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Introduction

In the present work we investigate branching extremals (extreme networks) for
one-dimensional variational functionals of Lagrange type. We mean the ex-
tremality in the following broad sense: admissible deformations can split ver-
tices and thus change the topology of initial networks. To distinguish the net-
works whose vertices are not allowed to be splitted, and the networks whose
vertices can be splitted, we call the former ones by parametric networks
(i.e., the networks whose parameterizations are fixed), and the latter ones by
networks—traces, or simply traces.
The authors are mostly interested in the following two questions:
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e what Lagrangians’ properties lead to the existence of nontrivial branching
extremals,

e what is the local structure of the branching extremals.

Notice that, generally speaking, an additional freedom appearing due to the pos-
sibility to split the vertices can essentially reduce the class of extreme networks—
traces with respect to the class of extreme parametric networks and, moreover,
it can be a reason for nonexistence of extremals. It turns out that the ex-
istence of nontrivial extreme networks is related closely with the presence of
singularities of Lagrangian, see Theorem 3.1 and Corollaries 3.1-3.4. Triviality
of extremals is understood here in the following sense: an extreme network is
said to be trivially extreme, if (1) each of its edges is extreme with respect
to arbitrary deformations (in particular, with respect to deformations moving
boundary vertices of the network), and (2) every pointwise curve whose image
coincides with an arbitrary vertex of the network is also extreme with respect to
arbitrary deformations. In particular, if we cut a trivially extreme network over
an arbitrary set of its vertices, then as a result we get the union of networks each
of which is extreme too. The authors proved that if a Lagrangian is smooth,
then the corresponding functional does not have a nontrivial extreme network,
see Corollary 3.1.

The authors introduced a class of so-called quasiregular Lagrangians, i.e.,
the Lagrangians having in some sense the simplest singularities whose pres-
ence is necessary for the appearance of nontrivial branching extremals. For
such Lagrangians the authors obtained a criterion of networks’ extremality, see
Theorem 3.2. The main difficulty here is the necessity to control all possible
splittings of the network’s vertices (the number of such splittings is infinite,
generally speaking).

Besides that, a criterion of a parametric networks extremality (Theorem 2.1),
and also a criterion of a trace extremality under the assumption of quasiregular
Lagrangian’s smoothness (Theorem 3.1) are obtained.

The authors use the opportunity to express their deep gratitude to Jirgen
Jost for his interest to our work and for the possibility to work jointly and fruit-
fully in MPI fiir Mathematik in den Naturwissenschaften, Leipzig, Deutschland.
The authors are also grateful to Anatoly Fomenko for his permanent attention
to our work.

1 Preliminaries

We consider graphs from a topological point of view. A topological graph G
is a topological space obtained from a finite number of segments {I,} by means
of some gluing over their ending points. Let 7: U, I, — G be the corresponding
canonical projection. The images of the interiority of the segments I, under the
mapping 7 are called the edges of the graph G. The w-images of the ending



points of the segments I, are called the vertices. If for each « a specific segment
[aa,ba] = I, of the real axis is fixed, then such graph is called framed. Notice
that since the ends of an arbitrary segment [a,,bs] are ordered in the natural
way, namely, a, < by, then the orientation of each edge of a framed graph is
fixed and we can speak about the beginning and ending vertices of the edges.

A homeomorphism p: G; — G5 of framed graphs is called an equivalence if
it takes vertices onto vertices and for each edge [a, b] of the graph G; the mapping
¢|[a,5] is the identical mapping of the segment [a,b] onto itself. Framed graphs
(1 and G5 are said to be equivalent if their exists an equivalence ¢: G; — Gs.

Assume that some subset B of vertices of a graph G is fixed. Such graph G is
said to be a graph with the boundary 0G = B. Vertices from 9G are called
boundary or fixed and all remaining vertices are called interior or movable.
An edge of the graph incident to a boundary vertex is also called boundary
and an edge not incident to boundary vertices is called interior.

Definition. Let G be an arbitrary connected framed graph and 0G be some
its boundary. A parametric (framed) network of the topology G on a
manifold W is a continuous mapping I' from G into W. The graph G in that
case is called the parameterizing graph of the parametric network I'; or
its topology.

All the terminology of Graph Theory and Topology can be naturally applied
to the case of parametric networks. For example, the restrictions of a mapping
I" onto vertices, edges, a boundary, a connected subgraph of the parameter-
izing graph, a local graph, etc., are called vertices, edges, a boundary, a
subnetwork, etc., of the parametric network T.

Remark. Above we represented each framed graph as a collection of segments
factorized over an equivalence gluing some ending points of these segments.
In the same way, a parametric network can be represented as a collection of
continuous curves in a manifold some of whose ending points are identified.

