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Abstract� We derive necessary and su�cient optimality conditions for a relaxed �in terms
of Young measures� variational problem governing steady states of ferromagnetic materials�
Such conditions here stated in the form of a generalized Weierstrass maximum principle
enable us to establish uniqueness of a solution in some speci�c situations and can also be
used in e�cient numerical algorithms solving the relaxed problems� for instance�
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�� Introduction

Steady�state con�gurations of mechanical systems are usually governed by an energy�
minimization type principle� In past centuries� this led to a development of the variational
calculus� which resulted in formulations of optimality conditions in terms of Euler�Lagrange
equations or Weierstrass maximum principle� Sometimes� the involved energy is not con�
vex in highest derivatives� which causes �physically� a development of a microstructure
and �mathematically� a failure of existence of a solution� To describe the microstructure
in detail and to overcome the failure of existence� the original problem is to be extended
suitably� In some situations� it may happen that the extended �relaxed� problem has a
convex structure with respect to some geometry not necessarily compatible with the �nat�
ural� geometry of the original nonconvex problem� Then one can formulate the optimality
conditions� For the case of the scalar variational problems this results in one half of the
Euler�Lagrange equation combined with the Weierstrass maximum principle� see �	
� Sec�
tion ���
� The identi�cation of a linear structure that makes the relaxed problem convex
and formulation of corresponding optimality conditions is a basis for construction of e�ec�
tive numerical algorithms for relaxed problems� cf� ��� 	�� 	

� Let us still remark that
other geometries applied to the relaxed problem may lead to other optimality conditions�
cf� e�g� Chipot and Kinderlehrer �

� DeSimone ��	
 or Pedregal �	�
�

The goal of this paper is to adapt the above ideas to a steady�state micromagnetics�
The variational problem� stated in Section 	� was already formulated in ��� �� �� ��
 while its
extension� stated here in Section �� was formulated in ��	� 	�� 	�� 	�
� Our original results�
i�e�� the optimality conditions for the extended problem� are formulated in Sections � and
� in terms of a Weierstrass�type maximum principle in the integral form �Propositions �
and �� and also pointwise �Propositions 	 and ��� Some consequences are mentioned in
Section ��

�



�� Steady�state model of micromagnetics

In the classical theory of rigid ferromagnetic bodies� based mainly on works of Landau
and Lifshitz �		
� a magnetization m � � � IRn� describing the state of the body � � IRn�
n � 	� �� depends on a position x � � and has a given temperature�dependent magnitude

jm�x�j � const�T � for almost all x � � �

with m�x� � � for T � Tc the so�called Curie point� We will treat the case when the
temperature is �xed below the Curie point and thus we shall assume that jmj � � almost
everywhere in �� In the so�called no�exchange formulation� the energy of a large rigid
ferromagnetic body � � IRn consists of three parts and the variational principle governing
steady�state con�gurations can be stated as follows �see e�g� Brown ��� �� �
� Choksi and
Kohn ��
� James and Kinderlehrer ���
� James and M�uller ���
� Kinderlehrer and Ma ��

�
Tartar �	�
� etc���

���

����������
���������

minimize E�m� u� ��
Z
�

h
��m�x���He �x� �m�x�

i
dx�

�

	

Z
IRn
jru�x�j� dx �

subject to jmj � � on � �

div�ru�m��� � � in IRn �

m � L���� IRn�� u � W ����IRn��

where � � IRn � IR is continuous� m � � � IRn is the magnetization� He � IRn � IRn is
a given external magnetic �eld� and u � � � IR is a potential of the induced magnetic
�eld� and �� � IRn � f�� �g denotes the characteristic function of �� The �rst term in
E is an anisotropy energy with a density � which is supposed to be an even nonnegative
function depending on material properties and exhibiting crystallographic symmetry� Two
important cases are the uniaxial case� where � attains its minimum along one axis� and
the cubic case when it attains its minimum along three axes� The second term involving
He is an interaction energy and the last term is a magnetostatic energy related with the
magnetization �eld m through �u � div�m���� This equation stems from the Maxwell
equations �omitting constants�

�	� div B � � � curl H � � �

where B is magnetic induction and H intensity of the magnetic �eld� By the de�nition�
B � H �m�� and H � �ru� Then �u � div�m��� follows immediately� Let us notice
that the weak formulation of this equation reads

