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ASYMPTOTICAL FLATNESS AND CONE STRUCTURE AT INFINITY

ANTON PETRUNIN* AND WILDERICH TUSCHMANNX

(Final Version as to appear in Mathematische Annalen)

ABSTRACT. We investigate asymptotically flat manifolds with cone structure at infinity. We show that
any such manifold M has a finite number of ends, and we classify (except for the case dim M = 4, where
it remains open if one of the theoretically possible cones can actually arise) for simply connected ends all
possible cones at infinity. This result yields in particular a complete classification of asymptotically flat
manifolds with nonnegative curvature: The universal covering of an asymptotically flat m-manifold with
nonnegative sectional curvature is isometric to R™~2 x S, where S is an asymptotically flat surface.

0. INTRODUCTION

Let (M, g) be a complete noncompact Riemannian manifold. Choose a point p € M and set

A(M) = limsup {|K.| - [pal?},

|pz|—00

where | K| denotes the maximal absolute value of the sectional curvatures at the point z € M.
One easily checks that A(M) does not depend on the choice of the reference point p, so that
the quantity A(M) yields a nice geometric invariant of M which is, in particular, invariant under

rescalings of the metric.

Definition. A noncompact complete Riemannian manifold (M,g) is called asymptotically flat if

A(M) = 0.

Note that the mere condition of being asymptotically flat places in general no restrictions whatso-
ever on the topology of a manifold. For instance, by a result of Abresch (see [Ab]) any noncompact

surface carries a complete and asymptotically flat Riemannian metric.

Definition. A noncompact complete Riemannian manifold (M,g) is said to have cone structure
at infinity if there is a metric cone C with vertex o such that the pointed Gromov-Hausdorff limit
of (M,eg,p) ezists for any sequence of numbers € > 0 converging to zero and such that this limit is

isometric to (C,0).

*This work was done while we enjoyed our stay at the MPI Leipzig and finished during a joint week at the IHES.
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As a Gromov-Hausdorff limit of proper metric spaces, i.e., metric spaces such that any closed ball
of finite radius is compact, the cone C' which arises in the above definition is in particular proper

and locally compact.

Note that large classes of Riemannian manifolds have cone structure at infinity. In fact, Kasue
(see [K1]) showed that under certain lower curvature limitations (e.g., if for some C' < oo and
§ > 0 it holds that K, > —C/|pz|**®) a noncompact (complete) Riemannian manifold always has
this property. Thus in particular any noncompact Riemannian manifold with faster-than-quadratic
curvature decay (i.e., any noncompact Riemannian manifold for which there exists some C' and
§ > 0 such that |K,| < C/|pz|**?), and, especially, any noncompact Riemannian manifold with
nonnegative curvature has cone structure at infinity.

Note also that on the other hand by Abresch’s result one can easily construct asymptotically flat
surfaces (S, g) such that the Gromov-Hausdorff limit of (S, €,g,p) indeed depends on the choice of
the sequence ¢, — 0 and such that for some sequences this limit is not even a metric cone. In
particular, by considering products 7™~2 x (S, g) one thus obtains examples of asymptotically flat
manifolds without cone structure at infinity in any dimension m > 2. (Actually any such example

we know of looks on a big scale always two-dimensional; for more on this see section 3).

Theorem A. Let M be an asymptotically flat m-manifold. Assume that M has cone structure at
infinity. Then
(i) There exists an open ball Br(p) C M such that M \ Bg(p) is a disjoint union J; N; of a finite
number of ends, i.e., N; is a connected topological manifold with closed boundary ON; which is
homeomorphic to ON; x [0,00). For each N; the limit C; = GH-lim._,¢ eN; exists.
(i) If the end N; is simply connected, then N; is homeomorphic to S™~! x [0, 00).
In this case moreover the following holds:
(a) if m # 4, then C; is isometric to R™;

(b) if m = 4, then C; is isometric to one of the following spaces: R*, R?, or R x [0, 00).

A finiteness of ends statement as in part (i) of Theorem A was proved by Abresch (see [Ab]) in
a related setting.

Part (ii)(a) of Theorem A is new even in the special case of faster-than-quadratic curvature decay
(recall that, as noted above, faster-than-quadratic curvature decay implies cone structure at infinity).

