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Introduction

In the present work we investigate branching extremals �extreme networks� for
one�dimensional variational functionals of Lagrange type� We mean the ex�
tremality in the following broad sense� admissible deformations can split ver�
tices and thus change the topology of initial networks� To distinguish the net�
works whose vertices are not allowed to be splitted� and the networks whose
vertices can be splitted� we call the former ones by parametric networks
�i�e�� the networks whose parameterizations are �xed�� and the latter ones by
networks�traces� or simply traces�

The authors are mostly interested in the following two questions�
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� what Lagrangians	 properties lead to the existence of nontrivial branching
extremals�

� what is the local structure of the branching extremals�

Notice that� generally speaking� an additional freedom appearing due to the pos�
sibility to split the vertices can essentially reduce the class of extreme networks

traces with respect to the class of extreme parametric networks and� moreover�
it can be a reason for nonexistence of extremals� It turns out that the ex�
istence of nontrivial extreme networks is related closely with the presence of
singularities of Lagrangian� see Theorem ��� and Corollaries ���
���� Triviality
of extremals is understood here in the following sense� an extreme network is
said to be trivially extreme� if ��� each of its edges is extreme with respect
to arbitrary deformations �in particular� with respect to deformations moving
boundary vertices of the network�� and ��� every pointwise curve whose image
coincides with an arbitrary vertex of the network is also extreme with respect to
arbitrary deformations� In particular� if we cut a trivially extreme network over
an arbitrary set of its vertices� then as a result we get the union of networks each
of which is extreme too� The authors proved that if a Lagrangian is smooth�
then the corresponding functional does not have a nontrivial extreme network�
see Corollary ����

The authors introduced a class of so�called quasiregular Lagrangians� i�e��
the Lagrangians having in some sense the simplest singularities whose pres�
ence is necessary for the appearance of nontrivial branching extremals� For
such Lagrangians the authors obtained a criterion of networks	 extremality� see
Theorem ���� The main di
culty here is the necessity to control all possible
splittings of the network	s vertices �the number of such splittings is in�nite�
generally speaking��

Besides that� a criterion of a parametric networks extremality �Theorem �����
and also a criterion of a trace extremality under the assumption of quasiregular
Lagrangian	s smoothness �Theorem ���� are obtained�

The authors use the opportunity to express their deep gratitude to J�urgen
Jost for his interest to our work and for the possibility to work jointly and fruit�
fully in MPI f�ur Mathematik in den Naturwissenschaften� Leipzig� Deutschland�
The authors are also grateful to Anatoly Fomenko for his permanent attention
to our work�

� Preliminaries

We consider graphs from a topological point of view� A topological graph G
is a topological space obtained from a �nite number of segments fI�g by means
of some gluing over their ending points� Let � � t� I� � G be the corresponding
canonical projection� The images of the interiority of the segments I� under the
mapping � are called the edges of the graph G� The ��images of the ending
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points of the segments I� are called the vertices� If for each � a speci�c segment
�a�� b�� � I� of the real axis is �xed� then such graph is called framed� Notice
that since the ends of an arbitrary segment �a�� b�� are ordered in the natural
way� namely� a� � b�� then the orientation of each edge of a framed graph is
�xed and we can speak about the beginning and ending vertices of the edges�

A homeomorphism � � G� � G� of framed graphs is called an equivalence if
it takes vertices onto vertices and for each edge �a� b� of the graphG� the mapping
�j�a�b� is the identical mapping of the segment �a� b� onto itself� Framed graphs
G� and G� are said to be equivalent if their exists an equivalence � � G� � G��

Assume that some subset B of vertices of a graph G is �xed� Such graph G is
said to be a graph with the boundary �G � B� Vertices from �G are called
boundary or �xed and all remaining vertices are called interior or movable�
An edge of the graph incident to a boundary vertex is also called boundary
and an edge not incident to boundary vertices is called interior�

De�nition� Let G be an arbitrary connected framed graph and �G be some
its boundary� A parametric �framed� network of the topology G on a
manifold W is a continuous mapping � from G into W � The graph G in that
case is called the parameterizing graph of the parametric network �� or
its topology�

All the terminology of Graph Theory and Topology can be naturally applied
to the case of parametric networks� For example� the restrictions of a mapping
� onto vertices� edges� a boundary� a connected subgraph of the parameter�
izing graph� a local graph� etc�� are called vertices� edges� a boundary� a
subnetwork� etc�� of the parametric network ��

Remark� Above we represented each framed graph as a collection of segments
factorized over an equivalence gluing some ending points of these segments�
In the same way� a parametric network can be represented as a collection of
continuous curves in a manifold some of whose ending points are identi�ed�

A parametric network �� G�W is said to be smooth �regular� piecewise�
smooth� piecewise�regular� if the restriction of the mapping � onto the clo�
sure of each edge of the graph G is such a curve� Notice that the notion of a
smooth parametric network is a natural generalization of the notion of a smooth
curve�

Let �� G � X be an arbitrary parametric network and I � �a� b� be a
segment�

De�nition� A continuous mapping �� G � I � W such that ��g� a� � ��g�
for all g � G is called a deformation of the parametric network �� If the
initial parametric network � is smooth �regular� piecewise�smooth� piecewise�
regular�� then we will assume that each parametric network ���� t� � �t is also
such a network and that for each edge e of the graph G the restriction of the
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mapping � onto �e � I is smooth �here by �e we denote the closure of e�� The
family of the velocity vectors of the curves �t�g� at the initial moment t � �
over all points g � G is called the �eld of deformation �t�

We introduce an equivalence � on the class of all parametric networks on W
as follows� We say that a parametric network �� can be projected onto �� if
there exists a projection � � G� � G� such that �� �� � ��� Here the projection
� � G� � G� is a canonical projection of the space G� to the quotient space G� �
G��H � where H is a subgraph in G�� The projection � induces the mapping
� � �� � �� of one network onto another one which is also called a projection�
Two parametric networks �i � Gi � X are said to be ��adjacent if one of
them can be projected onto another� Notice that the relation of ��adjacency is
re�ective and symmetric� but not transitive� We extend this relation upto an
equivalence relation as follows� Two parametric networks � and �� are said to
be ��equivalent if there exists a �nite sequence f� � ������ � � � ��n � ��g of
parametric networks such that each two neighboring networks �i and �i�� are
��adjacent� The classes of ��equivalence are called �framed� networks�traces�
or simply �framed� networks� If a parametric network � is contained in a trace
�� then we will write � � ����

A canonical representative of a trace � is a parametric network � � �
such that each parametric network �� from � can be projected onto �� One
can prove that every trace possesses exactly one �up to equivalence� canonical
representative� see ����

A �local� deformation of a trace � is an one�parametric family �t � ��t��
t � �t�� t��� of networks� where �t is a deformation of some parametric network
� � �t� from � such that for t 	 t� each parametric network �t is the canonical
representative of the network �t�

� Extreme Parametric Networks Local Struc�

ture

LetW be a smooth manifold� � � TW �W be the tangent bundle� L � TW � R

be a continuous Lagrangian� Let � be the space of all piecewise smooth curves
on W and 
L � � � R be the classical variational functional corresponding to
the Lagrangian L� i�e��


L��� �

Z b

a

L
�
��t�� ���t�

�
dt�

Speaking about a mapping of one network �� � G� �W to another one �� � G� �W � we

mean a mapping of the corresponding sets
n�
g��i�g�

�o
�

For simplicity we restrict ourselves only by the case of autonomous Lagrangians� however�
all the results can be obtained in non autonomous case too�
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where � � �a� b��W is a curve from ��
Let G be a framed graph� �G be some its boundary� � � �G � W be an

arbitrary mapping� and �� G�W be an arbitrary piecewise smooth parametric
network with the boundary �� � �� On the set of such networks the following
functional �L is de�ned� the value of �L on a network � is equal to the sum of
the values of the functional 
L on the edges of the network ��

Let �x� 
� be an arbitrary point from TW � We assume that the Lagrangian
L is twice continuously di�erentiable at the point �x� 
�� Denote by p�x� 
� �
L��x� 
� the following point from the cotangent space T �xW � If xi are some
coordinates on W in some neighbourhood of the point x and 
i are the corre�
sponding coordinates in the tangent space TxW � then the ith component of the
covector p�x� 
� has the form

p�x� 
�i �
�L

�
i
�x� 
��

The covector p�x� 
� is called a �generalized� impulse at the point �x� 
��
Further� we de�ne another covector �L��x� 
� as follows� We consider an arbitrary
smooth curve x�t� such that �x��� � 
� We put�

�L��x� 
�i �
d

dt

���
t��

n
pi
�
x�t�� �x�t�

�o
�

�L

�xi
�
x���� �x���

�
�

It is well known that this de�nition does not depend on the choice of the curve
x�t�� see ���� The covector �L� is called the Lagrangian derivative of the
function L �at the point �x� 
���

A curve ��t� is called quasiregular� if it is either regular� or pointwise �i�e��
a mapping into a point�� A parametric network � is called quasiregular� if
all its edges are quasiregular curves� An edge of the graph G parameterizing
a regular �a pointwise� edge of the network � is called regular �respectively�
pointwise��

A Lagrangian L is called quasiregular� if

��� the function L is smooth on all TW except� may be� the zero section
W� � TW �

��� the restriction of the function L onto the zero section W� � TW equals
zero�

�	� for each vector � � T�P����TW � there exists a derivative ��L� of the func�
tion L with respect to the direction of the vector ��

�
� for an arbitrary smooth deformation ��� � � ��� ��� of a pointwise curve ���
such that all the curves ��� � 	 �� are regular the function �

��
L����t�� ����t��

Here and below we understand a derivative of a function with respect to a direction as a
limit for � � ��� In particular� derivatives of a function with respect to opposite directions
need not be equal� generally speaking�
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is continuous on �t� ��� That condition is called the concordance condi�
tion�

As an example of quasiregular nonsmooth Lagrangian one can consider the
Lagrangian corresponding to the length functional on a Riemannian manifold�
More general example can be obtained by means of a norm given on each tangent
space of a manifold and smoothly depending on points and nonzero tangent
vectors� Notice that strict convexity of the norm is not assumed�

The properties de�ning quasiregular Lagrangians appeared under an attempt
to understand what characteristics of Riemannian length functional lead to ex�
istence of nontrivial extreme networks� The �rst property implies that regular
edges of an extreme network satisfy the standard Euler
Lagrange equations�
The second property is necessary to de�ne correctly the functional on the space
of the networks
traces �to do that� we need the vanishing of the functional on
pointwise edges�� The third and the fourth properties seem to be necessary
for using the standard technique of Calculus such as di�erentiation of integrals
depending on a parameter�

The following Assertion calculates for the functional 
L with a quasiregular
Lagrangian its derivative with respect to a direction�

Assertion ��� Let L be a quasiregular Lagrangian and 
L be the corresponding

classical variational functional� Let ��t�� t � �a� b�� be an arbitrary quasiregular

curve and ��� � � ��� ��� be a smooth deformation of the curve � such that for

� 	 � all the curves �� are regular� By ��t� we denote the �eld of the deformation

��� i�e�� ��t� �
d
d�

��
���

���t�� If the curve ��t� is regular� then

d

d�

���
���


L
�
��
�
� p��� ������

���t�b
t�a

�

Z b

a

�L���� ������ dt�

Otherwise� i�e�� if the curve � is pointwise� then

d

d�

���
���


L
�
��
�
�

Z b

a

��L���� �� dt�

where � � ��� ��� is the corresponding vector �eld along the curve t ��
�
��t�� �

�
in TW � If we assume additionally that the Lagrangian L is smooth in a neigh�

bourhood of the point �x� ��� where x � ��t�� then

d

d�

���
���


L
�
��
�
� p�x� �����

���t�b
t�a

�

Z b

a

�L��x� ����� dt�

Proof� The �rst statement is well known� see for example ����
Let us prove the second statement� We consider the function

f�t� �� � L
�
���t�� ����t�

�
�
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where t � �a� b� and � � ��� ��� The partial derivative f��t� �� of the function
f�t� �� with respect to � is equal to ��L�

�
��t�� ���t�

�
� Since the Lagrangian L is

quasiregular� we conclude that the function f��t� �� is continuous� Therefore�

d

d�

Z b

a

L
�
���t�� ����t�

�
dt �

d

d�

Z b

a

f�t� �� dt �

Z b

a

f��t� �� dt

�

Z b

a

��L�
�
��t�� ���t�

�
dt�

q�e�d�

A quasiregular �parametric� network � is said to be extreme for a functional
�L with a quasiregular Lagrangian� if for an arbitrary deformation ��� � �
��� ���� of the network � � �� we have�

d

d�

���
���

�L���� 	 ��

Remark� To avoid cumbersome statements� we de�ne extremality as nonnega�
tivity of the derivations with respect to directions� The networks satisfying the
opposite inequality also have been considered as extreme ones� However we do
not restrict the class of extreme networks because the latter networks can be
obtained from the former one by means of changing the Lagrangian	s sign�

Let �� G�W be an arbitrary quasiregular parametric network� The max�
imal connected subgraphs of the graph G all of whose edges are pointwise are
called pointwise components of the graph G� Reduced components of
the graph G are either its pointwise components� or its vertices not incident to
pointwise edges� The corresponding elements of parametric networks are called
in the same way�

For each reduced component H � � we denote by EH the set of all the
edges of the network H � by IH the set of edges from � nH adjacent with H and
such that their ending vertices lie in H � and by OH the set of edges from � nH
adjacent with H and such that their beginning vertices lie in H � Notice that the
sets IH and OH can intersect each other� Besides that� the union of all the sets
IH and OH over all reduced components H of the network � coincides with the
set of all regular edges of the network �� At last� if � is an edges of the network
�� then by �a� � b� � we denote the segment parameterizing that edge� By �H we
denote the set of vertices from H which belong to the boundary of the network
�� By ��H we denote the set of the vertices from H which are incident with the
regular edges of the network �� Further� for every vertex x � ��H we denote by
IH �x� and OH�x� the subsets of IH and OH � respectively� consisting of all the
edges incident to x� We put NH�x� � IH �x� 
 OH�x��

It is convenient to introduce the following notation� We put px��� to be
equal to �p��� ��� at a vertex x of an edge � of the network �� where the sign



 

� corresponds to the case when x is the ending vertex of � and the sign �
corresponds to the opposite case�

Assertion ��� leads easily to the following result�

Theorem ��� �On Local Structure� Let L be a quasiregular Lagrangian� A

quasiregular network �� G � W with a boundary � is an extreme network

for the functional �L if and only if each regular edge � � �a� � b� � � W of the

network � is extreme for the functional 
L� i�e�� �L���� ��� � �� and for each

reduced component H � GH �W of the network � and for each smooth network

� � GH � TW � where � � � � �jGH
and ���GH � �W�� the following expression

is nonnegative�

X
��IH

p��� �������
��
t�b�

�
X
��OH

p��� �������
��
t�a�

�
X
��EH

Z b�

a�

���L�
�
�� ��

�
dt

�
X
x�	�H

� X
��NH�x�

px���

��
��x�

�
�

X
��EH

Z b�

a�

���L�
�
�� ��

�
dt�

where �� is the edge �j�a� �b� � of the network � and �� � ��� � ���� is vector �eld

along the curve ��� ��� in TW �

We de�ne the lift of a parametric network �� G � W up to the tangent

bundle as the set
n�
��t�� ���t�

�o
of curves over all the edges � of the network ��

Corollary ��� Under assumptions of Theorem ���� let the Lagrangian L be

smooth in a neighbourhood of the lift of the network � �for example� it takes

place if the network � is regular�� Then the quasiregular parametric network

�� G�W with boundary � is extreme for the functional �L if and only if each

edge � � �a� � b� � � W of the network � is extreme for the functional 
L� i�e��
�L���� ��� � �� and for each movable vertex x of � the following equality holds �

X
�

px��� � ��

where the summation is taken over all the edges � incident to the vertex x�

� Local Structure of Extreme Networks

In this section we consider extreme networks
traces and investigate their local
structure� It turns out that the nontriviality of the local structure is a conse�
quence of nonsmoothness of the LagrangianL generating the classical variational
functional�

Let L be a quasiregular Lagrangian� Then the functional �L de�ned on
parametric quasiregular networks generates a functional on the set of the cor�
responding networks
traces� The latter functional will be denoted in the same
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way� Notice that the canonical representatives of such networks are regular
parametric networks� We start with the case of smooth Lagrangians L�

��� Smooth Lagrangians

Let a Lagrangian L be smooth on entire TW and suppose that L equals zero on
the zero sectionW� of TW � Then L is quasiregular� in particular� The following
result holds�

Theorem 	�� A network � is extreme for a functional �L with smooth La�

grangian L which vanishes on the zero section W� � TW � if and only if the

following properties hold�

��� Each edge � of the network � is extreme for the functional 
L�

��� For any vertex x of the network � and for any edge � incident to x the

equalities p�x� �� � � and px��� � � hold�

Proof� By de�nition� the network � is extreme if and only if every its repre�
sentative � is extreme for the corresponding functional de�ned on parametric
networks� In particular� the canonical representative � of the network � pos�
sesses the conditions of Theorem ���� thus� its edges are extreme for 
L� That
proves the necessity of the �rst condition�

Similarly� Assertion ��� implies that each pointwise edge of an arbitrary
representative � of the network � is extreme for the functional 
L� i�e�� it
satis�es Euler
Lagrange equations�

Further� let � be an arbitrary edge of the network � incident to the vertex
x�

Consider a representative � of the network � such that

� the reduced component of the vertex x of the network � consists of one
edge ���

� the edge �� is incident to a vertex x� of degree � with respect to � and
such that x� is incident to the edge ��

The constructed parametric network � is extreme� thus� Corollary ��� applied
to the vertex x� implies px���� � p�x�� �� � �� where the sign depends on the
orientation of the edge ��� Since this orientation can be chosen in an arbitrary
way� and since px���� � px���� we have

px��� � p�x�� �� � �p�x�� �� � p�x� �� � ��

q�e�d�
The converse statement follows immediately from Corollary ���� because all

the impulses vanish by the assumption� Theorem is proved�
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Corollary 	�� Let � be extreme for a functional �L with smooth Lagrangian L
which vanishes on the zero section W� � TW � Then each edge of the network �
is extreme for the functional 
L with respect to arbitrary deformations and each

pointwise curve whose image coincides with an arbitrary vertex of the network

� is also extreme for the functional 
L with respect to arbitrary deformations�

In other words� each extreme network for the functional �L is trivially extreme�

Corollary 	�� Let � be extreme for a functional �L with smooth Lagrangian L
which vanishes on the zero section W� � TW � Let x be a vertex of the network

