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Abstract

Synchronization of neural signals has been proposed as a temporal cod�

ing scheme representing cooperated computation in distributed cortical

networks� Previous theoretical studies in that direction mainly focused on

the synchronization of coupled oscillatory subsystems and neglected more

complex dynamical modes� that already exist on the single�unit level� In

the present work we study the parameterized time�discrete dynamics of

two coupled recurrent networks of graded neurons� Conditions for the ex�

istence of partially synchronized dynamics of these systems are derived�

referring to a situation where only subsets of neurons in each sub�network

are synchronous� The coupled networks can have di�erent architectures

and even a di�erent number of neurons� Periodic as well as quasiperi�

odic and chaotic attractors constrained to a manifold M of synchronized

components are observed� Examples are discussed for coupled ��neuron

networks having di�erent architectures� and for coupled ��neuron and ��

neuron networks� Partial synchronization of di�erent degrees is demon�

strated by numerical results for selected sets of parameters� In conclusion�

the results show that synchronization phenomena far beyond completely

synchronized oscillations can occur even in simple coupled networks� The

type of the synchronization depends in an intricate way on stimuli� history

and connectivity as well as other parameters of the network� Speci�c in�

puts can further switch between di�erent operational modes in a complex

way� suggesting a similarly rich spatio�temporal behavior in real neural

systems�
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� Introduction

Synchronization of neural activity in biological brains has been observed in dif�
ferent species� areas and under various physiological conditions �cf� ��� ��� �	�
�
� ��� ��� ��
� Most attention was given to the experimental evidence that
coherent �ring of spatially separate neurons appears as a response to speci�c
external stimuli� in particular in response to extended object borders that may
cover more than the classical receptive �elds of the stimulated cells� The observa�
tion of synchrony between �ring activity at distant sites along continuous edges
lead to the famous �binding hypothesis� which states that the synchronization of
neural activity serves as a fundamental temporal mechanism for binding spatially
distributed features into a coherent object representation �cf� e�g� ���� ��� ��
��
In this context conceptual discussions and biologically motivated models were
mainly based on the synchronization of oscillatory dynamics in high�dimensional
systems �cf� e�g� �
� ��� ��� ��� �
� ��� ��
� and reviews in ���� ��
��

Interestingly� although a matter of intensive research for the last �	 years
there is still no common agreement about the precise origin of cortical gamma�
oscillations� Several alternatives have been proposed�

�� Many theoretical studies assume that collective oscillations arise from cou�
pled networks of intrinsically periodically �ring excitatory cells that mutu�
ally align their spikes in time �reviews in ���� ��
�� Inhibitory interneurons
in this interpretation mainly regulate the �ring frequency or are neglected
at all�

�� In strong contrast Buzs�aki and Chrobak ��� ��
 suggested that the oscilla�
tions arise from networks of inhibitory cells that synchronize by themselves
and co�operatively entrain large populations of principal�pyramidal cells�
Individual principal cells in their scenario may �re at low rates and non�
rhythmic� Their �ring times� however� are correlated with the membrane
oscillations induced by the inhibitory subnetwork�

�� A third alternative is that gamma�oscillations are not characterized by mu�
tually synchronizing ensembles of already periodically �ring individual cells
�either excitatory or inhibitory�� but that the rhythm is a collective e�ect
due to mass action between two pools of excitatory and inhibitory cells
���� ��� ��
� Cells in both pools can reveal broad �ring frequency distribu�
tions and only weak spike synchrony ���
�

�� In addition� although it is commonly believed that gamma�oscillations are
cortex�intrinsically generated and synchronized by lateral or cortico�cortical
�bres� some authors suggested that synchrony �either oscillatory or non�
oscillatory� may at least in part be input driven ��

�
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Since there is experimental evidence for all these alternatives it is likely
that di�erent mechanisms participate in the generation and synchronization of
gamma�oscillations in di�erent brain structures� areas or even within the same
area�

Most interestingly in the context of the present paper is� that the di�erent al�
ternatives can and have all been simulated in computational neural network stud�
ies employing an architecture of internally as well as mutually connected pools of
excitatory and inhibitory neurons �e�g� ���� ��� ��� ��� ��� ��� ��� ��
�� Although
the cited simulation studies are not perfectly comparable in their modeling details
and physiological realism they nonetheless show that in such excitatory�inhibitory
networks case � above corresponds to neglectable inhibition ���� ��
� In contrast�
case � occurs if interneurons inhibit themselves su�ciently strongly and excitation
is relatively weak or missing at all �e�g� ���� ��
�� Case � requires approximately
balanced excitation and inhibition above some critical level and a certain amount
of disorder in the network� say� in form of randomly chosen synaptic weights or
strong temporal input noise ���� ��
� Of course� also stimulus locked input driven
correlations �case �� can be induced in such networks �see e�g� ���
��

This means� depending on the parameters chosen� essentially the same net�
work can reveal completely di�erent dynamics� either the excitatory subnetwork
synchronizes� or the inhibitory one� or both interact and lead to mass oscillations�
In response to appropriate �i�e� correlated� input the level of synchronization
within the network may further depend more on the input drive or the recurrent
feedback�

Previous research on cortical synchronization phenomena of this kind has
focused almost exclusively on coupled oscillatory systems� Only a few model
studies consider synchronization of coupled systems in other dynamical modes�
for example� stationary stochastic �ring states or chaotic dynamics ���� ��� ��
�

Furthermore� many studies seem to be guided by the idea of what we call
�complete synchronization�� i�e� they attempt a collectively synchronized dynam�
ical state� where all cells in the network �re synchronously in every oscillation
period� The physiological unrealism of this �tight�binding� situation �cf� ���
� is
sometimes in part counteracted by introducing noise into the system� This lets
simulated observables �membrane potentials� spike trains� correlation functions�
etc�� look more like their real physiological counterparts� but it does not change
the principal concept of tightly synchronized oscillations�

On the other hand it is known� that already single neurons due to a variety
of intrinsical non�linearities can reveal complex dynamics in response to current
injection or various transmitter substances ���� ��� �

� Evidence for chaotic
dynamics has also been found on the network level� expressed� for instance� in
mass signals like local �eld potentials or the EEG ���� ��
�

The coupling of strongly nonlinear chaotic subsystems� however� has only been
addressed in neurobiological contexts in a few example studies ���� ��
� Complete
synchronization as for coupled oscillations has been demonstrated in chaotic sys�

�



tems ���� ��� ��
� but a multitude of further interesting dynamical phenomena
seems to exist� including weaker forms of �partial� or �generalized� synchroniza�
tion �for de�nitions see section ��� hysteresis between co�existing chaotic and
nonchaotic attractors� hyperchaos� and more �e�g� ���� ��� �	
��

Hence� it seems that in restricting attention to tightly coupled oscillations
only� brain theory appears unaware of the rich phenomenology of coupled nonlin�
ear subsystems� The following investigations therefore may serve as an inspiration
for the modelling of various computational and cognitive processes� Following a
modular approach to neural systems ���
� we ask� how the synchronized activity
of subsets of module neurons depends on the module interactions as well as on
the module inputs�

On this background we study the parameterized time�discrete dynamics of two
coupled neural networks with recurrent connectivity� These small subsystems �
called neuromodules because they are considered as basic building blocks for
larger neural networks � are described as low�dimensional dynamical systems
with nonlinearities introduced by the sigmoidal transfer functions of standard
additive neurons� As parameters we will consider bias terms and�or stationary
inputs� the synaptic weights between module neurons� and the coupling strength
between neurons of di�erent modules�

Outline of the paper is as follows� The next section sets up the formalism
for coupled neuromodules and gives de�nitions for their partial as well as for
their generalized synchronization� Complete synchronization is of course a spe�
cial case of partial synchronization� De�nitions allow to describe the behavior of
coupled identical as well as non�identical systems� which can even be composed of
subsystems having di�erent internal connectivity structures and dimensionality�
General conditions for the existence of partially synchronized dynamics of cou�
pled neuromodules are derived� These conditions show that asymmetric recurrent
coupling of modules� which have di�erent numbers of neurons or di�erent archi�
tectures� can �compensate� these di�erences to achieve partial synchronization
even between di�erent coupled subsystems�

The partially synchronized dynamics of two modules can be stable or unstable�
where stability is understood in the sense that small perturbations of synchro�
nized states will not desynchronize the system� Analytical treatments of stable
synchronization often use linear �di�usive� coupling schemes �e�g� ��	
�� but in the
neural network context we canonically have to deal with the nonlinear coupling
of subsystems� This makes analytical statements about the stability conditions
for the synchronous dynamics much more di�cult to achieve� We will discuss sta�
bility properties of a synchronous dynamics along well established lines ��� �

�
A manifold of synchronized components M is introduced together with its syn�
chronization and transversal Lyapunov exponents� Partially synchronized chaos
will be characterized by at least one positive synchronization exponent� unstable
synchronized dynamics by at least one positive transversal exponent� Thus� un�
stable partially synchronized chaos will always be associated with hyperchaotic
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systems� i�e� with systems having at least two positive Lyapunov exponents ���
�
In sections � and � we present numerical examples for the di�erent kinds of

synchronization� First we couple a ��neuron ring network with a bi�directional
chain of three neurons� The dynamical features of the isolated systems are quite
di�erent � besides �xed point attractors ��rings can have period��� �� and period�
� attractors ���
� whereas ��chains can have p�periodic attractors for all p� and
quasi�periodic and chaotic attractors as well ���
� For this coupled system partial
synchronization of degree � �only two neurons are synchronized� and of degree �
�only two pairs of neurons are synchronized�� as well as generalized synchronous
dynamics are demonstrated� Complete synchronization for this setup was re�
ported in ���
� Section � presents the dynamics of a chaotic ��neuron module
coupled to a bi�directional chain of three neurons� The ��neuron module can
be understood in terms of the Wilson�Cowan model of excitatory and inhibitory
neuron interaction ���
� and its dynamical behavior is well known for large pa�
rameter domains ��� �� ��� �	
� Example dynamics for coupling schemes leading
to stable as well as unstable partial synchronization of degree � and � are given
for this case�

Section � gives a summary of results and a general discussion of synchroniza�
tion e�ects in neural networks�

� Coupled neuromodules

We are considering neuromodules as discrete parameterized dynamical systems
on an n�dimensional activity phase space Rn given by the map

ai�t � �� � �i �
nX

j��

wij ��aj�t�� � i � �� � � � � n � ���

where ai � R
n denotes the activity of the i�th neuron� and �i � �i � Ii denotes

the sum of its �xed bias term �i and its stationary external input Ii� respectively�
The output oi � ��ai� of a unit is given by the sigmoidal transfer function
��a� �� �� � e�a���� a � R� and wij denotes the synaptic weight from unit j to
unit i� A neuromodule having a parameter set � � ��� w� for which the dynamics
��� has at least one chaotic attractor will be called a chaotic neuromodule�

Suppose A and B denote two neuromodules having n and m neurons� respec�
tively� Correspondingly� their architectures will be described by an �n�n��matrix
wA and by an �m�m��matrix wB� Connections going from module B to module
A are comprised in an �n �m� coupling matrix wAB� Correspondingly� connec�
tions from module A to module B are given as an �m� n� coupling matrix wBA�
Thus� the architecture of the coupled system is given by a matrix w of the form

w �
�
wA wAB

wBA wB

�
� ���
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and the pair �wAB� wBA� of matrices will be called the coupling structure� A
coupling structure �wAB� wBA� will be called symmetric� i� wAB � wBA� and a
one�way coupling� i� wAB � 	 or wBA � 	 �but not both� �

For simplicity we would like to have modules of the same dimension� Suppose
n � m� then we will add �n�m� isolated neurons to the m neurons of module B�
so that formally B has also n neurons� Thus� in the following the weight matrix
��� will be considered as a ��n� �n��matrix�

The neural activities of module A and B will be denoted ai� bi� i � �� ���n�
respectively� The activity phase space of the coupled system is then �n�dimen�
sional� and its discrete parameterized dynamics will be denoted by F� � R�n �
R

�n� Here � �� ��A� �B� wAB� wBA� denotes a set of parameters for the coupled
system and �A �� ��A� wA� is the parameter set of module A� Furthermore� if
m � n the activities of the �n�m� isolated neurons added to module B will be
constant� and we will set bi � 	 for i � m� �� � � � � n� Thus� the dynamics F� will
be given in the form

ai�t � �� � �Ai �
nX

j��

wA
ij ��aj�t�� �

nX
j��

wAB
ij ��bj�t�� � ���

bi�t � �� � �Bi �
nX

j��

wB
ij ��bj�t�� �

nX
j��

wBA
ij ��aj�t�� � ���

We are now mainly interested in the case where a subset of module neu�
rons have identical activities during a dynamical process� But sometimes it is
interesting to consider situations� where the coupling of two systems results in
a dynamics which is constrained to a d�dimensional manifold� d � �n� without
being synchronous ��
� This means that the coupling induces some functional
relation between the states of the two modules� More precisely� we will use the
following

