Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

On H2-Matrices
by

Wolfgang Hackbusch, Boris Khoromskij
and Stefan A. Sauter

Preprint no.: 50 1999







On H2-Matrices

Wolfgang Hackbusch, Boris Khoromskij
Max-Planck-Institut Mathematik in den Naturwissenschaften
Inselstr. 22-26, D-04103 Leipzig, Germany
email: wh@mis.mpg.de

Stefan A. Sauter
Universitat Leipzig, Mathematisches Institut,
Augustusplatz 10-11, D-04109 Leipzig, Germany
email: sas@mathematik.uni-leipzig.de

Abstract

A class of matrices (H-matrices) has recently been introduced by one of the authors. These matrices
have the following properties: (i) They are sparse in the sense that only few data are needed for their
representation. (ii) The matrix-vector multiplication is of almost linear complexity. (iii) In general, sums
and products of these matrices are no longer in the same set, but their truncations to the H-matrix format
are again of almost linear complexity. (iv) The same statement holds for the inverse of an H-matrix.

The term “almost linear complexity” used above means that estimates are given by O(nlog® n). The
logarithmic factor can be avoided by a further improvement, which is described in the present paper. We
prove that the storage requirements and the cost of the matrix-vector multiplication is strictly linear in
the dimension n, while still (full) system matrices of the boundary element method can be approximated
up to the discretisation error.

AMS Subject Classifications: 65F05, 65F30, 65F50, 65N38, 68P05, 45B05, 35C20
Key words: Hierarchical matrices, hierarchical bases, full matrices, fast matrix-vector multiplication, BEM,
FEM.

1 Introduction

For linear systems with sparse n x n-matrices several optimal iteration methods are known, where optimality is
characterised by an estimation of the arithmetic operations by O(n). A different situation is given in the case
of full matrices. Then standard techniques require an storage amount of O(n?) and O(n?) operations for the
matrix-vector multiplication. Other arithmetic operations like matrix-matrix multiplications or the inversion
even lead to O(n?) operations.

Full matrices are directly obtained by the discretisation of integral equations as they are common in the
boundary element method (BEM; cf. [2]). Another source of a full matrix is the inverse of a sparse FEM
matrix which, e.g., appears in the Schur complement of any saddle point problem (cf. [1, Section 11.7]). In
both cases, the matrices are affected with a discretisation error. Therefore, one may replace the full matrix
M by a more convenient matrix M’, provided that the error M — M’ is of the size of the discretisation error.

The hierarchical matrices (abbreviated as H-matrices) define a set of matrices which provides the approx-
imations M’ discussed above. As described in detail in [3] and [4], H-matrices have the following properties:

(i) They are data-sparse in the sense that the size data to be stored is almost linear in the dimension n.
(ii) The matrix-vector multiplication is of almost linear complexity.

(iii) In general, sums and products of these matrices are no longer in the same set, but their truncations to
the H-matrix format are again of almost linear complexity.

(iv) The same statement holds for the inverse of an H-matrix.



The basic (hierarchical) structure of H-matrices is the cluster tree which is already introduced in the panel
clustering method (see [6] and [7] or [2, Section 9.7]).

The term “almost linear complexity” used above means that estimates are given by O(nlog®n). The
logarithmic factor can be avoided by a further improvement which leads to the H?-matrices (hierarchical
bases H-matrices) introduced and analysed in this paper. These matrices are already mentioned in [3] under
the name “uniform 7-matrices”. The essential analysis is given in Section 4. The approximation by a Taylor
polynomial of fixed degree is replaced by a variable degree. Although we use lower approximation degrees for
most of the matrix-blocks, the overall error estimate does not deteriorate.

2 Hierarchical Bases H-Matrices

After presenting the introductory example (§2.1), we define the cluster tree (§2.2), which is the basis of the
standard H-matrices (§2.3). Finally, in Subsection 2.4, we introduce the hierarchical bases H-matrices, which
we call H2-matrices.

2.1 Introductory Example

The matrices, which we have in mind, may stem from integral or differential equations. In the latter case, it
is of interest to represent the inverse matrix as an H-matrix'. Here, we consider the example of the integral
operator

(Kuxm::A log(z — y])uly)dy. (2.1)

Its finite element discretisation with piecewise constant basis functions corresponding to the interval parti-
tioning

Ji=[({@—1)h,ih], h:=1/n, 1<i<n (2.2)
leads to the matrix
M = (mig)ger, misi= [ [ log(le - ydsdy, (2.3
i v Jj
where
I={1,...,n} (2.4)

is the underlying index set. As further simplification, we assume that n is a power of 2:
n = 2P (2.5)

In boundary element applications (BEM), one has to replace the unit interval by a surface, the equidistant
partitioning by a general triangulation and the kernel function log(Jz — y|) by some appropriate singularity
function (cf. [2]). However, in order not to distract the attention of the reader from the main ideas, we
consider the matrix M from (2.3). The kernel log(|x — y|) shares typical properties with the kernels arising in
general BEM applications. The results of this paper can be extended to general BEM problems as well.

The matrix M from (2.3) is a full matrix, i.e., the usual storage amount is O(n?) instead of O(n) for standard
sparse matrices. Furthermore, a simple matrix-vector multiplication M x z requires O(n?) operations. The
aim of the H2-matrix concept is to replace M by an approximation M’ such that the error M — M’ is of
the size of the discretisation error (therefore negligible), while storage (M ) and cost (M * x) amounts to O(n)
instead of O(n?).