A parametric network I': G — W is said to be smooth (regular, piecewise-
smooth, piecewise-regular) if the restriction of the mapping I" onto the clo-
sure of each edge of the graph G is such a curve. Notice that the notion of a
smooth parametric network is a natural generalization of the notion of a smooth
curve.

Let I': G — X be an arbitrary parametric network and I = [a,b] be a
segment.

Definition. A continuous mapping ¥: G x I — W such that ¥(g,a) = I'(g)
for all g € G is called a deformation of the parametric network I'. If the
initial parametric network I' is smooth (regular, piecewise-smooth, piecewise-
regular), then we will assume that each parametric network ¥(-,¢) = I'; is also
such a network and that for each edge e of the graph G the restriction of the



mapping ¥ onto € x I is smooth (here by € we denote the closure of €¢). The
family of the velocity vectors of the curves I';(g) at the initial moment ¢ = 0
over all points g € GG is called the field of deformation I';.

We introduce an equivalence p on the class of all parametric networks on W
as follows. We say that a parametric network I'y can be projected onto I's if
there exists a projection 7: G; — G4 such that I'sor = I';. Here the projection
m: G — (4 is a canonical projection of the space G to the quotient space Gy =
G1/H, where H is a subgraph in G;. The projection n induces the mapping
m: 'y = I'y of one network onto another one which is also called a projection.
Two parametric networks I';: G; — X are said to be p-adjacent if one of
them can be projected onto another. Notice that the relation of p-adjacency is
reflective and symmetric, but not transitive. We extend this relation upto an
equivalence relation as follows. Two parametric networks I' and I'" are said to
be p-equivalent if there exists a finite sequence {I' = T';,T'y,... ,[';, =T} of
parametric networks such that each two neighboring networks I'; and I';; are
p-adjacent. The classes of p-equivalence are called (framed) networks—traces,
or simply (framed) networks. If a parametric network I' is contained in a trace
T, then we will write T = [I].

A canonical representative of a trace T is a parametric network I' € T
such that each parametric network I from YT can be projected onto I'. One
can prove that every trace possesses exactly one (up to equivalence) canonical
representative, see [4].

A (local) deformation of a trace T is an one-parametric family YT, = [[],
t € [t1,t2], of networks, where I'; is a deformation of some parametric network
I' =Ty, from T such that for ¢ > ¢; each parametric network I'; is the canonical
representative of the network Y.

2 Extreme Parametric Networks Local Struc-
ture

Let W be a smooth manifold, 7: TW — W be the tangent bundle, L : TW — R
be a continuous Lagrangian. Let {2 be the space of all piecewise smooth curves
on W and ¥ : 2 — R be the classical variational functional corresponding to
the Lagrangian L, i.e.,

Speaking about a mapping of one network I'; : G; — W to another one I'y: Go — W, we
mean a mapping of the corresponding sets {(g, Fi(g)) }

For simplicity we restrict ourselves only by the case of autonomous Lagrangians, however,
all the results can be obtained in non autonomous case too.



where 7v: [a,b] = W is a curve from Q.

Let G be a framed graph, OG be some its boundary, 8: 0G — W be an
arbitrary mapping, and I': G — W be an arbitrary piecewise smooth parametric
network with the boundary dI' = 3. On the set of such networks the following
functional ¥, is defined: the value of ¥, on a network I is equal to the sum of
the values of the functional ¢, on the edges of the network T

Let (x,€) be an arbitrary point from TW. We assume that the Lagrangian
L is twice continuously differentiable at the point (z,£). Denote by p(z,§) =
Le(z,€) the following point from the cotangent space TiW. If z° are some
coordinates on W in some neighbourhood of the point x and ¢’ are the corre-
sponding coordinates in the tangent space T, W, then the ith component of the
covector p(x, &) has the form

OL

(x,8).

The covector p(x,&) is called a (generalized) impulse at the point (z,¢).
Further, we define another covector [L](z, £) as follows. We consider an arbitrary
smooth curve z(t) such that £(0) = £&. We put:

(1,6 = S| {milel),60) } — 05 (2(0),(0).

It is well known that this definition does not depend on the choice of the curve
x(t), see [1]. The covector [L] is called the Lagrangian derivative of the
function L (at the point (z,¢)).

A curve v(t) is called quasiregular, if it is either regular, or pointwise (i.e.,
a mapping into a point). A parametric network I is called quasiregular, if
all its edges are quasiregular curves. An edge of the graph G parameterizing
a regular (a pointwise) edge of the network I' is called regular (respectively,
pointwise).

A Lagrangian L is called quasiregular, if

(1) the function L is smooth on all TW except, may be, the zero section
Wo CTW,;

(2) the restriction of the function L onto the zero section Wy C TW equals
zero;

(8) for each vector ¢ € Tp,e)(T'W) there exists a derivative ((L) of the func-
tion L with respect to the direction of the vector (;

(4) for an arbitrary smooth deformation 7., € € [0, 1], of a pointwise curve 7,
such that all the curves 4., € > 0, are regular the function = L(v.(t), ¥ (t))

Here and below we understand a derivative of a function with respect to a direction as a
limit for e — 0+. In particular, derivatives of a function with respect to opposite directions
need not be equal, generally speaking.



is continuous on (t,e). That condition is called the concordance condi-
tion.

