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Abstract� We investigate asymptotically �at manifolds with cone structure at in�nity� We show that
any such manifoldM has a �nite number of ends� and we classify �except for the case dimM � �� where
it remains open if one of the theoretically possible cones can actually arise� for simply connected ends all
possible cones at in�nity� This result yields in particular a complete classi�cation of asymptotically �at
manifolds with nonnegative curvature� The universal covering of an asymptotically �at m	manifold with
nonnegative sectional curvature is isometric to Rm�� � S� where S is an asymptotically �at surface�

�� Introduction

Let �M� g� be a complete noncompact Riemannian manifold� Choose a point p �M and set

A�M� � lim sup
jpxj��

fjKxj � jpxj�g�

where jKxj denotes the maximal absolute value of the sectional curvatures at the point x �M �

One easily checks that A�M� does not depend on the choice of the reference point p� so that

the quantity A�M� yields a nice geometric invariant of M which is� in particular� invariant under

rescalings of the metric�

De�nition� A noncompact complete Riemannian manifold �M� g� is called asymptotically �at if

A�M� � ��

Note that the mere condition of being asymptotically �at places in general no restrictions whatso�

ever on the topology of a manifold� For instance� by a result of Abresch �see �Ab	� any noncompact

surface carries a complete and asymptotically �at Riemannian metric�

De�nition� A noncompact complete Riemannian manifold �M� g� is said to have cone structure

at in
nity if there is a metric cone C with vertex o such that the pointed Gromov�Hausdor� limit

of �M� �g� p� exists for any sequence of numbers � � � converging to zero and such that this limit is

isometric to �C� o��

FThis work was done while we enjoyed our stay at the MPI Leipzig and �nished during a joint week at the IHES�
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As a Gromov�Hausdor� limit of proper metric spaces� i�e�� metric spaces such that any closed ball

of 
nite radius is compact� the cone C which arises in the above de
nition is in particular proper

and locally compact�

Note that large classes of Riemannian manifolds have cone structure at in
nity� In fact� Kasue

�see �K�	� showed that under certain lower curvature limitations �e�g�� if for some C � � and

� � � it holds that Kx � �C�jpxj���� a noncompact �complete� Riemannian manifold always has

this property� Thus in particular any noncompact Riemannian manifold with faster�than�quadratic

curvature decay �i�e�� any noncompact Riemannian manifold for which there exists some C and

� � � such that jKxj � C�jpxj����� and� especially� any noncompact Riemannian manifold with

nonnegative curvature has cone structure at in
nity�

Note also that on the other hand by Abresch
s result one can easily construct asymptotically �at

surfaces �S� g� such that the Gromov�Hausdor� limit of �S� �ng� p� indeed depends on the choice of

the sequence �n � � and such that for some sequences this limit is not even a metric cone� In

particular� by considering products Tm�� � �S� g� one thus obtains examples of asymptotically �at

manifolds without cone structure at in
nity in any dimension m � �� �Actually any such example

we know of looks on a big scale always two�dimensional� for more on this see section ���

Theorem A� Let M be an asymptotically �at m�manifold� Assume that M has cone structure at

in�nity� Then

�i� There exists an open ball BR�p� � M such that M n BR�p� is a disjoint union
S
iNi of a �nite

number of ends� i�e�� Ni is a connected topological manifold with closed boundary �Ni which is

homeomorphic to �Ni � ������ For each Ni the limit Ci � GH�lim��� �Ni exists�

�ii� If the end Ni is simply connected� then Ni is homeomorphic to Sm�� � ������

In this case moreover the following holds�

�a� if m 	� �� then Ci is isometric to Rm �

�b� if m � �� then Ci is isometric to one of the following spaces� R� � R� � or R � ������

A 
niteness of ends statement as in part �i� of Theorem A was proved by Abresch �see �Ab	� in

a related setting�

Part �ii��a� of Theorem A is new even in the special case of faster�than�quadratic curvature decay

�recall that� as noted above� faster�than�quadratic curvature decay implies cone structure at in
nity��

TheoremA generalizes here work of Greene� Petersen� and Zhu �see Theorem � in �GPZ	� where the

same conclusion as in �ii��a� was proved under the additional assumptions of faster�than�quadratic

curvature decay and nontriviality of the tangent bundle of �Ni�
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When combined with the fact that volume growth of exactly Euclidean order implies �atness�

Theorem A also yields the following result� which generalizes for manifolds of dimension m 	� �

Theorem � in �GPZ	 from faster�than�quadratic curvature decay to asymptotical �atness with cone

structure at in
nity�

Corollary� Let M be an asymptotically �at m�manifold of dimension m 	� � which has cone

structure at in�nity� If M has nonnegative Ricci curvature and one simply connected end� then M

is isometric to Rm �

Part �ii��b� of Theorem A shows that four�dimensional manifolds play in Theorem A a peculiar

role and indicates that in this dimension special phenomena can arise� Indeed� Unnebrink �see �U	�

showed that there are examples of asymptotically �at ��manifolds which have �cone structure at

in
nity and� a simply connected end N� such that� in the notation of Theorem A� C� � R
� � It is not

clear if there exists an asymptotically �at ��manifold with cone structure at in
nity with a simply

connected end N� so that C� � R � ������ �We actually conjecture that there is no such example�

see also section ���

Note also that in dimension � all ends are homeomorphic to S� � ������ so that the ends of an

asymptotically �at surface are never simply connected�

Combining Theorem A and a result from �GP	 we obtain proofs of statements of Gromov �see

�BGS	� p���� which till now have been treated in the literature �compare �D	 and the references

therein� as conjectures� and which completely classify the asymptotically �at manifolds with non�

negative sectional curvature�

Theorem B� Let M be an asymptotically �at m�manifold with nonnegative sectional curvature�

Then the universal covering ofM is isometric to Rm���S� where S is an asymptotically �at surface�

If� in particular� M is simply connected and m � �� then M is isometric to Rm �

Assuming faster�than�quadratic curvature decay and assuming that the unit normal bundle of the

soul of M has nontrivial tangent bundle� the second part of Theorem B was proved by Drees ��D	��

As a direct consequence of Theorem B one also obtains an a�rmative answer to a question of

Hamilton �see �H	� x��� this paper also contains some nice relations between asymptotical curvatures

and the Ricci �ow�� which is equivalent to the following one�

Let M be a complete noncompact Riemannian manifold of dimension m � � with positive sectional

curvature� Is it true that A�M� � � 	
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That in odd dimensions the answer to this question is �yes� was already known and proved by

Eschenburg� Schr�oder� and Strake ��ESS	��

Our results obviously also have a relation to the positive mass conjecture� in �GPZ	 the reader

will 
nd explained the precise connections�

The main idea of the proof of Theorem A can be described as follows�

Inside an end Ni of an asymptotically �at manifold with cone structure at in
nity we construct

a continuous family of �spheres�� which after rescaling have uniform curvature bounds and which

Gromov�Hausdor� converge to the �unit sphere� in the cone Ci�

To this continuous family of spheres we now apply two results from �PRT	� The 
rst says that any

continuously collapsing family with bounded curvature contains an in
nite �stable� subsequence�

To this sequence then a corollary of the Limit of Covering Geometry Theorem from �PRT	 applies�

�This corollary actually also holds without using a stability assumption� and the proof of Theorem

A can be given without relying on �PRT	� but instead on results from �PT	� see section ���

This in turn enables us to prove some inequalities for the ranks of certain homotopy groups� These

imply that in fact collapse is not possible except for the case where the dimension of the manifold

is equal to �� Therefore in all nice cases Ci is nothing but Rm �

There is a vast amount of literature on noncompact complete Riemannian manifolds whose sec�

tional curvature at in
nity is zero �and on many di�erent speci
c ways in which the curvature is

allowed to go to zero�� For a detailed account of what is known and wanted to be known about such

spaces� the reader is recommended to look at the survey article �Gre	 and the paper �GPZ	� Here we

just mention �besides the references already given� some papers in the 
eld which are most closely

related to the results of this note� �ES	� �GW�	� �GW�	� �KS	 and �LS	�

The remaining parts of the paper are organized into a preliminaries� a proof� and a problem

section which contains further remarks and several open questions�

We would like to thank Patrick Ghanaat for pointing out to us a simpli
ed proof of the sublemma

in section � as well as Luis Guijarro for useful comments�
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�� Preliminaries