The discussion of the error M — M’ is performed in Section 4. The details about the storage and matrix-
vector multiplication cost are given in Section 3.

IFormally, the inverse can be considered as a discretisation of an integral operator with the Green function as kernel.



2.2 The Cluster Tree

We start with the full index set I := I = {1,... ,n} from (2.4) and split it into the parts I} :={1,...,%2 =
2r—1y 11 = {2P71 4+ 1,... ,n}. Similarly, the new sets are divided so that, in general,

If={(—1)2" " +1,...,i2°7%}  for0<l<p, 1<i<2% (2.6)

The superscript £ indicates the level. At level p, we reach the one-element sets IV = {1},... ,I? = {n}.
Obviously, these sets form a tree T' (the so-called cluster tree).

Remark 2.1 (a) I is the root of T. (b) The sets If are the vertices (“clusters”) of T at level £. (c¢) T is a
binary tree: I has two sons Ig;r_ll and Igi“ if < p. (d) The sets I' are the leaves of T. (e) The cardinality
of If is #1f = 2r—¢,

In the following, we use the variables 7 and o for the vertices of the tree 7" and call 7 € T a cluster.
Usually, the sons of 7 € T are denoted by 7/, 7".

An isomorphic description occurs when we replace the index i by the interval J; from (2.2) which is the
support of the ith basis function. Then a cluster 7 € T' corresponds to the interval

J(r) = J{Ja:a e} (2.7)

The partitioning of the set I into IV, I1 corresponds to the definition of a block structure of a vector (over
the index set I). The tree structure of 7' allows to continue the block decomposition in a hierarchical way.
The hierarchical matrices based on this tree structure are abbreviated as H-matrices.

2.3 H-Matrices
2.3.1 The Model Partitioning

Since we are dealing with matrices, we have to consider the index set I x I. In the following, we describe a
particular partitioning P of I x I such that

IxI=U{b:be P}, (2.8)

where each block b € P, is of the form b = If x If for some 0 < ¢ < p, 1 < i,j < 2% The subscript 2 in
P; should indicate that P partitions the twofold product index set I x I. In the interesting case, the blocks
b € P, corresponding to the block matrix M® := (mag)(a,8)es do not all belong to only one level £. The level
number £ of a block b is written as level(b).

The easiest way to introduce the partitioning P, is by a recursive description of the matrix block structure.
For this purpose we consider four different matrix formats: R-, M-, N*- and, finally, the H-matrices.

R-matrices are matrices of rank < k. The value of k£ and its possible dependence on b will be discussed
later. These R-matrices can be represented in the form

k
2171[%’ ci], where [a;, ¢;] = a; ¢! (2.9)

with column vectors a; and row vectors cfl . The set of R-matrices is denoted by Mx.
The N -matrices correspond to off-diagonal blocks b = If x If, | (N abbreviates “neighbourhood”). For

¢ = p, N-matrices are simple 1 x 1-matrices. For £ = p—1,...,1, the following recursive definition holds:
Abbreviate m = 27—f. An m x m matrix M has the A'-format if
_ M11 M12 . m m . .
M = with 2 x 2 R-matrices Mlla Mlg, Mgg and N—matrlx Mgl. (210)
My Mas 2 2

Similarly, we define the transposed type: M is an N*-matriz if M1 is of N-type, i.e., in (2.10) My, Moy, Moy
are R-matrices and M, is an N*-matrix. The sets of N'- and AN*-matrices are denoted by M and M-.
Finally, the H-matrices (“hierarchical matrices”) are defined in

Definition 2.2 Let M be an n x n-matriz with n = 2P. Then M is an H-matriz (notation: M € My) if

either n =1 (p = 0) or if the partitioning into 2 x 2 blocks of size § x § leads to

My Mo

M =
[ My Mao

:| with My1, Mas € My, Mis € My, Moy € Mprs. (211)



In the case of p = 3, the resulting block structure of an 8 x 8-matrix is

(2.12)

Let P» C P(I x I) be the set of the finally resulting blocks in (2.11). In the case of (2.12), P, consists of 40
1 x 1-blocks and 6 2 x 2-blocks.

Here, we remark that we need a partitioning with two properties: On the one hand side, the partitioning
should contain as few blocks as possible to reduce the costs for storage and operations, while on the other
hand the blocks should be small enough so that the resulting matrix is a sufficiently good approximation of
the true matrix. We shall see that P from (2.11) is a good compromise.

The rank k involved in M% is not necessarily a constant. In the following, & : P, — N is a function of
the block b € P,. Then, a submatrix M over the index block b € P, belongs to M if the block M? satisfies
rank(M?®) < k(b). The following definition is equivalent to Definition 2.2, if we choose the partitioning P from
above.

Definition 2.3 Let P> be a block partitioning of I X I and k : P, — N. The underlying field of the matrices
is K. The set of H-matrices induced by P> and k is

Mo (I x I, Py) :={M € K'*T : each block M®, b € Py, satisfies rank(M®) < k(b)}. (2.13)

2.4 Definition of #?-Matrices

Up to now, we made use of the cluster tree 7', which yields a hierarchy among the clusters and leads to the
optimal partitioning P». Next, we introduce another hierarchical structure connected with the vectors a;, c;
from (2.9). This second hierarchy gives rise to the exponent 2 in the name H2-matrices (or? hierarchical basis
‘H-matrices).