Theorem A generalizes here work of Greene, Petersen, and Zhu (see Theorem 1 in [GPZ], where the
same conclusion as in (ii)(a) was proved under the additional assumptions of faster-than-quadratic

curvature decay and nontriviality of the tangent bundle of NN;.



When combined with the fact that volume growth of exactly Euclidean order implies flatness,
Theorem A also yields the following result, which generalizes for manifolds of dimension m # 4
Theorem 2 in [GPZ] from faster-than-quadratic curvature decay to asymptotical flatness with cone

structure at infinity:

Corollary. Let M be an asymptotically flat m-manifold of dimension m # 4 which has cone
structure at infinity. If M has nonnegative Ricci curvature and one simply connected end, then M

is isometric to R™.

Part (ii)(b) of Theorem A shows that four-dimensional manifolds play in Theorem A a peculiar
role and indicates that in this dimension special phenomena can arise. Indeed, Unnebrink (see [U])
showed that there are examples of asymptotically flat 4-manifolds which have (cone structure at
infinity and) a simply connected end N; such that, in the notation of Theorem A, C; = R3. It is not
clear if there exists an asymptotically flat 4-manifold with cone structure at infinity with a simply
connected end N; so that C; = R x [0,00). (We actually conjecture that there is no such example;
see also section 3.)

Note also that in dimension 2 all ends are homeomorphic to S x [0,00), so that the ends of an

asymptotically flat surface are never simply connected.

Combining Theorem A and a result from [GP] we obtain proofs of statements of Gromov (see
[BGS], p.59) which till now have been treated in the literature (compare [D] and the references
therein) as conjectures, and which completely classify the asymptotically flat manifolds with non-

negative sectional curvature:

Theorem B. Let M be an asymptotically flat m-manifold with nonnegative sectional curvature.
Then the universal covering of M is isometric to R™~2 x S, where S is an asymptotically flat surface.

If, in particular, M is simply connected and m > 3, then M is isometric to R™.

Assuming faster-than-quadratic curvature decay and assuming that the unit normal bundle of the
soul of M has nontrivial tangent bundle, the second part of Theorem B was proved by Drees ([D]).
As a direct consequence of Theorem B one also obtains an affirmative answer to a question of
Hamilton (see [H], §19; this paper also contains some nice relations between asymptotical curvatures

and the Ricci flow), which is equivalent to the following one:

Let M be a complete noncompact Riemannian manifold of dimension m > 3 with positive sectional

curvature. Is it true that A(M) >0 ?



That in odd dimensions the answer to this question is “yes” was already known and proved by

Eschenburg, Schréder, and Strake ([ESS]).

Our results obviously also have a relation to the positive mass conjecture; in [GPZ] the reader

will find explained the precise connections.

The main idea of the proof of Theorem A can be described as follows:

Inside an end N; of an asymptotically flat manifold with cone structure at infinity we construct
a continuous family of “spheres”, which after rescaling have uniform curvature bounds and which
Gromov-Hausdorff converge to the “unit sphere” in the cone C;.

To this continuous family of spheres we now apply two results from [PRT]: The first says that any
continuously collapsing family with bounded curvature contains an infinite “stable” subsequence.
To this sequence then a corollary of the Limit of Covering Geometry Theorem from [PRT] applies.

(This corollary actually also holds without using a stability assumption, and the proof of Theorem
A can be given without relying on [PRT], but instead on results from [PT], see section 1).

This in turn enables us to prove some inequalities for the ranks of certain homotopy groups. These
imply that in fact collapse is not possible except for the case where the dimension of the manifold

is equal to 4. Therefore in all nice cases C; is nothing but R™.

There is a vast amount of literature on noncompact complete Riemannian manifolds whose sec-
tional curvature at infinity is zero (and on many different specific ways in which the curvature is
allowed to go to zero). For a detailed account of what is known and wanted to be known about such
spaces, the reader is recommended to look at the survey article [Gre] and the paper [GPZ]. Here we

just mention (besides the references already given) some papers in the field which are most closely

related to the results of this note: [ES], [GW1], [GW2], [KS] and [LS].

