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Abstract

A class of matrices �H�matrices� has recently been introduced by one of the authors� These matrices
have the following properties� �i� They are sparse in the sense that only few data are needed for their
representation� �ii� The matrix�vector multiplication is of almost linear complexity� �iii� In general� sums
and products of these matrices are no longer in the same set� but their truncations to the H�matrix format
are again of almost linear complexity� �iv� The same statement holds for the inverse of an H�matrix�

The term �almost linear complexity� used above means that estimates are given by O�n log� n�� The
logarithmic factor can be avoided by a further improvement� which is described in the present paper� We
prove that the storage requirements and the cost of the matrix�vector multiplication is strictly linear in
the dimension n� while still �full� system matrices of the boundary element method can be approximated
up to the discretisation error�

AMS Subject Classi�cations� ��F��� ��F��� ��F��� ��N��� ��P��� ��B��� ��C��
Key words� Hierarchical matrices� hierarchical bases� full matrices� fast matrix�vector multiplication� BEM�
FEM	

� Introduction

For linear systems with sparse n�n�matrices several optimal iteration methods are known� where optimality is
characterised by an estimation of the arithmetic operations by O
n�� A di�erent situation is given in the case
of full matrices	 Then standard techniques require an storage amount of O
n�� and O
n�� operations for the
matrix�vector multiplication� Other arithmetic operations like matrix�matrix multiplications or the inversion
even lead to O
n�� operations	

Full matrices are directly obtained by the discretisation of integral equations as they are common in the
boundary element method 
BEM
 cf	 ����	 Another source of a full matrix is the inverse of a sparse FEM
matrix which� e	g	� appears in the Schur complement of any saddle point problem 
cf	 ��� Section ��	���	 In
both cases� the matrices are a�ected with a discretisation error	 Therefore� one may replace the full matrix
M by a more convenient matrix M �� provided that the error M �M � is of the size of the discretisation error	

The hierarchical matrices 
abbreviated as H�matrices� de�ne a set of matrices which provides the approx�
imations M � discussed above	 As described in detail in ��� and ���� H�matrices have the following properties�


i� They are data�sparse in the sense that the size data to be stored is almost linear in the dimension n�


ii� The matrix�vector multiplication is of almost linear complexity	


iii� In general� sums and products of these matrices are no longer in the same set� but their truncations to
the H�matrix format are again of almost linear complexity	


iv� The same statement holds for the inverse of an H�matrix	
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The basic 
hierarchical� structure of H�matrices is the cluster tree which is already introduced in the panel
clustering method 
see ��� and ��� or ��� Section �	���	

The term �almost linear complexity� used above means that estimates are given by O
n log� n�� The
logarithmic factor can be avoided by a further improvement which leads to the H��matrices 
hierarchical
bases H�matrices� introduced and analysed in this paper	 These matrices are already mentioned in ��� under
the name �uniform H�matrices�	 The essential analysis is given in Section �	 The approximation by a Taylor
polynomial of �xed degree is replaced by a variable degree	 Although we use lower approximation degrees for
most of the matrix�blocks� the overall error estimate does not deteriorate	

� Hierarchical Bases H�Matrices

After presenting the introductory example 
x�	��� we de�ne the cluster tree 
x�	��� which is the basis of the
standard H�matrices 
x�	��	 Finally� in Subsection �	�� we introduce the hierarchical bases H�matrices� which
we call H��matrices	

��� Introductory Example

The matrices� which we have in mind� may stem from integral or di�erential equations	 In the latter case� it
is of interest to represent the inverse matrix as an H�matrix�	 Here� we consider the example of the integral
operator


Ku�
x� �

Z �

�

log
jx� yj�u
y�dy� 
�	��

Its �nite element discretisation with piecewise constant basis functions corresponding to the interval parti�
tioning

Ji � �
i� ��h� ih�� h �� ��n� � � i � n 
�	��

leads to the matrix

M � 
mij�i�j�I � mij ��

Z
Ji

Z
Jj

log
jx � yj�dxdy� 
�	��

where

I � f�� � � � � ng 
�	��

is the underlying index set	 As further simpli�cation� we assume that n is a power of ��

n � �p� 
�	��

In boundary element applications 
BEM�� one has to replace the unit interval by a surface� the equidistant
partitioning by a general triangulation and the kernel function log
jx � yj� by some appropriate singularity
function 
cf	 ����	 However� in order not to distract the attention of the reader from the main ideas� we
consider the matrix M from 
�	��	 The kernel log
jx� yj� shares typical properties with the kernels arising in
general BEM applications	 The results of this paper can be extended to general BEM problems as well	

The matrixM from 
�	�� is a full matrix� i	e	� the usual storage amount isO
n�� instead ofO
n� for standard
sparse matrices	 Furthermore� a simple matrix�vector multiplication M � x requires O
n�� operations	 The
aim of the H��matrix concept is to replace M by an approximation M � such that the error M �M � is of
the size of the discretisation error 
therefore negligible�� while storage�M� and cost�M � x� amounts to O
n�
instead of O
n���

The discussion of the error M �M � is performed in Section �	 The details about the storage and matrix�
vector multiplication cost are given in Section �	

�Formally� the inverse can be considered as a discretisation of an integral operator with the Green function as kernel�
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��� The Cluster Tree

We start with the full index set I�� �� I � f�� � � � � ng from 
�	�� and split it into the parts I�� �� f�� � � � � n� �
�p��g� I�� �� f�

p�� � �� � � � � ng� Similarly� the new sets are divided so that� in general�

I�i �� f
i� ���
p�� � �� � � � � i �p��g for � � � � p� � � i � ��� 
�	��

The superscript � indicates the level	 At level p� we reach the one�element sets Ip� � f�g� � � � � I
p
n � fng�

Obviously� these sets form a tree T 
the so�called cluster tree�	

Remark ��� �a� I is the root of T � �b� The sets I�i are the vertices ��clusters�� of T at level �� �c� T is a
binary tree� I�i has two sons I����i��and I����i if � � p� �d� The sets Ipi are the leaves of T � �e� The cardinality

of I�i is �I�i � �
p���

In the following� we use the variables � and � for the vertices of the tree T and call � � T a cluster	
Usually� the sons of � � T are denoted by � �� � ���

An isomorphic description occurs when we replace the index i by the interval Ji from 
�	�� which is the
support of the ith basis function	 Then a cluster � � T corresponds to the interval

J
�� ��
�
fJ� � � � �g� 
�	��

The partitioning of the set I into I�� � I
�
� corresponds to the de�nition of a block structure of a vector 
over

the index set I�� The tree structure of T allows to continue the block decomposition in a hierarchical way	
The hierarchical matrices based on this tree structure are abbreviated as H�matrices	

��� H�Matrices

����� The Model Partitioning

Since we are dealing with matrices� we have to consider the index set I � I� In the following� we describe a
particular partitioning P� of I � I such that

I � I �
S
� fb � b � P�g� 
�	��

where each block b � P� is of the form b � I�i � I�j for some � � � � p� � � i� j � ��� The subscript � in
P� should indicate that P� partitions the twofold product index set I � I� In the interesting case� the blocks
b � P� corresponding to the block matrix M

b �� 
m���������b do not all belong to only one level �� The level
number � of a block b is written as level
b��

The easiest way to introduce the partitioning P� is by a recursive description of the matrix block structure	
For this purpose we consider four di�erent matrix formats� R�� N �� N �� and� �nally� the H�matrices	

R�matrices are matrices of rank � k� The value of k and its possible dependence on b will be discussed
later	 These R�matrices can be represented in the formXk

i��
�ai� ci�� where �ai� ci� �� ai � c

H
i 
�	��

with column vectors ai and row vectors c
H
i � The set of R�matrices is denoted byMR�

The N �matrices correspond to o��diagonal blocks b � I�i � I�i�� 
N abbreviates �neighbourhood��	 For
� � p� N �matrices are simple � � ��matrices	 For � � p � �� � � � � �� the following recursive de�nition holds�
Abbreviate m � �p��� An m�m matrix M has the N �format if

M �

�
M�� M��

M�� M��

�
with m

� �
m
� R�matrices M���M���M�� and N �matrix M��� 
�	���

Similarly� we de�ne the transposed type� M is an N ��matrix if MT is of N �type� i	e	� in 
�	���M���M���M��

are R�matrices and M�� is an N ��matrix	 The sets of N � and N ��matrices are denoted byMN andMN� �
Finally� the H�matrices 
�hierarchical matrices�� are de�ned in

De�nition ��� Let M be an n � n�matrix with n � �p� Then M is an H�matrix �notation� M � MH� if
either n � � 
p � �� or if the partitioning into �� � blocks of size n

� �
n
� leads to

M �

�
M�� M��

M�� M��

�
with M���M�� � MH� M�� � MN � M�� �MN� � 
�	���

�



In the case of p � �� the resulting block structure of an �� ��matrix is

� 
�	���

Let P� � P
I � I� be the set of the �nally resulting blocks in 
�	���	 In the case of 
�	���� P� consists of ��
�� ��blocks and � �� ��blocks	

Here� we remark that we need a partitioning with two properties� On the one hand side� the partitioning
should contain as few blocks as possible to reduce the costs for storage and operations� while on the other
hand the blocks should be small enough so that the resulting matrix is a su�ciently good approximation of
the true matrix	 We shall see that P� from 
�	��� is a good compromise	

The rank k involved in MR is not necessarily a constant	 In the following� k � P� � N is a function of
the block b � P�� Then� a submatrix M

b over the index block b � P� belongs toMR if the block M b satis�es
rank
M b� � k
b�� The following de�nition is equivalent to De�nition �	�� if we choose the partitioning P� from
above	

De�nition ��� Let P� be a block partitioning of I � I and k � P� � N� The underlying �eld of the matrices
is K � The set of H�matrices induced by P� and k is

MH�k
I � I� P�� �� fM � K I�I � each block M b� b � P�� satis�es rank
M
b� � k
b�g� 
�	���

��� De�nition of H��Matrices

Up to now� we made use of the cluster tree T� which yields a hierarchy among the clusters and leads to the
optimal partitioning P�� Next� we introduce another hierarchical structure connected with the vectors ai� ci
from 
�	��	 This second hierarchy gives rise to the exponent � in the name H��matrices 
or� hierarchical basis
H�matrices�	

����� Hierarchical Bases for Row and Column Vectors of H��Matrices

So far� an R�matrix
Pk�b�

i�� �ai� ci� from 
�	�� could be formed with arbitrary vectors ai� ci� Another situation
occurs if we �x two bases faig� fcig depending on the block b � P�� Any block b has the form b � � � � with
clusters �� � � T 	 We require that faig depends only on the row�index cluster �� while fcig depends only on
the column�index cluster � �

Va
�� � spanfa
�
i � � � i � k
��g � K

� � Vc
�� � spanfc
�
j � � � j � k
��g � K

� � 
�	���

The notation a�i � K
� means that the vector a�i has components a

�
i�� only for � � �� while c�j � K

� has
coe�cients c�j�� only for � � ��

The corresponding R�matrices are elements of the tensor vector space

V
b� � spanf�a�i � c
�
j � � � � i � k
��� � � j � k
��g � Va
�� � Vc
�� for b � � � �� 
�	���

In our model case� the clusters �� � of b � ��� belong to the same level	 If we make the natural assumption
that the rank k is a function k� of the level � only� k
�� � k
�� � klevel�b� �� k
b� follows	

The storage requirements are less than for H�matrices	 Since the vectors a�i � c
�
j are pre�de�ned� only the

coe�cients with respect to the basis f�a�i � c
�
j �g for V
b� from 
�	��� are to be stored	

Remark ��� Let �	�
�� be given� It needs k
�� � k
�� coe�cients 	ij to code an R�matrix
P

i�j 	ij �a
�
i � c

�
j ��

�The �hierarchical bases� which appear in our context� have another hierarchical structure than the hierarchical bases known
from the �nite element method� Also the hierarchical structure of wavelet bases is di�erent�

�



����� Restrictions

Consider a cluster � � T being not a leaf	 Its sons are denoted by � �� � �� 
the tree of the model problem is
binary�	 The decomposition � � � � 	 � �� describes a block partitioning of the vector a�i into the block�vectors


a�i������ � � R� ���
a a�i and 
a�i������ �� � R� ����

a a�i � 
�	���

The restriction operator R� ���
a denotes the mapping from the full vector into a block�vector	 Conversely� we

can represent the vector a�i as the composition

a�i �

�
R� ���
a a�i

R� ����
a a�i

�
� 
�	���

if we �rst enumerate the indices of � � and then those of � ���
Similarly� the restrictions R����

c are de�ned for the row vectors c�j and yield

c�j �

�
R����
c c�j

R�����
c c�j

�
� 
�	���

����� Consistency Conditions

Let �� � �� � �� � T be as before	 The consistency relation between the spaces Va
�� and Va
� ���Va
� ��� is

Va
�
�� � R� ���

a Va
��� Va
�
��� � R� ����

a Va
��� 
�	���

Similarly� we require the analogous relations for the spaces Vc
��� Vc
���� Vc
���� �

Vc
�
�� � R����

c Vc
��� Vc
�
��� � R�����

c Vc
��� 
�	���

One important conclusion from R� ���
a Va
�� � Va
� �� is

Remark ��� It is not necessary to store the vectors a�i explicitly� Instead� one can store the coe�cients ����
�

ij

of the representation

R� ���
a a�i �

k�� ��X
j��

����
�

ij a�
�

j for � � i � k
�� 
�	���

and the analogously de�ned coe�cients ����
��

ij �

The other direction Va
� �� � R� ���
a Va
�� implies

Remark ��� The dimension k must be a monotone function of the vertices� i�e�� k
� �� � k
�� if � � is a son
of �� If k � k� depends on the level � as discussed above� k��� � k� holds�

����� Normal Form

Among all vectors fa�i � � � i � k
��� � � Tg satisfying 
�	��� and 
�	���� we can choose a basis in such a way
that the sum in 
�	��� runs over � � j � min
i� k
� ���� i	e	�

R� ���
a a�i �

Xmin�i�k�� ���

j��
����

�

ij a�
�

j for � � i � k
��� 
�	���

Similarly�

R����
c c�j �

Xmin�j�k�����

i��

���

�

ji c�
�

i for � � j � k
��� 
�	���

Furthermore� the vectors could be chosen to be orthonormal� i	e	�
�
a�i � a

�
j

�
� �ij for � � i� j � k
�� with

Kronecker�s symbol �ij 	 However� it is even more convenient if the respective bases fa
�
i g and fc

�
j g of Va
��

and Vc
�� 
which may be di�erent�� are bi�orthonormal� i	e	��
a�i � c

�
j

�
� �ij for � � i� j � k
��� 
�	���

Finally� we remark that for level p� where all clusters � contain only one index� k
�� � � holds and all basis
vectors are the unit vector a�� � c�� � 
���

�



����� Case of Constant k
b�

The simplest case is a constant rank k
�� � kconst� Since we called fa�i � � � i � k
��g a basis� dimVa � k
��
holds and thus �� 
 k
�� is required� Therefore k
�� � kconst cannot hold for small blocks of level �� where
�� � �p�� � kconst� Hence� the exact requirement is

k
�� � minfkconst� �
p�level���g for all � � T� 
�	���

If the H�matrix M � has to approximate an BEM matrix M up to the error O
h�� with 
 being the
consistency order� the choice of kconst should be of the order kconst � logn � p � p� level
I��

����� Case of Variable k
b�

Formula 
�	��� gives a �rst advise to choose a smaller rank k
�� for small blocks	 As we shall see later� it is
reasonable to choose k
�� due to a rule like k
�� �� p�level
���� or� more general� k 
�� �� � 
p� level 
�����
for some �� � 
 � 
see 
�	�� below�	

It is a result of the approximation considerations in Chapter � that this choice does not deteriorate the
approximation quality	 On the other hand� it is obvious that for the larger number of smaller blocks we have

to deal with less coe�cients 	ij 
see Remark �	�� and �
��� �

ij � 
���
�

ji 
see 
�	���� 
�	����	 Therefore� a smaller rank
yields lower costs for the storage and for the various arithmetic operations	 In this context� the key inequality
is 
�	��� expressing the fact that the sum over all vertices weighted by k
��� for any 
�xed� 
 remains bounded
linearly in n �

X
��T

k
��� �

pX
���

��
� 
p� �� � ��� � n for all 
 � N� 
�	���

In the variable case� conditions 
�	��� and 
�	��� are nontrivial� since the restriction of k
�� must lead to a
vector space Va
� �� of a lower dimension k
� ��� Here� it is interesting to consider equations 
�	��� and 
�	���
as the fundamental construction of the basis vectors of Va
���

� Storage and Complexity Bounds

Next we prove that the storage size is O
n� without any logarithmic factor 
x�	��	 Then we describe the
matrix�vector multiplication algorithm in x�	� and show its O
n� complexity	

��� Storage Requirements

According to Remark �	�� we have to store the matrices

A��� � �� 
����
�

ij ���i�k������j�k�� �� for �� � � � T� � � son of ��

C����

�� 

���
�

ji ���j�k������i�k���� for �� �� � T� �� son of ��

�	��

of the size k� � k���� where � � level
�� � level
�� � f�� �� � � � � p � �g 
cf	 
�	���� 
�	����	 There are ����

di�erent pairs �� � � with � � level
�� and � � son of �� Assuming k� � � 
p� �� � � as proposed in x�	�	� and
used in De�nition �	� below� the required storage amounts toXp��

���
����k�k��� �

Xp��

���
����
� 
p� �� � ��
� 
p� �� �� � ���

Thanks to 
�	���� we obtain

Remark ��� The storage needed for all transfer matrices A��� � � C����

is proportional to n�

Next we consider the storage of the coe�cients

Zb � 
	bij���i�j�k�b� for b � � � � � P�

of the block�matrix M b �
P

i�j 	
b
ij �a

�
i � c

�
j � 
cf	 Remark �	��	 The total storage is

P
b�P�

k
b��� Let

P� 
�� �� fb � P� � level 
b� � �g	 The recursions discussed in ��� show �P� 
�� � ��� Hence�
P

b�P�
k
b�� �

C
Pp

���
p� ����� � n proves

Remark ��� The storage needed for all block coe�cients matrices Zb� b � P�� is bounded by O
n��

�



��� Description of the Fast Matrix�Vector Multiplication Algorithm

The fast matrix�vector multiplication algorithm is performed in three steps� 
i� forward transformation 
see
x�	�	��� 
ii� block�multiplication phase 
see x�	�	��� and 
iii� backward transformation 
see x�	�	��	 All steps are
shown to require only O
n� operations� hence the matrix�vector multiplication algorithm has linear complexity	

����� Block�Matrix times Vector

First we consider the multiplication of a block M b� b � � � � � P�� with a vector �x� � Va
��� We denote the
coe�cient vector with respect to the basis fa�i � � � i � k
��g by 	x� � i	e	�

�x� �
Xk���

i��
	x��i a

�
i � 
�	��

Remark ��� �a� Let b � � � � � P�� M
b �

P
i�j 	

b
ij �a

�
i � c

�
j � with Zb � 
	bij���i�j�k�b� and �x� � Va
���

Then y� �M b�x� has the coe�cient vector y� � Zb	x� with respect to the basis fa�i � � � i � k
��g�
�b� Let x� � K

� have the decomposition x� � �x� � x�� with �x� � Va
�� and x�� � Vc
��� Then
M bx� �M b�x� holds and part �a� applies to M b�x� �

Proof� Part 
b� is trivial	 For 
a� note that M b
��x� �

�P
i�j 	

b
ij �a

�
i � c

�
j �
�


P

h 	x��h a
�
h� �

P
i�j 	

b
ij	x��ja

�
i because

of
�
c�j �

P
h 	x��h a

�
h

�
� 	x��j 
cf	 
�	����	

����� Forward Transformations

Let a vector x � K
I be given	 Mx is to be computed� where M is an H��matrix	 Due to Remark �	�� we have

to represent the block�vector x� �� 
xi�i�� as the sum x� � �x� � x�� � where the coe�cient vector 	x� of �x�
must be available	 Since M contains blocks of all levels� we need the coe�cient vectors 	x� for all � � T�

We introduce the notation T 
�� �� f� � T � level 
�� � �g for all � � � � p�
The following computations start at level p and proceed to level � �


 Start at level � � p� Let � � fsg � T 
p�	 The one�dimensional block�vector x� � 
xi�i�� � 
xs� is
identical to the coe�cient vector x� � since the basis is the unit vector a

�
� � 
��� Hence� 	x� is known

without any computation and x�� � � holds	


 Recursion � � � � � for p 
 � 
 �� Assume that the coe�cient vectors 	x� of the �rst summand in
x� � �x� � x�� are already computed for all � � T 
�� ��� For all � � T 
�� the new coe�cient vectors 	x�
are constructed as follows	 Let ��� ��� � T 
�� �� be the sons of �� The decomposition from level � � �
yields

x� � xI� � xII� with xI� ��

�
�x��

�x���

�
and xII� ��

�
x���

x����

�
�

The latter term xII� is orthogonal to Vc
��� since
�
c�j � x

II
�

�
�
D
R����
c c�j � x

�
��

E
�
D
R�����
c c�j � x

�
���

E
� ��� � ��

The �rst term is to be split into xI� � �x� � xIII� determined by �x� � Va
��� xIII� � Vc
��
 then
x� � �x� � x�� with x�� �� xII� � xIII� is the desired decomposition	 The entries of the coe�cient vectors
	x� are determined by 	x��j �

�
c�j � �x�

�
�
�
c�j � x

I
�

�
� Using the construction 
�	��� of c�j 
cf	 
�	����� we

obtain

	x��j �
�
c�j � x

I
�

�
�

	