2.4.1 Hierarchical Bases for Row and Column Vectors of 7{2-Matrices

So far, an R-matrix Efibl) [ai, ¢;] from (2.9) could be formed with arbitrary vectors a;,¢;. Another situation
occurs if we fix two bases {a;}, {c¢;} depending on the block b € P,. Any block b has the form b = 7 x ¢ with
clusters 7,0 € T. We require that {a;} depends only on the row-index cluster 7, while {c;} depends only on
the column-index cluster o :

Vo(r) =span{a; : 1 <i <k(1)} CK', V(o) =span{c] : 1 <j < k(o)} CK. (2.14)

The notation aj € K™ means that the vector a; has components af , only for v € 7, while ¢ € K has
coefficients ¢f , only for v € o.
The corresponding R-matrices are elements of the tensor vector space

V(b) = span{[aj,cf] : 1 <i < k(1),1 < j < k(0)} =Vaolr) x Ve(o) forb=1 xo0. (2.15)

In our model case, the clusters 7,0 of b = 7 X o belong to the same level. If we make the natural assumption
that the rank k is a function k¢ of the level £ only, k(1) = k(0) = kjevei(r) =: k() follows.

The storage requirements are less than for H-matrices. Since the vectors aj,c] are pre-defined, only the
coefficients with respect to the basis {[a],c]} for V(b) from (2.15) are to be stored.

Remark 2.4 Let (2.14) be given. It needs k(1) x k(o) coefficients (;; to code an R-matriz 3, ; GjlaT, ]

2The “hierarchical bases” which appear in our context, have another hierarchical structure than the hierarchical bases known
from the finite element method. Also the hierarchical structure of wavelet bases is different.



2.4.2 Restrictions

Consider a cluster 7 € T being not a leaf. Its sons are denoted by 7',7" (the tree of the model problem is
binary). The decomposition 7 = 7/ U 7" describes a block partitioning of the vector a] into the block-vectors

al ver = R7"al and (a7 ver = R”"7al. 2.16
i,V a i i,V a i

The restriction operator Rglﬁ denotes the mapping from the full vector into a block-vector. Conversely, we
can represent the vector a] as the composition

RI""af
al = ( R ) , (2.17)
Ry " al

if we first enumerate the indices of 7’ and then those of 7”.

Similarly, the restrictions Rgl7" are defined for the row vectors ¢f and yield

RY' ¢
=1 .0 (2.18)
R: c;-’
2.4.3 Counsistency Conditions
Let 7,7',7" € T be as before. The consistency relation between the spaces V, (1) and Vo (7'), Vo (7") is
Va(r') = R " Va(7),  Va(r") = R} " Va(7). (2.19)

Similarly, we require the analogous relations for the spaces V.(o0), V.(o'), V.(c") :
Ve(o') = R Vel0),  Velo") = RZ7 Ve(o). (2:20)
One important conclusion from R7 ™ V, (1) C Vu(7') is
Remark 2.5 It is not necessary to store the vectors a] explicitly. Instead, one can store the coefficients oz;?TI
of the representation

k(")
R"al = alTa]  for1<i<k(r) (2.21)
j=1

"
T, T
ij

The other direction V,(7') C R]" V,(7) implies

and the analogously defined coefficients «

Remark 2.6 The dimension k must be a monotone function of the vertices, i.e., k(') < k() if 7" is a son
of 7. If k = k; depends on the level £ as discussed above, ki1 < k¢ holds.
2.4.4 Normal Form

Among all vectors {a] : 1 < i < k(1),7 € T} satisfying (2.19) and (2.21), we can choose a basis in such a way
that the sum in (2.21) runs over 1 < j < min(i, k(7")), i.e.,

’ min(i,k ! 7 ’
R ap ="M ana for 1< < k(). (2.22)
]:
Similarly,
, min(j,k(c’ r
R7 ¢S = Zizl(] @) V50 for 1 < j < k(o). (2.23)

Furthermore, the vectors could be chosen to be orthonormal, i.e., (af,a}) = d;; for 1 < 4,j < k(r) with
Kronecker’s symbol d;;. However, it is even more convenient if the respective bases {aj } and {c}} of V,(7)
and V(1) (which may be different!) are bi-orthonormal, i.e.,
<aZT,cJT-> = 0;j for 1 <i,j < k(7). (2.24)
Finally, we remark that for level p, where all clusters 7 contain only one index, k(7) = 1 holds and all basis
vectors are the unit vector a] = ¢] = (1).



2.4.5 Case of Constant k(b)

The simplest case is a constant rank k(1) = keonst. Since we called {a] : 1 <4 < k(7)} a basis, dimV, = k(1)
holds and thus #7 > k(7) is required. Therefore k(7) = keonst cannot hold for small blocks of level £, where
#1 = 2t < ot Hence, the exact requirement is

k() = min{keonst, 207 1€V¢H) ) forall 7 € T. (2.25)

If the H-matrix M’ has to approximate an BEM matrix M up to the error O(hY) with 7 being the
consistency order, the choice of kcopnst should be of the order keonst = logn = p = p — level(I).

2.4.6 Case of Variable k(b)

Formula (2.25) gives a first advise to choose a smaller rank k(7) for small blocks. As we shall see later, it is
reasonable to choose k(7) due to a rule like k(7) := p—level(7)+1 or, more general, k (7) := a (p — level (7))+
for some «, 3 > 1 (see (4.8) below).