De�nition � Suppose there exist units im� m � �� � � � � k� k � n� a homeomor�
phism � � Rk � R

k� and a subset D � R
�n� such that �a�� b�� � D implies

lim
t��

j ��aim�t� a���� bim�t� b�� j � 	 � m � �� � � � � k � ���

where �a�t� a��� b�t� b��� denotes the orbit under F� through the initial condition
�a�� b�� � R

�n� Then this process is called a generalized partial synchronization
of degree k of modules A and B�

De�nition � A generalized partial synchronization is called global� i� D � R
�n�

and local� i� D � R
�n is a proper subset� If k is maximal� i�e� k � n� then it

is called a generalized synchronization� If � � id and k � n� then a generalized
partial synchronization is called a partial synchronization� If � � id and k � n�
then it is called a complete synchronization�
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Thus� complete synchronization is a special case of a generalized synchro�
nization� Furthermore� a partial synchronization can be at the same time also a
generalized partial synchronization� i�e� the homeomorphism � acts as the iden�
tity only on some but not all components� An example for this situation will be
given in section ���� If the condition ��� is satis�ed for � � id� we will say that
modules A and B synchronize on a subset of k neurons� From de�nition � it
follows that only modules with the same number n of non�isolated neurons can
have a nontrivial completely synchronized dynamics�

Although de�ned here for just two coupled modules comprising time�discrete
neurons with sigmoid output functions� we should note� that complete� gener�
alized� and partial synchronization can also occur in networks of more realistic
�spiking� neurons�

Complete synchronization can be characterized by perfectly synchronous �ring
of all cells in the network� This occurs� for example� in networks of identical and
excitatorily connected integrate�and �re cells� Mirollo and Strogatz have given
a rigorous analytical proof that a large class of such networks reaches complete
synchronization in �nite time for almost all initial conditions ���
�

Generalized synchronization can appear� when the cells in the network are
not identical� In reference ���
 Traub et al� have shown that di�erent input cur�
rents into excitatory cells within a network of excitatory and inhibitory neurons
can lead to collective oscillations in the gamma�range� where the excitatory cells
reveal systematic phase�shifts in �ring times relative to this collective oscillation�
less input current usually delays �ring� Therefore� individual excitatory cells are
not completely synchronized� but their �ring times are related by some static
functional relationship� that is� they are synchronized in the generalized sense�
Of course� also scattering synaptic strengths� transmission delays or other param�
eters varying across neurons may induce such systematic deviations from perfect
synchrony�

Some kind of partial synchronization appeared� for example� in a study by Pin�
sky and Rinzel ��

� Here� �		 excitatorily connected two�compartment neurons
were simulated� each containing fast currents responsible for sodium spiking on a
soma�like compartment and slower calcium and calcium�mediated currents on a
dendrite�like compartment� Formally� each cell was described as an ��dimensional
dynamical system� Isolated neurons� in response to input currents� revealed di�er�
ent �ring modes� regular spiking at moderate and high input currents� di�erent
kinds of bursting at low inputs� and apparently chaotic dynamics in between�
When cells were coupled �via AMPA and NMDA synapses�� Pinsky and Rinzel
observed a collective dynamical mode of burst�synchronization� where all cells
�red regular high�frequency bursts of spikes on a long time�scale �roughly a few
hundred milliseconds�� but the fast spikes within bursts where not synchronized�
Although the synchronization of the slow dynamical variables was not perfect�
this can be viewed as partial synchronization� where the slow burst�mediating
variables become �up to small deviations� restricted to a low�dimensional mani�
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fold� but the fast variables responsible for sodium spiking remain asynchronous
�presumably chaotic� although this is not perfectly clear from ��

��

To analyse a partially synchronized dynamics it is convenient to introduce
new coordinates as follows�

�i ��
�p
�

�ai � bi� � �i ��
�p
�

�ai � bi� � i � �� � � � � n � ���

In terms of these ��� ���coordinates the dynamics �F� of the coupled system reads

�i�t � �� �
�p
�
� ��Ai � �Bi � �

�p
�

nX
j��

�wA
ij � wBA

ij � � g���j�t�� �j�t��

�
�p
�

nX
j��

�wB
ij � wAB

ij � � g���j�t�� �j�t�� � ���

�i�t � �� �
�p
�
� ��Ai � �Bi � �

�p
�

nX
j��

�wA
ij � wBA

ij � � g���j�t�� �j�t��

� �p
�

nX
j��

�wB
ij � wAB

ij � � g���j�t�� �j�t��� � ���

where i � �� � � � � n� and the functions g� are de�ned by

g��x� y� �� � �
�p
�

�x� y�� � x� y � R �

A partially synchronized orbit ���t�� ��t��� t � 	� �� �� � � �� of the coupled system
satis�es �i�t� � 	 for all t � 	� �� �� � � �� and i � �� � � � � k� k � n� The si ��
�p
�
�i � ai � bi are called synchronized components� Using the ��� ���coordinates

the following statements can be easily veri�ed�

Lemma � Let Is � fi�� � � � � ikg denote an index set with k � n� Assume that
the parameter sets �A� �B and the coupling structure �wAB� wBA� of the modules
A and B satisfy the following conditions for m � �� � � � � k�

�Aim � �Bim � �wA
imj

� wBA
imj

� � �wB
imj

� wAB
imj

� � j � Is �
�

wA
imj

� wBA
imj

� wB
imj

� wAB
imj

� j � f�� � � � � ng n Is � ��	�

Then there exists a partially synchronized dynamics constrained to a ��n�k��
dimensional F��invariant manifold

