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Abstract

We discuss the geometric formulation of the classical Hamiltonian
system of equations and the problem of existence of periodic solutions
for such systems. After a brief discussion of the Poincaré-Birkhoff
theorem we give the most general statement of the Arnold conjecture.
In the remaining article we sketch the developments in symplectic
topology motivated by the Arnold conjecture culminating in its proof.

1 Introduction

“Would the Sun rise tomorrow?” must have been one of the most important
questions asked by the earliest observers of the universe. I have used this
question as a title of my talks to mathematics clubs at colleges and high
schools to describe the history of the problem of establishing the stability of
the solar system. It is an important special problem in the area of the ex-
istence and stability of periodic solutions of dynamical systems and remains
unsolved today. A solution in the case of the three-body problem in which
one of the bodies is very small compared with the other two was obtained in
the 1960s. This solution was used in designing the orbit of the moon shot
that landed the first man on the moon [1]. While the question of the stabil-
ity of the solar system may have been asked by ancient observers, its precise
mathematical formualtion was obtained only in the 17th century. Kepler’s
announcement of his laws of planetary motion came as a great surprise to
the scientific community of the time and understanding them and the theory
behind them became the most important contemporary problem. Here is



perhaps the most important example of physical results serving as a driving
force for the development of new mathematical tools needed to understand
and explain these results. Newton’s development of differential and integral
calculus and his theory of gravitational attraction and motion came as a di-
rect consequence of the Kepler problem. The success of Newton’s theories
was astounding. His solution of the two-body problem provided a complete
explanation of Kepler’s laws. But the theory went far beyond that. For
example, it was known to astronomers that Kepler’s laws did not fully de-
scribe the orbit of Mercury; the farthest point from the Sun on its elliptic
orbit shifted after each revolution. This was known as the precession of the
perihelion. A complete solution for all the planetary orbits would require con-
sidering their motion under mutual attraction in addition to that of the Sun.
This became known as the n-body problem. The system of equations for this
problem looked quite intractable, and no-closed form solution of the system
in terms of elementary functions is known for n > 2. However, in Newton’s
theory one could account for the observed motion of Mercury by considering
the effects of other planets as a small perturbation of the elliptic orbit of
Mercury under the gravitational attraction of the Sun. This accounted for
a large part of the observed precession. How could one account for the part
not predicted by the theory after taking into account all the known planets?
Perhaps there were other as yet unobserved planets in the Solar system that
could be affecting the motion of Mercury. Theoretical calculations confirmed
the existence of two new planets. Once their perturbative effect was con-
sidered, almost all the shift could be accounted for. Careful measurement
showed that the remaining shift was about 43 seconds of arc(1 degree = 3600
seconds of arc) per 100 years. No other planet was found to account for this
small remaining shift and no reasonable explanation was found in Newton’s
theory. The residual shift was explained by a new theory of gravity propossed
by Einstein in 1915. This theory, called the general theory of relativity, may
be called a geometric theory of gravity. In Einstein’s theory, the concept of
absolute space and absolute time as distinct entities, which is fundamental
in Newton’s theory, is abandoned. The basic object is a four dimensional
manifold with a Lorentz metric whose curvature represents the gravitational
field.

Important theoretical advances in the study of dynamical systems were
made in the 18th century. We consider the Lagrangian and the Hamiltonian
approach in the next section and introduce the notion of a symplectic man-
ifold. As we have seen in the above paragraph, the perturbative methods



provided a very satisfactory first approximation to solutions of the n-body
problem. But the series solutions used in the perturbative calculations could
not be used to answer theoretical questions such as the stability of the solar
system. Poincaré was the first to prove the general divergence of these series.
We shall discuss his fundamental contributions in section 3. We begin section
4 with a discussion of various special solutions of the Arnold conjecture. We
then briefly discuss Floer homology and its extension which paved the way
for the general solution of the Arnold conjecture in the nondegenerate case
by Liu and Tian [17] and independently by Fukaya and Ono [11].