It is a result of the approximation considerations in Chapter 4 that this choice does not deteriorate the
approximation quality. On the other hand, it is obvious that for the larger number of smaller blocks we have

to deal with less coefficients (;; (see Remark 2.4) and azTJYTI, 'y;i’al (see (2.22), (2.23)). Therefore, a smaller rank
yields lower costs for the storage and for the various arithmetic operations. In this context, the key inequality
is (2.26) expressing the fact that the sum over all vertices weighted by k(7)” for any (fixed) v remains bounded
linearly in n :

p

Z k(1) = Z 28a(p—0)+p) ~n  forallyeN (2.26)

TeT (=0

In the variable case, conditions (2.19) and (2.20) are nontrivial, since the restriction of k(7) must lead to a
vector space Vo (7') of a lower dimension k(7'). Here, it is interesting to consider equations (2.17) and (2.21)
as the fundamental construction of the basis vectors of V, (7).

3 Storage and Complexity Bounds

Next we prove that the storage size is O(n) without any logarithmic factor (§3.1). Then we describe the
matrix-vector multiplication algorithm in §3.2 and show its O(n) complexity.

3.1 Storage Requirements

According to Remark 2.5, we have to store the matrices

ATT = (Oé;—]z‘r )1§i§k(‘r),1§j§k(‘r’) for T, 7' S T, 7' son of T, (3 1)
co7 = (’)/‘;-72-70- )1§j§k(o’)71§i§k(o”) for ag, o’ S T, o' son of ag,

of the size k; x k¢y1, where £ = level(r) = level(o) € {0,1,...,p— 1} (cf. (2.22), (2.23)). There are 2!
different pairs 7,7’ with £ = level(7) and 7’ son of 7. Assuming k; < a(p — £) + 3 as proposed in §2.4.6 and
used in Definition 4.7 below, the required storage amounts to

ZZ; 2" ke < ZZ; 2 a(p= 0O +B)(a(p—L=1)+f).

Thanks to (2.26), we obtain

Remark 3.1 The storage needed for all transfer matrices AT €0 s proportional to n.
Next we consider the storage of the coefficients

AR (C?j)lgmgk(b) forb=7x0€ P,

of the block-matrix M’ = D fj[a;,c}’] (cf. Remark 2.4). The total storage is Y, p, k(b)*. Let
Py () := {b € P, : level (b) = £}. The recursions discussed in [3] show #P; (£) ~ 2¢. Hence, Yvep, k(D) <

C>0_o(p—0)%2° ~ n proves
Remark 3.2 The storage needed for all block coefficients matrices Z°, b € Pa, is bounded by O(n).



3.2 Description of the Fast Matrix-Vector Multiplication Algorithm

The fast matrix-vector multiplication algorithm is performed in three steps: (i) forward transformation (see
§3.2.2), (ii) block-multiplication phase (see §3.2.3), and (iii) backward transformation (see §3.2.4). All steps are
shown to require only O(n) operations, hence the matrix-vector multiplication algorithm has linear complexity.

3.2.1 Block-Matrix times Vector

First we consider the multiplication of a block M®, b =7 x o € P,, with a vector #, € V,(c). We denote the
coefficient vector with respect to the basis {a? : 1 <i < k(o)} by %,, i.e.,

k(o
iy = Z,( )fcm- ad. (3.2)

i=1

Remark 3.3 (a) Let b = 7 x 0 € Py, M® = Z” 2lar, e7] with Z° = (C)1<ij<kp) ond &5 € Vo(o).
Then y, = M®%, has the coefficient vector y, = Z'%, with respect to the basis {al : 1 <i < k(7)}.
(b) Let x, € K° have the decomposition v, = %, + v+ with 2, € V,(0) and zt L V.(o). Then

Mbz, = M"%, holds and part (a) applies to M°%,.

Proof. Part (b) is trivial. For (a) note that Mz, = (Z” fj [a{,c;.']) (> hRonay) = Z” ' Xo,ja] because
of <c§,zh Ronaf) = %o ; (cf. (2.24)). ]

3.2.2 Forward Transformations

Let a vector z € K/ be given. Mz is to be computed, where M is an 7—[2 matrix. Due to Remark 3.3, we have
to represent the block-vector x, := (x;);c, as the sum z, = &, + :c , where the coefficient vector X, of z,
must be available. Since M contains blocks of all levels, we need the coefﬁcient vectors X, for all o € T.

We introduce the notation T'(¢) := {7 € T : level (1) = £} for all 0 < ¢ < p.

The following computations start at level p and proceed to level O :

e Start at level £ = p. Let 0 = {s} € T(p). The one-dimensional block-vector z, = (2;)icc = (zs) is
identical to the coefficient vector x,, since the basis is the unit vector af = (1). Hence, X, is known
without any computation and z+ = 0 holds.

e Recursion £ +1 — £ for p > £ > 0. Assume that the coefficient vectors X, of the first summand in
T, = &, +xt are already computed for all 7 € T(¢£ + 1). For all o € T'(£) the new coefficient vectors %,
are constructed as follows. Let ¢’,0"” € T(£ + 1) be the sons of o. The decomposition from level £ + 1
yields N 1

ty =zl +2!! with 2! = [ o ] and z!! .= [ Lo } :
Tgn T

is orthogonal to V. (o), since (¢7, z.) = <R" 7cg ,:c¢> <R" 7l ,,> =04+0=0.