As an example of quasiregular nonsmooth Lagrangian one can consider the
Lagrangian corresponding to the length functional on a Riemannian manifold.
More general example can be obtained by means of a norm given on each tangent
space of a manifold and smoothly depending on points and nonzero tangent
vectors. Notice that strict convexity of the norm is not assumed.

The properties defining quasiregular Lagrangians appeared under an attempt
to understand what characteristics of Riemannian length functional lead to ex-
istence of nontrivial extreme networks. The first property implies that regular
edges of an extreme network satisfy the standard Euler-Lagrange equations.
The second property is necessary to define correctly the functional on the space
of the networks—traces (to do that, we need the vanishing of the functional on
pointwise edges). The third and the fourth properties seem to be necessary
for using the standard technique of Calculus such as differentiation of integrals
depending on a parameter.

The following Assertion calculates for the functional 1, with a quasiregular
Lagrangian its derivative with respect to a direction.

Assertion 2.1 Let L be a quasireqular Lagrangian and vy, be the corresponding
classical variational functional. Let y(t), t € [a,b], be an arbitrary quasireqular
curve and v, € € [0,1], be a smooth deformation of the curve y such that for
e > 0 all the curves . are reqular. By n(t) we denote the field of the deformation
Ve, i-e., n(t) = d%|620’ys(t). If the curve y(t) is regular, then

d t=b

de

Yr(y:) = p(%v)(n)‘

e=0 t=a

b
+ / (L](3, ) () .

Otherwise, i.e., if the curve 7y is pointwise, then

b
d%‘s:om(%) :/ C(L)(v,0)dt,

where ( = (n,7n) is the corresponding vector field along the curve t — ('y(t),O)
in TW. If we assume additionally that the Lagrangian L is smooth in a neigh-
bourhood of the point (x,0), where x = y(t), then

d t=b

b
de + /a [L](z,0)(n) dt.

¥1(3:) = p(z,0)(n)

e=0 t=a

Proof. The first statement is well known, see for example [1].
Let us prove the second statement. We consider the function

f(t,e) = L(7:(t), (1)),



where ¢t € [a,b] and € € [0,1]. The partial derivative f.(t,e) of the function
f(t, ) with respect to € is equal to ((L)(7(t),%(t)). Since the Lagrangian L is
quasiregular, we conclude that the function f.(¢,¢) is continuous. Therefore,

b b b
Z [ reesma= 1 [seoi= o
b
= [ (.50 d.
q.e.d.

A quasiregular (parametric) network I" is said to be extreme for a functional
¥ with a quasiregular Lagrangian, if for an arbitrary deformation I'c, € €
[0, 0], of the network I' = I’y we have:

d

— U, (T.) >0.
de le=o L( )_0

Remark. To avoid cumbersome statements, we define extremality as nonnega-
tivity of the derivations with respect to directions. The networks satisfying the
opposite inequality also have been considered as extreme ones. However we do
not restrict the class of extreme networks because the latter networks can be
obtained from the former one by means of changing the Lagrangian’s sign.

Let I': G — W be an arbitrary quasiregular parametric network. The max-
imal connected subgraphs of the graph G all of whose edges are pointwise are
called pointwise components of the graph G. Reduced components of
the graph G are either its pointwise components, or its vertices not incident to
pointwise edges. The corresponding elements of parametric networks are called
in the same way.

For each reduced component H C I' we denote by Ep the set of all the
edges of the network H, by Iy the set of edges from I' \ H adjacent with H and
such that their ending vertices lie in H, and by Op the set of edges from I'\ H
adjacent with H and such that their beginning vertices lie in H. Notice that the
sets Iy and Op can intersect each other. Besides that, the union of all the sets
Ig and Op over all reduced components H of the network I' coincides with the
set of all regular edges of the network I'. At last, if v is an edges of the network
T, then by [a4,b,] we denote the segment parameterizing that edge. By 0H we
denote the set of vertices from H which belong to the boundary of the network
I'. By 0H we denote the set of the vertices from H which are incident with the
regular edges of the network I'. Further, for every vertex € 0H we denote by
Ig(z) and Op(z) the subsets of Iy and Og, respectively, consisting of all the
edges incident to z. We put Ny (z) = Ig(x) U Og(z).

It is convenient to introduce the following notation. We put p,(7) to be
equal to £p(v,¥) at a vertex x of an edge v of the network I', where the sign



+ corresponds to the case when z is the ending vertex of + and the sign —
corresponds to the opposite case.
Assertion 2.1 leads easily to the following result.