� and ��� � � � � �k be the edges of � incident to x� By 
i we denote the velocity

vector of the edge �i at the vertex x� Then each point �x� 
i� and also the point

�x� �� is critical for the restriction of the Lagrangian L onto TxW �

Corollary 	�	 Let L be a smooth Lagrangian vanishing on the zero section

W� � TW � If the restriction of the Lagrangian L onto TxW has no critical

points outside � � TxW for any x � W � then each extreme network for the

functional �L is pointwise�

Example� Let L�x� 
� � h
� 
i be the Lagrangian corresponding to the energy
functional on Riemannian manifold W � Corollary ��� implies that all the ex�
treme traces for this functional are pointwise�

Example� Let L�x� 
� � T �
�� U�x� be the Lagrangian corresponding to the
functional describing the motion of a mass point in the conservative forces �eld
with a potential U�x� on a Riemannian manifold W � Corollary ��� implies that
all the extreme traces for this functional are pointwise�

Corollary 	�
 Let L be a smooth Lagrangian vanishing on the zero section

W� � TW � Suppose that the Cauchy problem for the Euler�Lagrange equations

corresponding to the Lagrangian L possesses the uniqueness property� If the

Lagrangian L restricted onto TxW has at most two critical points for any x � W �

then each extreme network for the functional �L is a curve� possibly pointwise

�the canonical representative has vertices of degrees � and � only��

��� Quasiregular Lagrangians

Let us return to the case of quasiregular Lagrangians of general type�

Assertion 	�� Let L be a quasiregular Lagrangian and � be an extreme network

for the functional �L� Then ��L��x� �� 	 � for any vertex x � � and any vector

� � T�x���TW �

Proof� Suppose otherwise� namely� assume that for some vertex x and some
�� � T�x���TW the inequality ���L��x� �� � � holds� Consider a representative
� of the network � for which the preimage of the vertex x consists of one
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edge � � ��� �� � x incident to a vertex of degree � such that the latter vertex
corresponds to the end point � of the parameterizing segment ��� ���

Let us �x local coordinates xi in the manifold W in a neighbourhood of x�
This gives us local coordinates �xi� 
j� in the bundle TW � Suppose that the vec�
tor �� is of the form � � �i�xi ��i��i in this coordinates� Put � � ���� � � � � �n�
and � � ���� � � � � �n�� where n � dimW � We construct a deformation of the
parametric network � �xed on all edges of � except �� On the edge � de�ne
the deformation as follows� ���t� � x � ��� � t��� Then the �eld ��t� of this
deformation has the form ��t� � �� t� and the corresponding �eld ��t� equals�
��t�� ���t�

�
� �� � t�� ��� In particular� ���� � ��� Therefore� by choosing � to

be su
ciently small� the concordance condition implies

Z �

�

��L� dt � ��

The latter contradicts to extremality of �� see Theorem ���� Assertion ��� is
proved�

Assertion 	�� Let L be a quasiregular Lagrangian and � be an extreme network

for the functional �L� Then at each movable vertex x of the network � the sum

of impulses px��� over all edges � from � incident to x equals zero�

Proof� This is a direct consequence from Corollary ��� because the canonical
representative is a regular extreme network�

By V �TW � we denote the subbundle of T �TW �� TW whose �bers consist
of the vectors tangent to the corresponding �bers of the tangent bundle TW �
W � By H�W�� we denote the distribution of the spaces tangent to the zero
section W� � TW � At each point x of W the tangent space T�x���TW can be
decomposed into the direct sum of the spaces V�x���TW and H�x���W�� The
spaces H�x���W� are called horizontal�

Notice that each vector � � T�x���TW can be uniquely decomposed into the
sum of its vertical �v � V�x���TW and horizontal �h � H�x���W� components�

We say that a quasiregular Lagrangian L is di�erentiable along the base
W if for each x �W and each vector � � T�x���TW the following equality holds�

��L� � �v�L� � �h�L��

and the function �h�L� is linear on �h � H�x���W��

Assertion 	�	 Let L be a quasiregular Lagrangian and � be an extreme network

for the functional �L� Suppose that the Lagrangian L is di�erentiable along the

base� Then for each vertex x of the network � the restriction of the function

��L� onto the horizontal space H�x���W� equals zero�



��

Proof� Assertion ��� implies ��L��x� �� 	 � for any � � T�x���TW � in partic�
ular� for all � from the horizontal space H�x���W�� Since the Lagrangian L is
di�erentiable along the base� the restriction of the function ��L��x� �� onto the
space H�x���W� is a linear function� thus� this function equals zero� The proof
is complete�

A quasiregular Lagrangian L is called proper if for each point x � W the
function f��� � ��L��x� �� de�ned on T�x���TW is smooth outside � � ��

A vertex x of a trace � �the corresponding vertex of the canonical represen�
tative for �� is called free if the impulses px��� of the edges � incident to this
vertex vanish�

Recall that there exists a canonical isomorphism � between the tangent
spaces TxW to a manifold W and the corresponding vertical spaces V�x���TW �
This isomorphism can be de�ned as follows� Let 
 be an arbitrary vector from
TxW � Consider a smooth curve ��t� � �x� t
� in TW outgoing from the point
���� � �x� ��� The velocity vector ����� belongs� by de�nition� to V�x���TW � The
isomorphism � takes the vector 
 into the vector ������

Assertion 	�
 Let � be an extreme network�trace for a functional �L� where

L is a proper quasiregular Lagrangian di�erentiable along the base� Let x be a

nonfree movable vertex of the network �� Then the restriction of the function

f��� � ��L��x� �� onto V�x���TW nf�g is positive� Also� ��L��x� �� � �v�L��x� ���

Proof� Assertion ��� implies that ��L��x� �� � �v�L��x� ��� Besides that� As�
sertion ��� implies that ��L��x� �� 	 �� Thus� to complete the proof it su
ces
to verify that ��L��x� �� can not be equal to zero for vertical nonzero vectors
� � V�x���TW �

Suppose otherwise� i�e�� assume that at a nonfree vertex x of the network
� the equality ���L��x� �� � � holds for some vertical vector �� �� �� Since the
vertex x is not free� there exists an edge � incident to x such that its impulse
px��� does not vanish� Consider a representative � of the network � for which
the preimage of the vertex x consists of one edge �� � ��a� a� � x� Also� we
assume that one of the vertices incident to ��� say x�� is incident to the edge �
and the other vertex� say x��� is incident to all the other edges ��� � � � � �k incident
to x in ��

Put ������� � ��� We construct a deformation of the network �� remaining
�xed all the vertices of the network �� except the ones of the edge ���

Suppose �rst that px������� �� �� If px������� 	 �� then we choose the edge
�� in such a way that the point �a from the parameterizing segment ��a� a�
corresponds to x�� If px������� � �� then we assume that �a corresponds to the
vertex x��� To be de�nite� we assume that the second possibility takes place�

Assume that in a neighbourhood of the point �x� �� of the tangent bundle
TW local coordinates �xi� 
j� generated by some coordinates xi in W are given�
De�ne the deformation on the edge �� as follows� ����t� � ����t�a����a�� where



��

� � ��� ���� Then the �eld of the deformation ��t� of the edge �� has the following
form� ��t� � ���t� a����a�� and its lift ��t� equals

�
��t�� ���t�

�
�
�t� a

�a
���

�

�a
��

�
�

The vertical component of the �eld ��t� equals ���t� and has the form �
�a��� thus�

�v�L��x� �� � ��
On the other hand� ���a� � � and ��a� � ��� therefore� the �rst varia�

tion of the functional �L with respect to the deformation of the network � in
consideration equals

px������� �

Z a

�a

�v�L��x� �� dt � px������� � ��

a contradiction� It remains to note that the total impulse p of the edges incident
to the vertex x�� of the network � is opposite to the impulse px���� Thus� if
px������� is positive� then p���� is negative and the similar reasons can be
applied�

Now� let px������� � �� Since px��� �� �� then there exists a direction � �
TxW such that px������ � �� Consider the function A��� � ��� � ����L��x� ���
By de�nition of proper Lagrangian the function A is smooth for su
ciently
small �� Moreover� the point � � � is a minimum point for the function A�
Really� A��� � � by the choice of ��� By Assertion ��� we have A��� 	 �� Thus�

A��� � o��� � � ��

because � is an interior point of the domain for the parameter ��
Consider a deformation of the network � constructed in the same way as

in the �rst case but with the direction �� replaced with the direction �� � ���
Write down the formula of the �rst variation�

px������ � ��� �
�

�a

Z a

�a

A��� dt � �
�
px������ � o���

�
for � � ��

Thus� for su
ciently small � 	 � the �rst variation is negative� that contradicts
to the extremality of the network �� The proof is completed�

Corollary 	�� Let � be an extreme network�trace of a functional �L� where

L is a proper quasiregular Lagrangian di�erentiable along the base� Let x be

a nonfree movable vertex of the network �� Then for some number c�x� 	 �
depending on the point x only and for any � � TxW we have

lim
����

L�x� ���

�
	 c�x�k�k�

In particular� the restriction of the function L onto an arbitrary linear subspace

of V�x���TW is not di�erentiable at the origin�



��

Let us prove one more property of extreme traces�

Assertion 	�� Let � be an extreme network�trace for a functional �L� where

L is a proper quasiregular Lagrangian di�erentiable along the base� Then at

each vertex x of the network � for any edges ��� � � � � �k incident to x and for