The first term is to be split into 2! = 2, + ! determined by %, € V.(o), !/ 1 V.(0); then
T, = 2, +x with ot := 2t + 211 is the desired decomposition. The entries of the coefficient vectors
X, are determined by X, = <cj, o) = <c;’,$£> Using the construction (2.18) of ¢ (cf. (2.24)), we

obtain
R0 ] [ d,
RS L ) ) e
c Cj o
Inserting the representation (2.23) of Rg'7" cf and o0 = ) ) Ko a‘,jl, we result in®

7 7
Ro— o 0 A _ o0’ o’ _ 0,0 5 J— 0,0 % .
< € ,m0/> - <Z, Vji Z Xo'.n ap, > - Zi’yjl‘ X0 = (C77 X1);

with C77" defined in (3.1). Since the second term is similar, the final representation is

The latter term z 1/

o= (cf,a5) = <

Ry = C7 Ry + C7 R 1. (3.3)

3Without the biorthogonality (2.24), equation (3.3) is obtained with another matrix co’,



By assumption, the coefficient vectors X,/, %, are known. Therefore, only two matrix-vector multipli-
cations by the k; x kyy1-matrices C%7 ,C?? are needed to compute the desired coefficient vectors X,
for o € T'(0).

Since the number of operations needed in (3.3) is proportional to the number of entries in coe', goo
Remark 3.1 implies

Remark 3.4 The performance of (3.3) for allo € T(¢), £ =p—1,...,0, requires O(n) operations and yields
the coefficient vectors X, for all o € T.

3.2.3 Multiplication Phase

For all blocks M?, b = 7 x o € P, the intermediate products y° := M°z, are to be computed, i.e., according
to Remark 3.3 the coefficient vectors yb = Z°%&, of y° are to be computed. The upper index b is used in y?,
since for the same 7 € T several y? for different b may occur (namely b = 7 x o and b* = 7 x ¢* with o # o*).

The number of operations for all products Z°%,, b = 7 x o € P», is again proportional to the entries in all
matrices Z°. Therefore, Remark 3.2 implies

Remark 3.5 The matriz-vector multiplications y° := Z°%, for all b =7 x o € P requires O(n) operations.

3.2.4 Backward Transformations

In the final step we have to gather all partial results y? obtained in the previous phase. Here we use a
backward transformation starting at level £ = 0 and proceeding to £ = p. On each level ¢, we compute y., for
all 7 € T'({), where y, is the coefficient vector for the sum y, defined by

— b :
Yri = E (y2:); fori € 7.
b'=7'x0'€P> with /D1

Note that all 7" D 7 belong to some T'(¢') with ¢' < £. As before, we set Py (£) := {b € P, with level(b) = £}.

e Start at level £ = 0. Since the partitioning P, contains no block of level 0 (the only level-0-block is I x I
and not admissible), the start is given by

yr:=0,
where I € T'(0) is the only cluster of level 0.

e Recursion £ — £+ 1 for p > £ > 0. Assume that the coefficient vectors y, for all 7 € T'(¢) are already

computed. Let 7/,7"” € T'(£ 4 1) be the sons of some 7 € T'(¢). The vector y, =) . y-;a] corresponding
RG T yr
R T yr
R;IVT yr and Rg”’T Yy, are given by

to y, equals [ } by the definition of R;IVT and Rg”’T. The coefficient vectors y,- and y,~ of

Fr = (A" ye,  Fe = (A )y, (3.4)

T _ prT AT — pr T T — ,TT’ 7!
as one concludes from Ry "y, = R} 7 Y, yria] =3, y-iRe Tal =30, yeaqp af

Next, we have to add all contributions from blocks of level £ + 1 :

yr =¥ + Z y?—" (35)
o' with b'=7' X0’ €P2({+1)

Remark 3.6 The number of operations involved in the backward transformations (3.4) and (3.5) is
2 Z?;é kekor 1 #T(L+ 1) + Z?;é H#P(L+1)=2 Z?;é kgk[.;,_l?“_l + #P, ~n.

e Result at level ¢ = p. The resulting coefficient vectors y, for all one-element clusters 7 = {i} € T'(p)
coincide with the component y; of y = Mxz. Therefore, the matrix-vector multiplication is completed.



3.3 Other Matrix Operations

Different from general H-matrices, the sum of two H2-matrices (with the same partitioning and the same
hierarchical bases) can be performed ezactly. Since only the matrices Z°, b € P», are to be added, the cost is
clearly O(n).

We do not discuss the matrix-matrix multiplications in detail, but it may be mentioned that the product
of two blocks is rather cheap since we have to perform scalar products of the form <c37 ,ad > , which are trivial
because of (2.24).

3.4 Constant k(1)
The proof of the following statement is left to the reader.

Proposition 3.7 Let kconst € {1,...,n}. Choose the rank k(1) according to (2.25). Then the storage size of
ATTC%7 | Z° (see Remarks 3.1-2) as well as the matriz-vector multiplication cost amounts to O(n - keonst)-

4 Approximation by Variable Order

In this section, we will explain how the approximation of the integral operator (2.1) via H2-matrices with
variable order k£ can be realised.

4.1 Galerkin Matrix

Let b =7 x 0 € P, and (4,j) € b. The matrix element m;; is defined in (2.3) by f-]i fJJ- s(z,y)dzdy, where
s(z,y) =log(|]z — y|). If we find an expansion
k(b)
s(a,y) & 3(x,y) == Y Yas0a(@)s(y)
a,f=1
which is sufficiently accurate on the rectangle J(7) x J(o) (cf. (2.7)), the Galerkin matrix based on § instead
of s has the entries
k(b)
mij = Z Ya,80a,iC3,; for (i,7) € b with
a,B=1

i = /J po(@)dw and cg; = /J (y)dy.

i

Obviously, the block matrix (1.5) (i jyep = ZZ(?:l 7a7,3aac£ is of the desired form, if the spaces spanned by
aq or cg satisfy the respective consistency conditions (2.19) or (2.20).
Concerning the consistency conditions, we state the following criterion.