Theorem 2.1 (On Local Structure) Let L be a quasiregular Lagrangian. A
quasireqular network I': G — W with a boundary B is an extreme network
for the functional ¥, if and only if each regular edge 7: [ay,by] — W of the
network T is extreme for the functional ¢r, i.e., [L](v,%) = 0, and for each
reduced component H: Gg — W of the network I' and for each smooth network
n: Gg — TW, where mon =Tq, and n(0Gm) C Wy, the following expression
1§ nonnegative:

Z P(’Yﬁ)(nv)h:m - Z p(’y”y)(n7)|t:a7 + Z /

b'Y
Gy (L) ('77 '7) dt

yEly Y€OH YEEH "
b’Y
= Z[ ) Pz(v)] (@) + > / G(D)(1,7) dt,
z€dH "vENm(z) ~EEL "’ O

where 1., is the edge 1|, p,] of the network n and ¢, = (ny,17,) is vector field
along the curve (v,%) in TW.

We define the lift of a parametric network I': G — W up to the tangent
bundle as the set {(W(t), 3(t)) } of curves over all the edges «y of the network T'.

Corollary 2.1 Under assumptions of Theorem 2.1, let the Lagrangian L be
smooth in a neighbourhood of the lift of the network ' (for example, it takes
place if the network T' is regular). Then the quasiregular parametric network
I': G - W with boundary 3 is extreme for the functional Y, if and only if each
edge v: [ay,by] = W of the network T is extreme for the functional ¢, i.e.,
[L](7y,%) = 0, and for each movable vertex x of T' the following equality holds:

pr(’j/) =0,

where the summation is taken over all the edges v incident to the vertezr z.

3 Local Structure of Extreme Networks

In this section we consider extreme networks—traces and investigate their local
structure. It turns out that the nontriviality of the local structure is a conse-
quence of nonsmoothness of the Lagrangian L generating the classical variational
functional.

Let L be a quasiregular Lagrangian. Then the functional ¥y defined on
parametric quasiregular networks generates a functional on the set of the cor-
responding networks—traces. The latter functional will be denoted in the same



way. Notice that the canonical representatives of such networks are regular
parametric networks. We start with the case of smooth Lagrangians L.

3.1 Smooth Lagrangians

Let a Lagrangian L be smooth on entire 7'W and suppose that L equals zero on
the zero section Wy of TW. Then L is quasiregular, in particular. The following
result holds.

Theorem 3.1 A network Y is extreme for a functional Vi with smooth La-
grangian L which vanishes on the zero section Wy C TW, if and only if the
following properties hold.

(1) Each edge v of the network Y is extreme for the functional ¢y, .

(2) For any vertex x of the network L and for any edge v incident to = the
equalities p(x,0) = 0 and py(y) = 0 hold.

Proof. By definition, the network T is extreme if and only if every its repre-
sentative I' is extreme for the corresponding functional defined on parametric
networks. In particular, the canonical representative I' of the network Y pos-
sesses the conditions of Theorem 2.1, thus, its edges are extreme for ¢y,. That
proves the necessity of the first condition.

Similarly, Assertion 2.1 implies that each pointwise edge of an arbitrary
representative I' of the network Y is extreme for the functional vy, i.e., it
satisfies Euler—Lagrange equations.

Further, let v be an arbitrary edge of the network Y incident to the vertex
x.

Consider a representative I' of the network T such that

e the reduced component of the vertex z of the network I' consists of one
edge 7'

e the edge 7' is incident to a vertex z' of degree 2 with respect to I’ and

such that 2’ is incident to the edge ~.

The constructed parametric network I' is extreme, thus, Corollary 2.1 applied
to the vertex z' implies p,/(y) £ p(z’,0) = 0, where the sign depends on the
orientation of the edge 7. Since this orientation can be chosen in an arbitrary
way, and since p,(v) = pz(7y), we have

Pz(W) = p(.CL'I,O) = —p(iIJ’,O) = p(m,O) =0,

q.e.d.
The converse statement follows immediately from Corollary 2.1, because all
the impulses vanish by the assumption. Theorem is proved.
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Corollary 3.1 Let Y be extreme for a functional ¥, with smooth Lagrangian L
which vanishes on the zero section Wo C TW . Then each edge of the network Y
is extreme for the functional ¢, with respect to arbitrary deformations and each
pointwise curve whose image coincides with an arbitrary vertex of the network
T is also extreme for the functional 1y, with respect to arbitrary deformations.
In other words, each extreme network for the functional Vi is trivially extreme.

Corollary 3.2 Let Y be extreme for a functional ¥, with smooth Lagrangian L
which vanishes on the zero section Wy C TW . Let x be a vertex of the network
T and 71, ... .7 be the edges of Y incident to x. By & we denote the velocity
vector of the edge v; at the vertex x. Then each point (x,&;) and also the point
(z,0) is critical for the restriction of the Lagrangian L onto T, W .