2 Hamiltonian Systems

The three-body problem and, in particular, the problem of Lunar motion
attracted the attention of several famous mathematicians; including Euler,
Lagrange, Jacobi, and Hamilton. We now discuss two of the most important
theoretical developments in which these mathematicians played a fundamen-
tal role. First of these is the introduction of variational methods in the study
of dynamical systems. In particular, it was shown that every solution of
Newton’s equations of motion under gravity arises as a critical point in a
variational problem. The equations of motion for a system with n degrees of
freedom subject to a conservative force (i.e. a force derivable from a potential
function V') can be written in the form

d2 %

d;:—g—;, 1<i<n. (1)

The motion on the interval ¢y < ¢ < ¢; is a function ¢ : [tg, t;] = R" whose
components ¢'(t) solve the system of equations (1). The solution is a path
in R™ beginning at ¢(to) = qo and ending at ¢(t;) = ¢;. The velocity ¢(¢) is
a vector in the tangent space Ty,»R™ at time ¢. For this reason the tangent
bundle TR" of R" is called the velocity phase space of the dynamical system.
Now define the Lagrangian function L(q, ¢) by

h 1 h n n
L(g,q) = 5|Iqll2+V(Q), L:R"xR" >R, (2)

where we have identified TR™ with R™ x R™ and |[|¢|| is the standard Eu-
clidean norm of the velocity. Then it can be shown that every solution of



equations (1) is a critical point in a variational problem for the Lagrangian
action Ay, defined by

t1
d(AL) =0, where Ay ::/lt L(q,q) dt (3)

The variation is taken over all C! functions ¢ : [tg, t1] — R" that satisfy
the boundary conditions ¢(tg) = qo and ¢(t1) = ¢;. In fact, it can be shown
that the solutions correspond to the minima of the action. The Lagrangian
formulation can be generalized by considering ¢* as local coordinates on a
manifold M. In classical mechanics M is called the configuration space of
the system and 7'M is called the velocity phase space. The Lagrangian
function can also be generalized to allow explicit dependence on time. Thus
it is now a function

L:RxTM — R, orlocally L = L(t,q,q). (4)

The critical points of the corresponding action satisfy the Euler-Lagrange

equations
d (0L 0L
dt(@gz) og ='=" (5)

We note that the Lagrangian formalism has been extended from systems
with finitely many degrees of freedom to those with infinitely many degrees
of freedom and constitutes a basic tool in obtaining the field equations in
physical theories. For example, Einstein’s field equations of gravitation and
the Yang-Mills equations can be obtained as the Euler-Lagrange equations
for appropriate choices of Lagrangians [18].

It is easy to see that the system of n second order differential equations (1)
for the variables ¢' is equivalent to the following system of 2n first order
differential equations for the variables ¢*, p;

dg' _~dpi _ OV
at Vg T gt

If we define the Hamiltonian function H(g, p) by

1<i<n. (6)

1
H(q,p) = §||p||2 ~-V(g), H:R"xR"—R, (7)



then equations (6) for the variables ¢’, p; can be written in the form

d¢  9H dp;  0H )
dt — Op;,’ dt  0¢t’

The system of equations (8) for the variables ¢', p; is called the Hamiltonian
system of equations. The variables p; are called the momenta conjugate to
the coordinates ¢° . The Hamiltonian function in the system of equations (8)
for the variables ¢*, p; has a simple physical interpretation as the total energy
of the system. Using the system of equations (8) it is easy to check that

dH & d_c]iaH+dpi8H_
dt — = dt o¢t  dt 9p;

This means that H is constant on the trajectories (solutions) of the system.
This statement is the law of conservation of energy in classical mechanics.

As we shall see later, the domain of the Hamiltonian must be identified
with the cotangent bundle 7*R"™ of R", and not with the tangent bundle as
in the Lagrangian case. In general, if the manifold M is the configuration
space of the system, T*M is called the momentum phase space or simply
the phase space. The Hamiltonian function can also be generalized to allow
explicit dependence on time. Thus it is now a function

H:RxT*M — R orlocally H= H(t,q,p) = Hi(q,p) 9)

It is possible that H, or the family H;, may be defined for ¢ in some subset
of R.

In the system of equations that we are considering it is easy to establish
the equivalence of the Lagrangian and Hamiltonian formalisms. To see this
we observe that the p; and H are given in terms of the Lagrangian by

pizg—;andH:piq'Z—L. (10)
The first set of equations (10) can be solved for ¢* as a function of (¢*, p;)
and the result used in the definition of H to obtain a function of (¢’, p;) that
satisfies equations (8). The transformation of variables from (¢¢, ¢*) to (¢*, p;)
is called the Legendre transformation. Conversely, starting with Hamilton’s
equations we can obtain in this case the Euler-Lagrange equations. However,
the Legendre transformation need not exist for arbitrary L. The condition



that guarantees the existence of the Legendre transformation is the Legendre

condition -
det < L > # 0. (11)

0¢'0¢7
Now we can state the following theorem.