M�k� �� f�a� b� � R
�n j bim � aim � m � �� � � � � kg � ����

Proof� It su�ces to show that if the synchronization conditions �
� and ��	� are
satis�ed� then every orbit of F� through a state partially synchronized on neurons
i�� � � � � ik stays partially synchronized on those neurons for all times� This follows
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by insertion of �
� and ��	� into ��� and the observation that g��x� 	� � g��x� 	��
If for some time t � t� we have �im�t�� � aim�t�� � bim�t�� � 	 for m � �� � � � � k�
then� with respect to the dynamics �F� one immediately gets �im�t� � 	� m �
�� � � � � k for all t � t� from ���� The de�nition of �i in ��� then implies the
form ���� for the F��invariant manifold� In the sequel� this ��n� k��dimensional
submanifold is called the manifold of partially synchronized states of the coupled
system� If k � n� the manifold M �� M�n� is simply called the synchronization
manifold� �

In states� that are only synchronized in the generalized sense� the coordinates
�i of the synchronized units do not need to vanish� Conditions for generalized
partial synchronization are given in the next lemma�

Lemma � Suppose that the conditions of lemma � hold for some index set Is
with ks �� jIsj� Let Ig � fi�� � � � � ikg be a further index set of k �� jIgj� k �
n� ks� and Ig 	 Is � 
� Assume that the parameter sets �A� �B and the coupling
structure �wAB� wBA� of the modules A and B satisfy the following conditions for
m � �� � � � � k�

�wA
imj

� wBA
imj

� � �wB
imj

� wAB
imj

� if j � Is � ����

wA
imj

� wBA
imj

� wB
imj

� wAB
imj

if j � f�� � � � � ng n Is � ����

Then there exists a generalized partially synchronized dynamics constrained to a
��n�k��dimensional F��invariant manifold

fM�k� �� f�a� b� � R
�n j aim � bim � cim � cim � constant� m � �� � � � � kg �

If k � n� then there exist orbits of F� constrained to an n�dimensional manifold	
i�e�� there exists a generalized synchronous dynamics�

Proof� First note� that the conditions �
� and ��	� in lemma � constrain
parameters for di�erent i in ��� than conditions ���� and ���� in lemma � do� this
is� because Is 	 Ig � 
� Thus� parameters are not restricted twice and therefore�
they are well de�ned� Non�constrained parameters for units i in ��� with i �
f�� � � � � ngn�Is�Ig� are� of course� arbitrary� Note further that lemma � garantees
the existence of a partially synchronous submanifold M�ks� for components in
Is� This submanifold can be empty� i�e� ks � 	� All �i� i � Is are zero for
orbits in M�ks�� Inserting this� ���� and ���� into ��� for i � Ig it follows thatp

� � �im � ��Aim � �Bim� � cim� cim � constant� m � �� � � � � k for orbits starting in
M�ks�� Therefore� components aim and bim � m � �� � � � � k are synchronized in the
generalized sense and can be chosen to de�ne the submanifold fM�k� in lemma ��
Furthermore� the homeomorphism � � Rk � R

k of de�nition � can obviously be
realized by bim � aim � ��Aim � �Bim�� m � �� � � � � k� �

Note �� In the formulation of the dynamics of coupled neuromodules� and
therefore also in lemmas � and �� we have assumed that inputs � into module
neurons are stationary� Inspecting the proofs of lemmas � and �� one easily sees�






that this restriction can be weakened� The lemmas both remain valid� if the
inputs are time�dependend� ��t�� such that synchronization conditions hold for
all times t � e�g� �Aim�t� � �Bim�t�� t � 	� �� � � � in �
��

Note �� From lemma � and lemma � it follows that a generalized partial
synchronization will occur if the coupling conditions are satis�ed and some but
not all �i are identical� The lemmas apply� of course� to di�erent special situations�
for instance� to a one�way coupling �	� wBA�� where a module A drives a module
B� i�e� wAB � 	� and the conditions for partial synchronization read

�Ai � �Bi � �wA
ij � wBA

ij � � wB
ij � i� j � �� � � � � k ����

wA
ij � wBA

ij � wB
ij � wAB

ij � i � �� � � � � k � j � k � �� � � � � n � ����

Another special case is that of identical systems coupled symmetrically� i�e�

�A � �B � wA � wB � wBA � wAB � ����

With si �� ai � bi� i � �� � � � � k� and l � k��� � � � � n� the ��n�k��dimensional
partially synchronized dynamics on M�k�� denoted by F�jM � is given by the equa�
tions

si�t � �� � �i �
kX

j��

w�

ij ��sj�t�� ����

�
nX

l�k��

wA
il ��al�t�� �

nX
l�k��

wB
il � ��bl�t�� �

al�t � �� � �Al �
kX
i��

�wA
li � wAB

li � ��si�t�� ����

�
nX

m�k��

wA
lm ��am�t�� �

nX
m�k��

wAB
lm ��bm�t�� �

bl�t � �� � �Bl �
kX
i��

�wB
li � wBA

li � ��si�t�� ��
�

�
nX

m�k��

wBA
lm ��am�t�� �

nX
m�k��

wB
lm ��bm�t�� �

where �i �� �Ai � �Bi � and the synchronization matrix in ���� is de�ned as

w�

ij �� �wA
ij � wAB

ij � � �wB
ij � wBA

ij �� i� j � �� � � � � k� ��	�

This follows directly from ��� and the synchronization conditions �
� and ��	��
Correspondingly� the matrix appearing in the condition �
� is called the obstruc�
tion matrix

w�ij �� �wA
ij � wBA

ij � � �wB
ij � wAB

ij �� i� j � �� � � � � k � ����

�	



In general the partially synchronized dynamics F�jM may have �xed point
attractors as well as periodic� quasiperiodic or chaotic attractors� all constrained
to M � Although the persistence of a partially synchronized dynamics is guar�
anteed by conditions �
� and ��	�� it is not at all clear that the dynamics ����
is asymptotically stable with respect to the dynamics F�� Thus� a periodic or
chaotic orbit in M may be an attractor for the partially synchronized dynamics
F�jM but not for the global dynamics F� of the coupled system ��
� If the dy�
namics constrained to M is an attractor for F�� then this partially synchronized
dynamics is asymptotically stable in the sense� that small perturbations will not
desynchronize the system�

To discuss stability aspects of the dynamics constrained to M � it is e�ective to
use Lyapunov exponent techniques� i�e� we consider the synchronization exponents
	si � i � �� � � � � ��n � k�� and the transversal exponents 	�j � j � �� � � � � k� The
synchronization exponents 	si are just the ��n � k� Lyapunov exponents of the
dynamics F�jM on M given by equations ���� to ��
�� The transversal exponents
	�j � j � �� � � � � k are calculated as Lyapunov exponents with respect to the partial
linearization