Corollary 3.3 Let L be a smooth Lagrangian vanishing on the zero section
Wo € TW. If the restriction of the Lagrangian L onto T,W has no critical
points outside 0 € T,W for any x € W, then each extreme network for the
functional ¥y, is pointwise.

Example. Let L(z, &) = (&, £) be the Lagrangian corresponding to the energy
functional on Riemannian manifold W. Corollary 3.3 implies that all the ex-
treme traces for this functional are pointwise.

Example. Let L(z,£) = T(§) — U(z) be the Lagrangian corresponding to the
functional describing the motion of a mass point in the conservative forces field
with a potential U(z) on a Riemannian manifold W. Corollary 3.3 implies that
all the extreme traces for this functional are pointwise.

Corollary 3.4 Let L be a smooth Lagrangian vanishing on the zero section
Wo CTW. Suppose that the Cauchy problem for the Euler—Lagrange equations
corresponding to the Lagrangian L possesses the uniqueness property. If the
Lagrangian L restricted onto T, W has at most two critical points for any x € W,
then each extreme network for the functional Y, is a curve, possibly pointwise
(the canonical representative has vertices of degrees 1 and 2 only).

3.2 Quasiregular Lagrangians

Let us return to the case of quasiregular Lagrangians of general type.

Assertion 3.1 Let L be a quasireqular Lagrangian and Y be an extreme network
for the functional ¥ . Then ((L)(z,0) > 0 for any vertex x € T and any vector
(e T(LO)TW.

Proof. Suppose otherwise, namely, assume that for some vertex z and some
Co € T(4,0)TW the inequality (o(L)(z,0) < 0 holds. Consider a representative
' of the network Y for which the preimage of the vertex z consists of one
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edge v: [0,d] — z incident to a vertex of degree 1 such that the latter vertex
corresponds to the end point § of the parameterizing segment [0, d].

Let us fix local coordinates z* in the manifold W in a neighbourhood of .
This gives us local coordinates (x?,&7) in the bundle TW. Suppose that the vec-
tor (p is of the form ¢ = a0, +,8i8§i in this coordinates. Put a = (al,... ,a")
and 3 = (3,...,8"), where n = dimW. We construct a deformation of the
parametric network I' fixed on all edges of I' except 7. On the edge v define
the deformation as follows: 7. (t) = x + e(a + ¢3). Then the field n(t) of this
deformation has the form 7(t) = a+ 8 and the corresponding field ((¢) equals
(n(t),ﬁ(t)) = (a + tf3,3). In particular, ((0) = {p. Therefore, by choosing ¢ to
be sufficiently small, the concordance condition implies

J
/ ¢(L)dt < 0.

The latter contradicts to extremality of I, see Theorem 2.1. Assertion 3.1 is
proved.

Assertion 3.2 Let L be a quasireqular Lagrangian and Y be an extreme network
for the functional ¥1,. Then at each movable vertex x of the network Y the sum
of impulses p,(7y) over all edges v from Y incident to x equals zero.

Proof. This is a direct consequence from Corollary 2.1 because the canonical
representative is a regular extreme network.

By V(TW) we denote the subbundle of T'(TW) — TW whose fibers consist
of the vectors tangent to the corresponding fibers of the tangent bundle TW —
W. By H(W,) we denote the distribution of the spaces tangent to the zero
section Wo C TW. At each point x of W the tangent space T(, ¢)TW can be
decomposed into the direct sum of the spaces Vi, 0)TW and H, 0 Wo. The
spaces H(, )Wy are called horizontal.

Notice that each vector ¢ € T{, 0)7'W can be uniquely decomposed into the
sum of its vertical ¢, € V(; 0)TW and horizontal ¢, € H(, o)W, components.

We say that a quasiregular Lagrangian L is differentiable along the base
W if for each z € W and each vector ¢ € T\, 0)T'W the following equality holds:

((L) = Go(L) + Cu(L),
and the function (;(L) is linear on (s € H ,,0)Wo.

Assertion 3.3 Let L be a quasireqular Lagrangian and Y be an extreme network
for the functional Y. Suppose that the Lagrangian L is differentiable along the
base. Then for each vertex x of the network Y the restriction of the function
C(L) onto the horizontal space H, 0)Wo equals zero.
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Proof. Assertion 3.1 implies ((L)(x,0) > 0 for any ¢ € T(,,0T'W, in partic-
ular, for all ¢ from the horizontal space H(, 0 Wo. Since the Lagrangian L is
differentiable along the base, the restriction of the function {(L)(x,0) onto the
space H(, o)Wy is a linear function, thus, this function equals zero. The proof
is complete.

A quasiregular Lagrangian L is called proper if for each point x € W the
function f(¢) = ¢(L)(z,0) defined on T{, oyTW is smooth outside ¢ = 0.