��� �v � W ����IRn� �
Z
IRn

h
ru�x��m�x��� �x�

i
rv�x� dx � � �

In particular� putting v �� u� we have

���
Z
IRn
jru�x�j� dx �

Z
�
m�x� � ru�x� dx �

which gives krukL��IRn�IRn� � kmkL����IRn� by the H�older inequality� It follows from the Lax�
Milgram lemma that ��� has for any m � L���� IRn� the unique solution u � W ����IRn�

	



and that the mapping m �� ru is linear and weakly continuous� Hence the magnetostatic
energy m �� �

�

R
IRn jru�x�j�dx is sequentially weakly lower semicontinuous�

As the set of admissible magnetizations fm � L���� IRn�� jmj � �g is not convex� we
cannot rely on direct methods �see e�g� ���
� in proving the existence of a solution to ����
cf� ���
 for failure of existence of a solution in a uniaxial case� More precisely� if the weak
limit of some minimizing sequence of m�s in ��� lives for almost all x � � in the unit sphere
then this is the strong limit� cf� �	�� p� ��
� Therefore� a so�called �ne structure �or� in
the �limit� we will speak about a microstructure� in m will typically develop� and we have
to look for a notion of generalized solutions and to formulate a so�called relaxed problem�
Let us emphasize that the �ne structure in m is actually observed in real ferromagnetic
materials� see ���
�

�� Relaxation in terms of Young measures

We need to describe suitably an oscillating character of sequences f�mk� uk�gk�IN �
L���� IRn� 	 W ����IRn� minimizing sequence ���� It is well known �see �	� ��� ��
� that
we can extract a subsequence �denoted� for simplicity� by the same indices� and �nd u �
W ����IRn� and a family of probability measures � 
 f�xgx�� such that supp��x� � Sn�� ��
fs � IRn� jsj � �g which is weakly measurable in the sense that v �� is Lebesgue measurable

for any v � C�Sn���� and

��� w�lim
k��

uk � u � w��lim
k��

v �mk � v ��

for any continuous function v � IRn � IR� where the limits refer respectively to the weak
topology in W ����IRn� and the weak� topology in L����� and �v ��
�x� ��

R
Sn�� v�s��x�ds�

for almost all x � �� Let us denote the set of all � 
 f�xgx�� with the above listed
properties by Y���Sn���� such ��s are called Young measures� Conversely� for any � �
Y���Sn��� there is a sequence of measurable functions mk � �� Sn�� such that the later
convergence in ��� is ful�lled�

The relaxation of the problem ��� was done by DeSimone ��	
� Pedregal �	�� 	�
� Rogers
�	�
 etc� The continuously extended problem obtained by this way looks as follows�

���

��������
�������

minimize �E��� u� ��
Z
�

Z
Sn��

�
��s��He �x� � s

�
�x�ds� dx �

�

	

Z
IRn
jru�x�j� dx�

subject to
Z
IRn

�
ru�x��

Z
Sn��

���x� s �x�ds�
�
rv�x� dx � � �v�W ����IRn� �

��Y���Sn���� u�W ����IRn� �

The probability measure �x describes in a proper �we may say �mesoscopic�� way the
microstructure of the �limit� magnetization at a point x�

The extended problem ��� is a correct relaxation for the original problem ���� Indeed�
by ��	� 	�
� the in�mum of �E is attained and it is equal to the in�mum of E� Moreover�
having ��� u� a solution to ���� then there is a sequence �mk� uk� � L���� IRn�	W ����IRn�
satisfying �uk �div�mk��� in the weak sense� jmkj � � a�e�� minimizing E� and attaining
��� u� in the sense ���� Conversely� every sequence �mk� uk� � L���� IRn� 	 W ����IRn�

�



satisfying �uk �div�mk��� weakly� jm
kj � �� and minimizing E� contains a subsequence

attaining some ��� u� � Y���Sn���	W ����IRn� in the sense ���� and every ��� u� obtained
by such way solves the relaxed problem ����

One can also think about a �coarser� relaxation in terms of the original �macroscopic�
magnetization m� We denote by �Sn�� the indicator function of the unit sphere� i�e�

�Sn���s� �

�
� if jsj � �
�� otherwise �

Furthermore� by v�� we denote the second Fenchel conjugate �the convex envelope of v��
i�e� v�� � supfw convex� w � vg� This can be used to pose the following relaxed problem�

���

������
�����

minimize  E�m� u��
Z
�
��� �Sn�� 
���m�x���He�x� �m�x� dx�

�

	