The remaining parts of the paper are organized into a preliminaries, a proof, and a problem

section which contains further remarks and several open questions.

We would like to thank Patrick Ghanaat for pointing out to us a simplified proof of the sublemma

in section 2 as well as Luis Guijarro for useful comments.



1. PRELIMINARIES

In this section we review some results about manifolds which collapse with bounded curvature

and diameter. More on this can be found in the references given in [PRT] and [PT].

Definition. A sequence of metric spaces M; is called stable if there is a topological space M and
a sequence of metrics d; on M such that (M,d;) is isometric to M; and such that the metrics d;

converge as functions on M x M to a continuous pseudometric.

Proposition (Continous Collapse implies Stability) ([PRT]). Suppose that a simply con-
nected manifold M admits a continuous one-parameter family of metrics (g¢)o<t<1 with A < Ky, <A
such that, as t — 0, the family of metric spaces M; = (M, g:) Hausdorff converges to a compact

metric space X of lower dimension. Then the family M; contains a stable subsequence.

The version of the Limit of Covering Geometry Theorem from [PRT] we need in this paper (it is
straightforward to check that the proof given in [PRT] also proves the result below) can be stated

as follows:

Theorem (Limit of Covering Geometry Theorem ([PRT]). Let M, be a stable sequence of
Riemannian m-manifolds with curvature bounds |K (M,)| < 1 such that for n — oo the sequence of
metric spaces M,, Hausdorff converges to a compact metric space X of lower dimension. Consider
any sequence of points p, € M, and balls B, = B/, C T, which are equipped with the pull
back metrics of the exponential maps exp, :T,, — M,. Assume that for any such converging
subsequence B,, — B, the limit B has curvature > 0 in the sense of Alexandrov.

Then for any converging subsequence B,, — B, the limit B has the same dimension as the
manifolds M,,, and in a neighbourhood of its center, the metric on B coincides with that of a metric
product R x N, where N is a manifold with two-sided bounded curvature 0 < K(N) < 1 in the

sense of Alexandrov.

Our proof of Theorem A will in fact only use the following corollary of this theorem. At first
sight this corollary looks almost obvious, but it doesn’t seem easy to adopt any of the known proofs

of injectivity radius estimates to this case.



Corollary. Let M, be a (stable) sequence of closed simply connected Riemannian manifolds of
dimension m > 2 with curvature |K(M,)| < C and uniformly bounded diameters. Consider any
sequence of points p, € M, and balls B, = Bﬂ/m@ C T,, which are equipped with the pull
back metrics of the exponential maps exp, :T,, — M,. Assume that for any such converging
subsequence B,, — B, the limit B has at all interior points curvature = 1. Then the manifolds M,

converge to a standard sphere.

The stability condition is actually not necessary for the above result to hold. This can be seen
from the following independent proof of the Corollary, which does not use stability at all. The
proof itself is very short, but since it uses the notion of Grothendieck-Lipschitz convergence and
Riemannian megafolds from [PT], we decided to also incorporate the above [PRT] approach, which

might be easier to understand.

Proof of the Corollary without stability assumption.

The only nontrivial part is to establish a lower positive bound for the injectivity radii of all
manifolds M,,.

Since because of the Gauss-Bonnet theorem the case m = 2 is trivial, we may assume that m > 3.

If the manifolds M,, would collapse, then, after passing to a subsequence if necessary, one may
assume that the manifolds M,, Grothendieck-Lipschitz converge to a Riemannian megafold 9 which
is not a manifold.

The assumptions of the Corollary imply that the limit M has constant curvature = 1, so that
M = (S™ : G), where G is a commutative group of isometries of S™. However, by ([PT], Theorem

A.7) we have that 0 # H3,(9) = H3,(S™), which is a contradiction. O

2. PROOFsS

Proof of part (i) of Theorem A.

The first statement of the theorem will follow from the fact that the distance function to p, dist,,
for sufficiently large values does not have any critical points.

By assumption, for any sequence of numbers € > 0 converging to zero, the pointed Gromov-
Hausdorff limit of (M, eg, p) exists and is isometric to a locally compact metric cone C' with vertex
0. The cone C obviously has curvature > 0 (in the sense of Alexandrov) everywhere except the

origin o € C.