A vertex x of a trace T (the corresponding vertex of the canonical represen-
tative for T) is called free if the impulses p, () of the edges 7 incident to this
vertex vanish.

Recall that there exists a canonical isomorphism p between the tangent
spaces T, W to a manifold W and the corresponding vertical spaces Vi, o)TW.
This isomorphism can be defined as follows. Let £ be an arbitrary vector from
T, W. Consider a smooth curve v(t) = (z,t§) in TW outgoing from the point
7(0) = (,0). The velocity vector ¥(0) belongs, by definition, to V{, ¢yTW. The
isomorphism p takes the vector £ into the vector %(0).

Assertion 3.4 Let Y be an extreme network—trace for a functional Y, where
L is a proper quasireqular Lagrangian differentiable along the base. Let x be a
nonfree movable vertex of the network Y. Then the restriction of the function
f(¢) = C(L)(,0) onto Vi, 0)TW\{0} is positive. Also, ((L)(w,0) = (,(L)(x,0).

Proof. Assertion 3.3 implies that {(L)(z,0) = (,(L)(x,0). Besides that, As-
sertion 3.1 implies that ((L)(x,0) > 0. Thus, to complete the proof it suffices
to verify that ((L)(z,0) can not be equal to zero for vertical nonzero vectors
(e V(LO)TW.

Suppose otherwise, i.e., assume that at a nonfree vertex x of the network
T the equality {o(L)(x,0) = 0 holds for some vertical vector (o # 0. Since the
vertex x is not free, there exists an edge 7y incident to = such that its impulse
Dz (7) does not vanish. Consider a representative I' of the network Y for which
the preimage of the vertex z consists of one edge v': [—a,a] — z. Also, we
assume that one of the vertices incident to ', say ', is incident to the edge v
and the other vertex, say x”, is incident to all the other edges 71, . .. , v incident
toxin T.

Put p1(¢o) = vo. We construct a deformation of the network I remaining
fixed all the vertices of the network I'" except the ones of the edge ~'.

Suppose first that p,(7)(v0) # 0. If py(7)(ro) > 0, then we choose the edge
~" in such a way that the point —a from the parameterizing segment [—a, a]
corresponds to z’. If p,(7)(vo) < 0, then we assume that —a corresponds to the
vertex z''. To be definite, we assume that the second possibility takes place.

Assume that in a neighbourhood of the point (z,0) of the tangent bundle
TW local coordinates (¢, &7) generated by some coordinates x! in W are given.
Define the deformation on the edge 4" as follows: . (t) = evg(t + a)/(2a), where
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€ € [0,&0]. Then the field of the deformation 7(¢) of the edge 7' has the following
form: n(t) = vo(t + a)/(2a), and its lift ((¢) equals

(n(0)1(0)) = (-0, 50
The vertical component of the field (t) equals 7j(t) and has the form 5-vyg, thus,
¢ (L)(,0) = 0.
On the other hand, n(—a) = 0 and n(a) = vy, therefore, the first varia-
tion of the functional ¥; with respect to the deformation of the network I' in
consideration equals

pe)00) + [ (D)@, 0)dt = (7)) <0,

a contradiction. It remains to note that the total impulse p of the edges incident
to the vertex z' of the network I' is opposite to the impulse p,(y). Thus, if
p(7)(vo) is positive, then p(ry) is negative and the similar reasons can be
applied.

Now, let py(7)(r9) = 0. Since py(7y) # 0, then there exists a direction 6 €
T, W such that p,(7)(d) < 0. Consider the function A(d) = (vo + d6)(L)(z,0).
By definition of proper Lagrangian the function A is smooth for sufficiently
small §. Moreover, the point 6 = 0 is a minimum point for the function A.
Really, A(0) = 0 by the choice of 1. By Assertion 3.1 we have A(d) > 0. Thus,

A@B) = 0(8) §— 0,

because 0 is an interior point of the domain for the parameter .

Consider a deformation of the network I' constructed in the same way as
in the first case but with the direction vy replaced with the direction vy + 66.
Write down the formula of the first variation:

e (7) (o + 60) + % ' A(8)dt = 6(pa(7)(0) +0(1)) for § — 0.

—a

Thus, for sufficiently small § > 0 the first variation is negative, that contradicts
to the extremality of the network I'. The proof is completed.

Corollary 3.5 Let Y be an extreme network—trace of a functional ¥y, where
L is a proper quasiregular Lagrangian differentiable along the base. Let x be
a nonfree movable vertex of the network Y. Then for some number c¢(x) > 0
depending on the point x only and for any n € T,W we have

. L(z,en)
- > .
tim 22 > () )

In particular, the restriction of the function L onto an arbitrary linear subspace
of Vie,0)TW s not differentiable at the origin.
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Let us prove one more property of extreme traces.