In this section we review some results about manifolds which collapse with bounded curvature

and diameter� More on this can be found in the references given in �PRT	 and �PT	�

De�nition� A sequence of metric spaces Mi is called stable if there is a topological space M and

a sequence of metrics di on M such that �M�di� is isometric to Mi and such that the metrics di

converge as functions on M �M to a continuous pseudometric�

Proposition �Continous Collapse implies Stability� ��PRT	�� Suppose that a simply con�

nected manifoldM admits a continuous one�parameter family of metrics �gt���t�� with � � Kgt � �

such that� as t � �� the family of metric spaces Mt � �M� gt� Hausdor
 converges to a compact

metric space X of lower dimension� Then the family Mt contains a stable subsequence�

The version of the Limit of Covering Geometry Theorem from �PRT	 we need in this paper �it is

straightforward to check that the proof given in �PRT	 also proves the result below� can be stated

as follows�

Theorem �Limit of Covering Geometry Theorem ��PRT	�� Let Mn be a stable sequence of

Riemannian m�manifolds with curvature bounds jK�Mn�j � � such that for n�� the sequence of

metric spaces Mn Hausdor
 converges to a compact metric space X of lower dimension� Consider

any sequence of points pn � Mn and balls Bn � B��� � Tpn which are equipped with the pull

back metrics of the exponential maps exppn � Tpn � Mn� Assume that for any such converging

subsequence Bn � B� the limit B has curvature � � in the sense of Alexandrov�

Then for any converging subsequence Bn � B� the limit B has the same dimension as the

manifolds Mn� and in a neighbourhood of its center� the metric on B coincides with that of a metric

product R � N � where N is a manifold with two�sided bounded curvature � � K�N� � � in the

sense of Alexandrov�

Our proof of Theorem A will in fact only use the following corollary of this theorem� At 
rst

sight this corollary looks almost obvious� but it doesn
t seem easy to adopt any of the known proofs

of injectivity radius estimates to this case�






Corollary� Let Mn be a �stable� sequence of closed simply connected Riemannian manifolds of

dimension m � � with curvature jK�Mn�j � C and uniformly bounded diameters� Consider any

sequence of points pn � Mn and balls Bn � B���
p
C � Tpn which are equipped with the pull

back metrics of the exponential maps exppn � Tpn � Mn� Assume that for any such converging

subsequence Bn � B� the limit B has at all interior points curvature � �� Then the manifolds Mn

converge to a standard sphere�

The stability condition is actually not necessary for the above result to hold� This can be seen

from the following independent proof of the Corollary� which does not use stability at all� The

proof itself is very short� but since it uses the notion of Grothendieck�Lipschitz convergence and

Riemannian megafolds from �PT	� we decided to also incorporate the above �PRT	 approach� which

might be easier to understand�

Proof of the Corollary without stability assumption�

The only nontrivial part is to establish a lower positive bound for the injectivity radii of all

manifolds Mn�

Since because of the Gauss�Bonnet theorem the case m � � is trivial� we may assume that m � ��

If the manifolds Mn would collapse� then� after passing to a subsequence if necessary� one may

assume that the manifoldsMn Grothendieck�Lipschitz converge to a Riemannian megafoldM which

is not a manifold�

The assumptions of the Corollary imply that the limit M has constant curvature � �� so that

M � �Sm � G�� where G is a commutative group of isometries of Sm� However� by ��PT	� Theorem

A��� we have that � 	� H�
dR�M� � H�

dR�S
m�� which is a contradiction� �

�� Proofs

Proof of part �i� of Theorem A�

The 
rst statement of the theorem will follow from the fact that the distance function to p� distp�

for su�ciently large values does not have any critical points�

By assumption� for any sequence of numbers � � � converging to zero� the pointed Gromov�

Hausdor� limit of �M� �g� p� exists and is isometric to a locally compact metric cone C with vertex

o� The cone C obviously has curvature � � �in the sense of Alexandrov� everywhere except the

origin o � C�
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Let us assume that there exists a sequence of points xn such that jpxnj � � as n � �� and

such that each xn is a critical point for distp�

Consider the sequence of rescaled manifolds �M� g�jpxnj� p�� By the assumption of the theorem�

this sequence converges to �C� o�� and the points xn � �M� g�jpxnj� �after passing to a subsequence�

converge to a point x � C which has distance � to the origin o�

Since C is a cone� we can consider y �� �x � C� Choose a sequence of points yn � �M� g�jpxnj�
which converge to y� and consider minimal geodesics xnyn from xn to yn� Since xn is a critical point of

distp� there is for each n a minimal geodesic pxn which makes an angle less than ��� with the minimal

geodesic xnyn� Therefore Toponogov
s comparison theorem implies that limn�� jpynj�jpxnj �
p
��

But obviously limn�� jpynj�jpxnj � joyj�joxj � �� a contradiction�

Thus for some R � � the function distp does not have any critical points outside the open ball

BR�p�� In particular� as follows from Morse theory for distance functions� see ��Grov	� Cor� ������

M has 
nite topological type� i�e�� M is homeomorphic to the interior of a compact manifold with

boundary �which in our case is simply the closed ball �BR�p���

This also implies that the manifold M has only 
nitely many ends�

Note that the cone Ci is nothing but the closure of the connected component of Cno that corre�

sponds to Ni� in particular for each Ni the limit Ci � GH�lim��� �Ni exists�

Thus part �i� of Theorem A is proved� �

Proof of part �ii� of Theorem A�

The fact that N is homeomorphic to Sm�� � ����� will follow directly from the proofs of �ii��a�

and �ii��b�� Therefore we only need to prove these two statements�

Note that if dimCi � m � dimM � then parts �ii��a� and �ii��b� of the theorem are trivially true�

Indeed� if so we have that the curvature of Ci is zero everywhere except the origin� We can

assume that m 	� � �otherwise all ends would be homeomorphic to S� � ������ and therefore in

particular they would not be simply connected�� It follows that Ci � R
m�F � where F is a 
nite

group of rotations which acts freely on Rmn�� Since Ci n B��o� is homeomorphic to Ni� it follows

that F � ����Ni�� Since by assumption �Ni is simply connected� F must be trivial� and thus for

dimCi � m � dimM our claims are proved� since the above also implies that in this case Ni is

homeomorphic to Sm�� � ������

From now on we will assume that dim Ci � m�

We can view Ci as a cone over its space of directions� Ci � C��i�� where �i is an Alexandrov

space of curvature � � or dim�i � �� �i can be viewed as a �unit sphere� in Ci�
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We will 
rst construct a continuous family of hypersurfaces S����� in �M� �g� which collapse to

�i such that the sectional curvatures of S����� stay uniformly bounded� The following construction

is very close to one used by Kasue in �K�	� We will therefore only explain it here� all of its details

can be found in ��K�� x�	��
For each rescaling �M� �g� p�� consider the sphere of radius �� S����p� � �M� �g�� Its principal

curvatures for outcoming normal directions lie in the range ��C�����	� where C���� ��� as �� ��

Next consider� for an inward direction �to p� the equidistant hypersurface S����� at distance �

to S����p�� Then S����� has uniformly bounded principal curvatures which in fact lie in the range

��C ����� C ����	� where C ����� � as �� ��

Therefore� since M is asymptotically �at� S����� has uniformly bounded sectional curvature as

�� �� For su�ciently small � it follows that S����� �equipped with the induced intrinsic metric� is

a continuous family which� as �� �� collapses to �i�

Key Lemma� Take any sequence of points p�n � S�����n � 	n � �� Consider the balls Bn �

B���� � Tp�n �S�����n�� equipped with the pull back metrics�

Then as n��� the Bn Lipschitz converge to the ball of radius � in Sl���Rm�l � for some �xed

l depending on M �

Moreover �i � eSl���A� where A is an Abelian group of isometries of eSl�� �here by eSl�� we

understand the standard l � ��sphere if l � �� R if l � �� and a point if l � ���

The proof of the Key Lemma will be given below� Let us now continue with the proof of part �ii�

of Theorem A�

Obviously all S����� are homeomorphic to �Ni and therefore simply connected� Now applying

the Corollary in section � we see that l � m�

Using that �Ni is simply connected we can moreover show that the group A in the Key Lemma

is connected� Let Ao be the identity component of A� Then e�i � Sl���Ao is a branched covering of

�i� and it is easy to see that one can 
nd a covering g�Ni � �Ni which is a lifting of e�i � �i� But

since �Ni is simply connected we have that e�i � �i� Therefore A
o � A� i�e�� A is connected�

Now if l � �� then �i is a point� so that �Ni must be an infranil manifold� But any infranil

manifold has in
nite fundamental group� which contradicts the fact that �Ni is simply connected�

If l � � it follows that �i is homeomorphic to a point or R� since A is connected� The 
rst case

cannot occur by the above reasoning� and the second contradicts that C is locally compact�

Therefore the only serious case to deal with is the case l � ��

�



From the above we have that in this case �i is isometric to Sl���T k�

�

Since for 	 � � the hypersurfaces S����� collapse to �i and since S����� is homeomorphic to

�Ni� we know that �i is homeomorphic to �Ni�T
k and that this homeomorphism can be chosen to

preserve the natural strati
cations of these spaces�

Let us now do some topological calculations�

Let OTk be a regular orbit of the T k action on �Ni� Consider the relative homotopy sequence of

pairs

����Ni� OTk �� ���T
k� � Zk� ����Ni� � �


Therefore rkQ ���Ni� OTk � � k�

Next consider the corresponding homotopy sequence for Sl���

� � ���T
k�

�� ���S
l���� ���S

l��� OTk� �� ���T
k�

� � Zk
� � ���S

l���

Therefore rkQ ���S
l��� OTk� � � k�� rkQ ���S

l����

On the other hand one has that k � dim�Ni� dim�i and k� � l � �� dim�i�

Let ��
i denote �i with the singular sets removed� Consider now the following three cases�

�� �i has no boundary� Then obviously rkQ ���S
l��� OTk� � �rkQ ����

�
i � �rkQ ����Ni� OTk ��

�� ��i has one component� Then rkQ���S
l��� OTk� � �rkQ����

�
i � � � �rkQ����Ni� OTk ��

�� ��i has more than one component�

In both case � and case � it follows that k� � k� rkQ���S
l���� and hence m � l � rkQ���S

l����

However� this contradicts the fact that l � m� except if m � �� l � �� In this particular case it

follows that �i � S��Arot� Therefore� since �i has not more than one boundary component� we

have that Arot is trivial and �i � S�� Thus Ci � C��i� � R
� �and that this indeed can happen was

shown in �U	��

Case � can only occur if �i is homeomorphic to ��� �	� Then� since Ni is simply connected� it must

hold that k� k� � �� Since the T k action on �Ni has empty 
xed point set� we have that k � �� and

�



since l � m� we have that k� � �� Therefore m � �� l � � and �i is isometric to S��S� � ��� �	 � so

that Ci � C��i� � R � ������

The proof of Theorem A is complete� �

Proof of Theorem B�

Let M be an asymptotically �at m�manifold with nonnegative sectional curvature� Then M has

cone structure at in
nity� and by �GP	 the soul S of M is �at� This forces the universal cover �M of

M to split isometrically as a Euclidean part� coming from the soul S� and a nonnegatively curved

complete manifold F homeomorphic to Rk �

Now F is also asymptotically �at and has one end Sk�� � ������ Therefore by Theorem A�

if k 	� �� �� then the cone at in
nity of F is isometric to Rk � Since by Toponogov
s Comparison

Theorem any line in the cone corresponds to a line in F � it follows from the Toponogov Splitting

Theorem that F itself is isometric to Rk �

Thus to 
nish the proof we must only exclude the case k � �� By Theorem A� if k � � we have

that C � GH�lim��� �F is isometric to one of the following� R� � R� or R � ������ In all of these

cases we have that C contains a line� and therefore F splits isometrically as R � F �� But since F is

asymptotically �at it follows that F � is �at� and therefore F is isometric to R� � �

Proof of the Key Lemma�

Consider a ��neighbourhood U 
 �i � Ci� From the results of �CFG	 �see section � of �PRT	�

where also further references can be found� we have an N �structure � � E� � U � where E� is a

subset of �M� �g� containing the hypersurface S������ Since E� is homotopically equivalent to �Ni�

it follows that E� is simply connected� Therefore the N �structure is given by an almost isometric

smooth T k�action without 
xed points �see again section � in �PRT	��

Now take a point x � �i � Ci �so joxj � �� and consider a spherical neighbourhood of Ux � x�

Consider the preimage V� � ����Ux� � E� and let eV� be its universal Riemannian covering� Then

the T k�action induces an almost isometric Rk � F action on eV�� where F is a 
nite Abelian group�

From �CFG	 one has a uniform bound for the injectivity radius of eV�� so that� as � � �� eV�
converges to a �at manifold eV� with boundary and isometric Rk � F action �for the convergence

claim see the 
rst part of Lemma ����� in �PRT	��

Since the interior of eV� is �at� there exists a map eV� � Rm which is for all interior points a

local isometry� Therefore the Rk � F action on eV� can be extended to an action of whole Rm � and

the local factors U � Rm�Rk are isometric to local branched coverings of subsets of Ci� �Here by

local factors we understand factorizing U by the connected components of the Rk �orbits in U � as is

illustrated in the following picture��


�



U

one R -orbitk

     of one orbit in U.
different components

Now the above group Rk can be regarded as an Abelian group of isometries of Euclidean space

Rm � We will show that in our case Rk actually splits into a direct sum of translations and rotations�

To this means 
rst note the following�

Sublemma� Let a connected Abelian group H act on Euclidean space Rm by isometries� Then

one can represent Rm as an orthonormal sum V �W such that H is contained in a direct sum of

translations and rotations�

H � Atr �Arot�

so that the following holds� The group Atr � V is the group consisting of all parallel translations

along V � and Arot � O�W � is an Abelian subgroup of rotations of W �

Proof of the Sublemma�

By �Al	 one orbit of H is an a�ne subspace V �in fact� such an orbit corresponds to the origin o

of Ci�� Choose the origin of a�ne space Rm so that it is contained in this subspace� Each element

� � H can be viewed as �r�� 
�� � V �O�m�� such that ��x� � r� � 
��x� for any x � Rm �

Then V can be viewed as the set of all pure translations of H � Atr � V � fr � �r� 
� � H for some


 � O�m�g� Let Arot �� f
 � �r� 
� � H for some rg be the group of pure rotations of H � If each


 � Arot acts trivially on V � then obviously H � Atr �Arot� which is exactly what we want�

Therefore we only have to prove that for any 
 � Arot and any v � V we have that 
�v� � v�

Take any �r� 
� � H and v � V � For all n � N there exists 
n � O�m� such that �nv� 
n� � H �

Since H is Abelian� it follows that �r� 
��nv� 
n� � �nv� 
n��r� 
� and therefore nv � 
nr � r� 
nv�

Dividing by n and letting n�� thus implies 
v � v� �

Thus our group Rk is contained in a direct sum Atr � �Arot� where �Arot is universal covering Lie

group of Arot� Now note that since the local factors by Rk have a cone structure� Rk moreover itself

splits as Rk � Atr � �Arot�







Indeed� since the local factors U�Rk admit a cone structure� in radial directions their sectional

curvatures must be zero� But this is impossible unless Rk is itself a direct product Rk � �H �

Atr � �Arot�

To prove this� we only have to show that �in the notation of the Sublemma� it holds that Arot � H �

Assume that this is wrong� Then we can 
nd a ray c � ������ Rm which is orthogonal to V � and

there will be an element � � arot in the Lie algebra of Arot which is not contained in the Lie algebra

of H � so that � de
nes a linear Jacobi 
eld on the ray c which can assumed to be non�zero�

Consider now the projection �c of c along some local factor� Then �c is a piece of a ray in the

cone C and the projection �J of the 
eld J is also a Jacobi 
eld� But since C is a cone� any Jacoby


eld along �c must be linear� On the other hand it is straightforward to show that j �J�t�j is a strictly

concave function� and this is a contradiction�

Therefore the local factors W�Arot are isometric to local branched coverings of Ci �everywhere

except the origin�� Thus Ci n o is isometric to a factor of its universal covering� ��W n ���A� by an

Abelian Lie group A� Restricting this last isometry to the unit spheres of both cones it follows that

�i � �Sl���A� and the second part of the Key Lemma is proved�

Let � � eV� � V� be the covering map and eS����� � ����S������� It converges to the preimage of �i

under the map V� � V��A � Ux � Ci� so that it locally coincides with the cylinder V �Sl��� where

Sl�� is the unit sphere in W � Therefore� since x � �i can be chosen to be arbitrary� the covering

geometry of S����� converges to the one of V � Sl��� and this 
nishes the proof of the 
rst part of

the Key Lemma� �

�� Remarks and Open Questions

Question �� Let M be an asymptotically �at manifold� and let the sequence �M� �ng� p� converge

to �G� o� as �n � �� Assume that dimG � � and that Gno has only one connected component�

Is it true that G is a metric cone with origin o�

A positive answer to this question could possibly lead to a general classi
cation of asymptotically

�at manifold of higher dimension� To obtain such a classi
cation is particularly interesting because

of the fact that Gromov �see �Grom	� p�� and also �LS	� showed that any �smooth paracompact�

noncompact manifoldM admits a complete Riemannian metric whose asymptotic curvature satis
es

A�M� � C� where C depends only on the dimension of M �


�



Question �� Does there exist in each dimension m a positive constant C�m� such that any non�

compact complete Riemannian m�manifold M with A�M� � C�m� is asymptotically �at�

Note that thhe answer �positive or negative� to the following question would give a complete clas�

si
cation of the cone structures at in
nity of simply connected ends of asymptotically �at manifolds�

Question 
� Can the cone R � ����� be a cone at in
nity of a simply connected end of an

asymptotically �at ��manifold�

It seems not possible to obtain such an example by a direct generalization of Unnebrink
s example�

Namely� one can exchange the Berger spheres S�f�t��h�t� �in the notation of �U	� in Unnebrink
s

example by S�a�t��f�t��h�t�� where the number a�t� describes along which one�dimensional subgroup of

the T ��action on the standard S� we shrink the distance �so S�a�f�h is a Berger sphere if a � ����
But direct calculation then shows that there is no triple of functions a� f� h which would give an

asymptotically �at ��manifold with R � ����� as a cone at in
nity�

However� on the other hand� if one would take as a a constant which is close to �� then as a

result one obtains an end N whose asymptotic curvature A�N� is arbitrarily small and which has

R � ����� as cone at in
nity�

Remark� The same arguments as the one which we used in the proof of Theorem A actually

also make it possible to characterize the cones at in
nity of complete noncompact manifolds whose

asymptotic curvature is small�

Namely� if for some given sequence of simply connected m�dimensional ends Nn with A�Nn�� �

as n � � their cones at in
nity Cn Gromov�Hausdor� converge to some metric space C �which

then must be a cone�� then for su�cently large n it holds that Nn is homeomorphic to Sm��� �����

and moreover the following is true�

�a� if m 	� �� then C is isometric to Rm �

�b� if m � �� then C is isometric to one of the following spaces� R� � R� � or R � ������

The above modi
cation of the Unnebrink construction for constant a shows that for manifolds

with small asymptotic curvature all cones which are mentioned in part �b� actually do arise�

As a last point we would like to mention that the methods we used in this paper do not distinguish


�



between spaces which are asymtotically �at and sequences of spaces whose asymptotic curvature goes

to zero�

Therefore� no matter how special our question whether R � ����� can be a cone at in
nity of a

simply connected end of an asymptotically �at ��manifold might at 
rst sight look like� any negative

answer to it will require more sensitive collapsing techniques�
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