Theorem 2.1 Let L = L(t,q,q) be a C? function satisfying the Legendre
condition (11). Let p;, H be defined by the set of equations (10). Then q(t)
is a solution of the Euler-Lagrange equations (5) if and only if ¢*, p; sat-
isfy Hamiltons equations (8). Conversely, Hamiltons equations can be trans-
formed into the Fuler-Lagrange equations if H satisfies the condition

0’H >
det 0. 12
(apz_apj y (12)

In what follows we shall be mainly concerned with Hamiltonian systems.
Hamiltons equations point to a special structure on the phase space called
the symplectic structure. In general, a Hamiltonian function is defined on a
manifold that carries such a symplectic structure. The concepts of classical
mechanics such as Poisson bracket, integrals of motion, etc. can be expressed
in terms of the symplectic structure. We now consider this in some detail.

Symplectic Manifolds

Let M be an m-dimensional manifold and let w € A%(M), the space of
differential forms of degree 2 on M. We say that w is nondegenerate if,

Vp e M,
w(p)(u,v) =0,Vo € T,M = u = 0. (13)

If w;;(p) are the components of w(p) in a local coordinate system at p, then
the above condition (13) is equivalent to

det wij(p) #0, Vpe M. (14)

Condition (14) and the skew symmetry of w imply that the dimension m must
be even, i.e. m = 2n. Then condition (13) is equivalent to the condition that
W' i =wAwA...ANwis a volume form on M, i.e.

w"(p) #0, Vpe M. (15)
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Recall that any 2-form o« can be regarded as a bilinear map on 7,M, and
hence induces a linear map

o’ (p) : T,M — TrM
defined by the equality

o’ (p)(u) (v) = a(p)(u,v),

where u, v € T,M. The nondegeneracy of w € A?(M) defined above is equiv-
alent to w’ being an isomorphism. Its inverse is denoted by w!. Thus a
nondegenerate 2-form sets up an isomorphism between vector fields and 1-
forms.

Definition 2.1 A symplectic structure on a manifold M is a 2-form w
that is nondegenerate and closed (i.e. dw =0). A symplectic manifold is
a pair (M,w), where w is a symplectic structure on the manifold M.

Example 2.1 Let ) be an n-dimensional manifold. Let P = T*(Q) be the
cotangent space of QQ; then P carries a natural symplectic structure w defined
as follows. Let 6 be the 1-form on P defined by

() (X) = (1. (X)), Va, € T°Q, X € To, P,

where w s the canonical projection of P = T*Q to Q). We define w =
—df. The form 0 is called the canonical 1-form and w the canonical
symplectic structure on 1T%(Q). By definition, w is exact, and hence closed.
Its nondegeneracy follows from a local expression for w in a special coordinate
system, called a canonical coordinate system defined as follows. Let {q'}
be local coordinates at p € Q). Then oy, € P can be expressed as o, = p;idq'.
We take Q' = q' o, P; = p;om as the canonical coordinates of o, € P. Using
these coordinates, we can express the canonical 1-form 0 as

0 = PdQ".

It is customary to denote the canonical coordinates on P by the same let-
ters ¢, p; and from now on we follow this usage. The canonical symplectic
structure w 1s given by

w = —d(pidq’) = dg" A dp;. (16)
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From this expression it follows that
W' =dg* ANdpi A ... Adg" Adp, # 0.

Further, the components of w in this coordinate system are given by the matriz

OTL ]TL
(wij): < I, 0, >>

where I, (resp. 0,) denotes the n X n unit (resp. zero) matriz.

When @@ = R™, P can be identified with R*", and in this case equa-
tion (16) is valid globally and defines the standard symplectic structure on
R>".

The above example is of fundamental importance in the theory of symplectic
manifolds in view of the following theorem, which asserts that, at least locally,
every symplectic manifold looks like the standard symplectic R*".

Theorem 2.2 (Darbouzx) Let w be a nondegenerate 2-form on a 2n dimen-
stonal manifold M. Then w is symplectic if and only if each p € M has a
local coordinate neighborhood U with coordinates (¢*,...,q", p1,...,pn) such
that

Wy = dq’ A dp;.

One consequence of Darboux’s theorem is that there are no local invariants of
symplectic manifolds. This is in stark contrast to the situation in Riemannian
manifolds and is the simplest expression of the symplectic rigidity.

Example 2.1 is also associated with the geometrical formulation of clas-
sical Hamiltonian mechanics, where @) is the configuration space of the me-
chanical system and P is the corresponding phase space. We now explain
this formulation.

If (M,w) is a symplectic manifold, then the charts guaranteed by Dar-
boux’s theorem are called symplectic charts and the corresponding co-
ordinates (q',p;) are called canonical coordinates. If M = T*Q and w
is the canonical symplectic structure on it, then, in the physical literature,
the ¢"’s are called canonical coordinates and the p;’s the corresponding
conjugate momenta. This terminology arises from the formulation of clas-
sical mechanics on 7*(). We now indicate briefly the connection between the
classical Hamilton’s equations and symplectic manifolds.



Let (M,w) be a symplectic manifold. A vector field X € X (M) is called
Hamiltonian (resp. locally Hamiltonian or symplectic) if w”(X) is exact
(resp. closed). The set of all Hamiltonian (resp. locally Hamiltonian) vector
fields is denoted by HX (M) (resp. LHX(M)). If X € HX (M), then there
exists an H € F(M) such that

W (X) = dH. (17)

The function H is called a Hamiltonian corresponding to X. If M is con-
nected, then any two Hamiltonians corresponding to X differ by a constant.
Conversely, given any H € F(M), w*(dH) defines the corresponding Hamil-
tonian vector field which is denoted by Xy. The integral curves of Xy are
said to represent the evolution of the classical mechanical system specified
by the Hamiltonian H. In a local coordinate system, these integral curves
appear as solutions of the system of differential equations

dz’
dt

= Xy, 1<i<on. (18)

In particular, in a local canonical coordinate system, these differential equa-
tions can be expressed as

d¢¢  O0H
% = "5 (20)

This is the form of the classical Hamilton’s equations, which were obtained
for the special Hamiltonian in (8). Let f,g € F(M). The Poisson bracket
of f and g, denoted by {f, ¢}, is the function

{f,9} =w(X;, Xy).

If X is a Hamiltonian vector field with flow Fj, then Hamilton’s equations
can be expressed in the form

d

%(f © Ft) = {f © Ft;H}- (21)

We now introduce the symmetry group of a Hamiltonian system.



Definition 2.2 Let (M,w) be a symplectic manifold. A diffeomorphism of
M that preserves the symplectic structure is called o symplectomorphism
of (M,w). Thus the set Symp(M,w) of all symplectomorphisms is given by

Symp(M,w) :={¢ € Diff(M) | w = ¢"(w)} . (22)

It is easy to check that the set Symp(M,w) is a subgroup of the group
Diff(M) of diffeomorphisms of M. Now let H, ,t € [0,1] be a smooth time-
dependent family of Hamiltonians. A symplectomorphism ¢ € Symp(M,w)
1s called o Hamiltonian symplectomorphism if there exists a smooth
time-dependent family of symplectomorphisms ¢, ,t € [0,1], satisfying the
condition

%(@) =Xm, 09, ¢o=idy. (23)

The family ¢, ,t € [0, 1], satisfying the above condition is called a Hamilto-
nian isotopy. It can be shown that the set Ham(M,w) of all Hamiltonian
symplectomorphisms is a normal subgroup of Symp(M,w).

Arnold’s conjecture about periodic solutions of time dependent Hamiltonian
systems provided the major impetus for many important developments in
symplectic geometry, topology, and their applications in the second half of
this century (see, for example, [21]). In the next section we return to the
developments in the first half of this century that paved the way for later
work.

3 Poincaré’s Last Geometric Theorem

Inspite of the great success of perturbative methods in the study of the solar
system, the problem of obtaining periodic solutions in the n-body problem
seemed to be insurmountable even in the case n = 3. In 1877, more than 100
years after Lagrange’s discovery of special periodic solutions, the American
mathematician and astronomer G. W. Hill found new periodic solutions of
the three body problem. Hill’s work was greatly appreciated by Poincaré
and is considered a milestone not only in the three body problem but in
the study of dynamical systems in general. Poincaré’s thesis of 1879 and his
early papers already contain several new ideas on the qualitative study of
dynamical systems. The most important among these is to regard a solution
of a system of differential equations as a curve in the configuration space
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and then to study it by using global geometric and topological methods. He
firmly believed that many questions regarding properties of dynamical sys-
tems and, in particular, those of the solar system should really be thought of
as questions of qualitative geometry, and that the answers to these questions
would only come when one can construct qualitatively the trajectories of the
system. Using these ideas Poincaré was able to generalize Hill’s work to prove
the existence of an uncountable family of periodic solutions in a special three
body problem. A general study of this problem was the core of his memoir
that won the gold medal in the prize competition sponsored by king Oscar.
It was this event that spread Poincaré’s fame as a great mathematician in
the mathematical community and in the public at large. This memoir and
its subsequent revision formed the basis for his celebrated three volume work
“Les Méthodes Nouvelles de la Mécanique Céleste”. The work contains his
discovery of asymptotic solutions of Hamiltonian systems and the results on
the existence of periodic solutions for such systems. In particular, Poincaré’s
theory shows the existence of an infinite number of asymptotic and periodic
solutions in the n-body problem. Weierstrass, one of the judges of the prize
competition, described these discoveries as epoch-making. However, Poincaré
was fully aware that he was nowhere near a complete solution of the n-body
problem.

After nearly ten years Poincaré returned to the problem of periodic orbits
in a paper on the existence and stability of closed geodesics on a convex
surface that he presented at the St. Louis congress in 1904. Using methods
of variational calculus he was able to show the existence of at least one
stable closed geodesic and to conclude that, in general, their number should
be odd. In fact, he strongly believed that the minimum number of closed
geodesics should be three. Birkhoff proved this result in the late 1920s with
certain restrictions. A complete proof was given a bit later by Lyusternik
and Schnirelman. There is a large body of work on the higher dimensional
generalization of this problem with many interesting applications. In 1909
K. F. Sundman, an astronomer at the Helsinki Observatory, was a major
contribution to the 3-body problem. However, Sundman’s solution is in
terms of series which converge too slowly to be of practical computational
use. Furthermore, the results could not be used to obtain any qualitative
information about the trajectories such as their periodicity or stability and
work on these questions continues to this day. An excellent account of the
3-body problem with special emphasis on Poincaré’s work may be found in

[3]-
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In his last work Poincaré developed and used methods of algebraic topol-
ogy to formulate a certain statement which if true, would imply the existence
of an infinite number of periodic solutions in the restricted three body prob-
lem. This statement has come to be known as “Poincaré’s last geometric
theorem”. Even though he did not prove this theorem, he felt that it was
important to bring it to the attention of the mathematical community and it
was published in 1912. In the following year, shortly after Poincaré’s death
this result was proved by Birkhoff [4] and is now often called the Poincaré-
Birkhoff theorem. We now state this theorem.

Theorem 3.1 Let A be the annular region bounded by circles with radii a
and b. Thus
A={(r,y) e R* | a® < 2® +9y* < b’}

Any area-preserving homeomorphism of A that leaves the boundary circles
wvaritant but twists them in opposite directions must have at least two fixed
points.

Poincaré had shown that the existence of one fixed point would imply the
existence of a second one, but the complete proof eluded him. Birkhoff’s
elegant proof reflected his great interest in and understanding of the topo-
logical methods introduced by Poincaré in the study of dynamical systems.
He pursued this approach in his later work and founded the modern subject
of dynamical systems and separated it from astronomy.

In 1925 Birkhoff [5] extended his proof to apply to ring shaped regions
with arbitrary boundary curves. This result can be used to prove the exis-
tence of periodic orbits in dynamical systems with two degrees of freedom.
Birkhoff’s work raised the following natural question “What is the appropri-
ate generalization of the Poincaré-Birkhoff theorem to higher dimensions?”
Birkhoff knew that the right generalization was not obtained by considering
volume-preserving diffeomorphisms. We have here a situation that occurs
frequently in mathematics. In low dimensions several different structures
may be equivalent and the generalization to higher dimensions is not clear.
A suitable generalization often depends on a reformulation of the problem
under consideration. Thus from equation (15) we see that in two dimensions
any symplectic structure is a multiple of the volume (here area) form. So an
area preserving diffeomorphism is also a symplectomorphism. But an arbi-
trary symplectomorphism of a compact symplectic manifold need not have
any fixed points, hence some restrictions must be imposed on allowable sym-
plectomorphism. A reasonable conjecture was formulated nearly 40 years
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after Birkhoff’s proof and is the celebrated “Arnold Conjecture”. In the next
section we discuss various attempts at proving the Arnold conjecture in some
special cases and comment on its recent complete proof.

4 The Arnold Conjecture

As with other famous conjectures, the Arnold conjecture is easy to state and
understand. Coming from one of the great mathematicians of this century,
it attracted immediate attention. Attempts at proving it have led to many
important developments in symplectic geometry and topology. We now state
it in its most general form.

Theorem 4.1 (The Arnold Conjecture)

Let (M,w) be a compact symplectic manifold. Then a symplectomorphism
generated by a time-dependent Hamiltonian vector field has at least as many
fized points as the minimal number of critical points of a function on the
manifold. If all the fixed points are nondegenerate then their number is at
least the number of critical points of a Morse function on the manifold.

Originally Arnold formulated the conjecture for the standard 2-torus. The
general form stated above was given later [2]. Even in two dimensions the
proof did not come quickly. In an unpublished paper, Eliashberg proved it for
Riemann surfaces in 1979. His methods are specific to the two dimensional
case. In 1982, Conley and Zehnder [6] used new ideas to prove the conjecture
for standard Tori T%?", n > 1. Their result was extended to some other
quotients of R™ (which include, in particular, Riemann surfaces) by Floer [§]
and Sikorav [27].

A fundamental change in the mehods of proof came through Floer’s proof
[9, 10] of the Arnold conjecture for a class of manifolds called monotone
symplectic manifolds. The main new ingredient in Floer’s proof was the
introduction of a new homology theory for symplectic manifolds, now well
known as the Symplectic Floer Homology. Floer was motivated by the
construction of the Morse cohomology given in Witten’s celebrated paper
[28].

Classical Morse theory on a finite dimensional compact differentiable
manifold M relates the behavior of critical points of a suitable function on
M with topological information about M. The relation is generally stated
as an equality of certain polynomials as follows. Recall first that a smooth

13



function f : M — R is called a Morse function if its critical points are
isolated and nondegenerate. If x € M is a critical point (i.e. df(xz) = 0),
then the Taylor expansion of f around x yields the Hessian of f at x defined
by
0 f
(5,97 @)}

The nondegeneracy of the critical point x is equivalent to the nondegeneracy
of the quadratic form determined by the Hessian. The dimension of the
negative eigenspace of this form is called the Morse index, or simply the
index, of f at x and is denoted by 17(z), or simply p(x) when f is understood.
It can be verified that these definitions are independent of the choice of the
local coordinates. Let mj; be the number of critical points with index k.
Then the Morse series of f is the formal power series

2:7nkﬂﬂ
k

Recall that the Poincaré series of M is given by Y. bit*, where by = by (M)
is the k-th Betti number of M. The relation between the two series is given

by
Somptt =S btt + (1 +1) S git”, (24)
k k k

where ¢ are non-negative integers. Comparing the coefficients of the powers
of ¢ in this relation leads to the well-known Morse inequalities

S mick(=1DF >3 by (-1)F, 0<i<n-—1, (25)
k=0 k=0

and to the expression for the Euler characteristic x of M in terms of the
Morse indices of the Morse function f.

- z b(~1)" = 2 mi(~1)F. (26)

In his fundamental paper [28], Witten used a suitable supersymmetric quan-
tum mechanical Hamiltonian and its ground states (identified with the criti-
cal points of f) to construct his Morse complex. He showed how the standard
Morse theory can be modified by considering the gradient flow of the Morse
function f between pairs of critical points of f. One may think of this as a

14



sort of relative Morse theory. He was motivated by the phenomenon of the
quantum mechanical tunneling. In a classical system the transition from one
ground state to another is forbidden, but in a quantum mechanical system
it is possible to have tunneling paths between two ground states. In gauge
theory (for an introductory account see, for example, Marathe and Martucci
[18]) the role of such tunneling paths is played by instantons. Indeed, Witten
uses the prescient words “instanton analysis” to describe the tunneling effects
obtained by considering the gradient flow of the Morse function f between
two ground states (critical points). The relation to Morse theory arises in
the following way. A Morse function f on M defines a one-parameter family

of operators
dy = e 'del, 6, =el'oe™ ', teR (27)

It is easy to verify that d? = 67 = 0. Witten defines C,, the set of p-chains
of his complex, to be the free group generated by the critical points of f of
Morse index p. He then argues that the operator d; defined in (27) defines
in the limit as ¢ — oo a coboundary operator

doo : Cp — Cp+1

and that the cohomology of this complex, called the Morse cohomology, is
isomorphic to the deRham cohomology of M. The parameter ¢ interpolates
between the deRham cohomology and the Morse cohomology as ¢t goes from
0 to +00. The idea of instanton tunnelling and the corresponding Witten
complex was extended by Floer to do Morse theory on the infinite dimen-
sional moduli space of gauge potentials on a homology 3-sphere Y and to
define a new (co)homology theory. This cohomology is called Floer’s instan-
ton cohomology. It is different from the deRham cohomology of Y and leads
to new topological invariants of Y. Instanton (co)homology and some of its
generalizations are discussed in [19]. Floer also used these ideas to define a
“symplectic (co)homology” associated to a symplectic manifold and it is this
(co)homology that enters into his proof of the Arnold conjecture. A detailed
study of the homological concepts of finite dimensional Morse theory in anal-
ogy with Floer homology may be found in M. Schwarz [25]. While many basic
concepts of “Morse homology” can be found in the classical investigations of
Milnor, Smale, and Thom, its presentation as an axiomatic homology the-
ory in the sense of Eilenberg and Steeenrod [7] is given for the first time in
[25]. One consequence of this axiomatic approach is the uniqueness result for
“Morse homology” and its natural equivalence with other axiomatic homol-
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ogy theories defined on a suitable category of topological spaces. Witten’s
isomorphism is then a corollary of this result.

An important new tool for the study of symplectic manifolds is provided
by the pseudo-holomorphic curves introduced by Gromov in [12]. They play
an essential role in Floer’s definition of symplectic cohomology. We now
review Gromov’s definition of pseudo-holomorphic curves. Recall first that
a complex structure on a real vector space V is a linear transformation
J :V — V such that J?> = —Iy,, where [y is the identity transformation
of V. A complex structure on the tangent bundle T'M is called an almost
complex structure on M. Thus for each x € M, J, is a complex structure
on T,M. If (M,w) is a symplectic manifold and .J is an almost complex
structure on M, then we say that .J is compatible with w if

wX,Y) =w(JX,JY), VXY eTM (28)
In that case the bilinear form ¢; defined by
9;(X,Y) =w(X,JY), VX, Y eTM (29)
is a J-invariant Riemannian metric on M i.e.
9,(X,Y)=¢9,(JX,JY), VXY €eTM (30)

Given a symplectic manifold (M, w) there always exists an almost complex
structure J compatible with w. The set of all such compatible J forms a con-
tractible space. An almost complex structure J can be used to define local
complex coordinates on some neighborhood of each point. When two such
neighborhoods intersect the transition functions between the two complex
coordinate systems is smooth but, in general, is not holomorphic (i.e. com-
plex analytic). If there is a covering of M by neighborhoods such that the
transition functions on every intersection are holomorphic then J is said to
be integrable, The manifold M is then a complex manifold. A symplectic
manifold (M,w) with an integrable almost complex structure J compati-
ble with w is called a Kahler manifold. We note that every almost complex
structure on a Riemann surface is integrable, and hence a Riemann surface is
a Kéahler manifold. We are now in a position to define a pseudo-holomorphic
curve in M.

Definition 4.1 Let (M,w) be a symplectic manifold with an almost com-
plex structure J compatible with w. Let ¥ be a Riemann surface with com-
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plex structure Js. A map f : X — M 1is called pseudo-holomorphic or J-
holomorphic if
Jodf = dfolJs. (31)

In particular, if f is an embedding, then the image f(X) is a complex curve
in M.

Floer combined the ideas of Morse theory with the variational methods
of Conley and Zehnder [6] and the pseudo-holomorphic curves introduced by
Gromov [12] to define his “symplectic (co)homology” associated with a closed
monotone symplectic manifold and used it to prove the Arnold conjecture
for this class of manifolds. We briefly describe the main features of his
construction. If H is a time-dependent Hamiltonina function on a symplectic
manifold (M,w) then in local coordinates, Hamilton’s equations of motion
are given by .