R����
c c�j

R�����
c c�j

�
�

�
�x��

�x���

��
�
D
R����
c c�j � �x��

E
�
D
R�����
c c�j � �x���

E
�

Inserting the representation 
�	��� of R����
c c�j and �x�� �

P
h 	x���h a

��

h � we result in
�

D
R����
c c�j � �x��

E
�
DX

i

���

�

ji c�
�

i �
X

h
	x���h a

��

h

E
�
X

i

���

�

ji 	x���i � 
C
����

	x�� �j

with C����

de�ned in 
�	��	 Since the second term is similar� the �nal representation is

	x� � C����

	x�� � C�����

	x��� � 
�	��

�Without the biorthogonality �����	� equation �
�
	 is obtained with another matrix �C���
�

�

�



By assumption� the coe�cient vectors 	x�� � 	x��� are known	 Therefore� only two matrix�vector multipli�
cations by the k� � k����matrices C

����

�C�����

are needed to compute the desired coe�cient vectors 	x�
for � � T 
��	

Since the number of operations needed in 
�	�� is proportional to the number of entries in C����


 C�����

�
Remark �	� implies

Remark ��� The performance of �
�
� for all � � T 
��� � � p� �� � � � � �� requires O
n� operations and yields
the coe�cient vectors 	x� for all � � T�

����� Multiplication Phase

For all blocks M b� b � � � � � P�� the intermediate products y
b
� ��M bx� are to be computed� i	e	� according

to Remark �	� the coe�cient vectors yb� � Zb	x� of y
b
� are to be computed	 The upper index b is used in y

b
� �

since for the same � � T several yb� for di�erent b may occur 
namely b � � �� and b� � � ��� with � �� ����
The number of operations for all products Zb	x� � b � � � � � P�� is again proportional to the entries in all

matrices Zb� Therefore� Remark �	� implies

Remark ��� The matrix�vector multiplications yb� �� Zb	x� for all b � � � � � P� requires O
n� operations�

����� Backward Transformations

In the �nal step we have to gather all partial results yb� obtained in the previous phase	 Here we use a
backward transformation starting at level � � � and proceeding to � � p� On each level �� we compute y� for
all � � T 
��� where y� is the coe�cient vector for the sum y� de�ned by

y��i ��
X

b��� �����P� with � ���


yb
�

� ��i for i � ��

Note that all � � � � belong to some T 
��� with �� � �� As before� we set P�
�� �� fb � P� with level
b� � �g�


 Start at level � � �� Since the partitioning P� contains no block of level � 
the only level���block is I � I
and not admissible�� the start is given by

yI �� ��

where I � T 
�� is the only cluster of level �	


 Recursion � � �� � for p 
 � 
 �� Assume that the coe�cient vectors y� for all � � T 
�� are already
computed	 Let � �� � �� � T 
���� be the sons of some � � T 
��� The vector y� �

P
i y��ia

�
i corresponding

to y� equals

�
R� ���
a y�

R� ����
a y�

�
by the de�nition of R� ���

a and R� ����
a � The coe�cient vectors 	y� � and 	y� �� of

R� ���
a y� and R

� ����
a y� are given by

	y� � � 
A
��� ��Ty� � 	y� �� � 
A

��� ���Ty� � 
�	��

as one concludes from R� ���
a y� � R� ���

a

P
i y��ia

�
i �

P
i y��iR

� ���
a a�i �

P
i�j y��i�

��� �

ij a�
�

j �

Next� we have to add all contributions from blocks of level �� � �

y� � � 	y� � �
X

�� with b��� �����P������

yb
�

� � � 
�	��

Remark ��� The number of operations involved in the backward transformations �
��� and �
��� is

�
Pp��

��� k�k����T 
�� �� �
Pp��

��� �P�
�� �� � �
Pp��

��� k�k����
��� ��P� � n�


 Result at level � � p� The resulting coe�cient vectors y� for all one�element clusters � � fig � T 
p�
coincide with the component yi of y �Mx� Therefore� the matrix�vector multiplication is completed	

�



��� Other Matrix Operations

Di�erent from general H�matrices� the sum of two H��matrices 
with the same partitioning and the same
hierarchical bases� can be performed exactly	 Since only the matrices Zb� b � P�� are to be added� the cost is
clearly O
n��

We do not discuss the matrix�matrix multiplications in detail� but it may be mentioned that the product
of two blocks is rather cheap since we have to perform scalar products of the form

�
c�j � a

�
i

�
� which are trivial

because of 
�	���	

��� Constant k
��

The proof of the following statement is left to the reader	

Proposition ��� Let kconst � f�� � � � � ng� Choose the rank k
�� according to �	�	��� Then the storage size of
A��� � � C����

� Zb �see Remarks 
�
�	� as well as the matrix�vector multiplication cost amounts to O
n � kconst��

� Approximation by Variable Order

In this section� we will explain how the approximation of the integral operator 
�	�� via H��matrices with
variable order k can be realised	

��� Galerkin Matrix

Let b � � � � � P� and 
i� j� � b� The matrix element mij is de�ned in 
�	�� by
R
Ji

R
Jj
s
x� y�dxdy� where

s
x� y� � log
jx� yj�� If we �nd an expansion

s
x� y� � �s
x� y� ��

k�b�X
�����


�����
x���
y�

which is su�ciently accurate on the rectangle J
��� J
�� 
cf	 
�	���� the Galerkin matrix based on �s instead
of s has the entries