Remark 4.1 For b= 1 x 0, let ¢, (z) and Y§(y), 1 < a, 3 < k(b), be the functions involved in the approzi-
mation of s(x,y) by

k(b)
§(,y) = Y Yaspn@Wgy)  for (z,y) € J(r) x J(0).

a,f=1
Set W (1) := span{¢], : 1 < a < k(1)} and We(o) := span{tg : 1 < a < k(0)}. Then the condition
Wao(r") = {@lsiry - 0 € Wa(T)} for all sons 7" of T (4.1)

implies the consistency condition (2.19). Similar for (2.20).

Note that dim V,(7) < dim W, (7) holds, where the strict inequality may occur. Since nothing is to be
discussed about the 1 x 1-blocks b in P» (belonging to level p), we restrict our considerations to the subset of
the “far field” blocks:

P{" .= {be P, : level(b) < p}. (4.2)

In the following, the approximation 3(z, y) is based on Taylor expansions?® of the kernel functions. However,

4Other expansions based on projections or interpolations are possible.



in order to satisfy (4.1), the arising polynomials of degree k(7)—1 must be replaced by very particular functions.

4.2 Taylor Expansions

First, we have to introduce some notations. J := [0, 1] denotes the integration domain.
In order to simplify the notation, we replace the rank k(7) by k(7) + 1, since then k(7) also coincides with

the polynomial degree. In other words, the summation Ekm is replaced by Ek(T )

Definition 4.2 Let w C J and &, be the smallest interval containing w. The Cebysev centre z, of w is the
midpoint of ¢, and the CebySev radius ., equals the halved interval length of ¢, .

Definition 4.3 For w,w C J, the difference domain d,, ., is given by
dyw =w—w:={z€R:3(r,y) €wxw with z=z —y}.

Definition 4.4 Let w C J and f : w = R be sufficiently smooth. The Taylor operator T of order m € N
s given by

m—1

T [fl@) =Y - f<">< W) (@ = 2"

v=0

Lemma 4.5 Let w,w C J satisfy ndist (w,w) > r, + ry, with some n € (0,1]. On the difference domain
d = d, v, the Taylor expansion of the function s : d — R,

s(z) =log|z| (4.3)

about zq of order m satisfies

for all z € d. (4.4)

HOREFRIDIONE { logdist (v, ] m =0

Proof. The remainder Rfim) (z) of the Taylor expansion can be estimated (by using rq = r, + )

(m) P
(m) (] < s O] _ log|¢]|  ifm=0
‘Rd ()‘ rd Sup ] TR LT ifm>0

[log dist (w,w)|  (m =0) [log dist (w,w)| (m =0)

< (o) { Ldist™™ (w,w) (m>0) =\ g™/m (m > 0)

Corollary 4.6 Let w,w be as in Lemma 4.5. The Taylor approzimation of the kernel function log(|z —y|) is
denoted by T(gm) [s] (x —y). The explicit representation

TV sl —y) = > kUM (2) W) (y) (4.5)

v+pu<m—1
holds with 3 (z) = (z — 2,)" and £ = (—=1)"T* s+1) (z4) / (uiv) .

Proof. Reorganising sums and products results in

m—1 1 m—1 v (_1)1/ w v
T [s] (z —y) = ;s(") (za) (2= 20)" = > - 5™ (2q) ( ) (z— 2z0)" (y — 20)" "
v=0 v=0 pu=0 : K
m—1m—1—p v (v4p)
_ (-1 ;9 ' (24) T — z20)" (y — 20)
p=0 v=0 p-v

10



4.3 The Hierarchical Bases Construction

The essential step in the definition of the variable order approximation method is the definition of the restriction

operators. In order to illustrate the underlying idea, we consider a cluster 7 of the cluster tree with sons 7/, 7".
k(r") ~ () ) k)
Assume that the spaces W, (7') and W, (7"") with bases {<I>( ) } and {<I>(TZ,), } are already defined. Then,
i=0 1=0
every function in W, (7) has the representation

u (x) _ ZM*O a(#) (I,(N) ( ) for z c J(T’),
Zu o (TL,L,) <I’(TL,L,) (x) for z € J(v").

Then Remark 4.1 guarantees the consistency condition (2.19). Because of W, (1) = W, (), also (2.20) holds.
The difficulty is that (4.6) is not able to represent monomials of degree k(1) if &k (7) > k( ) k(r'").
Instead, we are looking for approximations of & :

to W, (1), i.e., having a representation (4.6).

(4.6)

= (z — z;)" (see Corollary 4.6) by functions 3 belongmg

The basis functions <i>(T") will be chosen as the composition of the local Taylor polynomials of degree k (1)
(v)

in J(7') and J(7") obtained by expansions of the true monomial ®;”’ around the respective Cebysev centres
z; and z,#. The coefficients ag"’”) = ag”) [<I>(T")], t € {r',7"}, in (4.6) are

v v 1 v
W= a0 = O [ = ) Tleme (4.7

We repeat that this construction yields the true monomial ®) = &) if the functions ®"), t € {7/, 7"},

in the right-hand side of (4.6) are the true monomials <1>§“> and if v < k(t), t € {r',7"}. However, our variable
order assumption leads to the case v = k (1) > k(t).

Definition 4.7 The polynomial degree distribution depends on constants o, 8 > 0 and is given by

k(1) := a(p —level (1)) + 3. (4.8)
For the leaves T € T (i.e., level (1) = p), we put
W (z) = (z — 2,)" for allv € {0,1,...,0}.
Assume that the basis functions &)E”) are defined on all clusters t € T with level (t) > £. Then, for 7 € T with
level (1) = £ — 1, the basis functions 3 are given by

k(r') (Vu) (1) /
&,@(x)::{z ) a8 (@) forae (),

7 4.9
Zz(TO)a(” )<I>(T‘f,) (x) for z € J(7"), (4.9)

with ag"*‘) from (4.7), where 7', 7" are the sons of T.

The approximation of the kernel function is given by replacing the Taylor polynomials <I>(T'/) in (4.5) by the

functions &

Definition 4.8 Letn € (0,1]. A block b =171 x 0 € Py is n-admissible if the following condition holds:
ndist (7,0) > max {diam 7,diam o} . (4.10)
We remark that for the partitioning in (2.11) and (2.12) all b € sz[" (cf. (4.2)) satisfy (4.10) with n = 1.

Definition 4.9 Let b = 7 x o denote an n-admissible block. The approximation to the function s as in (4.3)
s given by

Wloy)= Y KRB (2) @ (y) (4.11)

where HS— g,”) are the Taylor coefficients from (4.5).

We remark that the approximation of s by §, in J(7) x J(o) is not the optimal one. First, we could find
better coeflicients aE"’“) in (4.9) when we look for the best expansion with respect to the basis @g“) (instead

of @g“)). Second, in (4.11) we could allow all indices 0 < v, u < k() instead of v + p < k(D).

11



4.4 Error Analysis

The error analysis of the variable order approximation algorithm consists of a local estimate of the error s — 3,
on admissible blocks and a global estimate of the consistency error. We begin with the local estimates. On
an n-admissible block b = 7 X 0 € P,, the local approximation error is defined by

ep (z,y) =s(z,y) =8 (v,y)  for (z,y) € J(7) x J(0) (4.12)
and its maximum norm by

& = |lesll oo p = sup les (2, 9)] . (4.13)
(z,y)eJ(T)xJ(0)

The expansion with the true Taylor polynomials defines the function

so(z,y) = Y &l e (2) @ (y).
v4+-p<k(b)

The error is split into
ey = (5 —5p) + (55— 5p) = €} + e}l (4.14)

where eg is already estimated by (4.4). The error egl has the representation:

@y = > & (2 (@) - @)l (y)
vu<k(b) i } (4.15)
Y Y @) (0 (y) - B () = el (@) + el ().
v+u<k(b)

The estimate of the difference <I>(T") — &)(T") plays the key role in the following error estimation.
Lemma 4.10 Choose a > 2 and 3 > rnax{goz +1,2a — 1} in (4.8) and put
w>max{2.5,a —1}. (4.16)
Then, for 7 € T with £ = level (1), the difference <I>(TV) — <i>(TV) can be estimated by
|80 — )|, , < Ak (w2_£)u ) where A = 3/2.

Proof. We define an intermediate approximation <i>(T") to <I>(T") by using the true Taylor polynomials in the
right-hand side of

. k(r') (Wﬂ)@(ﬂ) f !
) (z) 1= { Do G R () orx € J(1'), (4.17)

Zz(;;/) a(T'fi“)@(T,,) (z) for z € J(7").
The estimate of <I>(T") — <i>(7”) will be performed on all leaves contained in 7 separately. Let ¢ be a leaf satisfying
t C 7 and define the sequence (7¢, T¢41,...,7p) by t =7, C 7p—1 C ... C Te41 C 7¢ = 7 and level (1;) = 4. For
x € J(t), the representation

ki1

) — B = 2 - &)+ Y alty) (94, — b)
pn=0

i Ti Ti+1 Ti+1)

holds, where k;+1 = k(7;41). Furthermore, we replace, for ease of notation, indices 7; by i, e.g., z; instead of
Zr,. Define the error quantities

0 = (10 — |y, e = (|01 — &1l

(3

Then,

(v,p)

kit1
o < e+ 3 lafrd ot (4.18)
©n=0

12



(i)g,,) is the Taylor expansion of @Ey) on 7;41 of order k;y;. Estimating the remainder of the Taylor expansion
(v)

results in ;' =0 for all v < k;y; and, for v > k41,

kit1+1
W< Tit1 v H( - Zz')uiki“ilH = < v >r',’k"“1rkﬂ1+l
v (kl‘_i,_l + 1)' (I/ —kiy1 — 1)' 00,Tit1 kivi+1/)° o

— ( v >2illki+1l.
kix1 +1

The coefficients ag_':f) in (4.17) vanish for u > v and, for u < v, we have

v v v— 14 v 1% (s e
ag#f)‘ = (M) |2ip1 — 2" = <M>Ti+1” = <H>2 (D) —n)

The coefficients 5§”) in (4.18) are bounded from above by 55”) defined by

55,”) =0 for all v < k, (4.19)
and, fori=p—1,p—2,... £, by
3 =3 (Z) 2~ (1)) §0) for v < Fipn,
©n=0 (420)

kit1
S(v) _ v —(i+1)v—kip1—1 VY o—(i+1)(v—p) 5(1) , ,
u = <ki+1 + 1> B uz:;) <H> g 6 for ki <v < ki,

The estimate SE") < A7P (w271)" stated in Lemma 4.11 yields the proof. n

Lemma 4.11 Let a, 3, and w be as in Lemma 4.10 and set A\ = 3/2. Then, the coefficients Sl(") can be
estimated by SEU) < ATk (w2*")y.

The rather technical proof of this lemma can be found in the Appendix.

We have all ingredients to estimate the approximation error on a local block.

Theorem 4.12 Let «, 3, and w be as in Lemma 4.10. Let n < (Sw)fl. Then, there exists a constant C < oo
so that, for every n-admissible block b = 7 x o with level (7) = level (o) = £, the error €y as in (4.13) can be
estimated by

<0 (),

Proof. In view of the splittings (4.14) and (4.15) it remains to estimate e,'"". The coefficients kY from

(4.15) can be estimated by

(v,n)
Kro

< (VTR |log dist (7, 0)] ifv+p=0
v dist ™" # (1,0) [ (v + ) ifrv+p>0

By using ‘@E,”) (y)‘ =y — z,|" <7t =27V for y € J(0), we obtain (with A = 3/2)

lei @y < D

v+p<k(b)

< Z 1 (V + N) ATHO) (w27 9—(E+1)p

(v,p)
Kt

[0 (2) - ) (@) |0 )|

iatV TR
L<viperm? THN Y dist”™ (7, 0)
’ 1 v S
<xre 3 (VT e
V4 14
1<v+u<k(b)
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Choosing 7 < (4w)™", we obtain

k(b)
el (a gy M T R <4-3<§) >g4w<b>.
V.

pn=0rv=0

The estimate of e/ can be obtained in the same fashion by using

[0 ()] < [0 ()] + 81 (&) — 8% (@)] < 20 4 XTHO) (27 < (2270
with @ = 2w and proceeding in an analogous way. ]

We come now to the global estimate of error caused by replacing the kernel function by the variable order
approximation. Let S denote the space of piecewise constant functions on the mesh {Ji}?zl. The L?-norm
on an interval ¢t = (a,b) is denoted by ||-[|, ; while we skip the index ¢ for ¢ = (0,1). The global error of the
approximation is given by

E(u,v) := Z u (z) ep (z,y) v (y) dydz for u,v € S.
bePf " b
Theorem 4.13 Let a,3,w, and n be as in Theorem 4.12. There ezists a constant C' so that, for all u,v € S,
E(u,v) < Chllully vl -

Proof. Let Py (€) := {b € P5 : level (b) = £} and T({) := {7 € T : level (1) = £} for all 0 < £ < p — 1. For
b=71x0 € P ({), we have |7| = |o| = 27¢. Introduce

Ny = sup sup Z 1, No = sup sup Z 1.

0<t<pT€eT(L) 0<t<po€eT(L)

o with T xo€P({) T with T7xXo€P2(¢)

Using Theorem 4.12, we obtain with A = 3/2

p—1

E=) ) /U(w)eb(:ﬁ,y)v(y)dydw
=0 bepy(0)”b
p—1

<> Y ox Vil vl

=0 b=rx0€EP;(f)

p—1
—k _ 2 2
< ChY A ket > s, > o,
=0 b:TXO'GPQ(E) b:TXO'GPQ(E)
p—1
<Oy AR 2 lally, > 1 Z lollo, > 1
=0 TeT (L o:TXoEP2 (L) oeT (L T:TX0EP2({)

= Chlully olly VNG 3 A2
£=0

For a > 2, we have A\ke2r—¢ < (%)lipand S oA he2r=t < S (8 )E ? < 9. One can see from the
construction in Definition 2.2 that the numbers Ny, N2 can be estlmated from above by a constant as well. m
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5 Appendix (Proof of Lemma 4.11)

We recall k; = a (p — i)+ (8 with «, 8 > 1. Hence, SE") = 0 for all 7 and v < 8 and we assume, for the following,
that v > 8+ 1 holds. The proof is given by an induction with respect toi=p,p—1,..., £.

e i = p. Definition (4.19) implies 35" = 0 for all v < k.
e Assumption: Assertion holds up to an index i + 1:

3 <Ah (w279)” forally <kj, je{i+1,i+2,...,p} (5.1)

e i +1—1:

Plugging (5.1) into the sum in (4.20) results in

v

Z <Z> 2—(i+1)(u—u)5£i)l < Z <Z> 9= (i+1)(v—p) ) —ki41 (w2—¢—1)u
n=0 h=0
— 2*(i+1)VA*ki+1 (1 —}—w)" — )\*ki (w2—z')1/ 1/11{
with 1] = A (522)”. Choosing w > 2.5 yields:
v v B+1
1 7 7

A (%) <\ (1—0> < e <E> . (5.2)

Simple analysis shows that, for

B> gatl,

the right-hand side in (5.2) is bounded from above by 1/2, i.e., 4] < 1 and the assertion is proved for v < k; .
For v > k;y1, we estimate the sum as above, while the first term in (4.20) is estimated by

v ; i\ V
27(l+1)117k1'+171 _ A*ki 272 11
<k¢+1 + 1) (w ) v

with

- _ Nk
11 — 2 v )\ki27ki+171 v < 2 v 20[71 ~ 1
o (20) kiyi1+1/) — (2) 2 kiv1+1

e (N @ =D+ B (alp—)+ -1 (alp—i)+B-a+2)
= (2w) 72 <§> (@ —1)!

< ()27 (g)k o _i)! ~ (20)™ <§)k % < Cu(20)™
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with

Simple analysis yields:

The sum 1L + X! can be estimated by
a— —v 1 !
s ull <4a- )T o) e ()
w
Choosing

6
a > 1.5, ﬂZmax{ga+1,2a—1}, w > max{2.5,a—1}

yields that, for all v > 8+ 1, the sum ! + 14X is bounded from above by 1.
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