any vector � � TxW the following inequality holds�

kX
i��

px��i���� � �����L��x� �� 	 ��

Proof� Partition the edges of the network � incident to the vertex x into two
classes by putting into the �rst one the edges ��� � � � � �k and by putting into the
second one all the remaining edges� Consider a representative � of the network
� for which the preimage of the vertex x consists of one edge � � ��a� a� � x�
Also� assume that one of the vertices of �� say x�� is incident to the edges
��� � � � � �k and the other one� say x��� is incident to the remaining edges incident
to the vertex x in �� Without loss of generality� we assume that the vertex x�

corresponds to the ending point a of the parameterizing segment ��a� a��
Let us �x some local coordinates xi in W in a neighbourhood of the point

x� Without loss of generality� we suppose that x � � in these coordinates�
Consider a deformation �� of the network � such that all the vertices of the

network � except x� remain �xed and the vertex x� moves uniformly with the
velocity �� x���� � ��� Also� the edge � is deformed linearly� t �� �� t�a�a for each
t � ��a� a�� Then the �eld of the deformation ��t� has the following form along
the edge �� ��t� � � t�a�a � thus� ���t� � �

���� Let us put ��t� �
�
��t�� ���t�

�
� Write

down the condition that the �rst variation for such deformation is nonnegative
using the fact that ��L� � �v�L� � ���L� by Assertion ���� We have

� kX
i��

px��i�
�
��� �

�

�a

Z a

�a

��L��x� �� dt �
� kX
i��

px��i�
�
��� � ��L��x� �� 	 ��

The proof is completed�

The following theorem gives a criterion of extremality for a network
trace
with respect to a functional de�ned by a proper quasiregular Lagrangian di�er�
entiable along the base�

Theorem 	�� A network�trace � is extreme for a functional �L de�ned by a

proper quasiregular Lagrangian L di�erentiable along the base if and only if the

following conditions hold�

��� Each edge � of the network � is extreme for the functional 
L�



��

��� At each vertex x of the network � for any edges ��� � � � � �k incident to x
and for any vector � � TxW the following condition holds �

kX
i��

px��i���� � �����L��x� �� 	 ��

�	� At each movable vertex of the network � the sum of impulses of the edges

incident to this vertex equals zero�

�
� At each �xed vertex x of the network � for any � � V�x���W the inequality

��L��x� �� 	 � holds� Note that if we write down the � in the form �����
� � TxW � then the condition of this item can be rewritten as follows �
�����L��x� �� 	 ��

Proof� Let � be an extreme network
trace for �L� Then the canonical rep�
resentative of the network � is a regular network� Corollary ��� implies that
all its edges are extreme for the functional 
L� The fact that all the remained
properties of the network � take place was proved in Assertions ���
����

Now� let us prove the su
ciency� Suppose that the network � satis�es Con�
ditions ���
��� of Theorem� Let �� G � W be an arbitrary representative of
the network � and ���� be some deformation of the trace �� We need to show
that the �rst variation of the functional �L for such deformation is nonnega�
tive� Since the �rst variation of the functional �L can be decomposed into the
sum of expressions corresponding to the reduced components of the parametric
network �� it su
ces to verify the nonnegativity of the �rst variation under the
assumption that the deformation �� preserves all reduced components of the
network � except one of them� We denote the latter component by H � Also� by
x we denote the vertex in � corresponding to H �

Let ��H � fx�� � � � � xkg be the set of vertices of the network H incident to
regular edges from �� By Ei we denote the set of nondegenerate edges of the
network � incident to the vertex xi� By px�E

i� we denote the total impulse of
the edges from Ei at the vertex x�

We need the following Lemma�

Lemma 	�� If x is a movable vertex of the network �� then for any � � TxW
the inequality �����L��x� �� 	 � holds�

Proof� Let us use Condition ��� in the case when the set f��� � � � � �kg of edges
coincides with the set of all edges from � incident to x� For an arbitrary vector
� we have�

deg xX
i��

px��i���� � �����L��x� �� 	 ��

Since x is a movable vertex� then the sum in the left hand side of this inequality
equals zero by Condition ���� that implies the result sought for� Lemma is
proved�



��

Notice that by Condition ��� and by Lemma ��� it su
ces to check the case
when the network H is a tree�

Let � be an arbitrary edge of the network H � By �a� � b� � we denote the
segment parameterizing this edge� Let xa and xb denote the vertices of the
edge � corresponding a� and b� � If we cut the tree H by the edge �� then the
network H is decomposed into two components H� and H�� where H� denotes
that component which contains the vertex xa� Partition the set of nondegenerate
edges of the network � incident to H into two classes E�

� and E�
� by putting

into the class E�
i the edges adjacent with the component Hi�

Fix some local coordinates in W near the point x� Then the isomorphism
� is given by the identity matrix in the corresponding coordinates in T �TW ��
That is why we shall omit � in what follows�

By ���t�� t � �a� � b� �� we denote the �eld of the deformation �� along the
edge �� Let px�E

�
i � be the total impulse of the edges from E�

i at the vertex x�
Then Condition ��� implies that for any t � �a� � b� � the following inequalities
hold�

px�E
�
i �
�
����t�

�
� ����t�

�
L��x� �� 	 �� i � �� ��

If we integrate these inequalities over t from a� to b� � we obtain

px�E
�
i �
�
���b��

�
� px�E

�
i �
�
���a��

�
�

Z b�

a�

����t�
�
L��x� �� dt 	 �� i � �� ��

���

Suppose that the vertex x of the network � is movable� Then Condition ���
implies px�E

�
� � � px�E

�
� � � �� thus

px�E
�
� �
�
���b��

�
� px�E

�
� �
�
���a��

�
�

Z b�

a�

����t�
�
L��x� �� dt

� px�E
�
� �
�
���b��

�
� px�E

�
� �
�
���a��

�
�

Z b�

a�

����t�
�
L��x� �� dt 	 �� ���

Let y be one of the vertices incident to �� If y � xa � H�� then we put
p�y � px�E

�
� � and p

�
y � px�E

�
� �� otherwise� we put p

�
y � px�E

�
� � and p

�
y � px�E

�
� ��

Write down the inequality ��� for each edge � from H and sum these in�
equalities� The obtained sum can be decomposed into two parts� the sum

P
�

of the integrals over all edges from H �this sum coincides with the integral part
of the formula of the �rst variation for the deformation ��� and the sum

P
�

of impulses� We show that this sum of impulses coincides with the nonintegral
part of the formula of the �rst variation for the deformation ��� and this will
completes the proof in the case of movable vertex x� To do that� we gather the
terms of the sum

P
� taking together the impulses applied to the value of the

deformation �eld � at the same vertex y of the network H � Denote the obtained
sum by

P
y�



��

Let y � ��H � i�e�� y � xi for an appropriate i and let d be the degree of the
vertex y in H � By f�� � � � � fd we denote the edges from H incident to y� Then

the sum
P

y is of the form
P

j p
fj
y � or

X
y

� �
X
j

pfjy �

It remains to note that the right hand side is as follows�

�
X
j

pfjy � �
X
j ��i

px�E
j� � px�E

i��

The last equality follows from Condition ���� Thus�
P

xi
� px�E

i��

Now� let y �� ��H � Then
P

y �
P

� p
�
y � where the sum is taken over all edges

� from H incident to y� Since the vertex x is movable� then p�y � p�y � � by
assumption� Thus�

P
y � �

P
� p

�
y � It is easy to see that the last sum equals

the sum of impulses at the vertex x over all edges from � incident to x and�
therefore� it is equal to zero� Thus� the case of movable vertex x is completely
analized�

Now� let x be a �xed vertex of the network �� In this case among the vertices
from H there are boundary ones� Recall that at any boundary vertex x the sum
of impulses of the edges from � incident to x is not supposed to be equal to
zero� We denote this sum by p� Let y be a �xed vertex from H � In the same
way as above� by � we denote the �eld of the deformation �� and let �y be the
value of the �eld � at the vertex y� Since y is �xed� then �y � ��

Write down the formula of the �rst variation for the deformation �� and
add to it the zero term �p��y�� To complete the proof� it su
ces to show that
the obtained expression is nonnegative� By py we denote the sum of impulses
of nondegenerate edges of the network � incident to y at the vertex y �if such
edges do not exist� we put py � ���

We repeat the above reasoning for the case of the movable vertex x replacing
��H with ��H 
fyg and the sum py of impulses at y with py�p� Notice that the
sum impulses rede�ned in such a way equals zero at the vertices of the rede�ned
set ��H � Besides that� inequalities ��� remain valid because the value of the
deformation �eld equals zero at the vertex y� Thus� we are under the same
assumptions as in the case of movable vertex x� The proof is completed�

Example� Let �L be the length functional on a Riemannian manifold W � Ev�
idently� we are under assumptions of Theorem ���� Therefore� we get a descrip�
tion of the local structure of extreme traces obtained in ���� see also ����

Corollary 	�
 A network�trace � with a boundary �� in a Riemannian man�

ifold W is an extreme for the length functional� if and only if the following

conditions hold�



� 

��� The edges of � are geodesics�

��� The angle between each two adjacent edges is more or equal than �����

�	� Each vertex of degree � belongs to ���

�
� If a vertex of degree � does not belong to ��� then the angle between the

edges incident to the vertex equals � ���

Notice that the �rst and the second conditions of Corollary ��� follow from
the �rst and the second conditions of Theorem ���� The third and the fourth
conditions of Corollary ��� follow from the third condition of Theorem ���� The
fourth condition of Theorem ��� holds for the length functional automatically�
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