study the Dirac equa�
tion on the event and Cauchy horizons� We denote our original wave functions trans�
formed to Kerr coordinates by !�I � !�M � and !�O� They are smooth in the regions r � r��
r� � r � r�� and r � r� and satisfy the Dirac equation there� However� they may have
singularities at r � r� and r � r�� Let us assume that !� �� !�I� !�M� !�O is a generalized
solution of the Dirac equation across the horizons� In order to analyze the behavior of the
wave function near the Cauchy horizon� we write !� in a neighborhood of r � r� in the
form

!��u�� r� �� ��� �  �r� � r� !�I�u�� r� �� ��� �  �r � r�� !�M�u�� r� �� ���

and substitute into the Dirac equation � !G�m� !� � �� Since !� is a solution of the Dirac
equation for r �� r�� � we only get a contribution from the derivative of the Heaviside
function� i�e� in a formal calculation

� � i !Gr ��r � r�� � !�M �u�� r� �� ���� !�I�u�� r� �� ����

� � i

�
p
U
��r � r�� �


� � 
��
�
!�M �u�� r� �� ��� � !�I�u�� r� �� ���

�
�

To give this distributional equation a precise meaning� we multiply the above formal
identity by a test function 	�r� and integrate�

� �

Z r���

r���
	�r� ��r � r�� �


� � 
��
�
!�M�u�� r� �� ��� � !�I�u�� r� �� ���

�
� ����	�

By choosing a function 	�r� which goes to zero su�ciently fast for r � r�� we can make
sense of this integral� even if �
� � 
��� !�M � !�I� is singular in this limit� For example�

�



we can choose 	 as 	 � �� � j�
� � 
��� !�B � !�I�j���h� where h is a smooth function� It
must be kept in mind� however� that we cannot choose 	 independently in the two regions
r � r� and r � r�� because 	 must be smooth at r � r�� As a consequence� we cannot
conclude from ����	� that !�M and !�I must both vanish on the Cauchy horizon� We only
get the weaker condition that they have a similar behavior near this horizon
 namely� it is
necessary that the following "jump condition# holds�

�
� � 
�� � !�M �u�� r� � �� �� ��� � !�I�u�� r� � �� �� ���

� o�� � j�
� � 
�� !�M�u�� r� � �� �� ���j� as � � �� �� ����
�

On the event horizon� we obtain in the same way the condition

�
� � 
�� � !�O�u�� r� � �� �� ��� � !�M �u�� r� � �� �� ���

� o�� � j�
� � 
�� !�M�u�� r� � �� �� ���j� as � � �� �� ������

The constructions we just carried out in the chart �u�� r� �� ��� can be repeated simi�
larly in the coordinates �u�� r� �� ���� We list the resulting formulas� The transformation
to the chart �u�� r� �� ��� gives for the Dirac matrices G

u� and G��

Gu� � �a sin�p
U


� �
r� � a�p
U j�j ���� �


� � 
��

G�� � � �

sin�
p
U

� �

ap
U j�j ���� �


� � 
�� �

To make these matrices regular� we transform the spinors according to ������ with

V �r� �
�

�

�
j�j� �

� � ���� j�j ��
�
�� �

�

�

�
j�j� �

� � ���� j�j ��
�

�
� �

This gives for the transformed Dirac matrices

!Gu� � �a sin�p
U


� �
r� � a�p

U
�
� � 
��

!Gr � � �

�
p
U

h
����� 
� � �� � �� 
�

i
!G� � � �p

U

�

!G�
� � � �

sin�
p
U

� �

ap
U
�
� � 
�� �

By evaluating the Dirac equation across the horizons in the weak sense� we obtain the
conditions

�
� � 
�� � !�M �u�� r� � �� �� ��� � !�I�u�� r� � �� �� ���

� o�� � j�
� � 
�� !�M �u�� r� � �� �� ���j� as �� �� ������

�
� � 
�� � !�O�u�� r� � �� �� ��� � !�M�u�� r� � �� �� ���

� o�� � j�
� � 
�� !�M �u�� r� � �� �� ���j� as �� �� ������

It remains to transform the conditions ����
�$������ back to Boyer�Lindquist coordi�
nates� Since the t� and ��dependence of our wave function ����
� has the form of a plane

��



wave� we immediately conclude that the condition ����
� is also valid in Boyer�Lindquist
coordinates� We do not again write out that we consider the limit � � � � �� but note
that this condition was obtained by extending the Boyer�Lindquist space�time across the
point �r � r�� t � �	��

�
� � 
�� � !�M �t� r� � �� �� �� � !�I�t� r� � �� �� ��

� o�� � j�
� � 
�� !�M�t� r� � �� �� ��j� across t � �	�

We next substitute the transformation ������ and ������ of the spinors� Using the identity

�
� � 
�� V �� � �
� � 
��
�

�

�
�j�j� �

� � j�j �� � � �j�j� �

� � j�j �� � 
�
�
�

� j�j� �

� �
� � 
�� �

we obtain the condition

j�j� �

� �
� � 
�� ��M �t� r� � �� �� �� � �I�t� r� � �� �� ��

� o�� � j�j� �

� j�
� � 
�� �M�t� r� � �� �� ��j� across t � �	� ������

Finally� we consider the transformation ������� It also preserves the factor �
� � 
���
because

�
� � 
�� S � diag
�
�r � ia cos��

�

� � �r � ia cos��
�

� � �r � ia cos��
�

� � �r � ia cos��
�

�

�
� j�j �� �
� � 
�� � ������

The diagonal matrix in this equation is irrelevant because it is regular on the horizons�
The factors j�j� �

� in ������ are compensated by the factor j�j �� in ������� and we end up
with the simple condition

�
� � 
�� � ��M �t� r� � �� �� �� � ��I�t� r� � �� �� ��

� o�� � j�
� � 
�� ��M�t� r� � �� �� ��j� across t � �	� ������

Similarly� the relations ������$������ transform into

�
� � 
�� � ��O�t� r� � �� �� �� � ��M �t� r� � �� �� ��

� o�� � j�
� � 
�� ��M�t� r� � �� �� t�j� across t �	 ������

�
� � 
�� � ��M �t� r� � �� �� �� � ��I�t� r� � �� �� ��

� o�� � j�
� � 
�� ��M �t� r� � �� �� ��j� across t �	 ������

�
� � 
�� � ��O�t� r� � �� �� �� � ��M �t� r� � �� �� ��

� o�� � j�
� � 
�� ��M �t� r� � �� �� ��j� across t � �	� ����	�

The equations ������$����	� are our matching conditions�

��� Non�Existence of Time�Periodic Solutions

Before giving the proof of Theorem ���� we must specify our assumptions on space�time
and on the Dirac wave function in mathematical terms� By patching together the Kerr
coordinate charts� one obtains the maximally extended Kerr�Newman space�time ���� We
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Figure �� The conformal structure of the non�extreme Kerr�Newman solution

do not need the details of the maximal extension here
 it su�ces to discuss the Penrose di�
agram of Figure �� Abstractly speaking� the time and axial symmetry of the Kerr�Newman
solution means that the metric admits two Killing �elds� In order to better visualize these
symmetries� one can isometrically map the regions of type I� M � and O into the regions
r � r�� r� � r � r�� and r � r� of the Boyer�Lindquist coordinates� respectively
 then
the Killing �elds are simply the vector �elds �t and ��� The mappings to Boyer�Lindquist
coordinates are unique up to the isometries of the Boyer�Lindquist space�time �i�e� ro�
tations around the symmetry axis� time translations� parity transformations� and� in the
case a � �� time reversals�� The Kerr coordinates� on the other hand� allow us to describe
three adjacent regions of type I�M � and O including the boundaries between them� When
we speak of Boyer�Lindquist or Kerr coordinates in the following� we implicitly mean that
adjacent regions of the maximal extension are isometrically mapped to these coordinate
charts� The maximal extension may be too general for a truly physical situation �if one
thinks of a black hole which evolved from a gravitational collapse in the universe� for
example� one may want to consider only one asymptotically �at region�� Therefore we
assume that our physical space�time is a given subset of the maximal extension� We call
each region of type O which belongs to the physical space�time an asymptotic end� We
assume that� in each asymptotic end� a time direction is given� Thus we can say that each
asymptotic end is connected to two regions of type M � one in the future and one in the
past� We assume that the physical wave function can be extended to the maximal Kerr�
Newman space�time
 in the regions which do not belong to the physical space�time� this
extension � shall be identically zero� We want to consider a black hole� i�e� the situation
where particles can disappear into the event horizon� but where no matter can emerge
from the interior of a horizon� Therefore we assume that � is set identically zero in all
regions of type M which are connected to the asymptotic ends in the past� The remaining
assumptions can be stated most easily in Boyer�Lindquist coordinates� Since the phase of
a wave function � has no physical signi�cance� when we say that � is time�periodic with

��



period T we mean that there is a real parameter % such that�

��t� T� r� �� �� � e�i
T ��t� r� �� �� �

For time�periodic wave functions� we can separate out the time dependence in a discrete
Fourier series� More precisely� we can write the wave function as a superposition of the
form

��t� r� �� �� � e�i
t
X
n�k�Z

X
���n

k
�A�

e��	in
t
T e�ik� ��nk ����
�

with

��nk�r� �� � S���r� �� ���nk�r� �� � ���nk�r� �� �

�
BBB�

X�nk
� Y �nk

�

X�nk
� Y �nk

�

X�nk
� Y �nk

�

X�nk
� Y �nk

�

�
CCCA �

where the radial and angular functions X�nk�r� and Y �nk��� satisfy the equations ������
and ������ with

��n� � % �
��

T
n �

The index � in ����
� labels the eigenvalue of the operator A in ������
 the set �nk �A�
denotes �for �xed n and k� all the possible values of �� As shown in the Appendix� the
set �nk �A� is discrete� Finally� we specify our normalization condition� The Dirac wave
functions are endowed with a positive scalar product �� j ��� For this� one chooses a space�
like hypersurface H together with a normal vector �eld � and considers for two wave
functions � and � the integral

�� j ��H ��

Z
H
�Gj� �j d� � ������

where � � ��
� is the adjoint spinor� and where d� �
p
g d�x is the invariant measure

on H �g now denotes the determinant of the induced Riemannian metric�� In a regular
space�time� current conservation rj�G

j� � � implies that the scalar product ������ is
independent of the choice of the hypersurface� The integrand of ��j��H has the physical
interpretation as the probability density of the Dirac particle� Therefore one usually
normalizes the wave functions in such a way that �� j �� � �� In our context� the
singularities of the metric make the situation more di�cult� Indeed� the normalization
integral for a hypersurface crossing a horizon is problematic since such a hypersurface
will necessarily fail to be space�like on a set of positive measure� We will therefore only
consider the normalization integral in each asymptotic end away from the event horizon�
More precisely� we choose for given r� � r� the one�parameter family of hypersurfaces

Ht� � f�t� r� �� �� with t � t�� r � r�g �

For a normalized solution � of the Dirac equation� the integral �� j ��Ht�
gives the

probability of the particle to be at time t� in the region outside the ball of the radius r�
around the origin
 this probability must clearly be smaller than one� Therefore we impose
for a normalizable solution the condition that� in each asymptotic end�

�� j��Ht�
� 	 for all t�� ������

�We remark that the condition of time�periodicity inside the horizon can be weakened to local uniform
boundedness in t� This is proved by an �averaging argument� identical to the one given in ���	 Appendix A��

��



We now begin the non�existence proof by analyzing the wave function in each asymp�
totic end in Boyer�Lindquist coordinates� The following positivity argument shows that
each component of the Dirac wave function must be normalizable� We average the nor�
malization condition ������ one period and use the in�nite series ����
� to obtain

	 �
�

T

Z t�T

t
d� �� j��H�

�
X
n�n�

X
k�k�

X
����

�

T

Z t�T

t
d� e��	i�n

��n� �
T

�
Z
H�

e�i�k
��k�� ��nk�r� �� ��

�n�k��r� �� d�H � ������

Since the plane waves in this formula are integrated over a whole period� we only get a
contribution if k � k� and n � n�� As is shown in the Appendix� the ��integration gives
zero unless � � ��� and thus the right hand�side of ������ reduces to

X
n�k�Z

X
���n

k
�A�

Z
Ht�r�

��nk�r� �� ��nk�r� �� d�H � ������

Since the scalar product in ������ is positive� we conclude that the normalization integral
must be �nite for each ��nk�

���nk j ��nk�Ht � 	 for all n� k � Z� � � �nk �A�� t � IR�
In this way� we have reduced our problem to the analysis of static solutions of the Dirac
equation� This simpli�cation is especially useful because it enables us to work with the
matching conditions of the previous section� In the following� we again use the notation
����
���������

Lemma ��� The function jXj� has �nite boundary values on the event horizon� If it is
zero at r � r�� then X vanishes identically for r � r��

Proof� The radial Dirac equation ������ gives for r � r�q
j�j d

dr
jXj� � �

q
j�j d

dr
X� X� � �X�

q
j�j d

dr
X�

� �� Re�X�X�� � �mr Im�X�X�� ������

and thus

��j�j�mr� jXj� 

q
j�j d

dr
jXj� 
 �j�j �mr� jXj� � ������

In the case that jXj��r� has a zero for r � r�� the uniqueness theorem for solutions of
ODEs yields that X vanishes identically� In the opposite case jXj��r� � � for all r � r��
we divide ������ by

pj�j jXj� to get and integrate�
�
Z r�

r
�j�j�mr� j�j� �

� 
 log jXj�
���r�
r


Z r�

r
�j�j�mr� j�j� �

� � r� � r � r��

Using that the singularity of j�j� �

� at r � r� is integrable� we conclude that log jXj� has
a �nite limit at r � r��

Combining this lemma with our normalization and matching conditions� we can show now
that the Dirac wave function is identically zero outside the event horizon�

��



Lemma ��� ��O vanishes identically in each asymptotic end�

Proof� According to our black hole assumption� we can apply the matching condition
����	� with ��M � �� Expressed in the radial functions X� this implies that

lim
r�
r�r�

X��r� � � � ������

Using asymptotic �atness and the transformation

�
�� � j�j� �

� U�
�

� ��
� �� �

the normalization condition ������ is equivalent to the integral conditionZ �

r�
jXj� dr � 	 for r� � r�� ������

As an immediate consequence of the radial Dirac equation �������

d

dr

�
jX�j� � jX�j�

�
� � � ����	�

Thus the function jX�j�� jX�j� is a constant
 the normalization condition ����	� implies
that this constant must be zero�

jX�j� � jX�j� � � �

Together with the condition ������� we obtain that limr�
r�r� jXj� � �� Lemma ��� yields
that X� and consequently ��O� must vanish identically�

We remark that equation ����	� can be interpreted physically as the conservation of the

Dirac current in radial direction �notice that �Gr� � U�
�

� �jX�j� � jX�j�� jY j���
It remains to show that the wave function also vanishes in the interior of the horizons�

For this� we use the matching conditions and estimates similar to those in Lemma ����
Proof of Theorem ���� According to Lemma ���� � is identically zero in all regions of
type O� We �rst consider a region of type M in Boyer�Lindquist coordinates� Crossing
the event horizon in the past and in the future brings us to regions of type O where ��
vanishes� Thus the matching conditions ������ and ����	� yield that

lim
r��r�r�

�
� � 
�� ��M �t� r� �� �� � � � lim
r��r�r�

�
� � 
�� ��M�t� r� �� �� �

and thus
lim

r��r�r�
��M �t� r� �� �� � � � ����
�

The radial Dirac equation ������ in the region M implies that

q
j�j d

dr
jXj� � �

�this again corresponds to the conservation of the radial Dirac �ux�� Thus jXj��r� can
only go to zero for r� � r � r� if it is identically zero� We conclude that � must be
identically zero in all regions of type M �

��



Finally� we consider a region of type I in Boyer�Lindquist coordinates� We can cross
the Cauchy horizon at t � 	 or t � �	
 this brings us to regions of type M � where
��M � �� Thus the matching conditions ������ and ������ imply that

lim
r�
r�r�

��I�t� r� �� �� � � � ������

The radial Dirac equation ������ inside the Cauchy horizon is the same as in the asymp�
totic end� Thus the estimate ������ again holds� and we conclude from ������ that ��I

vanishes identically�

� The General Separable Case

Our goal in the present section is to prove an analogue of Theorem ��� for the most general
stationary axisymmetric and orthogonally transitive metric in which the Dirac equation
can be separated into ordinary di�erential equations by Chandrasekhar�s procedure�� An
expression for this metric was determined in ����� When the Einstein�Maxwell equations
are imposed� this metric gives rise to all the generalizations of the Kerr�Newman solution
discovered by Carter ���� as well as to a family of exact solutions for which the orbits of
the two�parameter Abelian isometry group are null surfaces ����
Our aim will be to state as many of the hypotheses of our theorem as possible in purely

geometric terms� We will thus begin by giving a geometric characterization of the metric
which constitutes the starting point of ���� We will limit ourselves to the case when the
orbits of the isometry group are time�like ��surfaces� since the procedure is quite similar in
the case of space�like or null orbits� We wish to point out that the assumption of orthogonal
transitivity is a very natural one to make in a general relativistic context� Indeed� it is
a classical theorem of Carter and Papapetrou ��� that if the energy�momentum tensor
satis�es some mild invariance conditions� then every stationary axisymmetric solution of
the Einstein equations has the property of admitting through every point a ��surface
which is orthogonal to the orbit of the isometry group through that point� i�e� the metric
is orthogonally transitive�
Let us �rst recall from ��� that any four�dimensional metric of Lorentzian signature