Let us assume that there exists a sequence of points z,, such that |pz,| = oo as n — oo, and
such that each z,, is a critical point for dist,.

Consider the sequence of rescaled manifolds (M, g/|pz,|, p). By the assumption of the theorem,
this sequence converges to (C,0), and the points z,, € (M, g/|pz,|) (after passing to a subsequence)
converge to a point # € C' which has distance 1 to the origin o.

Since C is a cone, we can consider y := 2z € C. Choose a sequence of poiuts y,, € (M, g/|pz,|)
which converge to y, and consider minimal geodesics x,,y,, from z,, to y,. Since x,, is a critical point of
dist,, there is for each n a minimal geodesic pz,, which makes an angle less than = /2 with the minimal
geodesic x,%,,. Therefore Toponogov’s comparison theorem implies that lim,, o [pyn|/|pTn| < V2.
But obviously lim,,—,o0 |pyn|/|pxn| = |oy|/|oz| = 2, a contradiction.

Thus for some R > 0 the function dist, does not have any critical points outside the open ball
Bpr(p). In particular, as follows from Morse theory for distance functions, see ([Grov], Cor. 1.9.),
M has finite topological type, i.e., M is homeomorphic to the interior of a compact manifold with
boundary (which in our case is simply the closed ball Bg(p)).

This also implies that the manifold M has only finitely many ends.

Note that the cone C; is nothing but the closure of the connected component of C'\o that corre-
sponds to IV;, in particular for each N; the limit C; = GH-lim,_,q €NV; exists.

Thus part (i) of Theorem A is proved. O

Proof of part (ii) of Theorem A.

The fact that N is homeomorphic to S™ 1 x [0, 00) will follow directly from the proofs of (ii)(a)
and (ii)(b). Therefore we only need to prove these two statements.

Note that if dim C; = m = dimM, then parts (ii)(a) and (ii)(b) of the theorem are trivially true:

Indeed, if so we have that the curvature of C; is zero everywhere except the origin. We can
assume that m # 2 (otherwise all ends would be homeomorphic to S! x [0, 00), and therefore in
particular they would not be simply connected). It follows that C; = R™/F, where F is a finite
group of rotations which acts freely on R™\0. Since C; \ B;(0) is homeomorphic to N, it follows
that F' = w1 (ON;). Since by assumption ON; is simply connected, F' must be trivial, and thus for
dim C; = m = dimM our claims are proved, since the above also implies that in this case N; is

homeomorphic to S™! x [0, 00).

From now on we will assume that dim C; < m.

We can view C; as a cone over its space of directions, C; = C(X;), where X; is an Alexandrov

space of curvature > 1 or dim3; = 1. ¥; can be viewed as a “unit sphere” in Cj.



We will first construct a continuous family of hypersurfaces Sa_; ¢ in (M, eg) which collapse to
¥, such that the sectional curvatures of Sy_; . stay uniformly bounded. The following construction
is very close to one used by Kasue in [K2]. We will therefore only explain it here; all of its details
can be found in ([K2, §2]).

For each rescaling (M,eg,p), consider the sphere of radius 2, Sz .(p) C (M,eg). Its principal
curvatures for outcoming normal directions lie in the range [-C(€), o], where C(e) — 1/4 as € — 0.

Next consider, for an inward direction (to p) the equidistant hypersurface S;_; . at distance 1
to S2.¢(p). Then S;_;  has uniformly bounded principal curvatures which in fact lie in the range
[-C'(€),C"(€)], where C'(e) - 1 as e — 0.

Therefore, since M is asymptotically flat, S2_1 . has uniformly bounded sectional curvature as
e — 0. For sufficiently small € it follows that S»_1 . (equipped with the induced intrinsic metric) is

a continuous family which, as € — 0, collapses to X;.

Key Lemma. Take any sequence of points p., € S2_1.,, €, — 0. Consider the balls B,, =
B1(0) C T}, (S2-1.,), equipped with the pull back metrics.

Then as n — oo, the B,, Lipschitz converge to the ball of radius 1 in S'=! x R™~!, for some fixed
l depending on M.