Z
IRn
jru�x�j� dx�

subject to div�ru�m��� � � in IRn �

m � L���� IRn� � u � W ����IRn� �

Note that ����Sn�� 
�� equals �� outside the unit ball in IRn so that any minimizer �m� u�
of ��� must satisfy jm�x�j � � for a�a� x � �� DeSimone ��	
 showed that  E always attains
its minimum on the considered admissible set� and this minimum is equal to the in�mum
of ���� For any s � IRn� one has

�
� �� � �Sn��
���s� � inf
� probability measure on Sn��R

Sn��
���d���s

Z
Sn��

������d�� �

Note that� for jsj � �� the set of ��s considered in �
� is empty so that the in�mum in �
�
is ��� It is clear that if ��� u� minimizes �E then �m� u� with

m�x� �
Z
Sn��

s�x�ds�

minimizes  E� Said di�erently� a unique minimizer of �E implies a unique minimizer of
 E� The opposite implication does not hold because� �xing some m � L���� IRn� with
values in the unit ball centered at the origin� we might still have many �even continuum
of� minimizers of �E with the �rst moment m� cf� Example � below� Clearly� the only term
responsible for uniqueness!nonuniqueness is �� Recently� Carstensen and Prohl ��
 showed
that if � corresponds to uniaxial ferromagnets� i�e� � is nonnegative and equals zero at
two points 
s � Sn��� and has a given representation� then  E has a unique minimizer�
The Euler�Weierstrass�type optimality conditions for the corresponding �E will enable us
to prove that under some properties of � there also exists a unique Young measure�valued
minimizer� see Examples �"	 below� See also DeSimone ��	
 for earlier results on uniqueness
of Young measure solutions in the uniaxial case�

�



�� Optimality conditions in terms of � and u

It is usual to identify a given Young measure � � Y���Sn��� with the linear functional
in L����C�Sn����� de�ned by

��� h�� hi �
Z
�

Z
Sn��

h�x� s��x�ds�dx�

Thus Y���Sn��� can be considered as a convex weakly� compact subset of L����C�Sn������
see �	
� Corollary �����
� Furthermore� let us de�ne # � L����C�Sn����� 	W ����IRn� �
W�����IRn� �� W ����IRn� by the formula

���� hv�#��� u�i � �h�� ��rv � idi �
Z
�
rv�x� � ru�x� dx

for v � W ����IRn�� where naturally �rv� id
�x� s� �� rv�x� �s� Let us note that #��� u� � �
just means that u solves

����
Z
IRn

�
ru�x��

Z
Sn��

���x� s �x�ds�
�
rv�x� dx � � �v�W ����IRn� �

Also note that # is �weak�	weak�weak��continuous and surjective in the sense that

��	� �f �W�����IRn� �u�W ����IRn� ���Y���Sn��� � #��� u� � f �

which follows immediately from the Lax�Milgram lemma� The relaxed problem ��� now
takes the following abstract form�

����

�����
����

minimize �E��� u�

subject to #��� u� � � �

��� u� � Y���Sn���	W ����IRn��

Note that �E is convex� # is linear� and Y���Sn��� is convex� so that the problem ���� has
a convex structure� As �E is Gate$aux di�erentiable and � �int�#�Y���Sn���	W ����IRn���
due to ��	�� it is known �see e�g� Aubin and Ekeland ��� p����
� that the �rst�order opti�
mality conditions looks as follows�

�E ���� u� � �NKer�� �Y���Sn����W ����IRn����� u�

� Range#� �NY���Sn����W ����IRn���� u� � Range#� �NY���Sn������	 f�g�

where �E � � � �E �
��

�E �
u� � L

����C�Sn����� 	W ����IRn�� �L����C�Sn������ 	W�����IRn�� ��
L����C�Sn������ 	W ����IRn�� denotes the G$ateaux di�erential of E and #� � �#�

� �#
�
u� �

W ����IRn� � L����C�Sn������ 	 W�����IRn� is the adjoint operator to #� Moreover�
NY���Sn����W ����IRn���� u� denotes the normal cone to the convex set Y���Sn���	W ����IRn�
at the point ��� u�� and analogously NY���Sn������ is the normal cone to Y���Sn��� at ��
i�e�

NY���Sn������ ��
n
	 � L����C�Sn������� � � � Y���Sn��� � h	�  � � �i � �

o
�

�



Therefore� we can deduce that� if ��� u� � L����C�Sn����� 	W ����IRn� solves ����� then
there is a Lagrange multiplier 
 � W ����IRn� �� W�����IRn�� such that