admitting a two�parameter Abelian group of isometries acting orthogonally transitively
on time�like orbits admits local coordinates �u� v� w� x� in which

ds� � T��
�
�L du � M dv�� � �N du � P dv�� � dw�

W
� dx�

X



� �����

where the metric coe�cients L� M� N� P and the conformal factor T�� are functions of
x and w only� and where X � X�x�� W � W �w�� Furthermore� we have LP �MN �� ��
T � �� W � �� X � � in order for the metric to have the required Lorentzian signature�
It is manifest that the action on the isometry group generated by the Killing vectors
�
�u and

�
�v is orthogonally transitive since the orbits� which are given by the time�like

�We should point out that there exist metrics admitting only one Killing vector	 in which the Dirac
equation is completely separable into ordinary di
erential equations ����� These metrics are not covered
by Chandrasekhar�s approach since the symmetry operators underlying this di
erent type of separability
are necessarily of order 
 or higher� In contrast	 Chandrasekhar�s method always gives rise to symmetry
operators of order � since it �ts into Miller�s theory of factorizable separable systems �����

�	



��surfaces x � c�� w � c�� admit the orthogonal ��surfaces given by u � c��� v � c���
Carter ��� proved furthermore that the four�dimensional Lorentzian metrics admitting
an Abelian isometry group acting orthogonally transitively on non�null orbits have the
following remarkable property� there exists in the isotropy subgroup at every point an
element of order two whose di�erential L maps every vector X in the tangent space to the
orbit through that point to its opposite� and maps every vector Y in the normal space to
the orbit to itself� In the local coordinates �u� v� w� x�� this involutive isometry is given by
mapping �u� v� w� x� � ��u��v� w� x�� Recall now that a Newman�Penrose null frame for
the metric ����� is said to be symmetric ��� if under the involution L� we have

L�l� � �n � 
 L�n� � �l � L�m� � �m � L�m� � �m � �����

A symmetric null frame �l� n�m�m� for the metric ����� is given by

l �
Tp
�

�
�

LP �MN

�
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�

�u
� N

�
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�
�
p
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�
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�

n �
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p
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�
�M �
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�
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p
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�x
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m �
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�
�M �
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p
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Besides the metric ������ we will also consider the electromagnetic vector potential given
by

A � Ajdx
j � T �H �L du � M dv� � K �N du � P dv�� � �����

whereH � H�w� andK � K�x�� The ��form ����� is manifestly invariant under the action
of the isometry group of the metric ������ Note that the Maxwell �eld ��form F � dA
is skew�invariant under the involution L� so that the electromagnetic energy�momentum
tensor is invariant under L� in accordance with the hypotheses of the Carter�Papapetrou
theorem ����
It was shown in ���� that a necessary condition for the Dirac equation �G �m� � �

� to be separable in the above symmetric null frame for the metric ����� and in the
electromagnetic vector potential ����� is that the metric functions L� M� N and P satisfy
the constraints

�

�x
�

L

LP �MN
� � � �

�

�x
�

M

LP �MN
� � � �

�

�w
�

N

LP �MN
� � � �

�

�w
�

P

LP �MN
� � � �

In geometric terms� these conformally invariant conditions are equivalent to the require�
ment that the �ows of the null vectors �elds l and n of the symmetric frame be geodesic
and shear�free�

ljrjl
k � � � ��rjlk �rklj�� �rplp�gjk � � �

njrjn
k � � � ��rjnk �rknj�� �rpnp�gjk � � �

It is noteworthy that these conditions are necessary and su�cient for the St�ackel separa�
bility in the metric ����� of the Hamilton�Jacobi equation for the null geodesic �ow�

gjk
�S

�xj
�S

�xk
� � �

�




By implementing these separability conditions and doing some relabeling of the metric
functions and the coordinates we see �see ��� Section ��� that the metric can be put in the
form

ds� � T��
	
W

Z
�e� du � m dv�� � Z

W
dw� � X

Z
�e� du � p dv�� � Z

X
dx�



� �����

where e� and e� are constants and where

m � m�x� � p � p�w� � Z � e�p� e�m �

The next necessary condition for the Dirac equation to be solvable by separation of vari�
ables in the symmetric frame for the metric ����� and the electromagnetic potential �����
is is that the algebraic structure of the Weyl conformal curvature tensor be of type D in
the Petrov�Penrose classi�cation ����� This conformally invariant condition is necessary
and su�cient for the separability of the massless Dirac or Weyl neutrino equation G� � �
�see ���� Theorem ���� The type D condition for the metric ����� can be expressed by the
condition that the ��form � given by