Moreover ¥; = §l_1/A, where A is an Abelian group of isometries of Si-t (here by St we

understand the standard | — 1-sphere if | > 3, R if | = 2, and a point if | = 1).

The proof of the Key Lemma will be given below. Let us now continue with the proof of part (ii)

of Theorem A:

Obviously all Sy_; ¢ are homeomorphic to ON; and therefore simply connected. Now applying
the Corollary in section 1 we see that [ < m.

Using that ON; is simply connected we can moreover show that the group A in the Key Lemma
is connected: Let A° be the identity component of A. Then ¥, = gt /A?° is a branched covering of
3;, and it is easy to see that one can find a covering 5]\\@ — ON; which is a lifting of f?,- — ¥;. But

since ON; is simply connected we have that Y; = %;. Therefore 4° = A, ie., Ais connected.

Now if [ = 1, then X; is a point, so that ON; must be an infranil manifold. But any infranil
manifold has infinite fundamental group, which contradicts the fact that 9N; is simply connected.
If | = 2 it follows that X; is homeomorphic to a point or R, since A is connected. The first case

cannot occur by the above reasoning, and the second contradicts that C' is locally compact.

Therefore the only serious case to deal with is the case [ > 3.



From the above we have that in this case ¥; is isometric to Sl’l/T’“I.
Since for ¢ — 0 the hypersurfaces Sy_; . collapse to X; and since S ;. is homeomorphic to
ON;, we know that X; is homeomorphic to dN;/T* and that this homeomorphism can be chosen to

preserve the natural stratifications of these spaces.

Let us now do some topological calculations:
Let Op+ be a regular orbit of the T* action on dN;. Consider the relative homotopy sequence of

pairs

72 (ON;, Opi) = m (T*) = Z% — 71, (ON;) = 0.

Therefore rkg mo(N;, Opr) > k.
Next consider the corresponding homotopy sequence for S'~!:

0=m(T*) = my (™) = ma (S, O ) = my(TF) = Z* — 7y (81

Therefore tkg m2(S'™1, Opw ) = K'+ kg ma(S1).
On the other hand one has that kK = dimON;— dimY; and &' = — 1— dimX;.

Let ¥ denote ¥; with the singular sets removed. Consider now the following three cases:

1. ; has no boundary. Then obviously rkgms(S'™", O ) =rkg 7 (X#) =rkg w2 (ON;, Ops).

2. 0%; has one component. Then rkoms(S'™1, Op) :erm(Zf&) + 1 =rkgm2 (ON;, Opx ).

3. 9%; has more than one component.

In both case 1 and case 2 it follows that k' > k— rkgm2(S'~!), and hence m < I+ rkgma (S'1).

However, this contradicts the fact that [ < m, except if m = 4,1l = 3. In this particular case it
follows that ¥; = S2/Ar°t. Therefore, since ¥; has not more than one boundary component, we
have that A7 is trivial and ¥; = S2. Thus C; = C(¥;) = R® (and that this indeed can happen was
shown in [U]).

Case 3 can only occur if ¥; is homeomorphic to [0, 1]. Then, since N; is simply connected, it must

hold that k, k' < 2. Since the T* action on ON; has empty fixed point set, we have that k = 2, and

9



since [ < m, we have that ¥’ = 1. Therefore m = 4, [ = 3 and X; is isometric to $?/S' = [0, 7] , so
that CZ = C(EZ) =R x [0, OO)
The proof of Theorem A is complete. [

Proof of Theorem B.

Let M be an asymptotically flat m-manifold with nonnegative sectional curvature. Then M has
cone structure at infinity, and by [GP] the soul S of M is flat. This forces the universal cover M of
M to split isometrically as a Euclidean part, coming from the soul S, and a nonnegatively curved
complete manifold F' homeomorphic to R¥.

Now F is also asymptotically flat and has one end S*¥~! x [0,00). Therefore by Theorem A,
if k& # 2.4, then the cone at infinity of F' is isometric to R¥. Since by Toponogov’s Comparison
Theorem any line in the cone corresponds to a line in F, it follows from the Toponogov Splitting
Theorem that F itself is isometric to R .