���� #�
u
� �E �

u��� u� � � �

���� #�
�
�

�E �
���� u� � NY���Sn������ �

see �	
� Sec� ���
� As the problem ���� is convex� the conditions ����"���� are also su%cient
in the sense that� if ��� u� � Y���Sn���	W ����IRn� satis�es #��� u� � � and ����"���� for
some multiplier 
 � W ����IRn�� then ��� u� solves �����

The abstract conditions ����"���� turns for the concrete data �E from ���� # from ����
and Y���Sn��� into the following integral maximum principle�

Proposition �� Let He � L���� IRn�� � � IRn � IR be continuous� let ��� u� �
L����C�Sn����� 	W ����IRn� solve ���� with the data from ��� and ����� Then

���� h��Hui � sup
m�L����IRn�
jmj�� a�e�

Z
�
Hu�x�m�x�� dx �

where the Hamiltonian Hu � �	 IRn 	 IR is de�ned by

���� Hu�x� s� �� �ru�x� � s�He�x� � s� ��s� �

Conversely� if ��� u� � Y���Sn��� 	W ����IRn� satis�es #��� u� � � and if the maximum
principle ���� holds� then ��� u� solves �����

Proof� Let us evaluate the di�erential of �E� As for �E �
u��� u� � L�W ����IRn�� IR� �

W�����IRn�� we have

��
� hE �
u��� u�� vi �

Z
�
ru � rv dx�

while for �E �
���� u� � L����C�Sn������ � L�L����C�Sn������ IR� we have

���� �E �
���� u�
� �� � h �� �� ��He � idi

where naturally ��� �
�x� s� � ��s� and �He � id
�x� s� � He�x� � s�
The equation ���� now gives

�	��
Z
�
rv � r
 dx � h
�#��� v�i � h#�

u
� vi �
D
�E �
u��� u�� v

E
�
Z
�
ru � rv dx

for any v � W ����IRn�� from which we get simply 
 � u� constant� As 
 should live in
W ����IRn�� this constant must vanish so that we eventually 
 � u�

The inclusion ���� results in the inequality

� �
D
#�
�
� �E �

���� u��  � � �
E

� h
�#� � � �� ��i � h � � �� �� ��He � idi

� h � � �����r
� id� �� ��He � idi

�



for all  � � Y���Sn���� This gives h � � ��H�i � � with the Hamiltonian H� � Hu given
by ����� By �	��� H� � Hu� In other words� we got

�	�� h��Hui � max
���Y���Sn���

h ��Hui �

As E �
� as well as #

�
� take their values in L

����C�Sn���� rather than in L����C�Sn�������
we can take into considerations only the intersection of the normal cone NY���Sn������ �
L����C�Sn������ with L����C�Sn���� as was already done in �	

� Hence�

NY���Sn�������L
����C�Sn���� �

	
h�L����C�Sn����� � ��Y���Sn��� � h �� hi � h�� hi




�
n
h�L����C�Sn����� h�� hi � sup

m�L����IRn�
jmj�� a�e�

Z
�
h�x�m�x�� dx

o
�

which eventually gives us �����
As the problem ���� is convex� the maximum principle ���� is also su%cient in the

above speci�ed sense�
�

Thanks to the special form of the set of admissible magnetizations in ��� admitting
arbitrary oscillations of m� the integral maximum principle ���� can be localized into the
following pointwise maximum principle� which gives a very explicit restriction on possible
steady�state microstructures�

Proposition �� Let ��� u� � Y���Sn��� 	W ����IRn� solve the relaxed problem �����
Then

�		�
Z
Sn��

Hu�x� s��x�ds� � max
s�Sn��

Hu�x� s� for a�a� x � �

with the Hamiltonian again from ��	�� In other words�

�	�� supp��x� � ArgmaxHu�x� �� �

where ArgmaxHu�x� �� �� fs�Sn��� Hu�x� s� � maxHu�x� S
n���g� Conversely� if ��� u� �

Y���Sn��� 	 W ����IRn� satis�es #��� u� � � and �
�� holds for a�a� x � �� then ��� u�
solves the relaxed problem �����

Proof� We will show that ���� and �		� are equivalent to each other� Due to ����
Th ��	� Ch� VIII
� there exists  m � � � Sn��� measurable such that Hu�x�  m�x�� �
maxs�Sn�� Hu�x� s� for almost all x � ��

First� suppose that ���� is ful�lled� Therefore�

h��Hui �
Z
�

Z
Sn��

Hu�x� s��x�ds� dx � sup
m�L����IRn�
jmj�� a�e�

Z
�
Hu�x�m�x�� dx

�
Z
�
Hu�x�  m�x�� dx �

Z
�

max
s�Sn��

Hu�x� s� dx �

�



In other words�

Z
�

�Z
Sn��

Hu�x� s��x�ds�� max
s�Sn��

Hu�x� s�
�
dx � � �

At the same time�
R
Sn�� Hu�x� s��x�ds� � maxs�Sn�� Hu�x� s� for almost all x � �� which

shows that �		� holds�
Let now �		� be satis�ed� Integrating it over � one gets

h��Hui �
Z
�

max
s�Sn��

Hu�x� s� dx � sup
m�L����IRn�
jmj�� a�e�

Z
�
Hu�x�m�x�� dx �

Z
�
Hu�x�  m�x�� dx �

On the other hand�
R
�maxs�Sn�� Hu�x� s� dx �

R
�Hu�x�  m�x�� dx and thus ���� holds� �

�� Optimality conditions in terms of � and m

One can also alternatively consider optimality conditions when the energy functional is
supposed to depend on the �mesoscopic� Young�measure magnetization � and the �macro�
scopic� magnetization m� Interestingly� it turns out that such optimality conditions are
the same as those derived in the previous section� In order to show this we will de�ne a
new functional e � L����C�Sn����� 	 L���� IRn�� IR by

e���m� � h�� �� �i �
Z
�
He�x� �m�x� dx�

�

	

Z
IRn
jru�x�j� dx �

with ru determined via �u �div�m���� Eventually� we de�ne � � L����C�Sn����� 	
L���� IRn�� � L���� IRn� by

����m� � id �� �m

and we see that � �Y���Sn���	 L���� IRn�� � L���� IRn�� Thus we are concerned with

�	��

�����
����

minimize e���m�

subject to ����m� � � �

���m� � Y���Sn���	 L���� IRn� �

Note that � is continuous and linear and e is convex� We will also show that e is Gate$aux
di�erentiable� The �rst order optimality conditions read in this case that� if ���m� �
Y���Sn���	 L���� IRn� solve �	�� then there is a Lagrange multiplier � � L���� IRn� such
that

�	�� ��m�� e�m���m� � � �

�	�� ����� e�����m� � NY���Sn������ �

where e� � �e�� � e
�
m� � L����C�Sn����� 	 L���� IRn� � L����C�Sn������ 	 L���� IRn� and

�� � ���� � �
�
m� � L

���� IRn�� L����C�Sn������ 	 L���� IRn��






Proposition �� Let He � L���� IRn�� � � IRn � IR continuous� let ���m� �
Y���Sn���	 L���� IRn� solve �
�� and let u solve ���� Then

�	�� h�� h�i � sup
�m�L����IRn�
j �mj�� a�e�

Z
�
h��x�  m�x�� dx �

where the Hamiltonian in now de�ned as

�	
� h� �� �� id� �

with � � He �ru�

Proof� First we prove that e����m� � ����He � ru�� The �rst component of e��
namely e��� is obvious because e��� m� is a%ne� As to the second component� we denote by
w the solution to ��� with arbitrary v � L���� IRn� instead of m� Then we have

�e�m���m�
�v� � �He � v �
�

	

d

dt

Z
IRn
jru�x� � trw�x�j� dx jt�	

� �He � v �
Z
IRn
ru�x� � rw�x� dx

� �He � v �
Z
�
ru�x� � v�x� dx � ��He �ru� � v �

where we used� beside ��� with v instead of m� also the linearity of the mapping m �� ru�
Furthermore� for any � � L���� IRn� it holds ��� � ��� id���� because

h���� ���m�i � h�� ����m�i �
D
�� id ��

E
� h��mi � h�� �� idi � h��mi �

The relations �	�� and �	�� now turn respectively into

�	�� � � He �ru �

���� ��� �� id � NY���Sn������ �

Again� since e�� as well as ��� take their values in L����C�Sn���� rather than in
L����C�Sn������� we obtain the claimed maximum principle� �

Proposition �� Under the assumptions of the previous proposition

���� �h� ��
�x� � max
s�Sn��

h��x� s� for a�a� x � � �

The proof of the above point�wise version is analogous as that one of Proposition 	�
We point out that h� � Hu provided � � He �ru so that� in fact� Propositions � and

	 are equivalent with Propositions � and �� respectively�

�



�� Some consequences

The following proposition gives a su%cient condition under which the relaxed problem
���� has a unique minimizer� This condition is indeed satis�ed in some physically rele�
vant situations� see Examples � and 	 below� while in other situations admitting many
minimizers is not satis�ed� see Example ��

Proposition �� Let �	� possess a unique minimizer and let� for any r � IRn� the
function Sn�� � IR� s �� r � s� ��s� attain its maximum at a �nite number 
�r� � n� �

of points �lr such that dim�spf�lrg
��r�
l�� � � 
�r�� �� Then ���� has a unique solution�

Proof� The proof paraphrases that one of �	
� Corollary �����
� Let �m� u� �
L���� IRn� 	W ����IRn� be a unique minimizer of ��� and let ���� u�� and ���� u�� be two
di�erent solutions to ����� Let us denote m� � id ��� and m� � id ���� As �m�� u�� and

�m�� u�� must solve ���� we get

��	� m� � m � m� and u� � u � u��

Then the Hamiltonian is determined uniquely� i�e� Hu� � Hu� � By �	��� and the
assumption� the probability measure �ix must be supported at a �nite number k�x� �


�He�x� � ru�x�� of points sl�x� � �lHe�x��ru�x�
� i�e�� �ix �

Pk�x�
l�� a

i
l�x��sl�x� with ail � ��Pk�x�

l�� a
i
l � � a�e� in �� By ��	�� we have

k�x�X
l��

�a�l �x�� a�l �x��s
l�x� � m��x��m��x� � � �

The full�rank condition yields a� � a� a�e� in �� �

Proposition 	� Let the assumptions of Proposition 
 be ful�lled� Then the original
problem ��� possesses a solution �being equal just to �u�m�� the assumed unique solution
to �	�� if and only if� for a�a� x � �� it holds

���� m�x� � f�lrg
��r�
l�� with r � He�x��ru�x� �

Proof� The unique solution ��� u� to ���� is ��atomic at a given x � �� i�e� of the form
�x � �m�x�� if and only if ���� holds� If ���� holds a�e�� �m� u� then solves ���� Conversely�
if �m� u� solves ���� then ��� u� with �x � �m�x� solves ����� As this solution is unique�
failure of ���� for x from a positive Lebesgue measure set implies failure of existence of any
solution to ���� �

Example �� �Uniaxial magnets I�� Let us take n � 	� � � S� � IR

��s� � s�� �minf�s� � ���� �s� � ���g�

such potential is related with the so�called uniaxial ferromagnet� For this type of � there
is a unique solution to ���� cf� DeSimone ��	
 or also Carstensen and Prohl ��
� As n � 	�

��



we have S� � f�cos �� sin ��� � � ��� 	�
g and� for ���� �� ��cos �� sin ��� it is easy to
see that ���� � 	 � 	j sin �j� For r � �r�� r�� � IR�� let us further denote f��� r� �
����� r� cos � � r� sin �� Di�erentiating f with respect to � we have

�f

��
��� r� �

�
r� sin � � �r� � 	� cos � if � �
�� ��
r� sin � � �r� � 	� cos � if � �
�� 	�� �

We see that f��� r� has at most four local extrema at � � �� � � �� � � �� � ��� �
 and
� � �� � ��� 	�
� where

�� ��

�
arctan r�
�

r�
if r� �� ��

�
�

if r� � ��
and �� ��

�
arctan r���

r�
if r� �� ��

��
�

if r� � ��

On the other hand� there is no r � IR� for which f��� r� � f��� r� � f���� r� � f���� r��
This shows together with Proposition � that 
�r� � �� r � IR�� and that for � as above
���� has a unique solution� In truth� one can even show that 
�r� � 	� so that ���� has a
solution ��� u� with �x � 
�x��s��x� � ��� 
�x���s��x� for almost all x � ��

Example �� �Uniaxial magnets II�� By similar arguments one obtains uniqueness also
for n � 	� � � S� � IR�

��s� � ��s�� s�� � s��

as already observed in ��	
�

Example �� �Cubic magnets�� Let us take n � �� � � S� � IR�

��s� � ��s�� s�� s�� � s��s
�
� � s��s

�
� � s��s

�
� �

Then one can see that for He � � there are many solutions to ����� for example� �x �
�
�
��	��� �

�
�
��	����� x � �� u � � or �x � �

�
����	� �

�
�
�����	�� x � �� u � �� Note that the

assumptions of Proposition � are indeed not satis�ed because 
��� � � � n � � � ��
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