� �� ��Z��� �e�m
��x� dw � e� p

��w� dx�

be closed�
d� � �� �����

We therefore have locally
� � dB

for some real�valued function B�w� x��
Finally� it was shown in ���� Theorem �� that the massive Dirac equation �G�m�� � �

is separable in the symmetric frame for the metric ����� if in addition to the conditions
stated above� there exist real�valued functions g�x� and h�w� such that

Z��� T�� exp��iB� � h�w� � ig�x� � ���	�

This is the only separability condition for the Dirac equation which is not conformally
invariant�
We begin by analyzing the type D condition ���� It was proved in ��� Section �� that�if

this condition is satis�ed� then a set of coordinates �u� v� w� x� for the metric ��� can be
chosen in such a way that the metric functions p�w��m�x�� the constants e�� e� and the
function B take one of the following four forms�
Case A�

e� � � � e� � p�w� � w� � m�x� � �x� �

B �
i

�
log

�
w � ix

w � ix

�
�

Case B��

e� � � � e� � � � p�w� � �kw � m�x� � �x� � k� �

B �
i

�
log

�
k � ix

k � ix

�
�

��



Case B��

e� � � � e� � � � p�w� � w� � l� � m�x� � ��lx �

B �
i

�
log

�
w � il

w � il

�
�

Case C���

e� � � � e� � � � p�w� � � � m�x� � � �

B � ���� �

We are using the same labelling for the cases given above as the one used in ��� ��� Each
of these cases admits an invariant characterization which we will not recall here but which
is given in ����� Next� by imposing the separability condition ���	�� we conclude that the
conformal factor T�� must be constant in each of the cases A�B�� B�� and C��� This
constant can be normalized to one by a rescaling of the coordinates�
We will restrict our attention for the rest of this section to Case A� which can be thought

of as the generic case� Indeed� we will see below that the solutions one obtains when
imposing the Einstein�Maxwell equations in Case A contain the Kerr�Newman solution as
a special case� On the other hand� it is shown in ��� �� that the solutions one obtains when
imposing the Einstein�Maxwell equations in the remaining cases have isometry groups of
dimension � in Cases B�� B� and 	 in Case C

��� These solutions notably include the Taub�
NUT and Robinson�Bertotti metrics� Furthermore� it is shown in the above references that
all these solutions can be obtained from Carter�s A solution by a suitable limiting process�
The metric in Case A is thus given by

ds� �
W �w�

w� � x�
�du�x�dv���w� � x�

W �w�
dw�� X�x�

w� � x�
�du�w�dv���w� � x�

X�x�
dx� � ���
�

The Dirac equation for the metric ���
� can be separated by a procedure analogous to
the one described in Section � for the Kerr�Newman metric� It is proved in ���� that the
spinor �eld given by �

��u� v� w� x� � e�i��u�kv� �W �w��
�

�

�
BBB�
�w � ix���� X��w� Y��x�

�w � ix���� X��w� Y��x�

�w � ix���� X��w� Y��x�

�w � ix���� X��w� Y��x�

�
CCCA � �����

where � and k are constants� will be a solution of the Dirac equation expressed in the
symmetric frame for the metric ���
� and the Weyl representation of the Dirac matrices�
if and only if the transformed spinor

��w� x� �

�
BBB�

X��w� Y��x�
X��w� Y��x�
X��w� Y��x�
X��w� Y��x�

�
CCCA � �����

�To facilitate the comparison with the expression given in �
���� for the Kerr�Newman case	 we have

chosen to include the factor W
�

� in the transformation of the spinor �eld� Just as in the Kerr�Newman
case	 this transformation has the e
ect of producing a slightly simpler eigenvalue equation in the variable
w than the one obtained in �����

��



satis�es the eigenvalue problems given by

W � � � � � X � � �� � � ������

where

W �

�
BBB�

im w �
p
W Dw� �

� �im w �
p
W Dw�p

W Dw� � �im w �

�
p
W Dw� � im w

�
CCCA

X �

�
BBB�

�mx � �
p
X Lx�

� m x �pX Lx� �

�
p
X Lx� �m x �

�pX Lx� � � m x

�
CCCA �

and Dw� and Lx� are the ordinary di�erential operators de�ned by

Dw� �
�

�w
� �

W �w�

h
�i�w� � ik � ieH�w�

i

Lx� �
�

�x
� i

�

X�x�

	
i�x� � ik � �

�
X ��x�� ieK�x�



�

As a motivation for our generalization of Theorem ���� we recall from ��� how the Kerr�
Newman solution arises as a special case of the metric ���
� and vector potential ������
For this� we �rst impose the Einstein�Maxwell equations

Rij � �
�
R gij � & gij � FikF

k
j �

�

�
gijFklF

kl � ������

which determine the remaining functions X� W � and the electromagnetic �eld F � dA�
The general solution is given by

W �
&

�
w� � f�w

� � f�w � f� �Q� � P � ������

X �
&

�
x� � f�x

� � g�x� f� ������

A �
�

w� � x�

�
Qw �du � x� dv� � P x �du � w� dv�

�
� ������

where Q and P denote the electric and magnetic monopole moments and f�� f�� f�� g�
are arbitrary parameters� These solutions were �rst discovered by Carter ���� The Kerr�
Newman solution is obtained as a special case by putting suitable restrictions on the pa�
rameters &� f�� f�� f�� g� appearing in the metric and by implementing through the choice
of coordinates �u� v� w� x� the additional hypothesis that the metric is stationary axisym�
metric �as opposed to simply admitting a two�dimensional Abelian isometry group�� This
procedure will serve us as a guide in formulating the conditions under which the analogue
of Theorem ��� holds for the Dirac equation in the metric ���
��
We �rst re�label the coordinates �u� v� w� x� as �t� �� r� �� and rescale the ignorable

coordinates t and � so as to have e� � �� e� � a� where a is a constant� Note that while a
is freely normalizable at this stage� it will become an essential non�normalizable parameter
once our freedom to scale the coordinates will have been exhausted� The expressions of

��



the metric functions p�r� and m��� will thus be slightly di�erent in this normalization of
the coordinates� We have

p�r� � r� � m��� � �a�� �

Taking the cosmological constant & to be zero� the metric functions W ��r� and X����
appearing in Carter�s A solution will take the form

W �r� � f� r
� � �M r � f� a

� �Q� � P � � X��� � �f� �� � g� �� f� �

We now implement the hypothesis of axisymmetry of the metric by letting � be an
angular polar coordinate adapted to the axis of symmetry of the metric and taking � to
be proportional to the cosine of the polar angle measured from the axis� The range of �
will thus be the interval ��� ��� and the range of � will be a bounded open interval� In
order for the metric to be of hyperbolic signature� we must require that X��� be positive
for � varying in that bounded interval� It follows that the roots of X��� must be distinct
and that X��� must be positive as � varies in the interval bounded by these roots� This
gives the constraints

f� � � � g�� � �f�f� � � �

Next� we can ensure that the singular behavior of the metric at the roots of X��� is
caused by nothing more than the usual angular coordinate singularity at the polar axis
by choosing the ignorable coordinates and the remaining parameters appearing in the
metric in such a way that the roots of m��� and X��� coincide� Thus� we use our residual
freedom to replace t by a constant linear combination of t and � to add the same arbitrary
constant to p�r� and m���� The roots of m��� will then be located at the endpoints of a
symmetric interval ��c� c�� In order for the roots of X��� to also be located at c and �c�
the coe�cients g�� f� and f� must necessarily satisfy the relations

g� � � � f� � � � f� � � �

We can now set f� � f� � � by rescaling � and r� so that the range of � becomes the
interval ���� ��� With these normalizations� the parameter a has now become an essential
parameter in the metric� The metric functions p�m�W and X thus reduce to

p�r� � r� � a� � m��� � a��� ��� �

W �r� � r� � �Mr � a� �Q� � P � � X��� � �� �� �

We see that by letting cos � � �� where �� � � � �� we recover the Kerr�Newman metric
in Boyer�Lindquist coordinates ������
We are now ready to state a theorem which generalizes Theorem ��� to the most

general family of stationary axisymmetric metrics in which the Dirac equation is solvable
by separation of variables� We will consider a normal form for the metrics ���
� of Case A
in which the stationary and axisymmetric character of the metric is made manifest through
an appropriate choice of coordinates and by the imposition of suitable restrictions on the
singularities of the metric functions� This normal form is easily established by a procedure
similar to the one we described above for the Kerr�Newman metric�

��



Theorem ��� Consider the stationary� axisymmetric metric and the vector potential
given by

ds� �
W �r�

r� � a���
�dt � a ��� ��� d��� � r� � a���

W �r�
dr�

� X���

r� � a���
�a dt � �r� � a�� d��� � r� � a���

X���
d�� � ������

A �
�

r� � a���

�
H�r� �dt � a ��� ��� d�� �K��� �a dt � �r� � a�� d��

�
� ����	�

where a � �� �	 � t � 	� � 
 � � ��� H�r� � C��IR�� and K��� � C������ ����
Assume that the functions X��� � C������ ��� and W �r� � C��IR� have simple zeros
at � � ���� and r � r�� � � � � rN � so that the range of the coordinates is � � ���� �� and
r � IRnfr�� � � � � rNg� Suppose furthermore that the metric is asymptotically Minkowskian�

� � lim
r���

r�� W �r� � 	 �

Then the Dirac equation �G�m� � � � has no normalizable time�periodic solutions�

This theorem can be thought of as an analogue in the axisymmetric context of the gen�
eralization presented in ���� Remark ���� of the non�existence theorem for normalizable
time�periodic solutions of the Dirac equation in the Reissner�Nordstr�om background� We
can likewise argue here that the proof of Theorem ��� is similar to that of Theorem ����
Indeed� we can see from ������ that the separated equations obtained for the metric ������
are similar in structure to those obtained in the Kerr�Newman case� Next� we remark that
in view of the assumptions made in Theorem ��� to ensure the regularity of the metric at
the symmetry axis� it follows that the maximal analytic extension of the metric ������ will
have a conformal diagram similar in structure to the one obtained for the non�extreme
Kerr�Newman metric �see Figure ��� We thus conclude that matching conditions for the
spinor �elds across the horizons take a form identical to the equations ������$����	� which
were obtained for the Kerr�Newman case� The key observation is then that the assumption
that we made about the zeros of W �r� will guarantee that the estimate required to prove
the analogue of Lemma ��� is valid in this more general context� Finally� the regularity of
the eigenfunctions of the angular equation is established by the same procedure as in the
Kerr�Newman case� by showing that the angular operator can be viewed as an essentially
self�adjoint elliptic operator on the ��sphere S� with C� coe�cients�
We conclude by remarking that non�existence theorems similar to Theorems ��� and ���

likewise hold true in Cases B�� B�� and C
���

A Regularity of the Angular Part

In this appendix� we will show that all solutions of the angular equation ������ are regular�
More precisely� we will see that these functions are of class C� in the open interval
� � � � � and uniformly bounded on the closed interval � 
 � 
 �� The method is
to reduce the problem to an elliptic eigenvalue equation on the ��sphere� where standard
elliptic regularity theory can be applied�
Consider on S� the PDE�
i��

�
�

��
�
cot�

�

�
� i��

�

sin�

�

��
� a� sin� �� � am cos� ��

�
� � � � �A���

��



for a two�component� complex function � ��j are again the Pauli matrices ���	��� With
the ansatz

� � e�ik�
�
iY�
Y�

�
�

the eigenvalue equation �A��� simpli�es to ������� Thus it su�ces to show regularity for
the solutions of �A����
Unfortunately� the coe�cients in �A��� have singularities �which are not just removable

by a coordinate transformation on S��� However� after performing the transformation

� � !� � U� with U��� �� � exp

�
�i �
�
��
�
exp

�
�i �
�
��
�

�

which is uniformly bounded on S� and smooth away from the poles� we obtain for !� the
equation A!� � �!� with the smooth operator

A � i

�
���r� �r

�

�r

�
� a� sin� �� � am cos� �r �

where �r and �� denote the Pauli matrices in polar coordinates�

�r � sin� cos� �� � sin� sin� �� � cos� ��

�� � � sin� �� � cos� �� �

The operator A is essentially self�adjoint on C��S��� � L��S���� Thus its square A�

is a positive� essentially self�adjoint operator with smooth coe�cients on a compact do�
main� Standard elliptic theory yields that A� has a purely discrete spectrum with �nite�
dimensional eigenspaces and smooth eigenfunctions� Since the eigenvectors of A are ob�
tained by diagonalizingA on the �nite�dimensional eigenspaces ofA�� they are also smooth�
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