Thus to finish the proof we must only exclude the case k¥ = 4. By Theorem A, if k¥ = 4 we have
that C' = GH-lim,_,o €F is isometric to one of the following: R*, R® or R x [0,00). In all of these
cases we have that C contains a line, and therefore F' splits isometrically as R x F’. But since F' is

asymptotically flat it follows that F’ is flat, and therefore F is isometric to R*. O

Proof of the Key Lemma.

Consider a v-neighbourhood U D X; C C;. From the results of [CFG] (see section 1 of [PRT],
where also further references can be found) we have an N-structure = : E, — U, where E, is a
subset of (M, eg) containing the hypersurface S2_; .. Since E. is homotopically equivalent to ON;,
it follows that E. is simply connected. Therefore the N-structure is given by an almost isometric
smooth T*-action without fixed points (see again section 1 in [PRT]).

Now take a point € ¥; C C; (so |oxz| = 1) and consider a spherical neighbourhood of U, » x.
Consider the preimage V., = 7~1(U,) C E, and let V. be its universal Riemannian covering. Then
the T*-action induces an almost isometric RF x F action on V., where F is a finite Abelian group.

From [CFG] one has a uniform bound for the injectivity radius of XN/E, so that, as e — 0, V.
converges to a flat manifold Vo with boundary and isometric R¥ x F action (for the convergence
claim see the first part of Lemma 2.1.4 in [PRT]).

Since the interior of 170 is flat, there exists a map 170 — R™ which is for all interior points a
local isometry. Therefore the R¥ x F' action on Vo can be extended to an action of whole R™, and
the local factors U C R™ /RF are isometric to local branched coverings of subsets of C;. (Here by
local factors we understand factorizing U by the connected components of the RF-orbits in U, as is

illustrated in the following picture).
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koo
one R™-orbit

different components
of one orbit in U.

Now the above group RF can be regarded as an Abelian group of isometries of Euclidean space

R™. We will show that in our case RF actually splits into a direct sum of translations and rotations.

To this means first note the following:

Sublemma. Let a connected Abelian group H act on Euclidean space R™ by isometries. Then
one can represent R™ as an orthonormal sum V & W such that H is contained in a direct sum of
translations and rotations,

H < Atr @Arot7

so that the following holds: The group A" =V is the group consisting of all parallel translations
along V, and A"t C O(W) is an Abelian subgroup of rotations of W .

Proof of the Sublemma.

By [Al] one orbit of H is an affine subspace V' (in fact, such an orbit corresponds to the origin o
of C;). Choose the origin of affine space R™ so that it is contained in this subspace. Each element
a € H can be viewed as (14, ¢o) € V X O(m), such that a(z) = rq + ¢o(x) for any z € R™.

Then V can be viewed as the set of all pure translations of H, A" =V = {r : (r,¢) € H for some
¢ € O(m)}. Let A" := {¢ : (r,¢) € H for some r} be the group of pure rotations of H. If each
¢ € AT acts trivially on V, then obviously H < A" @ A"t which is exactly what we want.

Therefore we only have to prove that for any ¢ € A" and any v € V we have that ¢(v) = v.

Take any (r,¢) € H and v € V. For all n € N there exists ¢, € O(m) such that (nv, ¢,) € H.
Since H is Abelian, it follows that (r,®)(nv, ¢,) = (nv, ¢,)(r, ¢) and therefore nv + ¢,r = r + dno.

Dividing by n and letting n — oo thus implies g =v. O

Thus our group R* is contained in a direct sum A!" & A" where A" is universal covering Lie
group of A", Now note that since the local factors by RF have a cone structure, R¥ moreover itself

splits as RF = Atr @ Arot.

11



Indeed, since the local factors U/R* admit a cone structure, in radial directions their sectional
curvatures must be zero. But this is impossible unless R¥ is itself a direct product R¥ = H =
Atr @ Arot.

To prove this, we only have to show that (in the notation of the Sublemma) it holds that A" C H.
Assume that this is wrong. Then we can find a ray c: [0,00) — R™ which is orthogonal to V', and
there will be an element o € a™! in the Lie algebra of A™! which is not contained in the Lie algebra
of H, so that a defines a linear Jacobi field on the ray ¢ which can assumed to be non-zero.