�mij ��

k�b�X
�����


���a��ic��j for 
i� j� � b with

a��i �

Z
Ji

��
x�dx and c��j �

Z
Jj

��
y�dy�

Obviously� the block matrix 
 �mij��i�j��b �
Pk�b�

����� 
���a�c
T
� is of the desired form� if the spaces spanned by

a� or c� satisfy the respective consistency conditions 
�	��� or 
�	���	
Concerning the consistency conditions� we state the following criterion	

Remark ��� For b � � � �� let ���
x� and ��
�
y�� � � �� � � k
b�� be the functions involved in the approxi�

mation of s
x� y� by

�s
x� y� ��

k�b�X
�����


����
�
�
x��

�
� 
y� for 
x� y� � J
��� J
���

Set Wa
�� �� spanf��� � � � � � k
��g and Wc
�� �� spanf��
� � � � � � k
��g� Then the condition

Wa
�
�� � f�jJ�� �� � � � Wa
��g for all sons � � of � 
�	��

implies the consistency condition �	�
��� Similar for �	�	���

Note that dimVa
�� � dimWa
�� holds� where the strict inequality may occur	 Since nothing is to be
discussed about the �� ��blocks b in P� 
belonging to level p�� we restrict our considerations to the subset of
the �far �eld� blocks�

P far
� �� fb � P� � level
b� � pg� 
�	��

In the following� the approximation �s
x� y� is based on Taylor expansions� of the kernel functions	 However�

�Other expansions based on projections or interpolations are possible�

�



in order to satisfy 
�	��� the arising polynomials of degree k
���� must be replaced by very particular functions	

��� Taylor Expansions

First� we have to introduce some notations	 J �� ��� �� denotes the integration domain	
In order to simplify the notation� we replace the rank k
�� by k
�� � �� since then k
�� also coincides with

the polynomial degree	 In other words� the summation
Pk���

i�� is replaced by
Pk���

i�� �

De�nition ��� Let � � J and �c� be the smallest interval containing �� The �Ceby�sev centre z� of � is the
midpoint of �c� and the �Ceby�sev radius r� equals the halved interval length of �c��

De�nition ��� For ��w � J � the di�erence domain d��w is given by

d��w �� � � w �� fz � R � � 
x� y� � � � w with z � x� yg �

De�nition ��� Let � � J and f � � � R be su�ciently smooth� The Taylor operator T
�m�
� of order m � N

is given by

T �m�
� �f � 
x� �

m��X
���

�

��
f ��� 
z�� 
x� z��

�
�

Lemma ��� Let ��w � J satisfy � dist 
��w� 
 r� � rw with some � � 
�� ��� On the di�erence domain
d � d��w� the Taylor expansion of the function s � d� R�

s 
z� � log jzj 
�	��

about zd of order m satis�es




s 
z�� T
�m�
d �s� 
z�




 � �
jlog dist 
��w�j m � �
�m�m m 
 �

for all z � d� 
�	��

Proof� The remainder R
�m�
d 
z� of the Taylor expansion can be estimated 
by using rd � r� � rw�




R�m�
d 
z�




 � rmd sup
	�d



s�m� 
��




m�
� rmd sup

	�d

�
jlog j�jj if m � �
�
m
j�j�m if m 
 �

� 
r� � rw�
m

�
jlog dist 
��w�j 
m � ��
�
m
dist�m 
��w� 
m 
 ��

�

�
jlog dist 
��w�j 
m � ��
�m�m 
m 
 ��

�

Corollary ��� Let ��w be as in Lemma ���� The Taylor approximation of the kernel function log
jx� yj� is

denoted by T
�m�
d �s� 
x� y�� The explicit representation

T
�m�
d �s� 
x� y� �

X
��
�m��

����
���w  ���
� 
x�  �
�

w 
y� 
�	��

holds with  
���
� 
x� � 
x� z��

� and �
���
�
��w � 
�����
 s���
� 
zd� � 
����� �

Proof� Reorganising sums and products results in

T
�m�
d �s� 
x� y� �

m��X
���

�

��
s��� 
zd� 
z � zd�

�
�

m��X
���

�X

��


�����


��
s��� 
zd�

�
�

�

�

x� z��




y � zw�

��


�
m��X

��

m���
X
���


�����
 s���
� 
zd�

�� ��

x� z��


 
y � zw�
� �

��



��� The Hierarchical Bases Construction

The essential step in the de�nition of the variable order approximation method is the de�nition of the restriction
operators	 In order to illustrate the underlying idea� we consider a cluster � of the cluster tree with sons � �� � ��	

Assume that the spacesWa 
�
�� andWa 
�

��� with bases
n
� 
�i�
� �

ok�� ��
i��

and
n
� 
�i�
� ��

ok�� ���
i��

are already de�ned	 Then�

every function in Wa 
�� has the representation

u 
x� �

� Pk�� ��

�� a

�
�
� �
� 
�
�
� � 
x� for x � J
� ���Pk�� ���


�� a
�
�
� ��
� 
�
�
� �� 
x� for x � J
� ����


�	��

Then Remark �	� guarantees the consistency condition 
�	���	 Because of Wc 
�� �Wa 
�� � also 
�	��� holds	
The di�culty is that 
�	�� is not able to represent monomials of degree k 
�� if k 
�� 
 k
� �� � k
� ����

Instead� we are looking for approximations of  
���
� �� 
x� z� �

�

see Corollary �	�� by functions � 

���
� belonging

to Wa 
�� � i	e	� having a representation 
�	��	

The basis functions � 
���
� will be chosen as the composition of the local Taylor polynomials of degree k 
��

in J
� �� and J
� ��� obtained by expansions of the true monomial  
���
� around the respective �Ceby�sev centres

z� � and z� �� � The coe�cients a
���
�
t �� a

�
�
t � 

���
� �� t � f� �� � ��g� in 
�	�� are

a
���
�
t �� a

�
�
t � ���

� � �
�

��
��
�x �
x� z� �

�
� jx�zt � 
�	��

We repeat that this construction yields the true monomial � 
���
� �  

���
� if the functions � 

�
�
t � t � f� �� � ��g �

in the right�hand side of 
�	�� are the true monomials  
�
�
t and if � � k
t�� t � f� �� � ��g � However� our variable

order assumption leads to the case � � k 
�� 
 k
t��

De�nition ��� The polynomial degree distribution depends on constants �� � 
 � and is given by

k
�� �� � 
p� level 
��� � �� 
�	��

For the leaves � � T �i�e�� level 
�� � p�� we put

� ���
� 
x� � 
x� z� �

� for all � � f�� �� � � � � �g�

Assume that the basis functions � 
���
t are de�ned on all clusters t � T with level 
t� 
 �� Then� for � � T with

level 
�� � �� �� the basis functions � 
���
� are given by

� ���
� 
x� ��

� Pk�� ��

�� a

���
�
� �

� 
�
�
� � 
x� for x � J
� ���Pk�� ���


�� a
���
�
� ��

� 
�
�
� �� 
x� for x � J
� ����


�	��

with a
���
�
t from ������ where � �� � �� are the sons of ��

The approximation of the kernel function is given by replacing the Taylor polynomials  
���
� in 
�	�� by the

functions � 
���
� 	

De�nition ��� Let � � 
�� ��� A block b � � � � � P� is ��admissible if the following condition holds�

� dist 
�� �� 
 max fdiam �� diam�g � 
�	���

We remark that for the partitioning in 
�	��� and 
�	��� all b � P far
� 
cf	 
�	��� satisfy 
�	��� with � � ��

De�nition ��
 Let b � � � � denote an ��admissible block� The approximation to the function s as in ���
�
is given by

�sb 
x� y� ��
X

��
�k�b�

����
����
� ���
� 
x� � �
�

� 
y� 
�	���

where �
���
�
��� are the Taylor coe�cients from ������

We remark that the approximation of s by �sb in J
�� � J
�� is not the optimal one	 First� we could �nd

better coe�cients a
���
�
t in 
�	�� when we look for the best expansion with respect to the basis � 

�
�
t 
instead

of  
�
�
t �	 Second� in 
�	��� we could allow all indices � � �� � � k 
b� instead of � � � � k 
b� �

��



��� Error Analysis

The error analysis of the variable order approximation algorithm consists of a local estimate of the error s� �sb
on admissible blocks and a global estimate of the consistency error	 We begin with the local estimates	 On
an ��admissible block b � � � � � P�� the local approximation error is de�ned by

eb 
x� y� � s 
x� y�� �sb 
x� y� for 
x� y� � J
��� J
�� 
�	���

and its maximum norm by

�b �� kebk��b � sup
�x�y��J����J���

jeb 
x� y�j � 
�	���

The expansion with the true Taylor polynomials de�nes the function

sb 
x� y� �
X

��
�k�b�

����
����  ���
� 
x�  �
�

� 
y� �

The error is split into

eb � 
s� sb� � 
sb � �sb� �� e
I
b � eIIb � 
�	���

where eIb is already estimated by 
�	��	 The error e
II
b has the representation�

eIIb 
x� y� �
X

��
�k�b�

�
���
�
���

�
 
���
� 
x� � � 

���
� 
x�

�
 
�
�
� 
y�

�
X

��
�k�b�

�
���
�
���

� 
���
� 
x�

�
 
�
�
� 
y�� � 

�
�
� 
y�

�
�� eIIIb 
x� y� � eIVb 
x� y� �


�	���

The estimate of the di�erence  
���
� � � 

���
� plays the key role in the following error estimation	

Lemma ���� Choose � 
 � and � 
 max
�
	

�� �� ��� �

�
in ����� and put

� 
 max f���� �� �g � 
�	���

Then� for � � T with � � level 
��� the di�erence  
���
� � � 

���
� can be estimated by

k ���
� � � ���

� k��� � ��k�
�
����

��
� where � � ����

Proof� We de�ne an intermediate approximation � 
���
� to  

���
� by using the true Taylor polynomials in the

right�hand side of

� ���
� 
x� ��

� Pk�� ��

�� a

���
�
� �  

�
�
� � 
x� for x � J
� ���Pk�� ���


�� a
���
�
� ��  

�
�
� �� 
x� for x � J
� ����


�	���

The estimate of  
���
� � � ���

� will be performed on all leaves contained in � separately	 Let t be a leaf satisfying
t � � and de�ne the sequence 
��� ����� � � � � �p� by t � �p � �p�� � � � � � ���� � �� � � and level 
�i� � i� For
x � J
t�� the representation

 ���
�i
� � ���

�i
�  ���

�i
� � ���

�i
�

ki��X

��

a���
��i��

�
 �
�
�i��

� � �
�
�i��

�

holds� where ki�� � k 
�i���	 Furthermore� we replace� for ease of notation� indices �i by i� e	g	� zi instead of
z�i 	 De�ne the error quantities