L�ij�s� �� w�ij � ���sj� � i� j � �� � � � � k � ����

of F� along partially synchronized states ��� ���� where w� denotes the obstruction
matrix �����

Partially synchronized chaotic dynamics will be characterized by a situation
where the largest synchronization exponent 	s� is positive� i�e� 	s� � 	� On the
other hand� an unstable partially synchronized dynamics on M will be character�
ized by a largest transversal exponent 	�� �s� satisfying 	�� � 	� Thus� if a stable
manifold M � containing a chaotic orbit� will turn unstable� then the coupled sys�
tem will enter a hyperchaotic regime ���
� i�e� at least two Lyapunov exponents
of the coupled system are positive�

For the special case of completely synchronized dynamics� i�e� k � n� expo�
nents 	si and 	�j are derived from the linearizations

L�ij�s� �� w�ij � ���sj� � i� j � �� � � � � n � ����

respectively� with w� the synchronization matrix ��	�� and w� the obstruction
matrix �����

If the matrix w� has only zero eigenvalues� then also the linearization L��s�t��
will have zero eigenvalues along a partially synchronized orbit s�t�� and it follows
that the transversal exponents 	�j � j � �� � � � � k� are all negative� Thus� the
partially synchronized dynamics will be stable for all parameter values satisfying
conditions �
� and ��	�� and the corresponding coupling structure �wAB� wBA�
of modules will be called stabilizing� Especially� if w� is the zero matrix� we
call �wAB� wBA� minimal� A minimal coupling structure is always stabilizing a
partially synchronous dynamics�

��



To destabilize a partially synchronized dynamics of degree k� eigenvalues of w�

must be nonzero and large enough to make contributions to the positivity of the
largest transversal exponent 	�� � The de�stabilizing property depends furthermore
on the density of an orbit around the partially synchronized states satisfying
si � 	� i � �� � � � � k�

� Example �� Coupling di�erent ��modules

Numerical examples for the existence of complete synchronization of coupled
neuromodules where given� for example� in ���
 for symmetrically coupled iden�
tical systems� Our �rst example will demonstrate that generalized and partial as
well as complete synchronization can also be observed for coupling of di�erent
subsystems�

Figure �� A minimal coupling con�guration for complete synchronization of a
��ring �module A� with a bidirectional ��chain �module B��

To this end we choose the following setup where a ��ring is coupled to a
bi�directional ��chain� The dynamical features of the isolated systems are quite
di�erent� besides �xed point attractors ��rings can have period��� �� and period��
attractors ���
� whereas ��chains can have p�periodic attractors for all p as well
as chaotic attractors ���
� Nonetheless there are many di�erent coupling schemes
which guarantee the existence of synchronized dynamics� We choose modules
and couplings as shown in �gure �� The corresponding dynamics of the coupled
system is then given by

a��t � �� �� �A� � wA
�� ��a��t�� � wAB

�� ��b��t�� �

a��t � �� �� �A� � wA
�� ��a��t�� � wAB

�� ��b��t�� �

a��t � �� �� �A� � wA
�� ��a��t�� �

����

��



b��t � �� �� �B� � wB
�� ��b��t�� � wBA

�� ��a��t�� �

b��t � �� �� �B� � wB
�� ��b��t�� � wB

�� ��b��t�� �

b��t � �� �� �B� � wB
�� ��b��t�� �

If� according to �
� and ��	�� the following conditions are satis�ed�

wB
�� � wAB

�� � wA
�� � wBA

�� � wA
�� � wB

�� � wB
�� � wAB

�� � wA
�� � wB

�� �

�A� � �B� � �A� � �B� � �A� � �B� �

then a completely synchronized dynamics exists for this con�guration� This has
been reported in ���
� It is easy to check that the corresponding obstruction
matrix w� has zero eigenvalues for all parameter values� Thus� the completely
synchronized dynamics is always stable� For the same coupled ��modules we will
now study the generalized partial synchronized dynamics of di�erent types and
degrees�

��� Partial synchronization of degree �

To start with� we look for a partial synchronization of degree � for neurons �A

and �B� According to lemma �� i�e� conditions �
� and ��	�� parameters have to
satisfy

�A� � �B� � wB
�� � wAB

�� � wA
�� � wBA

�� � ����

This can be realized� for instance� by setting the coupling connection wAB
�� in

the original con�guration shown in �gure � to zero� Other parameter values are
arbitrary� we choose inputs of the modules and nonzero weights as follows

�� � �	�� � �� � �	�� � �� � �� � and wB
�� � wAB

�� � � �

wA
�� � wB

�� � wA
�� � wB

�� � � � wA
�� � wBA

�� � wB
�� � wAB

�� � �� � ����

For these parameters �gure � displays the dynamics of the system in form of
projections of the ��dimensional phase�space to di�erent subspaces� in the up�
per left corner the �oA� � o

A
� ��subspace of module A is shown� whereas the other

three frames display activities of corresponding neurons in the modules A and B�
�oA� � o

B
� �� �oA� � o

B
� �� �oA� � o

A
� ��

First of all� the irregular attractor structure in the �oA� � o
A
� ��plot shows� that

the dynamics inside module A is chaotic� a fact that we also con�rmed by cal�
culating Lyapunov exponents� Similarly� the dynamics projected to module B
is chaotic �not shown�� but since the modules have di�erent connectivity� pro�
jections of chaotic attractors to modules A and B are in general not identical�

Nonetheless� as seen in the lower left frame of �gure �� neurons � in both mod�
ules are synchronized� that is� oA� maps identically to oB� � In contrast the second

��



Figure �� Partially synchronized chaos of degree � for two coupled ��modules
having di�erent architectures� Parameters� see text�

and third components of the coupled modules are not synchronized� their dynam�
ics in the common subspaces reveal a more complex relationship� Hence� in the
present example� the ��dimensional dynamics of the coupled system is constrained
to a ��dimensional partially synchronized chaotic attractor� As a further fact �not
seen in the �gure� this chaotic attractor coexists with a partially synchronized
period�� attractor� The ��dimensional partially synchronized dynamics ���� of
this con�guration will be stable for all parameter values� because the correspond�
ing obstruction matrix ���� satis�es w��� � 	� That the ��dimensional dynamics
is highly non�trivial can be read from its bifurcation diagram shown in �gure
� for the above given parameter values ����� but with varying �� �� �A� � �B� �
Starting from a �xed point attractor at �� � �� a bifurcation to quasiperiodic
attractors occurs around �� � ����� and� after that� various windows for periodic
and chaotic attractors are visible� Furthermore� over a large parameter domain
the shown attractors coexist with a sequence of p�periodic attractors with pe�
riods p � �� All coexisting attractors are partially synchronized� thus� partial
synchronization exists over large parameter regions�

��



Figure �� A bifurcation diagram for the partially synchronized dynamics of degree
� with respect to ��� Fixed parameters for coupled ��modules� see text�

��� Generalized partial synchronization of degree �

We now look for a generalized partial synchronization of degree � for neurons
�A and �B� where these neurons are not perfectly synchronous� but are still con�
strained to a one�dimensional manifold� According to lemma � the condition
simply reads

wA
�� � wBA

�� �

the other parameters are arbitrary� Furthermore� the proof of lemma � shows that
the homeomorphism � � R� � R

�� mapping the �rst component of module A to
the corresponding �rst component of module B is given by the linear relation

b� � ��B� � �A� � � a� � ����

Figure �� as in the previous example� displays projections of a partially synchro�
nized chaotic attractor of degree � to the phase spaces of corresponding neuron
pairs� as well as to the subspace �oA� � o

A
� � of module A� The parameter values for

this chaotic attractor are�

wB
�� � wAB

�� � wA
�� � wB

�� � wA
�� � wB

�� � � �

wA
�� � wBA

�� � wB
�� � wAB

�� � �� �

�A� � �	��� �B� � �� � �A� � ���� �B� � ���� �A� � ��� �B� � �� �

Observe that� in contrast to the previous example� the neurons �A and �B
are now only synchronized in the generalized sense � the mapping between their
outputs is not the identity but some other non�linear bijective functional rela�
tionship� �Note� that this relationship does not have the simple linear form �����
This is� because �gure � displays output values� oA� � ��a�� and oB� � ��b�� �

��



Figure �� Projections of a generalized partially synchronized chaotic attractor of
degree � for coupled ��modules� Parameters� see text�

���B� � �A� � a���� Again� bifurcation diagrams �not shown� reveal that also a
complex �periodic� quasiperiodic� and chaotic attractors� generalized synchronous
dynamics of degree � exists for large parameter domains in this setup�

��� Generalized and partial synchronization

Lemma � tells us that a generalized synchronization of modules may be realized
with some of the components being exactly synchronized� To demonstrate this
case� where a generalized synchronous dynamics is at the same time partially
synchronous� we choose the following example� Synchronization conditions �
�
and ��	� for partial synchronization of degree � of the coupled ��ring and ��chain
read

wB
�� � wAB

�� � wA
�� � wBA

�� � wA
�� � wB

�� � wB
�� � wAB

�� � ����

�A� � �B� � �A� � �B� �

Figure � shows a realization of partial synchronization of degree � for the nonzero
parameter values

wB
�� � wAB

�� � wA
�� � wB

�� � wA
�� � � � wA

�� � wBA
�� � wB

�� � wAB
�� � �� �

wB
�� � �� � and �� � �	�� � �� � ���� � �A� � �� � �B� � �� � ��
�
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Figure �� Partially synchronized chaos of degree � for two coupled ��modules
having di�erent architectures� Parameters� see text�

Again projections of the corresponding chaotic dynamics to subspaces �oA� � o
A
� ��

�oA� � o
B
� �� �oA� � o

B
� �� and �oA� � o

B
� � are shown� demonstrating the synchronous activity

of neuron pairs ��A� �B� and ��A� �B�� As this �gure suggests� in addition to partial
synchronization� according to de�nition ���� this is at the same time an example
for a generalized dynamics of two modules� In fact� the resulting dynamics of
the coupled system is not ��dimensional � as expected � but it is still constrained
to a ��dimensional manifold as can be seen from the �oA� � o

B
� � plot� Although the

conditions ���� do not match the conditions ���� and ���� of theorem � � we have
� � wA

�� �� wB
�� � �� � this is because we can write the dynamics of module B still

as a map of the dynamics of module A as follows�

b� � a� � b� � a� � b� � �B� �
wB
��

wA
��

�a� � �A� � �

The obstruction matrix w� ���� for this con�guration has again zero eigen�
values� so that the partially synchronized dynamics will be always stable� Bifur�
cation diagrams for this ��dimensional dynamics �not shown� again reveal that
this dynamics is highly nontrivial and has periodic as well as quasiperiodic and
chaotic attractors� all constrained to a ��dimensional manifold�

��



� Example �� Partial synchronization of mod�

ules having di�erent numbers of neurons

Partial synchronization can appear also if the two coupled modules have di�erent
numbers of neurons� To �t the general formalism of section �� we just have to
add as many isolated neurons to one module such that both modules formally
have the same number of neurons� To demonstrate this� we choose the following
setup where a chaotic ��module �module A� is coupled to a bi�directional ��chain
�module B�� The dynamics of the isolated modules is given by the equations

a��t � �� �� �A� � wA
�� ��a��t�� �

a��t � �� �� �A� � wA
�� ��a��t�� � wA

�� ��a��t�� � ��	�

b��t � �� �� �B� � wB
�� ��b��t�� �

b��t � �� �� �B� � wB
�� ��b��t�� � wB

�� ��b��t�� � ����

b��t � �� �� �B� � wB
�� ��b��t�� �

We now look for the partially synchronized dynamics of these two coupled mod�
ules�

��� Partial synchronization of degree �

In the �rst case we want to synchronize the dynamics of neuron �A with neu�
ron �B� The synchronization conditions �
� and ��	� lead� for example� to a
con�guration shown in �gure �� with parameters satisfying

�A� � �B� � wA
�� � wBA

�� � wB
�� � wAB

�� � ����

We observed interesting bifurcation scenarios for the corresponding partially
synchronized dynamics� for instance� from a �xed point attractor to a period�
� attractor which then bifurcates into a ��cyclic quasiperiodic attractor� With
growing input �� windows for periodic as well as chaotic attractors are observed�
As an example� in �gure � a chaotic attractor with synchronized neurons �A and
�B is shown� Parameters for this attractor have values

wA
�� � wBA

�� � wB
�� � wAB

�� � wB
�� � �� � wA

�� � wB
�� � wB

�� � � �

w�� � ��� � �� � �A� � �B� � � � �A� � �B� � �� � �B� � 	�� � ����

Clearly seen is that neurons �A and �B are synchronized and �A and �B are
not synchronized� The projection of the chaotic dynamics to the phase space
�oA� � o