dxz’

dt
Let ¢; denote the flow on M generated by the solutions of the system of
Hamilton’s equations. Let P(H) be the set of periodic solutions of equa-
tions (32) of period 1. Then the set of fixed points of the time one flow ¢,
is in one to one correspondence with the set P(H). For a generic H the
graph of ¢ is transversal to the diagonal M x M. It follows that in this
case the set P(H) is finite. We shall only consider this nondegenerate case.
The Lefschetz fixed point theorem of algebraic topology then gives the Euler
charactersistic x(M) (the alternating sum of the Betti numbers) as a lower
bound for the cardinality of the set P(H) whereas the Arnold conjecture
gives the sum of the Betti numbers as a lower bound. This is yet another
illustration of the symplectic rigidity. To find the periodic orbits Floer now
uses a variational formulation of the problem as follows. Let £ be the space
of contractible loops on M and £ its universal covering. An element of L
can be represented by a pair [«, f], where f: D — M is a smooth map of
the standard disc D with boundary values given by a. The symplectic action
functional Ay is defined by

Aullof)i= [ F@)+ [ Hla®), Viefle L (33)

= Xy, 1<i<on (32)

Then the pair [, f] is a critical point of the symplectic action functional Ay
if and only if « is a periodic solution of equations (32) of period 1. With
each critical point, and hence with each periodic orbit «, there is associated
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an integer y(a) called the Conley-Zehnder index [13, 24]. Let J be an almost
complex structure compatible with w and g; the corresponding .J-invariant
metric. This metric induces an L2-metric on £. Let ¢ be a gradient flow
line of the action Ay connecting periodic orbits a and . These flow lines
satisfy several conditions which ensure that for a generic choice of (J, H) the
moduli space M(J, H, a, #) of unparametrized flow lines quotiented out by
the action of R is a smooth manifold of dimension p(/3) — p(a) —1. Floer then
shows that this moduli space has a natural compactification provided that M
satisfies a certain condition (monotonicity). This compactified moduli space
is denoted by M («, 3) and has the expected dimension p(5) — p(a) — 1.
The rest of the construction is similar to that of Witten’s Morse cohomology.
The cochain C}, is a vector space generated by the critical points with the
Conley-Zehnder index k. If u(a) = k and p(f) = k + 1 then the dimension
of M(«, (3) is zero, and hence it is a collection of finitely many signed points.
The algebraic sum of the signs measures the distinct connecting orbits with
orientation and is denoted by n(«, ). The coboundary operator § is defined
as follows.

o(a) == Z”(aaﬂ)ﬁ € Cr

where the sum is over all § such that u(5) = k£ + 1. It can be shown that
6% = 0. The cohomology of this complex is the symplectic Floer cohomology
(SFH for short). A succint introduction to SFH may be found in [26]. The
total dimension of this complex is the cardinality of period one orbits. The
final step in Floer’s proof is to show that SFH is isomorphic to the standard
deRham cohomology of M with total dimension equal to the sum of the Betti
numbers. Thus Arnold’s conjecture is a consequence of the SFH. Floer’s ideas
were extended by Hofer and Zehnder [14] and Ono [22] to prove the Arnold
conjecture for other classes of manifolds. These manifolds include the family
of Calabi-Yau manifolds which play fundamental role in string theory.

In view of these results it became clear that an extension of Floer coho-
mology to arbitrary symplectic manifolds would prove the Arnold conjecture.
However, the Floer construction did not work for arbitrary symplectic man-
ifolds for the following reason. The natural compactification of the moduli
space M(J, H, a, #) may, in general, add boundary components with dimen-
sion higher than that of the moduli space M(J, H, «, 3) itself. Thus Floer’s
construction can not be carried out in this setting. A similar problem arises in
other applications of J-holomorphic curves, notably, in the study of new in-
variants of symplectic manifolds called the Gromov-Witten invariants and in
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the definition of quantum cohomology [20, 23]. Liu and Tian and their collab-
orators had successfully dealt with these problems by introducing the notion
of virtual moduli cycles. They have now used a modification of this idea in
the symplectic situation to define Floer cohomology for arbitrary symplectic
manifolds. The proof of the general Arnold conjecture in the nondegenerate
case follows from this [17]. In their proof of the general Arnold conjecture in
the nondegenerate case Fukaya and Ono [11] use the idea of stable maps in-
troduced by Kontsevich and Manin in [16, 15] and the Kuranishi structure on
the moduli space of stable maps. Recall that Kuranishi’s well known method
was used by him to study the deformation theory of complex structures and
has been extended to study moduli spaces of instantons in gauge theory. The
Kuranishi structure of Fukaya and Ono is an extension of these ideas to the
case of the moduli space of stable maps in symplectic manifolds.
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