�
���
i �� k ���

i � � 
���
i k��t� �

���
i �� k ���

i � � 
���
i k��t�

Then�

�
���
i � �

���
i �

ki��X

��




a���
�i��




 ��
�i��� 
�	���

��



� 
���
i is the Taylor expansion of  

���
i on �i�� of order ki��	 Estimating the remainder of the Taylor expansion

results in �
���
i � � for all � � ki�� and� for � 
 ki���

�
���
i �

r
ki����
i��


ki�� � ���

��


� � ki�� � ���

���
� � zi�
��ki����

���
���i��

�

�
�

ki�� � �

�
r
��ki����
i r

ki����
i��

�

�
�

ki�� � �

�
��i��ki�����

The coe�cients a
���
�
i�� in 
�	��� vanish for � 
 � and� for � � �� we have




a���
�i��




 � �
�

�

�
jzi�� � zij

��
 �

�
�

�

�
r��
i�� �

�
�

�

�
���i������
��

The coe�cients �
���
i in 
�	��� are bounded from above by ��

���
i de�ned by

�����p � � for all � � kp 
�	���

and� for i � p� �� p� �� � � � � �� by

��
���
i �

�X

��

�
�

�

�
���i������
� ��

�
�
i�� for � � ki���

��
���
i �

�
�

ki�� � �

�
���i�����ki���� �

ki��X

��

�
�

�

�
���i������
� ��

�
�
i�� for ki�� � � � ki�


�	���

The estimate ��
���
i � �i�p

�
���i

��
stated in Lemma �	�� yields the proof	

Lemma ���� Let �� �� and � be as in Lemma ��
� and set � � ���� Then� the coe�cients ��
���
i can be

estimated by ��
���
i � ��ki

�
���i

��
�

The rather technical proof of this lemma can be found in the Appendix	
We have all ingredients to estimate the approximation error on a local block	

Theorem ���� Let �� �� and � be as in Lemma ��
�� Let � � 
������ Then� there exists a constant C ��
so that� for every ��admissible block b � � � � with level 
�� � level 
�� � �� the error �b as in ���

� can be
estimated by

�b � C
�
�
�

�k�b�
�

Proof� In view of the splittings 
�	��� and 
�	��� it remains to estimate eIII�IVb 	 The coe�cients �
���
�
��� from


�	��� can be estimated by




����
����




 � �
� � �

�

��
jlog dist 
�� ��j if � � � � �
dist���
 
�� �� � 
� � �� if � � � 
 �

�

By using



 �
�

� 
y�



 � jy � z�j


 � r
� � �
������
 for y � J
��� we obtain 
with � � ����
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The estimate of eIVb can be obtained in the same fashion by using
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with �� � �� and proceeding in an analogous way	

We come now to the global estimate of error caused by replacing the kernel function by the variable order
approximation	 Let S denote the space of piecewise constant functions on the mesh fJig

n

i��	 The L
��norm

on an interval t � 
a� b� is denoted by k�k��t while we skip the index t for t � 
�� ��	 The global error of the
approximation is given by

E
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Z
b

u 
x� eb 
x� y� v 
y� dydx for u� v � S�

Theorem ���� Let �� �� �� and � be as in Theorem ��
	� There exists a constant C so that� for all u� v � S�

E
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Proof� Let P� 
�� �� fb � P� � level 
b� � �g and T 
�� �� f� � T � level 
�� � �g for all � � � � p � �� For
b � � � � � P� 
��� we have j� j � j�j � ���� Introduce

N� � sup
����p

sup
��T ���

X
� with ����P����
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����p
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X
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Using Theorem �	��� we obtain with � � ���
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For � 
 �� we have ��k��p�� �
�
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and

Pp

��� �
�k��p�� �
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���p
� �� One can see from the

construction in De�nition �	� that the numbers N�� N� can be estimated from above by a constant as well	
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� Appendix �Proof of Lemma �����

We recall ki � � 
p� i��� with �� � 
 �	 Hence� ��
���
i � � for all i and � � � and we assume� for the following�

that � 
 � � � holds	 The proof is given by an induction with respect to i � p� p� �� � � � � �	


 i � p	 De�nition 
�	��� implies ��
���
p � � for all � � kp	


 Assumption� Assertion holds up to an index i� ��
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j � ��kj

�
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for all � � kj � j � fi� �� i� �� � � � � pg� 
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Simple analysis shows that� for
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the right�hand side in 
�	�� is bounded from above by ���� i	e	� �I
� � � and the assertion is proved for � � ki��	

For � 
 ki��� we estimate the sum as above� while the �rst term in 
�	��� is estimated by�
�

ki�� � �

�
���i�����ki���� � ��ki

�
���i

��
�II
�

with

�II
� � 
���

��
�ki��ki����

�
�

ki�� � �

�
� 
����� ����

�
�

�

�ki � ki
ki�� � �

�

� 
���
��
����

�
�

�

�ki 
� 
p� i� � �� 
� 
p� i� � � � �� � � � 
� 
p� i� � � � �� ��


�� ���

� 
����� ����
�
�

�

�ki k���i


�� ���
� 
���

��

�
�

�

�ki 
�ki�
���


�� ���
� C� 
���

��

��



with

C� �

�
�

�

�x

�x�

���


�� ���
and x �

�� �

log ���
�

Simple analysis yields�

C� � � 
�� ��
��� �

The sum �I
� � �II

� can be estimated by

�I
� � �II

� � � 
�� ����� 
����� � ��
�
� � �

��

��

Choosing

� 
 ���� � 
 max

�
�

�
�� �� ��� �

�
� � 
 max f���� �� �g

yields that� for all � 
 � � �� the sum �I
� � �II

� is bounded from above by �	

��


