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Abstract

We present a new version of the panel clustering method for a sparse rep�

resentation of boundary integral equations� Instead of applying the algorithm

separately for each matrix row �as in the classical version of the algorithm�

we employ more general block partitionings� Furthermore� a variable order of

approximation is used depending on the size of blocks�

We apply this algorithm to a second kind Fredholm integral equation and

show that the complexity of the method only depends linearly on the number�
say n� of unknowns� The complexity of the classical matrix oriented approach

is O
�
n�

�
while� for the classical panel clustering algorithm� it is O

�
n log� n

�
�

� Introduction

Elliptic boundary value problems with constant coe�cients can be transformed into
integral equations on the boundary of the domain via the method of integral equa�
tions� From the numerical point of view� this approach is interesting especially for
problems on unbounded domains where the direct discretization with �nite element
or �nite di�erences is not straightforward�

Boundary integral equations are discretised in many engineering applications via
the boundary element method by lifting conventional �nite element spaces onto the
surface of the domain� Due to the non�localness of the integral operators the arising
system of equations is fully populated� Hence� the work for the classical matrix�
oriented approach grows quadratically in the number �n� of unknowns�

In �	
� ��
� and ���
� the panel clustering algorithm was introduced for collocation
methods� By using polynomial approximations of the kernel function of the integral
operator it was possible to split the dependence of the integration variable from the
source points� The algorithm was applied for each matrix row separately� In ��
�
it was shown that the complexity of the algorithm is proportionally to O �n log� n�
with moderate �� In ��

� ��
� ���
� �

� the panel clustering algorithm was introduced
for the Galerkin discretization of boundary integral equations� The key role plays a
symmetric factorization of the kernel function with respect to both variables� Again�
the algorithm is applied to each matrix row separately�

�



In ���
� ��
� ��
� the fast multipole method was introduced for the e�cient eval�
uation of sums in multiple particle systems� Here� the algorithm was applied not
pointwise but appropriate block partitionings are employed� The complexity of the
algorithm is again proportionally to O

�
n logk n

�
� In ���
� a block version of the panel

clustering algorithm was introduced� The complexity is still O �n log� n� while the
constants in the complexity estimates are smaller than for the classical approach�

In our paper� we introduce a variable order approximation on the clusters resulting
in an algorithm with complexity O �n�� As a model problem we consider a Galerkin
discretization of a second kind Fredholm integral equation� The fact that boundary
integral equations can be realized �with full stability and consistency� in O �n� oper�
ations whilst the classical matrix oriented approach has complexity O �n�� seems to
be of interest� Generalizations of our approach to more general integral equations are
the topic of future research�

Another way of a sparse approximation of boundary integral operators are wavelet
discretizations� In the past decade they were intensively developed for boundary
integral equations� There are versions for second kind integral equations by ���
� ���

�complexity O �n log� n��� The approach presented in ��	
 reduces the complexity to
O �n�� However� the e�ciency of wavelet methods depends on the number of �smooth�
charts being employed for the representation of the surface� If the surface is rough
and complicated the e�ciency breaks down while the panel clustering method works
especially well for complicated surfaces�

An algebraic approach to the data�sparse realization of non�local operators are
H�matrices �see ��
� ��
�� Matrix blocks are approximated by low rank matrices� The
choice of the approximation system can be based on a singular value decomposition
and is suited to approximate inverses of sparse matrices e�ciently�

In this paper� various notations and conventions will be used� In order to improve
readability� we have collected below the most relevant ones along with a link to their
�rst appearance�

�



Notations�

k kernel function �see �����

k
�m�
c panel clustering approximation �see Assumption ��� and �����

�
���
c ��

���
c expansion system �see De�nition ����

�������c coe�cients appearing in the shift of the expansion system
�see ��
���

�k
�m�
c auxiliary Taylor approximation of k �see ������

�����
c � �����

c auxiliary �Taylor� expansion system �see ������

N
���
c � �N

���
c auxiliary expansion functions �see ����� ������

A
���
c �u
 � B

���
c �u
 � B� partial sums related to the panel clustering representation

�see ����� �
��� �
����
B�� M�� �� �Ceby�sev ball� centre� radius �cluster ball� centre� radius�

�see De�nition 
��
��c approximate cluster radius �see ������
sc maximal side length of circumscribing box bc �see ������
�� h minimal element radius� step size �see ����� ������
P ���� N� F covering of �� �� near�eld� far�eld �see De�nition �� and �����
level� L Cluster�block level� maximal depth of the tree �see De�nition

�� and ��
���
m �c�� m �c�� m ��� Distribution of approximation order �see ��	�� Remark ���

De�nition 	���
�I�IIm � �m� �c� �c Index sets �see Assumption ��� De�nition ��� Notation ����
ref� invref Mapping � pullback to reference tree �see ��	���

L�i�
k ��� Layers around � �see De�nition �	��

For a set M � we write
S
M short for

S
m�M M � The area of a surface piece � � �

is denoted by j�j�
Throughout the paper� we use the convention that� for a �nite element function

u� its coe�cient vector in the basis representation is denoted by u�
Similarly� a block of clusters is denoted by c �bold� while its components are c��

c�� indicating the correspondence c � �c�� c���
Two approximation systems will appear for the approximation of the kernel func�

tion� One corresponds to the variable order panel clustering approximation and one
has auxiliary character� All quantities being related to the auxiliary function system
are denoted with a superscript ��� as� e�g�� �k� ��� etc�� while the true expansion system
is denoted without a superscript�

�



� Setting

Let � � R
� denote an orientable� su�ciently smooth manifold �� � C� is su�cient��

On �� we consider the integral equation with the classical double layer potential in
the weak form� For given f � L� ���� �nd u � L� ��� so that

�� �v� u���� � �v�Ku���� � �v� f���� � �v � L� ��� ���

holds with

K �u
 �x� �

Z
�

k �x� y�u �y� dsy�

k �x� y� �
�

�n �y�

�

kx� yk 	 ���

Here� L� ��� denotes the set of all measurable functions on � which are square in�
tegrable and ��� ����� the L��scalar product on �� The vector �eld n �y� denotes the
oriented normal vector �eld at a surface point y � ��

The Galerkin discretization of ��� is given by replacing the in�nite dimensional
space L� ��� by a �nite dimensional subspace V� The Galerkin solution uG is the
solution of

�� �v� uG���� � �v�KuG���� � �v� f���� � �v � V	 ���

Our aim is to use �nite element spaces lifted to the manifold � as the subspace V�
Finite element spaces are de�ned on �nite element grids� We introduce the two�
dimensional master triangle Q having the vertices ��� ���� ��� ���� ��� ����

De�nition � A �nite element grid of � is a set G � f
�� 
�� 	 	 	 � 
ng consisting of
disjoint� open surface pieces 
i � � satisfying

� � �
SG�

� for all 
 � G� there exists a Ck�di�eomorphism �� � Q � 
 �k su�ciently
large� which can be extended to a Ck�di�eomorphism ��� � Q� � 
 � for some
open neighbourhoods 
 � � 
 and Q� � Q�

Notation � The elements of a �nite element grid are called �geometric �nite el�
ements	� In the context of boundary element methods they are alternatively called
�panels	�

In this paper� we restrict to piecewise constant approximations on triangulations�

De�nition � The space S���� is given by

S���� �
�
v � L� ��� � �
 � G � v j�� const

�
	

�



A local basis of S���� is formed by the characteristic functions on the triangles�

b� � � � R�

�
 � G � b� �x� �

�
� x � 
�
� otherwise�

By using the basis representation

uG �x� �
X
��G

uG �
� b� �x� � ���

the Galerkin discretization can be transformed into a system of linear equations�

�M � K�uG � g

where M�K � RG�G and uG� g � RG are given� for all 
� t � G� by

M��t � �� �b� � bt���� � uG � �uG j� ���G �
K��t � �b� � K �bt
���� � g �

�
�b� � f����

�
��G

	

The matrix M is diagonal while K is a fully populated n � n�matrix� Hence� the
classical matrix oriented approach costs �at least� O �n�� operations�

The idea of the panel clustering method is to use an alternative representation of
the discrete integral operator which can be written in the form

K 	 N � B�FC� �
�

where the matrix N is sparse containing only O �n� non�zero entries� Furthermore�
B� C � C

m�n with m 
 n and F � C
m�m � Note that� by using this representation�

the matrix elements of K are not known� i�e�� direct solvers cannot be applied to this
system� However� for large n� iterative solvers are much more e�cient than direct
solvers and should be used instead� For iterative solvers� the matrix elements of
K are not required� Matrix�vector multiplications appear as elementary operations
which can be performed e�ciently by using the splitting �
�� The rest of the paper
is concerned with the de�nition and analysis of an approximate factorization of the
integral operator in ����

First� we have to introduce some geometric notations�

De�nition � A cluster is the union of one or more panels�

The geometric size of a cluster can be described via the �Ceby�sev radius of the
cluster�

De�nition � For a subset � � Rd � the 
Ceby
sev ball B� is the ball with minimal
radius containing �� The 
Ceby
sev centre M� is the midpoint of this ball and the

Ceby
sev radius �� its radius�






Notation � For a cluster c� the 
Ceby
sev ball� 
Ceby
sev centre� and 
Ceby
sev radius
are alternatively denoted by cluster ball� cluster centre� and cluster radius�

For the e�ciency of the algorithm� it is important to organize the clusters in a
hierarchical tree� In this light� a set �set of sons� has to be associated with each
cluster�

De�nition � A set of sons � �c� associated with a cluster c

�� is either the empty set�

�� or is the union of one or more disjoint clusters satisfying

c �
�

� �c�	


� If � �c� � � then c � G�
A cluster c with � �c� � � is called a leaf�

De�nition 	 A cluster tree T corresponding to a grid G consists of clusters with
associated sets of sons satisfying�

�� � � T �

�� Any c � T with associated set of sons � �c� satis�es either

�a� � �c� � ��
�b� c �

S
� �c�	

Remark 
 We do not require that 
� �c� �� �� For the later constructions� it will be
convenient to allow 
� �c� � � implying �c � c for �c � � �c��

In the next step� we will associate to each cluster a level indicating the depth in
the cluster tree� Since the largest cluster� i�e�� the surface �� is subdivided recursively
into smaller clusters� it is natural to use the depth of a cluster 
 as an indication of
the geometric size as well�

De�nition �� The function level� T � N� is the recursive function

level ��� � ��

level ��c� � level �c� � �� ��c � � �c� � �c � TnG	
The depth of the cluster tree is

L � max flevel �c� � c � Tg
while the minimal depth is given by

Lmin �� minflevel �
� � 
 � Gg 	 �	�

For � 
 � 
 L� the tree level T ��� contains all clusters c � T with level�c� � ��

	



The term �v�Ku���� in ��� contains an integral over �� ��

�v�Ku���� �

Z
���

v �x� u �y� k �x� y� dsydsx	

In the next step� the product � � � is partitioned into pairs of clusters de�ning a
block partitioning of �� �� A pair c � �c�� c�� � T � T is called a block�

De�nition �� Let � � ��� ��� A block c � T � T is ��admissible if

max f�c�� �c�g 
 � dist �c�� c�� ���

holds with �c� � �c� as in De�nition ��

If there is no ambiguity we write �admissible� short for ���admissible��

De�nition �� Let c � �c�� c�� � T � T � The set of sons of c is given by

� � �c� � � �c��� � �c�� provided � �c�� �� � and � �c�� �� ��
� � �c� � � �c��� fc�g provided � �c�� �� � and � �c�� � ��
� � �c� � fc�g � � �c�� provided � �c�� � � and � �c�� �� ��
� � �c� � � provided � �c�� � � �c�� � ��

A block c � T � T is called a leaf if � �c� � �� The tree T induces a block cluster
tree T ��� of �� ��

De�nition �� T ��� is a block cluster tree if

� ����� � T ����

� every c � T ��� satis�es one of the alternatives�

� c is a leaf�

� c �
S
� �c��

Note that the block cluster tree T ��� is fully determined by the cluster tree T �

De�nition �� A subset P ��� � T ��� is a block partitioning of �� � if the elements
of P ��� are disjoint and

�� � �
�

P ���	

It is an ��admissible block partitioning if every c � P ��� satis�es one of the alternatives

�



� c is a leaf�

� c is ��admissible�

It is a minimal� ��admissible block partitioning if there is no ��admissible block
partitioning with less elements�

Algorithm �� The minimal� ��admissible block partitioning of �� � is obtained as
the result of the procedure divide������ � �� de�ned by �see ����

procedure divide�c� P ��
begin

if �c is a leaf� then P �� P � fcg
else if �c is admissible� then P �� P � fcg
else for all ec � � �c� do divide�ec� P � �

end


The partitioning Pmin contains non�admissible leaves and admissible blocks� These
subsets are denoted by N �near�eld� and F �far�eld��

N � � fc � Pmin � c is non�admissibleg � ���

F � � PminnN	
On blocks c � F � the kernel function will be replaced by an approximation of a
certain order� The idea is that� on blocks consisting of clusters of similar size� the
approximation order is the same and� in addition� the approximation order is smaller
on smaller blocks�

De�nition �� Let Lmin be as in ���� The order distribution function m � F � N�

depends on two constants a� b � N� and is given by

m �c� �� a �Lmin � �min �c��	 � b ���

with
�min �c� � minflevel �c�� � level �c��g

and
���	 � max f�� �g 	

The order distribution is extended to a function m � F � T � N� by

m �c� � max fm �c� � c � F � c � fc�� c�gg � c � T	 ����

Remark �� One could generalise the function m by allowing a� b � R�� and de�ning

m �c� ��
�
a �Lmin � �min �c��	 � b

	
�

where dxe denotes the smallest integer larger than or equal to x�

�



Remark �	 De�nition �� implies that the approximation order on a block �c�� c�� is
determined by the �larger cluster	 c � argminflevel �c�� � level �c��g� The approx�
imation order is high on large clusters� e�g�� m ����� � aLmin � b and small for small
clusters as� e�g���

m �c�� c�� � b

for all c�� c� satisfying level�c�� �level�c�� � Lmin�

Remark �
 In Subsection 
��� a construction for the sets T � P ��� is presented which
always guarantees that �c�� c�� � P ��� implies that c� and c� belong to the same T ���
for some �� In this case� the order distribution m only depends on the level ��

� The variable order panel clustering algorithm

In this section� we will de�ne the panel clustering algorithm� In the previous section�
we have de�ned a partitioning of ��� into a minimal� ��admissible block partitioning
Pmin � N �F � On the portion

S
N � ���� the standard� matrix oriented approach

is used while� on
S
F � the kernel function is approximated by suitable expansions�

Let the kernel function k be as in ����

Assumption �� There exist positive constants C�� C�� C
� C� � R�� � integers ���
�I� �II� dI� dII � N� and C�� � � ��� �� having the following properties� For all
� � ��� �� and all ��admissible block partitionings P ��� of �� �� for all c � F � there

is a family of approximations k
�m�
c � m � N� � of the kernel function k satisfying

k �x� y�� k�m�

c
�x� y�



 
 C�C
m
� dist�� �c�� c�� � � �x� y� � c	 ����

having the form

k�m�
c

�x� y� �
X

������Im
��m�
��� �c� ����

c� �x� ����
c� �y� ����

with index sets Im � N
dI
� � N

dII
� � m � N� � satisfying


Im 
 C� �m � ���� � ����

�Im � �
n
� j �� � N

dI
� � ��� �� � Im

o
� ����

�IIm � �
n
� j �� � N

dII
� � ��� �� � Im

o
� ��
�


�sm 
 C
 �m � ���s � s � fI� IIg � ��	�

j�j 
 C� �m � �� � �� � �sm� s � fI� IIg � ����

�Im � �IIM � �IIm � �IIM � �� 
 m 
M	 ����

�For a block c � �c�� c��� the notation m �c�� c�� is short for m ��c�� c����

�



The approximation of the kernel function is based on a modi�cation of Taylor
expansions� In this light� we begin with analysing the �true� Taylor approximation

of the kernel function k
�m�
c and� then� explain the modi�cation� We begin with intro�

ducing some notations�
For c � F � the di�erence domain d �c� is given by

d �c� � c� � c� �
�
z � R

� j � �x� y� � c � z � x� y
�
	 ����

Put zc � Mc� �Mc� �cf� De�nition 
�� One easily checks that� since c is admissible�
zc �� �� The kernel function in relative coordinates de�nes the function krel � c� �
d �c� � R

krel �y� z� � hn �y� � zi k� �z�

with

k� �z� ��
�

kzk� 	 ����

Taylor expansion of k� about zc yields �writing n short for n �y���

k
�m�
rel�c �y� z� � hn� zi

X
j�j	m

�z � zc�
�

� 
k
���
� �zc� � ����

where we employed the usual multi�index notation for � � N�
� � Re�substituting z �

x� y� factorizing �x� y � zc�
� with respect to x�Mc� and y�Mc� � and rearranging

the terms results in�

�k�m�
c

�x� y� �� k
�m�
rel�c �y� x� y� �

�X
i��

X
j�j	j�j�m

�x�Mc��
� ni �y �Mc��

� �
�m�
����i �c� ����

with

�
�m�
����i �c� �

����j�j

� � 

�
��i � �i� k

��	��ei�
� �zc� � �zc�i k

��	��
� �zc� j�j� j�j � m�

��i � �i� k
��	��ei�
� �zc� j�j� j�j � m	

Here� feig�i�� denotes the set of canonical unit vectors in R� � Introducing the seven�
dimensional index set�

eIm �
�

��� �� i� � N
�
� � N

�
� � f�� �� �g � j�j � j�j 
 m

�
	

and the function system

����� �x� � �x�Mc��
� � �����i� �y� � �y �Mc��

� ni �y� ����

�For the variable order panel clustering algorithm� the functions �� �Mc�
� will be replaced by

suitable approximations� This is the reason why we denote the function in ���� by �k
�m�
c instead of

k
�m�
c �

��



results in an expansion of the form ����� In order to reduce the number of indices

the three�dimensional coe�cients and functions ��� and
��
�� c are introduced by

��� �m�
��� �c� �

n
�
�m�
����i �c�

o�

i��
�

��
�� ��� �

�
�����i� �y�

��

i��
	

The expansion ���� can be rewritten as

�k�m�
c

�
X

������Im

�����
c

��
�� ���

c
��� �m�

��� �c�

with the six�dimensional index set

Im �
�

��� �� � N
�
� � N

�
� � j�j � j�j 
 m

�
and the convention

��
�� ���

c
��� �m�

��� �c� �
�X

i��

�����i�
c �

�m�
����i �c� 	

In ��� Appendix A
� it was proved that there exists constants fC�� fC�� and e�� so that

k �x� y�� �k�m�
c

�x� y�


 
 fC�

�fC���
�m

jk �x� y�j ����

holds for all �x� y� � c satisfying kx� y � zck 
 �� kzck and all �� � ��� e����
Lemma �� Let P ��� denote an ��admissible block partitioning of ��� with � � ��� ��

and � �� min
n

�


� �

�fC�

o
� Then� Assumption �� is satis�ed�

Proof� Since the block partitioning was assumed to be ��admissible we conclude�

kx� y � zck 
 kx�Mc�k� ky �Mc�k 
 �c� � �c�
���


 �� dist �c�� c�� 	

The distance can be estimated by�

dist �c�� c�� 
 kMc� �Mc�k� �c� � �c� 
 kMc� �Mc�k� �� dist �c�� c�� 	

Using � � �



we get
dist �c�� c�� 
 � kMc� �Mc�k

and� �nally�
kx� y � zck 
 �� kzck 	

By choosing !� � e���� in Assumption �� with e�� as in ���� results in �� �� �� � ��� e���
in ����� Hence� ���� holds with C� � �fC�� � ��
� Let C� denote the smallest
constant so that� for all c � P ��� and all �x� y� � c�

jhn �y� � x� yij 
 C� kx� yk� 	

��



Then�

jk �x� y�j �
hn �y� � x� yi
kx� yk� 
 C�

�

kx� yk 
 C� dist�� �c�� c�� � � �x� y� � c

and Assumption �� is satis�ed for km
c

� �k
�m�
c with C� � fC�C��

Some combinatorial manipulations yield


�Im 
 � �m � ��
 � i�e�� C� � �� �� � 		

Obviously�

�Im �
�
� � N

�
� � j�j 
 m

�
��
�

��IIm �
�
� � N

�
� � j�j 
 m

�� f�� �� �g 	 ��	�

Again� some combinatorial manipulations lead to

C
 � �� �I� � �II� � �� dI � �� dII � �	

Finally� C� � � is trivial�
In ��

� ��
� it was proved that all kernel functions corresponding to elliptic bound�

ary value problems admit an approximation satisfying Assumption ���

Remark �� For the variable order panel clustering algorithm� the Taylor�based ex�
pansion derived in the previous example will be modi�ed by replacing the expansion
functions ��
� by approximations having more hierarchical structure with respect to
the order m�

Remark �� The panel clustering method is by no means linked to Taylor based
expansions� Other expansions as� e�g�� expansions in spherical harmonics could be
preferable for special applications�

The panel clustering approximation of �v�Ku���� is given by

�v�Ku���� 	
X
c�N

Z
c

v �x� u �y� k �x� y�dsxdsy ����

�
X
c�F

X
������Im�c�

��� �m�
��� �c�

Z
c�

����
c�

�x� v �x� dsx

Z
c�

��
� ���

c�
�y�u �y�dsy	

The function m �c� determines the order of approximation on blocks c � F ���� It
was de�ned in De�nition �	 while the constants a� b � N� will be �xed in De�nition
	�� Assumption �� implies

Im�c� � �Im�c� � �IIm�c�	

��



Let c � �c�� c�� � F � Then� m �ci� � m �c� for i � �� � �cf� ������ resulting in

Im�c� � �Im�c��
� �IIm�c��

	 ����

Property ���� will allow to decompose the computations related to the index set Im�c�

into separate computations on the index sets �Im�c��
� �IIm�c��

�

For the evaluation of a matrix�vector multiplication� expression ���� has to be
evaluated for all basis functions v � b� � 
 � G�

The variable order panel clustering algorithm

The variable order panel clustering algorithm depends on various parameters�

� �� The constant appearing in the de�nition of ��admissibility�

� The choice of the constants a� b in the de�nition of m � m �c� �as in ���� in
����� The precise choice of a and b is given in De�nition 	��

Setup phase�

�� For a given mesh G� build up the cluster tree T and compute all cluster radii
and cluster centres�

�� Compute Pmin by using the procedure divide of Algorithm �
�

�� For all far�eld blocks c � F � ��� �� � Im�c�� compute the coe�cients ��� m�c�
��� �c��

�� Compute the near�eld matrix entries�

N��t �

Z
��t

k �x� y� dsydsx� � �
� t� � N	


� For all 
 � G� compute the basis far�eld coe�cients�

JI
��� �

Z
�

����
� �x� dsx� �� � �Im����

��
J II

��� �

Z
�

��
� ���

� �x� dsx� �� � �IIm���	

Evaluation phase�

Let u � S���� and u � R
G so that u �

P
��G u �
� b� as in ����

�� Compute the far�eld coe�cients� For all c � T �

��
J II

c�� �u
 ��

Z
c

��
� ���

c �x� u �x� dsx� �� � �IIm�c�	

��



�� For all c � �c�� c�� � P ��� ��� � � � �Im�c� �

A���
c

�u
 ��
X

��������Im�c�

��� m�c�
��� �c�

��
J II

c���
�u
 	 ����

�� Approximate a matrix vector multiplication byX
t�G

N��tu �t� �
X
c�F

X
��
I

m�c�

Z
c�

A���
c

�u
 ����
c�

�x� b� �x� dsx� �
 � G	 ����

Remark �� Let c � �c�� c�� � F and mi � m �ci�� i � �� �� For the realization of
the algorithm� it is essential that

Im�c� � �Im�
� �IIm�

holds� This condition is guaranteed since� in view of ����� we have mi � m �c� and

Im�c� � �Im�c� � �IIm�c� � �Im�
� �IIm�

	

In the sequel� we will comment on the realization of the single steps in the algo�
rithm which is essential for both� the practical implementation and the complexity
analysis� Some further approximations and relaxations will occur�

��� Construction of the cluster tree

Let G denote the given mesh of �� In a �rst step� one has to compute the centre and
radius �cf� De�nition 
� of each panel 
 � G� The smallest radius de�nes the quantity

� �� min
��G

�� � ����

while the �step size� h of G is given by

h � max
��G

diam 
	 ����

We give a construction based on an auxiliary uniform grid with a uniform par�
titioning� This grid is not needed in the true computations but inherits a simple
logical structure to the true grid G� Let Q denote the smallest cube containing �
with edges parallel to the coordinate axes� Without loss of generality we may assume
that Q � ��� ���� We introduce a sequence of physically and logically nested grids on
Q�

For � � N� � let h� � ��� and n� � ��� The interval �i�� is de�ned� for � 
 i 
 n��
by �i�� �� ��i� ��h�� ih��� For � � �N�n� �

�� a cell q��� is given by

q��� � ����� � ����� � �����	

��



Lemma �� For � � �N�n� �
� and � � N� � the radius and centre of q��� are given by

���� � � �q��� �
p

�
h�
�
� ����

M��� � � Mq��� � h�
�
�� ��� ��� �� ���

�
	

The reference grid Q� is de�ned by

Q� ��
�
q��� � � � �N�n� �

�� 	 ����

Obviously� each element q � Q� has exactly eight sons in Q�	� satisfying

q �
�

� �q�	

In other words� fQ�g��N� is an oct�tree� This tree will be associated to G� Let L
denote the smallest number so that

p
�
hL
�

 � ��
�

holds with � as in ����� Hence� a cluster tree for the auxiliary grid QL is given by
Q � fQ�g����L�

Any element 
 � G is associated to that element q � QL containing the centre of

 � �If there are multiple possibilities� choose one of them�� This de�nes a mapping
ref� G � QL� Since the mapping ref is injective �cf� ��� Remark 
��
� the pullback
is well�de�ned on Range �ref�� In this light we de�ne invref� QL � G � f�g via

invref �q� �

�

 if q � ref �
�
� otherwise�

��	�

The following procedure builds up the cluster tree along with the tree levels� Before
we present the formal description of the algorithm we explain the underlying ideas�
Our aim is to generate a balanced tree with the additional properties that

�� the number of sons of any cluster is di�erent from one�

�� the geometric size of a cluster on level T ��� is of order ���� i�e�� there exists
C� � � so that� for all c � T ����

C��
� ��� 
 �c 
 C��

��	 ����

The cluster ball� centre� and radius are approximated as follows� A box is a
rectangular parallelepiped with axes parallel to the coordinate system� For a cluster�
it is quite simple to determine the minimal box b �c� containing c� The approximate

�




cluster ball� centre� and radius are de�ned as the �Ceby�sev ball� centre� and radius of
b �c� and are denoted by �B �c�� �Mc� and ��c� By this construction it is guaranteed that

c � �B �c� � sc�� 
 �c 
 ��c� ����

where sc denotes the maximal side length of b �c��
The clusters �corresponding to a reference cube q � Q�� are built recursively by

collecting the clusters
S

�q���q� finvref ��q�g� However� if a cluster contains only one

son or the maximal side length sc is so small that ���� is violated� this cluster is
absorbed in the neighbouring cluster� The choice of the neighbouring cluster involves
the de�nition of layers around a set ��

De�nition �� Let Q� be as in �
��� For � � R� � the layers Li
k around � are given

by L�
k ��� �� � and� for � 
 k 
 L� i � N � by the recursion�

L�
k ��� � �

�
fq � Qk j q � � �� �g �

Li	�
k ��� � � L�

k

�Li
k ���

�
	

If a cluster c � T ��� has only one son or is too small it will be �absorbed� in a
�neighbouring� cluster �c � T ��� �with reference cluster �q ��ref��c�� satisfying

�� c � L�
�	� ��q�� i�e�� �c is �close� to c�

�� s�c � cmin�
��� i�e�� �c is �su�ciently big� �cf� ������

The algorithm depends on the parameter cmin � � controlling the relative small�
ness of a cluster� The precise choice of cmin is given in Lemma 
��

The recursion starts on the panel level and we put T �L� � G and T �L� �� � ��
On the panel level� we assume that the cluster centres� balls� and radii are computed
exactly� Then� the procedure build cluster tree generates a coarser level from the
�ner level recursively� As a side result� the mapping ref is extended to all clusters
and the pullback invref is de�ned� The procedure is called by

� �� L� ��
while T�	� �� � do begin

build cluster tree�T�	�� T�� �� � � �� �� ��
end


while the procedure build cluster tree is de�ned by

procedure build cluster tree�T�	�� T�� �� �
begin

for all q � Q� do begin c �� �� � �c� �� ��invref�q� �� ��
Comment� The sons of the reference cluster q will be collected�

�	



for all �q � � �q� do begin

�c ��invref��q� � c �� c � �c�
if �c �� � then � �c� �� � �c� � f�cg�

end


if c �� � then begin

T� �� T� � fcg � ref�c� � q� invref�q� �� c� level�c� � ��
end


end


Comment� Clusters having only one son or too small radius are absorbed in a
neighbouring cluster�

for all c � T� do begin

compute b �c� as the minimal box containing
S

�c���c� b ��c��

the approximate cluster centre �Mc�
the approximate cluster radius ��c�
and the maximal side length sc of b �c��
if 
� �c� � � or sc 
 cmin�

�� then begin�

N �c� ��
�

�c � T� j c � L�
�	� �q�c�

�
� ����

if N �c� �� � then determine �c � N �c� so that

s�c � sc�� �c� � N �c� �

T� �� T�n fcg � �c �� �c � c� � ��c� �� � ��c� � � �c� �
invrefqc � �� update b ��c�� �M ��c�� ���c� and s�c�

end
end
end
end


The approximations of the cluster radii and cluster centres will be employed to
check whether a pair of clusters is ��admissible� A su�cient condition is given in the
next lemma�

Lemma �� Let the approximate cluster centre� radius and ball be as in the procedure
build cluster tree� Let c�� c� � T and put� for i � �� �� ��i �� ��ci and

�Bi �� �B �ci��
Then� the condition

max f���� ���g 
 � dist
�

�B�� �B�

�
� ����

implies that the block �c�� c�� is ��admissible�

�We employ the notation� that� for a cluster c� the reference cube is denoted by qc ��ref�c� and�
for a cube q � Q�� the pullback by cq ��invref�c��

��



Proof� Let i � f�� �g� Our construction directly implies that the minimal ball Bi

containing ci is contained in �Bi� Hence� the true cluster radii ��� �� can be estimated
by

max f��� ��g 
 max f���� ���g 	
Since ci is contained in �Bi evidently

dist
�

�B�� �B�

�

 dist �c�� c�� 	

We have proved that condition ���� implies

max f��� ��g 
 max f���� ���g 
 � dist
�

�B�� �B�

�

 � dist �c�� c��

and �c�� c�� is ��admissible�
The lemma above motivates the de�nition of strong ��admissibility� We employ

the same notation as in that lemma�

De�nition �	 A block c � �c�� c�� � T ��� is strongly ��admissible i�

max f���� ���g 
 � dist
�

�B�� �B�

�
	

In order to check the strong ��admissibility the approximate centre and radius of
the clusters have to be stored� The computation of an ��admissible� block partitioning
P ��� of �� � is performed by using Algorithm �
� where the check of ��admissibility
is replaced by checking the strong ��admissibility�

Remark �
 If the clusters along with the associated set of sons are constructed by
the algorithm build cluster tree� then� T is a cluster tree�

Remark �� For � 
 � 
 L� the construction of the cluster tree implies that the tree
levels

T ��� � fc � T j level �c� � �g 	 ����

satisfy

� �
�

T ��� � �� 
 � 
 L�

G � T �L� 	

The block�cluster tree T ��� is determined from T �cf� De�nition ����

Remark �� All blocks �c�� c�� � T ��� consist of clusters of the same level�

level �c�� � level �c�� 	

��



��� Computation of the expansion coe�cients� near�eld ma�

trix and basis far�eld coe�cients

In Lemma ��� we have shown that expansion ���� has the required approximation
property �Assumption ���� For the variable order panel clustering method� the ex�
pansion system ���� in ���� will be replaced by approximations to it �see Subsection

���� while the corresponding expansion coe�cients ��� �m�
��� �c� are as in ����� For the

realization of the algorithm� they have to be computed and stored for each far�eld
block� E�cient algorithms for computing ��� �m�

��� �c� are developed� for collocation dis�
cretizations� in ��
 and ���
 and� for Galerkin discretizations� in ��
� ��

� ��
� We do
not recall here the details of the algorithms�

It will turn out from the error analysis that� in the special situation under consid�
eration �discretization of an integral equation of zero order with piecewise constant
elements�� the near�eld matrix N can be replaced by the zero�matrix� No work at all
is needed for this step�

It remains to compute the basis far�eld coe�cients� We consider here only the
more involved case II�

��
J II

��� �

Z
�

��
� ���

� �y�dsy� �� � �IIm���� �
 � G	

It will turn out that on the panel level� we restrict to polynomial expansions� i�e��

����
� �x� � �x�M� �� �

��
� ���

� � �y �M� �� n �y� 	

In the case of �at panels� the normal vector n is constant on 
 and the integration can
be performed analytically �cf� ���
�� For more general parametrisations� the integrals
have to be evaluated numerically� Transforming 
 onto the master element Q �cf�
De�nition �� yields�

��
J II

��� �

Z �

�

Z 
�

�

g� ���
��
� ���

� � �� ��� d��

where g� denotes the surface element� Since �� and n are smooth the integrand is
smooth as well� Due to ���� we know

j�j 
 C� �m �L� � ��
���
� C� �b � �� 	

Hence� standard quadrature formulae as� e�g�� conical Gau" rules� could be applied�
For given �� the number of quadrature points for conical Gau" rules approximating
JII
��� with an accuracy of O �diam� 
� is independent of diam 
 �

��� Computation of the far�eld coe�cients

In this subsection� we will de�ne precisely the approximation system for the variable
order panel clustering method� Before we present the formal algorithm� we start with

��



some motivations� We have shown that� on a cluster c � T � the expansion system


��
���i�
c � ni ��

���
c �cf� ��� has the required approximation property� In order to compute

the far�eld coe�cients J
���i�
c �u
 one has to evaluate the integrals

J ���i�
c �u
 �

Z
c

ni �y� �����
c �y�u �y� dsy	 ����

For the e�ciency of the panel clustering method� the hierarchical structure of the
cluster tree T plays a key role� The splitting of the integral

J ���i�
c �u
 �

X
�c���c�

Z
�c

ni �y� �����
c �y�u �y�dsy

is based on this tree structure� Assume that the �consistency condition�

�����
c j�c � span

n
��
����
�c � �� � �Im��c�

o
� �� � �Im�c� ����

holds� i�e��
�����
c j�c �

X
���
Im

������ec��
����
ec 	 ����

Then� ���� can be evaluated by the recursion�

J ���i�
c �u
 �

X
�c���c�

X
���
I

m��c�

�������cJ
����i�
�c �u


yielding a fast tree algorithm� Since ��
���
c are polynomials� the restrictions ��

���
c j�c are

polynomials as well and ���� holds provided �Im�c� � �Im��c�� Some algebraic manipula�

tion yields that� in this case� the coe�cients �������c in ���� are given by

������ec ��

� �
�
��

�
�M

ec �Mc�
���� �� 
 ��

� otherwise�
��
�

For the variable order panel clustering algorithm� the expansion order m �c� satis�es
��� resulting in �Im�c� �� �Im��c� and� in general� ���� is violated�

This is the reason why we modify the expansion system for the variable order
panel clustering� The system �

���
c should satisfy the consistency condition and have

the same approximation property as the polynomials ��
���
c � On the panel level we put

�
���
� � ��

���
� � while on the larger cluster� the consistency condition ���� with �������c as

in ��
� is explicitly used as the recursive de�nition of �
���
c �

�The same arguments apply to the function system ��
���
c �

��



De�nition �� The index sets �Im� �
II
m � Im are given by

�Im � � �IIm ��
�
� � N

�
� j j�j 
 m

�
� ��	�

Im � �
�

��� �� � N
�
� � N

�
� � j�j� j�j 
 m

�
and the expansion functions �

���
c �

��
�

���
c by the recursion�

� for the panels 
 � G �

�
���
� �x� � �x�M� �

� �� � �Im������
�

���
� � �y �M� �� n �y� �� � �IIm����

����

� for the clusters c � TnG�

�
���
c j

ec�
X

e��
I
m��c�

���e��ec�
�e��
ec �� � �Im�c� �ec � � �c� �

��
�

���
c j

ec�
X

e��
II
m��c�

���e��ec
��
�

�e��
ec �� � �IIm�c� �ec � � �c� 	

����

Remark �� Since the functions �
���
c �
��
�

���
c are de�ned separately for each son �c �

� �c�� they are� in general� discontinuous� On each panel 
 � c� they are polynomials

of degree b �cf� ����� �
���
c can be regarded as an approximation to the polynomial

�����
c � �x�Mc�

� by piecewise polynomials of degree b�

Notation �� Due to ���� we skip the superscript I� II in �I�IIm�c�� Furthermore� we

write �c short for �m�c� and� for a block c � F � �c short for �m�c� �cf� De�nition ����

For the computation of the far�eld coe�cients� the hierarchical de�nition of the
expansion functions is used� The initial step is performed on the panel level G�
Compute and store� for all 
 � G�

��
J II

��� �u
 �� u �
�
��
J II

���� �� � �� 	

Assume inductively that all coe�cients
��
J II

�c�� �u
 are computed for all �c � � �c� and
c � TnG� Then

��
J II

c�� �u
 �

Z
c

��
� ���

c �y�u �y�dsy �
X
ec���c�

Z
ec

��
� ���

c �y�u �y� dsy� �� � �c	

By using ���� we obtain

��
J II

c�� �u
 �
X
ec���c�

X
e��
�c

���e��ec
��
J II
ec�e� �u
 � �� � �c	 ����

��



��� Evaluation of a matrix vector multiplication

The computation of the quantities Ac�� �u
 is straightforward� It will turn out that it
is preferable to compute and store directly the quantities��

B���
c�

�u
 ��
X

c���c��c���F

�A���
c

�u
 � �c� � T� �� � �c� �
��

with

�A���
c

�u
 ��

�
A

���
c �u
 � if � � �c�

� if � � �c�n�c�
�c � �c�� c�� � F	

We turn to the evaluation of the sum in ����� Since we replaced the near�eld matrix
N by the zero� the sum in ���� consists only of the far�eld evaluation�

v� �
X
c�F

X
��
c

Z
c�

A���
c

�u
 ����
c�

�x� b� �x� dsx	 �
��

In view of �
��� it is advantageous to rewrite this formula as

v� �
X
c��T

X
��
c�

Z
c�

B���
c�

�u
 ����
c�

�x� b� �x� dsx	 �
��

In the next step� we will derive a hierarchical representation of this formula� The
summation over c� � TnG in �
�� can be split into a sum over the sons � �c��� We
obtainX

��
c�

Z
c�

B���
c� �u
 ����

c� �x� b� �x� dsx �
X
ec����c��

X
��
c�

Z
ec�

B���
c� �u
 ����

c� �x� b� �x� dsx	 �
��

On the other hand� the summation in �
�� contains a partial sum over � �c�� of the
form� X

ec����c��

X
���

fc�

Z
ec�

B
����
ec�

�u
 �
����
ec�

�x� b� �x� dsx	 �
��

In the next step� the right�hand side in �
�� will be added to �
��� Plugging in ����
into �
�� and re�organizing the terms shows that the sum in �
�� equalsX

ec����c��

X
e��

fc�

Z
ec�

R
�e��
ec�

�u
 �
�e��
ec�

�x� b� �x� dsx

with
R

�e��
ec�

�u
 �
X
��
c�

���e�� ec�B
���
c� �u
 	

�Recall that� for c � �c�� c�� � F � we havem �c�� � m �c� �cf� �	
�� ����� implying �I
m�c� � �I

m�c��
�

��



Hence� �
�� and �
�� can be added resulting inX
ec����c��

X
���

fc�

Z
ec�

�
R

����
ec�

�u
 � B
����
ec�

�u

�

�
����
ec�

�x� b� �x� dsx	

Iterating this algorithms over the hierarchical structure of T leads to Algorithm
�
 for the evaluation of v� � The tree levels T ��� are as in De�nition �� and B

���
c �u


as in �
���

Algorithm �� The procedure evaluate sums shifts the expansions from the coarse
levels to the �ner ones and accumulates the coe�cients on the �nest level�

procedure evaluate sum�begin

for all � � �� do R���
� �u
 �� B

���
� �u
 �

for all � �� � to L� � do

for all c � T ��� do

for all ec � � �c� do begin for all �� � ��c
R����
ec �u
 �� B

����
�c �u
 �

P
��
c ������ecR

���
c �u
 �

end�

for all 
 � G do

v� ��
X
��
�

R���
� �u
JI

����

end�

� Error analysis

��� Abstract error estimates

We have presented a variable order panel clustering algorithm based on block parti�
tionings of � � � for the discretization of the second kind integral equation in ����
The discretization is based on piecewise constant �nite element spaces� It is well
known in the theory of boundary elements that the Galerkin solution to this problem
converges as

ku� uGk��� 
 Ch kfk��� �

�

provided f � H� ��� where k�k��� denotes the H��norm� Let fuG � S���� denote the
solution if the integral operator in ��� is replaced by the panel clustering approxi�
mation� In this section� we will prove that� under the abstract Assumption ��� the
solution fuG exists and satis�es the error estimate �

�� too� with a possibly larger
constant C� In this section� the error estimates will be derived from abstract assump�
tions while� in Sections ��� and ���� we will show that these assumptions are satis�ed
for shape regular� quasi�uniform meshes�

��



De�nition �� The uniformity of a mesh G is characterized by the smallest constant
Cu satisfying

h 
 Cuh� � �
 � G
where h is as in �
�� and

h� �� diam 
	

De�nition �� The quality of panels is characterized by the smallest constant Cq

satisfying
h�� 
 Cq j
 j � �
 � G	

Remark �	 Since G only contains �nitely many panels� the constants Cu� Cq are
always bounded� However� it will turn out that the constants in the estimates below
behaves critically with increasing values of Cq� Cu and we assume here that Cq and
Cu are of moderate size�

Assumption �
 The tree T is balanced in the sense that all panels 
 � G have the
same depth in the tree�

level �
� � L� �
 � G	

Remark �� By using the construction of Subsection 
��� Assumption 
� is always
guaranteed�

Remark �� De�nition �
 and �� imply that all blocks c � �c�� c�� � P ��� consist of
clusters of the same level�

level �c�� � level �c�� 	

For � 
 � 
 L� we introduce the far�eld levels F ��� by

F ��� � f�c�� c�� � F � level �c�� � level �c�� � �g 	

Then� the function m � F � N� as in De�nition �� only depends on the level �� For
c � F ���� we have

m �c� � a �L� �� � b	 �
	�

The right�hand side in ���� de�nes a function �m � N� � N� � If there is no ambiguity
we write again m instead of �m�

Assumption �� There exist constants C
 � � and � � C� � � so that� for all
� 
 � 
 L and any c � T ����

C��
� ��� 
 �c 
 C��

���

diam c 
 C
h�L��	

��



Assumption �� The constants a in ��� is chosen so that a � � and �Ca
� �� C� � �

holds with C� as in Assumption ���

We need an assumption estimating� for c� � T ���� the number of clusters c�
forming a block �c�� c�� in F ����

Assumption �� There exist positive constants CI
� � C

II
� � � so that� for all � 


� 
 L and all c � T ����


 fc � F ��� � c� � cg 
 CI
� �


 fc � F ��� � c� � cg 
 CII
� 	

The near�eld matrix is replaced by zero� In order to estimate the arising error we
need an assumption concerning the number of near�eld matrix entries�

Assumption �� There exist positive constants CI
��� C

II
�� � � so that� for all � 


� 
 L and all 
 � G�


 ft � G � �
� t� � Ng 
 CI
���


 ft � G � �t� 
� � Ng 
 CII
��

with N as in ����

The error estimate of the Galerkin discretization including panel clustering is
based on the second Strang lemma ��
� For u� v � S����� let

E ��



�v�K �u
� eK �u


�


 �
where �K denotes the panel clustering approximation to K� In order to estimate E�
we need an auxiliary result�

Lemma �� Let Assumption ��� 
�� and �� be satis�ed� There exists a constant
C�� �� so that� for all � 
 � 
 L and every c � F ���p

jc�j jc�jCm���
� dist�� �c�� c�� 
 C��hC

L��
� 	 �
��

Proof� Recall that � 
 C� � �� Let c � F ���� Without loss of generality we
assume that

�c� � max f�c� � �c�g 	
Hence� p

jc�j jc�j 
 C��c� �

�




where C depends only on �the curvature of� the surface �� Using ���� Assumptions
�� and �� we obtainp

jc�j jc�jCm���
� dist�� �c�� c�� 
 C��c�C

m���
� 
 CC
h�L��Cm���

�

and� by employing Assumption ���p
jc�j jc�jCm���

� dist�� �c�� c�� 
 CC
h ��Ca
� �L�� � CC
hC

L��
� 	

Lemma �� Let Assumptions ��� 
�� ��� �
� ��� and �� be satis�ed� There exists a
constant C so that� for all u� v � S���� �

E 
 Ch kuk��� kvk��� 	

Proof� We employ the splitting E � E� � E� with

E� �
LX
���

X
c�F ���

Z
c

u �x� v �y�
�
k �x� y�� km���

c
�x� y�

�
dsydsx

E� �
X

�t����N

Z
t��

u �x� v �y� k �x� y� dsydsx

and estimate E�� E� separately�

E� 

LX
���

X
c�F ���

Z
c

ju �x�j jv �y�j 

k �x� y�� km���
c

�x� y�


 dsydsx

����



LX
���

X
c�F ���

p
jc�j jc�jC�C

m���
� dist�� �c�� c�� kuk��c� kvk��c�

����


 C��C�h
LX
���

CL��
�

X
c�F ���

kuk��c� kvk��c�


 C��C�h
LX
���

CL��
�

�
� X
c�F ���

kuk���c�

���
��� �
� X

c�F ���

kvk���c�

���
���


 C��C�h
LX
���

CL��
�

�
� X
c��T ���

kuk���c�
X

c��c�F ���

�

���
��� �
� X

c��T ���
kvk���c�

X
c��c�F ���

�

���
���


 C��C�

q
CI
�C

II
� h kuk��� kvk���

LX
���

CL��
� 
 C��C�

p
CI
�C

II
�

�� C�

h kuk��� kvk��� 	

�	



For the estimate of E� we begin with considering a single pair of panels �t� 
� � N �



Z
t

v �x�

Z
�

u �y�k �x� y�





 dsydsx 
 C�

Z
t

jv �x�j dx
Z
�

ju �y�j kx� yk�� dsydsx


 C� kvk��t kuk���

Z
t��

kx� yk�� dsydsx	 �
��

Since u is constant on t and v on 
 � we get

kvk��t kuk��� �
kvk��t kuk���pjtj j
 j 	

We turn to the integral in �
��� We distinguish two cases�
�a� dist �
� t� � �� The shape regularity and the quasi�uniformity of the meshes

imply�
dist �
� t� � Ch	

Hence�

kvk��t kuk���

Z
t��

kx� yk�� dsydsx 
 C��h��
p
jtj j
 j kvk��t kuk��� 
 C��h kvk��t kuk��� 	

�b� dist �
� t� � �� There exists a mapping � � R� � R� which is su�ciently
smooth� independent of h along with a subset U � R

� with � �U� � t�
 � Furthermore�
we may assume that there exists a constant C independent of h so that U is contained
in a ball B centred at the origin with radius Ch� Then�Z

t��
kx� yk�� dsydsx 
 C

Z
B�B

k� ���� � ���k�� d�d�	

We introduce polar coordinates at ��

� � � � r� ���

with � ��� � �cos�� sin���� Hence�Z
t��

kx� yk�� dsydsx 
 C

Z
B

Z Ch

�

Z ��

�

r k� ���� � �� � r��k�� d�drd�	

The quotient
r

k� ���� � �� � r��k
stays bounded as r � � as a consequence of the regularity of �� Thus�Z

t��
kx� yk�� dsydsx 
 C

Z
B

Z Ch

�

Z ��

�

�d�drd� 
 Ch��

kvk��t kuk���

Z
t��

kx� yk�� dsydsx 
 Ch kvk��t kuk��� 	

��



Summing all near�eld entries yields�

E� 
 Ch
X

�t����N
kvk��t kuk��� 
 Ch

�
� X
�t����N

kvk���t

���
��� �
� X

�t����N
kuk����

���
���


 Ch

�
�X
t�G

kvk���t
X

� ��t����N
�

���
��� �
�X

��G
kuk����

X
t��t����N

�

���
���


 C
q
CI
��C

II
��h kvk��� kuk��� 	

Theorem �	 Let the assumptions of Lemma �� be satis�ed and h su�ciently small�
Then� the solution fuG to �
� with K replaced by the panel clustering approximation
exists for any f � L� ���� If f � H� ��� the error estimate

ku� fuGk��� 
 Ch kfk���
holds�

Proof� In view of Lemma �� the result follows from ��� Lemma �����
�

��� Verifying the assumptions on the cluster tree and the

partitioning P
���

In this subsection� the abstract geometric Assumptions ��� ��� and �
 are proved
for shape regular� quasi�uniform meshes� In ��
� related results have been proved
by formulating certain abstract assumptions �see ��� Criterion �B�� d�� �B���
� for
the cluster tree� Then� it was shown that surface meshes being images of Cartesian
grids in the parameter plane satisfy these assumptions� Our construction �procedure
build cluster tree� applies for any quasi�uniform surface mesh while the analysis is
di�erent from ��
�

We impose two further geometric assumptions on the surface �� The �rst one is
satis�ed for all reasonable surfaces and the second one is imposed to reduce techni�
calities�

Notation �
 The three dimensional ball �with respect to the maximum norm� centred
at x � R� with radius r is denoted by B�

r �x�� For r � �� the r�neighbourhood of � is

Ur ��� ��
�
x � R

� j �y � � � kx� yk 
 r
�
	

Assumption �� There exist positive constants c�� C� so that� for all x � � and all
� � r 
 diam �

jB�
r �x� � �j � c�r

��

jUr ���j 
 C�r	

��



For all subsets � � �� the diameter diam� can be estimated by

diam� � c�
p
j�j�

where j�j denotes the two�dimensional surface measure of ��

Assumption �� � is a closed� simply connected surface�

Lemma �� Let Assumption �� and �� be satis�ed� Let � 
 L � � with � ��

lb
�
�	
p

�Cu

�
� In procedure build cluster tree choose cmin 
 min

n
��

p
c����

o
����

Assume c � T ��� satis�es
sc 
 cmin�

��	

Then� there exists �c � T ��� �with reference cluster �q ��ref��c�� satisfying �cf� ������

c � L�
�	� ��q� � s�c � cmin�

��	

Proof� We may assume that � � � since� for � � �� we have c � � and s� �
� � cmin� Let c � T ��� with � 
 L � � �� as above�� Put qc ��ref�c�� Since � is
closed �cf� Assumption 
�� there exists 
 � G with 
 � c �� � and 
 � c � �� Hence�

 � �q �� � implying

dist ��q� c� 
 h	

Choose x � 
 �implying x � ��� Hence� c � B�
r�

�x� �cf� Notation ��� with r� � h�sc�
Condition ��
� and De�nition �	 imply�

r� 
 �
p

�Cu��L � cmin�
�� � �����

�
�
p

�Cu���L � �cmin

�

 �����	 �
��

Now� consider B�
r�

�x� with r� � ����� and put � � � �B�
r�

�x�� Denote

G ��� �� f
 � G � 
 � � �� �g 	
Hence� all approximate cluster centres of 
 � G ��� are contained in B�

r�
�x� with

r� � ����� � h� Similarly to the estimate of r� in �
�� one derives r� 
 ������ De�ne

N �x� ��
�

�q � Q� j B�
r�

�x� � �q �� �� 	
Then� all �q � N �x� have the property bc � L�

�	� ��q�� Assumption 
� implies that






�

�q�N �x�

invref ��q�







 � 

B�
r� �x� � �



 � c�r
�
�

holds� Obviously� 
N �x� 
 � and� hence� there exists �q � N �x� with associated
cluster �c ��invref��q� satisfying j�cj � r��c���� By using Assumption 
� we obtain�

s�c � ��c � �

�
diam �c � �

�
c�

p
j�cj � �

�
p

�
c�r�

p
c� �

c
���
�

��
p

�
��� � cmin�

��	

In view of this Lemma we formulate the assumption concerning the choice of cmin�

��



Assumption �� The constant cmin in the procedure build cluster tree is chosen
so that

cmin 
 min

�
��

q
c����

�
���	

Lemma �� Let the cluster tree be generated by the procedure build cluster tree�
Let Assumption ��� ��� and �
 be satis�ed� Then� there exist constants C
 �� and
� 
 C� �� so that� for all � 
 � 
 L and every c � T ����

C��
� ��� 
 �c 
 C��

�� �	��

diam c 
 C
h�L��	 �	��

Proof� �a� The largest cluster c � � clearly satis�es �	�� and we may restrict to
the case c �� ��

�b� We �rst prove the left�hand side in �	��� Lemma 
� implies that� for all
� 
 L� �� the procedure build cluster tree guarantees

sc � cmin�
��� �c � T ��� 	

For the cluster radius we obtain

�c � �

�
diam c � sc�� �

�
�

�
cmin

�
���	

For � � L� � and c � T ��� we obtain with � as in ����

�c � � �
p

�
hL
�

�

�
�

�

p
����L

�
��� �

�
�

�

p
����

�
��� �

�
�

��Cu

�
���	

�c� Next� we will prove the right�hand side in �	��� First� we will show that any
c � T ��� is contained in

Ld
L

�L�
L��

�L�
L��

�
	 	 	

�L�
�	� �qc�

����
with qc ��ref�c� and d �

�
�
p

�Cu

	
�

The proof of this assertion is given by induction with respect to ��

� � � L� Then� T �L� � G� Choose 
 � T �L� and put q ��ref�
�� The side
length of q is hL� Let t � G so that �t � � holds �cf� ��
��� Due to ��
� we
know

�� 
 h� 
 Cuht 
 �Cu� 
 �
p

�CuhL

and� hence� 
 is contained in Ld
L �q� with d �

�
�
p

�Cu

	
�

� Assume that the assertion holds for k � � � �� � � �� 	 	 	 � L�

��



� The assumption of the induction implies that each �c � T �� � �� is contained in

Ld
L

�L�
L��

�L�
L��

�
	 	 	

�L�
�	� ��q�

����
with �q ��ref��c�� Since c is either not �absorbed� �cf� procedure build cluster tree�
or absorbed in a cluster c� satisfying c � L�

�	� �q�� with q� ��ref�c�� the cluster
c is contained in

Ld
L

�L�
L��

�L�
L��

�
	 	 	

�L�
�	� �q�

����
	 �	��

�d� The right�hand side in �	�� is a cube with side length

hq � �
�
hq�

�� � hq�
�� � 	 	 	 � hq�

��L � dhq�
�L� 
 �dhq � �d���	 �	��

Hence� the cluster radius of any c � T ��� can be estimated by

�c 
 diam c 
 �
p

�d��� 

�

��Cu � �
p

�
�

��� �	��

and the assertion holds with C� � ��Cu � �
p

��
�e� The estimate �	�� follows from �	�� via

diam c 
 C��
�� 
 C�hL�L��

����


 C�
�
p
�
��L�� 
 C�

�
p
�
h�L�� �� C
h�L��	

Lemma �� Let the Assumptions of Lemma �� be satis�ed and the construction of
P ��� be based on the strong admissibility condition� Then� there exist positive constants
CI
� � C

II
� �� so that� for all � 
 � 
 L and all 
 � T ����


 fc � F ��� � 
 � c�g 
 CI
� �


 fc � F ��� � 
 � c�g 
 CII
� 	

�	
�

Proof� For � � �� the left�hand sides in �	
� are zero since F ��� � � due to
T ��� ��� � f�����g and ����� is non�admissible�

Let � � � and �c� � T ���� The father of �c� is denoted by c� � T ��� �� and
characterized by

�c� � � �c�� 	

Let �c� � T ��� with c � �c�� c�� � F ���� The father of �c� is denoted by c�� Since the
construction of P ��� was based on strong admissibility� we have

max f��c�� ��c�g � � dist
�

�B �c�� � �B �c��
�
� �		�

max f���c�� ���c�g 
 � dist
�

�B ��c�� � �B ��c��
�
	

��



Using ���� we get

dist
�

�B ��c�� � �B ��c��
�

 dist

�
�B �c�� � �B �c��

�
� ���c� � ���c�

�

�
� �� � ���� ���c� � ��c�� 	

The approximate ��c� was de�ned as the �Ceby�sev radius of the minimal cube containing
c�� This cube is smaller than the box �	�� yielding �by using �	���

��c� 

p

�sc� 
 �d
p

����	

This implies that� for �xed �c�� all strongly ��admissible clusters �c� are contained in
the ball B �c�� centred at the approximate cluster centre �z�c� with radius

��c� � �� � ���� ���c� � ��c�� � ���c� 
 �Ch�	

The number of clusters c� being strongly ��admissible with respect to c� is bounded

by the number of cubes q� � Q� touching B �c��� Since jB �c��j 
 ����
�

�Ch�

��

and

jq�j � h�� � this number is bounded by a constant CI
� independent of � and c�� The

estimate of CII
� 
 C � is just a repetition of the arguments�

Lemma �� Let the Assumptions of Lemma �� be satis�ed and the construction of
P ��� be based on the strong�admissibility condition� Then� there exists positive con�
stants CI

��� C
II
�� �� so that� for all � 
 � 
 L and all 
 � G


 ft � G � �
� t� � Ng 
 CI
���


 ft � G � �t� 
� � Ng 
 CII
�� 	

Proof� Let 
 � G� Every t � G with �
� t� � N satis�es

max f�t� ��g � � dist �Bt� B� �

since� on the panel level� the cluster balls and radii are computed exactly� Hence�

dist �t� 
� 
 dist �Bt� B� ����t���� 
 h

�
�

�
� �

�

 �

�
�

�
� �

�
Cu� 
 �

�
�

�
� �

�
Cu

p
�hL	

Any t � G with �
� t� � N is contained in a ball B �
� centred at the centre of 
 with
radius

�

�
�

�
� �

�
Cu

p
�hL � �� � ht 
 �

�
�

�
� 	

�
Cu

p
�hL	

The number of those panels t is bounded by the numbers of cubes q � QL touching
B �
�� Since jB �
�j � O �h�L� and jqj � h�L� this number is bounded independent of 

and ��

��



��� Verifying the approximation property of the expansion

system

In this subsection� we will prove that the expansion system de�ned in De�nition ��
satis�es Assumption �� with m ��� as in �	��� In order to reduce the technicalities in
the proofs below we impose a weak assumption �Assumption 
�� on the sizes of the
sons of a cluster�

De�nition �� Let c � T �i� and �c � T �j� with j � i and �c � c� The chain

K�c�c � �cj� cj��� cj��� 	 	 	 � ci�

is given by the recursion�

cj � �c�

ck�� � � �ck��� � ck� k � j� j � �� 	 	 	 � i � �	

Assumption �	 There exist positive constants c��� !� � � so that� for all clusters
c � T and all sons �c � � �c�� either �c � c or the ratio of the cluster radii satis�es�

c�� 
 ��c��c 
 !�	 �	��

For all clusters c � T and all panels �c � G with �c � c� the number of repeated clusters
in the chain K�c�c is bounded by �

sup
c�T

sup
�c�G
�c�c

n�c�c 
 n �	��

with
n�c�c �� 
 f�c � K�c�c j 
� ��c� � �g 	 �	��

De�nition �
 Let � � R
d with centre M�� The Taylor operator T

�m�
� is given for�

mally by

T �m�
� �f 
 �x� �

X
j�j�m

���� �f 
 �����
� �x�

with

���� �f 
 �
�

� 
f ��� �M��

and
�����
� �x� � �x�M��� 	 ����

The auxiliary functions
��
�� ���

� are de�ned by

��
�� ���

� �y� �� �����
� �y�n �y� 	

��



The expansion functions �
���
c and

��
�

���
c �cf� De�nition ��� can be regarded as

approximations to the functions ��
���
� and

��
��

���
� � The precision is concerned in Lemma

	�� The normal derivatives of the Taylor polynomials are denoted by

�N ���
c ��

�X
i��

ni �y� ����	ei�
c �y� � hn� y �Mci �����

c ����

while an analogous quantity for the true expansion system is de�ned by

N ���
c ��

�X
i��

ni �y� ���	ei�
c �y� 	 ����

It remains to de�ne the constants a� b for the function m ��� � a �L� �� � b deter�
mining the degree of approximation on a block�

De�nition �� Let Assumption �� be satis�ed� For � 
 � 
 L� the function m ���
determining the variable order of approximation is given by

m ��� � a �L� �� � b� ����

with a� b � N� chosen so that

a � � and �Ca
� �� C� � � ����

�cf� Remark ��� and

b � max

�
� jlog ����
��� j

jlog ��j � � � a log ��

jlog �	��
� j � �

�
a log ��

log �
� �

�
� log �
jlog ��j �

log
�a�	C
��
������a� �
log �

�

��� ��
�

with �
 � ��

Note that the conditions on a and b stem from the proof of the approximation
property which we expect are by far too restrictive� In a forthcoming paper� the
results of numerical experiments will be presented dealing with the optimal choice of
a� b� !� for practical problems�

Lemma �� Let Assumptions ��� ��� ��� ��� ��� and �
 be satis�ed� For all �
 � c����
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hold with !n as in �����
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Since the proof of this Lemma is rather technical it is postponed to the Appendix�
The approximation of the kernel function on a block c � �c�� c�� � P ��� ��� is given
by

k �x� y� 	 k�m�
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�x� y� ��
X

������Im

��� �m�
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with m � m ��� and ��� �m�
��� as in ���� and �

���
c� �

��
�

���
c� as in De�nition ��� The error

analysis consists of a consistency and stability part�
For the error analysis� it is preferably to write the Taylor approximation according

to ���� in a di�erent form �with n � n �y��
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and ��� �� as in De�nition 
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Proposition �� The approximation k
�m�
c can be written in the form ���� by replacing

the Taylor polynomials �����
c by the hierarchical approximations ����

c �

Proof� By de�nition� k
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c has the representation
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�This expansion is derived by re
substituting z � zc � x � Mc� � �y �Mc�� in ����� writing
hn� zi � hn� x�Mc�i � hn� y �Mc�i� hn� zci� and re
organizing the sums and products�

�




Performing the same index manipulations as for the derivation of ���� yields the
assertion�

For the estimate of the approximation error� we employ the splitting�

ec �x� y� �� k �x� y�� k�m�
c

�x� y� �k �x� y�� �k�m�
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The estimate of eI

c
�x� y� directly follows from Lemma �� and we proceed with con�

sidering eII
c

�x� y�� By employing ����� ����� and ���� the di�erence �k
�m�
c � k

�m�
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be split into three parts�
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We work out the details only for the case eIII
c

while the estimate of the errors eIV�V
c

is just a repetition of the arguments�
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In order to estimate eV I
c
� eV II

c
we need an auxiliary result estimating the size of �

�m�
��� �

Lemma �� Let c � �c�� c�� be ��admissible� Then�

��m�
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Proof� We start with estimating the derivatives of the function k� � dc � R

as in ����� Note that all z � dc satisfy kzk � dist �c�� c��� For any w � C
� with

kwk� 
 kzck �
�
�
p

�
�

�with zc � Mc� �Mc��� we have
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�

dist �c�� c�� 	

Hence� the function
g� �w� �� kzc � wk��

is holomorphic with respect to each component in Br� ���� i�e�� in the ball in complex
plane centred at the origin with radius r� �� kzck �

�
�
p

�
�
� Applying Cauchy#s integral

formula in each component results in
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with � � ��� �� ��� and r � � kzck ��� The function g� can be estimated by
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The connection between g� and k� is given by k
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� �zc� � g
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� ��� and� hence�


k���� �zc�




 �



g���� ���




 
 ��� 

�
�

kzck
�j�j	�

	

In view of ����� we obtain the assertion�
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Theorem �� Let Im� �
I
m� �

II
m � and the expansion systems �

���
c � �

���
c be chosen as in

De�nition 
� and the distribution of the expansion order as in De�nition ��� Let the
Assumptions of Lemma �� be satis�ed� Then� there exists � depending only on C
�
C�� ��� a� b� c��� !� so that the expansion ���� satis�es Assumption ���

Proof� In view of ���� along with Lemma �� we may restrict to the estimate of
eII
c

� As before� we work out the proof only for the partial error eIII
c

in ���� while
the estimate of eIV�V

c
is just a repetition of the arguments� Hence� it is su�cient to

estimate the errors eV I
c

and eV II
c

�see ��
��� Using Lemma 	� and 	� along with
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with �C � �� ��C��
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By choosing �
 � �� we have proven an estimate of the form �����

It remains to estimate eV II
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� The norm of the expansion functions ����
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with suitable ��� Hence� by using ��
� in combination with ����� ����� Lemma 	�� and
Assumption �� we get
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where M� � max fC���� ��g� Assumption �� implies ��� 
 C��� and� hence� the
rest of the estimate is just a repetition of the arguments used for proving ��	�� For
su�ciently small !�� an estimate of the form

eIII

c
�x� y�



 
 �CCm�

��III dist�� �c�� c��

holds with C��III � �� Similarly� the error contributions eIV
c

and eV
c

�cf� ����� can be
estimated�

Remark �� For the approximation k
�m�
c �x� y� as in ����� the constant C� in As�

sumption �� is independent of a in ���� �cf� ������ Hence� the constant a could be
chosen so that

��C
a
� �� C� � �	

��



� Complexity analysis

In this section� we will prove that� for quasi�uniform and shape regulars meshes� the
storage amount and complexity of the variable order panel clustering method depend
only linearly on the number of unknowns without any logarithmic terms� The key
role in these proofs is played by sharp estimates on the number of blocks contained
in the far�eld levels F ��� and in the near�eld N � Let n denote the number of panels�
i�e�� n � 
G � dimS�����

Lemma �� Let Assumption �� be satis�ed� There exist positive constants C��� C�


so that� for all � 
 � 
 L� the number of near�eld and far�eld blocks is bounded by


F ��� 
 C���
�� ����


N 
 C�
n	 ����

Proof� First� we prove ����� By construction �cf� procedure build cluster tree�
the cluster tree T is balanced implying F ��� � T ��� � T ���� In view of Lemma 


and Lemma 
	 it is su�cient to proof that there exists a constant C�� so that� for all
� 
 � 
 L�


T ��� 
 C���
�	

All cluster centres M� of panels 
 � G are contained in an h�neighbourhood Uh ���
of � which was already introduced in Notation ��� The number of clusters contained
in T ��� is bounded from above by the number of cubes q � Q� satisfying

Uh ��� � q �� �	 ����

All cubes with this property are contained in Uh	d ��� with d �
p

������ Due to the
quasi�uniformity of the grid� there exists C � � so that h � d 
 C���� Hence� all
cubes with property ���� are contained in UC��� ���� Due to Assumption 
� we have

jUC���j 
 C�C����

The volume of q is ���� and� hence� the number of such cubes are bounded from above
by

jUC��� j
����


 C�C��	

It remains to prove ����� The estimate follows directly from 
G � n and Lemma

	�

The depth of the cluster tree is concerned in the next lemma�

Lemma �� Let Assumption ��� ��� and �
 be satis�ed and the cluster tree con�
structed by the procedure build cluster tree� Then�

�L 
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u

j�j n	

��



Proof� Condition ��
� implies
p

�hL � �� Taking into account De�nition �	 and
�� along with

j�j �
X
��G

j
 j 
 nh�

we obtain

�L 
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 ��C�
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h�

 ��C�

u

j�j n	

The following lemma estimates the amount of work per tree and far�eld level� It
has auxiliary character and will be used in the complexity estimates below�

Lemma �	 Let a� b� s � �� Then�

LX
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�
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Proof� Simple analysis yields�
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In the sequel� we will estimate the number of operations in the single steps of the
variable order panel clustering algorithm�

�a� Procedure build cluster tree�
Clearly� the complexity of the procedure is proportional to the number of elements

in the cluster tree�


T �
LX
���

�� 
 �

�
�L 
 �	C�

u

j�j n	

�b� Computation of the expansion coe�cients�
In ��
� ��

� ��
� algorithms are presented where the computation of

��� m
��� �c� � ��� � � Im

can be performed in O �m�� operation� Hence� the computation for all coe�cients
and all far�eld blocks costs �cf� ���� and Lemma 	��

LX
���

m� ���� 
F ��� 
 C��

LX
���

�a �L� �� � b�� �� 
 Cn ����
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where C only depends on a� b� C��� Cu� and j�j�
�c� Computation of the far�eld coe�cients�
The computation of all far�eld coe�cients JI

��� and JII
��� for the panels 
 � G and

� � �Im�L�� � � �IIm�L� is proportionally to n due m �L� � b�
The procedure build cluster tree implies that the number of sons of a cluster

is bounded from above by� 	�� Thus� the evaluation of the recursion ���� costs O ���
operation per far�eld coe�cients� Similar computations as in ���� yield that the
number of operations is proportional to n�

�d� Computation of the recursion coe�cients �������c in ����� From ��
�� it follows
directly� that the amount of computational work per coe�cients is O ��� while the
total number of coe�cients is bounded by O �n��

�e� Evaluation of a matrix vector multiplication�
By similar considerations� one obtains that the evaluation of a matrix vector

multiplication� i�e�� Algorithm �
� costs O �n� operations�
�f� Storage amount�
By using the same technique as for the computational complexity one can prove

that the amount of memory for storing the quantities G� T � F � �m��� �c�� JI
c��� J

II
c��� and

�������c �as in ��
�� is proportionally to n�

Theorem �
 Let Assumption ��� ��� and �
 be satis�ed and the cluster tree con�
structed by the procedure build cluster tree� The variable order panel clustering
algorithm has linear complexity with respect to the computing time and the memory
consumption�

� Appendix

In this appendix� we prove Lemma 	� and some auxiliary estimates� We adopt the
notation of the proof of Lemma 	��

Proof of Lemma 	��
Let �m � m �� � ��� We de�ne an intermediate approximation to ��

���
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�Let c � T ��� with reference cube q �ref�c� � Q�� The possible sons are the pullbacks of all

cubes �q � Q�	� with �q � q �� �� The number of those cubes is ���
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Equations ����� ����� and ���� imply that
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Lemma �� Let the Assumptions of Lemma �� be satis�ed� Then� the coe�cients
�
���
i de�ned in ���� can be estimated by
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with ni �� n��ti �cf� De�nition ����
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�
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resulting in
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The coe�cients �������c can be estimated�

� for �c � c� by
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�
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� otherwise
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�
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�
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i if e� 
 �
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Next� the coe�cients �
���
i are estimated� De�nition �� implies that the Taylor

polynomials ��
���
c coincide with �

���
c up to the order b �cf� De�nition 	���

�
���
i � �� �� � �m�L�� �� 
 i 
 L� �����

Recall that �m�L� � �b � f� � N�
� � j�j 
 bg� Hence� we may assume below that

� �� �m�L�� i�e��
j�j � b �����

due to ����� The proof for j�j � b is based on an induction over i � L� L� �� 	 	 	 � � �

� i � L�

The assertion directly follows from ������

� Assumption� Assertion holds up to an index i � ��
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where nk � n��tk denotes the number of repeated clusters in the chain K��tk �cf�
�	����
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� i � � � i�

We �rst consider the case that � �ti� � fti	�g� i�e�� ti � ti	� �cf� Assumption

��� This implies that the number of repeated cluster is increased by one�
n��ti	�

� � � n��ti �cf� �	���� We write short ni	� � n��ti	�
and ni � n��ti and

note that ni � � holds� Taking into account ���	� the de�nition of �
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It remains to consider � � �m�i�n�m�i	��� which implies
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It remains to prove that � is bounded by �� for su�ciently large �� Estimate
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The quantity � can be estimated by using Assumption 
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Choosing � � �� ��� !�� yields
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Similar as in ����� along with �i	���i 
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Altogether we have proved that
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The analogous estimate for the error �
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i is proved in Lemma ���
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Lemma �� Let the assumptions of Lemma �� be satis�ed� Then� the coe�cients �
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Proof� The proof is similar as the proof of Lemma �� and is based on an induction
over i � L� L� �� 	 	 	 � � as well� We adopt the notation from that proof�

� i � L� The assertion follows directly from �����
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For the lower case� the quantity V
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This concludes the case of ti	� � ti�
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In the same fashion� the second recursion is proved�
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