Assertion 3.5 Let Y be an extreme network—trace for a functional ¥, where
L is a proper quasiregular Lagrangian differentiable along the base. Then at
each vertex x of the network Y for any edges v1, ...,y incident to © and for
any vector n € T,W the following inequality holds:

k
Zm(%)(n) + p(n)(L)(x,0) > 0.

Proof. Partition the edges of the network Y incident to the vertex z into two
classes by putting into the first one the edges v1,. .., and by putting into the
second one all the remaining edges. Consider a representative I' of the network
T for which the preimage of the vertex x consists of one edge v: [—a,a] — .
Also, assume that one of the vertices of ~, say z', is incident to the edges
Y1,. .., and the other one, say z", is incident to the remaining edges incident
to the vertex x in Y. Without loss of generality, we assume that the vertex z’
corresponds to the ending point a of the parameterizing segment [—a, a].

Let us fix some local coordinates z! in W in a neighbourhood of the point
x. Without loss of generality, we suppose that £ = 0 in these coordinates.

Consider a deformation I'. of the network I' such that all the vertices of the
network I' except 2’ remain fixed and the vertex z’ moves uniformly with the
velocity v: 2'(e) = ev. Also, the edge v is deformed linearly: ¢ — syt;—aa for each
t € [—a,a]. Then the field of the deformation 7(t) has the following form along
the edge v: n(t) = vi2, thus, 7(t) = 5=v. Let us put ((¢) = (n(t),n(t)). Write
down the condition that the first variation for such deformation is nonnegative
using the fact that ((L) = (,(L) = 7(L) by Assertion 3.3. We have

k L g .
(;pw(%))(l/) + 5 /w v(L)(z,0)dt = (;pw(%))(u) + v(L)(z,0) > 0.

The proof is completed.

The following theorem gives a criterion of extremality for a network—trace
with respect to a functional defined by a proper quasiregular Lagrangian differ-
entiable along the base.

Theorem 3.2 A network—trace Y is extreme for a functional ¥y, defined by a
proper quasiregular Lagrangian L differentiable along the base if and only if the
following conditions hold.

(1) Each edge v of the network Y is extreme for the functional ¢y, .
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(2) At each vertex © of the network Y for any edges vy1,. ..,y incident to x
and for any vector n € T, W the following condition holds:

k
Zm(%)(n) + p(n)(L)(2,0) > 0.

(3) At each movable vertex of the network Y the sum of impulses of the edges
incident to this vertex equals zero.

(4) At each fized vertex x of the network Y for any ¢ € Vi, o)W the inequality
C(L)(x,0) > 0 holds. Note that if we write down the { in the form p(n),
n € T,W, then the condition of this item can be rewritten as follows:

pu(n)(L)(x,0) = 0.

Proof. Let T be an extreme network—trace for ¥;. Then the canonical rep-
resentative of the network Y is a regular network. Corollary 2.1 implies that
all its edges are extreme for the functional ¢);. The fact that all the remained
properties of the network Y take place was proved in Assertions 3.1-3.5.

Now, let us prove the sufficiency. Suppose that the network Y satisfies Con-
ditions (1)—(4) of Theorem. Let I': G — W be an arbitrary representative of
the network Y and [I';] be some deformation of the trace T. We need to show
that the first variation of the functional ¥ for such deformation is nonnega-
tive. Since the first variation of the functional ¥, can be decomposed into the
sum of expressions corresponding to the reduced components of the parametric
network T, it suffices to verify the nonnegativity of the first variation under the
assumption that the deformation I'. preserves all reduced components of the
network I' except one of them. We denote the latter component by H. Also, by
x we denote the vertex in T corresponding to H.

Let 0H = {z1,...,21} be the set of vertices of the network H incident to
regular edges from I'. By E’ we denote the set of nondegenerate edges of the
network I incident to the vertex x;. By p.(E?) we denote the total impulse of
the edges from E? at the vertex z.

We need the following Lemma.

Lemma 3.1 If x is a movable vertex of the network Y, then for any n € T, W
the inequality p(v)(L)(x,0) > 0 holds.

Proof. Let us use Condition (2) in the case when the set {7v1,...,v} of edges
coincides with the set of all edges from Y incident to . For an arbitrary vector

n we have:
deg

Z P () () + p(n)(L)(x,0) > 0.

Since x is a movable vertex, then the sum in the left hand side of this inequality
equals zero by Condition (3), that implies the result sought for. Lemma is
proved.
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Notice that by Condition (4) and by Lemma 3.1 it suffices to check the case
when the network H is a tree.

Let v be an arbitrary edge of the network H. By [a4,b,] we denote the
segment parameterizing this edge. Let z, and z;, denote the vertices of the
edge 7y corresponding a, and b,. If we cut the tree H by the edge 7, then the
network H is decomposed into two components H; and Hs, where H; denotes
that component which contains the vertex z,. Partition the set of nondegenerate
edges of the network I' incident to H into two classes E and EJ by putting
into the class E] the edges adjacent with the component H;.