Consider now the projection ¢ of ¢ along some local factor. Then ¢ is a piece of a ray in the
cone C' and the projection J of the field J is also a Jacobi field. But since C' is a cone, any Jacoby
field along ¢ must be linear. On the other hand it is straightforward to show that |J(¢)| is a strictly

concave function, and this is a contradiction.

Therefore the local factors W/A"™! are isometric to local branched coverings of C; (everywhere
except the origin). Thus C; \ o is isometric to a factor of its universal covering, (Vm) /A, by an
Abelian Lie group A. Restricting this last isometry to the unit spheres of both cones it follows that
¥ = S’l_l/A, and the second part of the Key Lemma, is proved.

Let p : 176 — V. be the covering map and 52_176 = p~1(Sa-1,c). It converges to the preimage of ¥;
under the map Vo — Vp/A = U, C C;, so that it locally coincides with the cylinder V' x St where
S!=1 is the unit sphere in W. Therefore, since € ¥; can be chosen to be arbitrary, the covering
geometry of Sa_1 . converges to the one of V x S'"1, and this finishes the proof of the first part of

the Key Lemma. O

3. REMARKS AND OPEN QUESTIONS

Question 1. Let M be an asymptotically flat manifold, and let the sequence (M, ¢€,g,p) converge
to (G,0) as €, — 0. Assume that dimG > 3 and that G\o has only one connected component.

Is it true that G is a metric cone with origin o?

A positive answer to this question could possibly lead to a general classification of asymptotically
flat manifold of higher dimension. To obtain such a classification is particularly interesting because
of the fact that Gromov (see [Grom], p.96 and also [LS]) showed that any (smooth paracompact)
noncompact manifold M admits a complete Riemannian metric whose asymptotic curvature satisfies

A(M) < C, where C depends only on the dimension of M.
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Question 2. Does there exist in each dimension m a positive constant C'(m) such that any non-

compact complete Riemannian m-manifold M with A(M) < C(m) is asymptotically flat?

Note that thhe answer (positive or negative) to the following question would give a complete clas-

sification of the cone structures at infinity of simply connected ends of asymptotically flat manifolds:

Question 3. Can the cone R x [0,00) be a cone at infinity of a simply connected end of an

asymptotically flat 4-manifold?

It seems not possible to obtain such an example by a direct generalization of Unnebrink’s example.
Namely, one can exchange the Berger spheres S?‘(t),h(t) (in the notation of [U]) in Unnebrink’s
example by SS(tL F(t),h(t) where the number a(t) describes along which one-dimensional subgroup of
the T-action on the standard S® we shrink the distance (so S ; , is a Berger sphere if a = £1).
But direct calculation then shows that there is no triple of functions a, f,h which would give an

asymptotically flat 4-manifold with R x [0, 00) as a cone at infinity.

However, on the other hand, if one would take as a a constant which is close to 1, then as a
result one obtains an end N whose asymptotic curvature A(N) is arbitrarily small and which has

R x [0,00) as cone at infinity.

Remark. The same arguments as the one which we used in the proof of Theorem A actually
also make it possible to characterize the cones at infinity of complete noncompact manifolds whose
asymptotic curvature is small:

Namely, if for some given sequence of simply connected m-dimensional ends N,, with A(N,,) — 0
as n — oo their cones at infinity C,, Gromov-Hausdorff converge to some metric space C' (which
then must be a cone), then for sufficently large n it holds that NN,, is homeomorphic to S™ ™1 x [0, 00)
and moreover the following is true:

(a) if m # 4, then C is isometric to R™;

(b) if m = 4, then C is isometric to one of the following spaces: R*, R®, or R x [0, c0).

The above modification of the Unnebrink construction for constant a shows that for manifolds

with small asymptotic curvature all cones which are mentioned in part (b) actually do arise.

As a last point we would like to mention that the methods we used in this paper do not distinguish
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between spaces which are asymtotically flat and sequences of spaces whose asymptotic curvature goes

to zero.

Therefore, no matter how special our question whether R x [0,00) can be a cone at infinity of a

simply connected end of an asymptotically flat 4-manifold might at first sight look like, any negative

answer to it will require more sensitive collapsing techniques.
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