A
� � of module A is seen in the upper left part� Because the obstruction

matrix satis�es w� � w��� � 	� the partial synchronization in this con�guration

��



Figure �� Coupling scheme for partial synchronization of degree � of a ��neuron
with a ��neuron network� Parameters� see text�

Figure �� A global chaotic attractor of the coupled system shown in �gure � with
synchronized units �A and �B� Parameters� see text�
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is stable for all allowed parameter values� As follows from the synchronization
conditions� synchronization of neurons �A and �B persists even if weights wA

�� �
wBA
�� � wAB

�� � wB
��� w

B
��� and wB

�� are varying independently� Most interestingly�
the same holds true for independent variations of the �constant� inputs �A� � �B� �
and �B� � Moreover� according to Note � above� as long as �A� �t� � �B� �t� holds for
every time step t� the partial synchronization will persist in time independent of
the other inputs� Those inputs of course in�uence the orbit of the coupled system
in phase space� but they do not desynchronize the dynamics�

��� Partial synchronization of degree �

Synchronization conditions �
� and ��	� for the degree � case are satis�ed e�g� by
an architecture shown in �gure � with parameters satisfying

�A� � �B� � �A� � �B� � wA
�� � wB

��� wA
�� � wB

��� wA
�� � wBA

�� � wB
�� � wAB

�� �

This con�guration exhibits a partially synchronized chaotic attractor of degree

Figure �� Coupling con�guration for a partial synchronization of degree � of a
��neuron with a ��neuron network� Parameters� see text�

� for the following values�

wA
�� � wB

�� � wAB
�� � wB

�� � �� � wA
�� � wB

�� � wB
�� � � � wA

�� � wBA
�� � ��� �

�� � �A� � �B� � � � �A� � �B� � �� � �B� � 	�� �

The synchronous activity of neuron pairs ��A� �B� and ��A� �B� can be clearly seen
in projections of this attractor to corresponding subspaces shown in �gure 
� The
partially synchronized dynamics for this coupling structure is stable for all allowed
parameter values� because its obstruction matrix w� has zero eigenvalues� Again
we observe stable partially synchronized dynamics with non�trivial bifurcation
sequences including �xed point attractors as well as periodic� quasiperiodic and
chaotic attractors�
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Figure 
� A partially synchronized chaotic attractor of degree � for the coupled
system shown in �gure �� Parameters� see text�

��� Unstable synchronized dynamics

In the examples given above the coupling structure �wAB� wBA� was always stabi�
lizing the synchronous dynamics� Using the system of the last section ���� we want
to show that introducing just one more coupling connection between modules will
allow � besides stable synchronization of neurons � also an unstable synchronized
dynamics� This additional connection has to be chosen in such a way that the
corresponding obstruction matrix w� can have nonzero eigenvalues� In the cou�
pled system shown in �gure � this can be achieved by introducing the weight wBA

��

satisfying the synchronization condition� i�e� �wA
�� � wBA

�� � � wAB
�� �� 	� Then the

�� � �� obstruction matrix has nonzero components w��� � wA
��� w

�
�� � wA

��� and
w��� � �wA

�� � wBA
�� ��

We calculate the transversal Lyapunov exponent 	� for the corresponding
��dimensional synchronized dynamics

s��t � �� � �� � w�

�� ��s�� �

s��t � �� � �� � w�

�� ��s�� � w�

�� ��s�� � w�

�� ��b�� � ����

b��t � �� � �B� � wB
�� ��s�� �

��



Figure �	� An asynchronous chaotic attractor for parameters �see text� where
the partially synchronized dynamics is unstable�

with �� � �A� � �B� � �� � �A� � �B� � and use the convenient parameter values

w�

�� � �� � w�

�� � wB
�� � � � wA

�� � ��� � wAB
�� � �� �

wBA
�� � �� � w�

�� � ��� � �� � � � �� � ��� � �B� � � � ����

Then� the obstruction matrix has nonzero components w��� � ��� w��� � �� and
w��� � ����

In �gure �	 an asynchronous chaotic attractor is depicted for parameter val�
ues as given above in ����� which is visible instead of the unstable partially
synchronized quasiperiodic dynamics predicted by ����� Unstability of the par�
tially synchronized dynamics can be read also from �gure ��� where the largest
transversal Lyapunov exponent is shown to be positive for �� � ��

Figure �� shows the bifurcation diagram with respect to varying inputs �� for
the corresponding partially synchronized dynamics of degree � de�ned by �����
It shows a bifurcation from a �xed point attractor to quasiperiodic dynamics
followed by a window of period�� attractors� Before the dynamics ends up in
period�� attractors there is a window of a period�� attractors coexisting with
quasiperiodic and �xed point attractors� Not all of these attractors are stable�
that is� attractors of the full ��dimensional dynamics�

��



Figure ��� A bifurcation diagram for the �stable and unstable� partially synchro�
nized dynamics of degree � with respect to ���

Figure ��� A bifurcation diagram for the observed �synchronous and asyn�
chronous� dynamics with respect to slowly varying ���
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Figure ��� Transversal Lyapunov exponents for the partially synchronized dy�
namics of degree � with respect to ���
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This is demonstrated in �gure �� by the corresponding bifurcation diagram for
the �observable� asymptotic dynamics of the coupled system� It reveals a quite
di�erent behavior� At �rst it follows the synchronous behavior in bifurcating
from a �xed point attractor to a quasiperiodic one� but shortly afterwards it
bifurcates to an asynchronous quasiperiodic attractor� followed by a window of
periodic attractors with higher periods� and then a chaotic domain� Around
�� � ��� it enters again the stable synchronized period�� domain� and bifurcates
to asynchronous chaotic attractors and periodic attractors around �� � �� This
sequence of stable and unstable partially synchronized dynamics can be followed
at the same time by the behavior of the largest transversal Lyapunov exponent
	�� which is displayed in �gure ���

� Discussion

In summary� we have shown that synchronized activity of groups of neurons in
a system of coupled recurrent neural networks is always achievable� if the sum
of bias terms and stationary external inputs to corresponding module neurons
are identical� and coupling connections are set appropriately� Furthermore� the
coupled networks can be of di�erent type and dimension� The partially syn�
chronized dynamics of the coupled system is describable as that of an isolated
neuromodule C� with weight matrix given by the so�called synchronization ma�
trix w�� The reduced system is typically � although not necessarily � di�erent
from each of the coupled systems� Depending on the module parameters of C�

�weights and bias terms�stationary inputs�� the partially synchronized orbits can
be periodic� quasiperiodic or chaotic� The synchronization will be stable� if these
orbits� constrained to the manifold of partially synchronized states� are attrac�
tors for the dynamics of the coupled system� Otherwise it is unstable� Stability
of a partially synchronized dynamics can be checked numerically by calculating
the largest transversal Lyapunov exponent which is determined by the so�called
obstruction matrix w��

Taking the experiences with completely synchronized neuromodules into ac�
count ���
� one has to realize that for large parameter domains stable synchronous
dynamics will co�exist with asynchronous periodic� quasiperiodic or even chaotic
attractors� Thus� whether a system ends up asymptotically in a partially syn�
chronous mode or not depends crucially on initial conditions� i�e� on the internal
state of the system� In this sense the reaction to external signals depends also on
the history of the system itself� This introduces memory e�ects into the behav�
ior of coupled systems� Furthermore� a synchronized mode often persists even if
external inputs are time dependent�

Desynchronization of module dynamics can be achieved in di�erent ways�
From the synchronization conditions �
� and ��	� it is clear that diverging exter�
nal inputs or other inappropriate parameter settings �module weights or coupling

��



strengths� will immediately desynchronize the modules� Depending on the cou�
pling conditions a mode of lower degree of synchronization may be reached or the
system may completely desynchronize�

Di�erent from this standard situation� certain external signals may also be
used to drive the composed system into domains where the � still existing � syn�
chronized dynamics gets unstable� In such unstable parameter domains� syn�
chronization is particularly sensitive to perturbations transversal to the synchro�
nization manifold� hence� appropriate control signals may be used to transiently
modulate the responsiveness of the coupled network to reach quick and active
desynchronization of modules reacting to slightly di�erent input signals� On the
other hand� varying the inputs of non�synchronized neurons will not e�ect the
presence of partial synchronization� it will just alter occasionally the type of the
synchronized dynamics� following� for instance� a bifurcation sequence�

Putting things together� synchronization of a speci�c group of neurons in re�
sponse to external speci�c stimuli depends in a complex way on the connectivity
of the system� on the internal state �the history� of the system� as well as the
setting of other parameters� like inputs to non�synchronous neurons� Further�
more� parameter changes can select di�erent types �periodic� chaotic� of partially
synchronous dynamics in response to one and the same stimulus�

We have further shown that beside stable and unstable complete synchro�
nization di�erent types of generalized as well as partial synchronization can be
realized in coupled neuromodules� According to lemma � and the displayed nu�
merical examples� a generalized synchronous dynamics of coupled modules will
appear if the synchronization conditions �
� and ��	� for the connectivity are
satis�ed� and some but not all input�bias terms of corresponding neurons are
identical� This is an interesting feature� because the e�ective dynamics of a cou�
pled systems is constrained to a lower dimensional manifold� as it is the case for
the synchronized dynamics� but the homeomorphism mapping one �sub�system
to the other is no longer the identity� In addition� generalized synchronization
can be further restricted to only parts of the coupled system �generalized par�
tial synchronization�� This way the spatio�temporal structure of the �generalized�
synchronized signals can be changed continuously within stable parameter ranges
or discontinuously at stability borders� e�ects which may in turn be used for neu�
ral coding �e�g� ��
� ��� ��
�� Because di�erent constraining manifolds can be
selected by di�erent coupling schemes of modules� this may be also a versatile
feature for shaping dynamic properties of neural and cognitive systems�

Parameters may also be used to decide� whether a system is responding to
a given stimulus with a partially synchronous mode at all� Physiologically such
parameters may be identi�ed as subcortical input� which� for instance� is known
to strongly modulate spatial ranges of synchronization of cortical oscillations in
the alpha� and gamma�range �e�g� ���
�� Alternatively� parameter changes may be
represented by feedback from higher cortical areas either in the form of integrative
input signals� that organize or  bind! otherwise isolated local submodules into

��



larger functional networks ��� ��� ��
� or as part of some attentional mechanism�
One should also note� that such feedback does not just provide electrical

input into cortical cells� By varying excitability of cells� it is also capable to
change the functional connectivity within the network ��
� This way di�erent
e�ective coupling schemes could be selected that support di�erent kinds of col�
lective dynamics� A similar role may also be played by neuromodulatory �e�g� the
monoaminergic� transmitter systems in the brain� Their in�uence on functional
connectivity as well as their capability to switch dynamical properties of complex
collective modes of activation have repeatedly been demonstrated �e�g� ���� ��
��

The modules in this paper were composed of standard graded neurons� Re�
sults� however� are not restricted to networks of simple sigmoid neurons� Com�
plex dynamics can similarly be observed in networks of �spiking neurons� ranging
from simple integrate�and��re cells to conductance based compartmental neuron
models� Observed e�ects� so far� include complete� generalized� and partial syn�
chronization� hysteresis� chaotic dynamics� and more �
� ��� ��� ��� �
� ��� ��� ��
�

Although the theoretical analysis of networks of spiking neurons is consid�
erably more di�cult than the calculations presented in this paper and mathe�
matical studies have been performed to date only for some restricted dynamical
modes �mainly asynchronous �ring and complete synchronization� see for exam�
ple ���� ��� ��
�� we expect that the collective dynamical modes of such networks
are at least as abundant than those revealed by our simpler model systems�

We believe that the dynamical phenomenology of the presented results� al�
though derived for formal neural networks� can stimulate the development of con�
ceptually new dynamical models for cortical information processing or even cog�
nitive capabilities ���
� As a direct application� the rather typical co�existence of
synchronized modes with modes of asynchronous dynamics generalizes functional
properties like �feature binding� often attributed to the synchronization of oscilla�
tions� At the same time it introduces memory aspects into these systems through
generalized hysteresis e�ects� Furthermore� since synchronization and desynchro�
nization of modules can be controlled by di�erent parameters� attention�guided
synchronization of subsystems is an additional interesting functional feature of
coupled neuromodules�

��
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