Fix some local coordinates in W near the point z. Then the isomorphism
u is given by the identity matrix in the corresponding coordinates in T'(T'W).
That is why we shall omit g in what follows.

By n,(t), t € [ay,b,], we denote the field of the deformation I'. along the
edge 7. Let p,(E]) be the total impulse of the edges from E] at the vertex .
Then Condition (2) implies that for any ¢ € [a,,b,] the following inequalities
hold:

pe(E)) (0, () + 9, (t) (L) (2,0) >0,  i=1,2.

If we integrate these inequalities over ¢ from a, to b,, we obtain

b’Y
Pa(E7) (1(b5)) — pa(E7) (1 (ar)) +/ iy () (L) (z,00dt >0, 0= 1,2(-1)

Suppose that the vertex z of the network Y is movable. Then Condition (3)
implies p,(E]) + py(E]) = 0, thus

b"/
P2 (E3) (117/(b)) — pe(E3) (ny(ar)) +/ 7 (t) (L) (2, 0) dt

~

b"/
= po(ED(10.)) + 2D s (0) + [ i (0D 0)dt 2 0. (2)

~

Let y be one of the vertices incident to v. If y = z, € H;p, then we put
py = p.(EY) and p) = p,(E); otherwise, we put p) = p.(EJ) and b} = p.(E]).

Write down the inequality (2) for each edge v from H and sum these in-
equalities. The obtained sum can be decomposed into two parts: the sum ),
of the integrals over all edges from H (this sum coincides with the integral part
of the formula of the first variation for the deformation I'.) and the sum ",
of impulses. We show that this sum of impulses coincides with the nonintegral
part of the formula of the first variation for the deformation I'c, and this will
completes the proof in the case of movable vertex . To do that, we gather the
terms of the sum ), taking together the impulses applied to the value of the
deformation field 7 at the same vertex y of the network H. Denote the obtained

sum by >, .
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Let y € OH, i.e., y = x; for an appropriate i and let d be the degree of the
vertex y in H. By fi,..., fq we denote the edges from H incident to y. Then
the sum }°  is of the form -, p{,cj, or

> -y
Yy J
It remains to note that the right hand side is as follows:

- Zﬁyj = - pr(Ej) :px(Ei)'

J#i

The last equality follows from Condition (3). Thus, Y-, = p.(E’).

Now, let y ¢ OH. Then >_, = 2., Py, where the sum is taken over all edges
7 from H incident to y. Since the vertex z is movable, then pj + p; = 0 by
assumption. Thus, Zy = - Z,Y;BZ It is easy to see that the last sum equals
the sum of impulses at the vertex = over all edges from Y incident to = and,
therefore, it is equal to zero. Thus, the case of movable vertex x is completely
analized.

Now, let = be a fixed vertex of the network Y. In this case among the vertices
from H there are boundary ones. Recall that at any boundary vertex = the sum
of impulses of the edges from T incident to z is not supposed to be equal to
zero. We denote this sum by p. Let y be a fixed vertex from H. In the same
way as above, by n we denote the field of the deformation I'; and let 1, be the
value of the field 7 at the vertex y. Since y is fixed, then n, = 0.

Write down the formula of the first variation for the deformation I'. and
add to it the zero term —p(n,). To complete the proof, it suffices to show that
the obtained expression is nonnegative. By p, we denote the sum of impulses
of nondegenerate edges of the network I' incident to y at the vertex y (if such
edges do not exist, we put p, = 0).

We repeat the above reasoning for the case of the movable vertex x replacing
OH with 0H U{y} and the sum p, of impulses at y with p, —p. Notice that the
sum impulses redefined in such a way equals zero at the vertices of the redefined
set OH. Besides that, inequalities (1) remain valid because the value of the
deformation field equals zero at the vertex y. Thus, we are under the same
assumptions as in the case of movable vertex x. The proof is completed.

Example. Let ¥, be the length functional on a Riemannian manifold W. Ev-
idently, we are under assumptions of Theorem 3.2. Therefore, we get a descrip-
tion of the local structure of extreme traces obtained in [2], see also [3].

Corollary 3.6 A network-trace T with a boundary 0Y in a Riemannian man-
ifold W is an extreme for the length functional, if and only if the following
conditions hold.
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(1) The edges of Y are geodesics.
(2) The angle between each two adjacent edges is more or equal than 120°.
(3) Each vertex of degree 1 belongs to 0.

(4) If a vertex of degree 2 does not belong to Y, then the angle between the
edges incident to the verter equals 180°.

Notice that the first and the second conditions of Corollary 3.6 follow from
the first and the second conditions of Theorem 3.2. The third and the fourth
conditions of Corollary 3.6 follow from the third condition of Theorem 3.2. The
fourth condition of Theorem 3.2 holds for the length functional automatically.
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