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Abstract

We discuss the geometric formulation of the classical Hamiltonian

system of equations and the problem of existence of periodic solutions

for such systems� After a brief discussion of the Poincar�e�Birkho�

theorem we give the most general statement of the Arnold conjecture�

In the remaining article we sketch the developments in symplectic

topology motivated by the Arnold conjecture culminating in its proof�

� Introduction

�Would the Sun rise tomorrow�� must have been one of the most important
questions asked by the earliest observers of the universe� I have used this
question as a title of my talks to mathematics clubs at colleges and high
schools to describe the history of the problem of establishing the stability of
the solar system� It is an important special problem in the area of the ex�
istence and stability of periodic solutions of dynamical systems and remains
unsolved today� A solution in the case of the three�body problem in which
one of the bodies is very small compared with the other two was obtained in
the ����s� This solution was used in designing the orbit of the moon shot
that landed the 	rst man on the moon 
��� While the question of the stabil�
ity of the solar system may have been asked by ancient observers� its precise
mathematical formualtion was obtained only in the �
th century� Kepler�s
announcement of his laws of planetary motion came as a great surprise to
the scienti	c community of the time and understanding them and the theory
behind them became the most important contemporary problem� Here is
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perhaps the most important example of physical results serving as a driving
force for the development of new mathematical tools needed to understand
and explain these results� Newton�s development of di�erential and integral
calculus and his theory of gravitational attraction and motion came as a di�
rect consequence of the Kepler problem� The success of Newton�s theories
was astounding� His solution of the two�body problem provided a complete
explanation of Kepler�s laws� But the theory went far beyond that� For
example� it was known to astronomers that Kepler�s laws did not fully de�
scribe the orbit of Mercury� the farthest point from the Sun on its elliptic
orbit shifted after each revolution� This was known as the precession of the
perihelion� A complete solution for all the planetary orbits would require con�
sidering their motion under mutual attraction in addition to that of the Sun�
This became known as the n�body problem� The system of equations for this
problem looked quite intractable� and no�closed form solution of the system
in terms of elementary functions is known for n � �� However� in Newton�s
theory one could account for the observed motion of Mercury by considering
the e�ects of other planets as a small perturbation of the elliptic orbit of
Mercury under the gravitational attraction of the Sun� This accounted for
a large part of the observed precession� How could one account for the part
not predicted by the theory after taking into account all the known planets�
Perhaps there were other as yet unobserved planets in the Solar system that
could be a�ecting the motion of Mercury� Theoretical calculations con	rmed
the existence of two new planets� Once their perturbative e�ect was con�
sidered� almost all the shift could be accounted for� Careful measurement
showed that the remaining shift was about �� seconds of arc�� degree � ����
seconds of arc� per ��� years� No other planet was found to account for this
small remaining shift and no reasonable explanation was found in Newton�s
theory� The residual shift was explained by a new theory of gravity propossed
by Einstein in ����� This theory� called the general theory of relativity� may
be called a geometric theory of gravity� In Einstein�s theory� the concept of
absolute space and absolute time as distinct entities� which is fundamental
in Newton�s theory� is abandoned� The basic object is a four dimensional
manifold with a Lorentz metric whose curvature represents the gravitational
	eld�

Important theoretical advances in the study of dynamical systems were
made in the ��th century� We consider the Lagrangian and the Hamiltonian
approach in the next section and introduce the notion of a symplectic man�
ifold� As we have seen in the above paragraph� the perturbative methods
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provided a very satisfactory 	rst approximation to solutions of the n�body
problem� But the series solutions used in the perturbative calculations could
not be used to answer theoretical questions such as the stability of the solar
system� Poincar�e was the 	rst to prove the general divergence of these series�
We shall discuss his fundamental contributions in section �� We begin section
� with a discussion of various special solutions of the Arnold conjecture� We
then brie�y discuss Floer homology and its extension which paved the way
for the general solution of the Arnold conjecture in the nondegenerate case
by Liu and Tian 
�
� and independently by Fukaya and Ono 
����

� Hamiltonian Systems

The three�body problem and� in particular� the problem of Lunar motion
attracted the attention of several famous mathematicians� including Euler�
Lagrange� Jacobi� and Hamilton� We now discuss two of the most important
theoretical developments in which these mathematicians played a fundamen�
tal role� First of these is the introduction of variational methods in the study
of dynamical systems� In particular� it was shown that every solution of
Newton�s equations of motion under gravity arises as a critical point in a
variational problem� The equations of motion for a system with n degrees of
freedom subject to a conservative force �i�e� a force derivable from a potential
function V � can be written in the form

d�qi

dt�
� �

�V

�qi
� � � i � n � ���

The motion on the interval t� � t � t� is a function q � 
t�� t��� Rn whose
components qi�t� solve the system of equations ���� The solution is a path
in Rn beginning at q�t�� � q� and ending at q�t�� � q�� The velocity �q�t� is
a vector in the tangent space Tq�t�R

n at time t� For this reason the tangent
bundle TRn ofRn is called the velocity phase space of the dynamical system�
Now de	ne the Lagrangian function L�q� �q� by

L�q� �q� ��
�

�
jj �qjj� � V �q�� L � Rn �Rn � R� ���

where we have identi	ed TRn with Rn � Rn and jj �qjj is the standard Eu�
clidean norm of the velocity� Then it can be shown that every solution of
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equations ��� is a critical point in a variational problem for the Lagrangian
action AL de	ned by

��AL� � �� where AL ��
Z t�

t�

L�q� �q� dt ���

The variation is taken over all C� functions q � 
t�� t�� � Rn that satisfy
the boundary conditions q�t�� � q� and q�t�� � q�� In fact� it can be shown
that the solutions correspond to the minima of the action� The Lagrangian
formulation can be generalized by considering qi as local coordinates on a
manifold M � In classical mechanics M is called the con	guration space of
the system and TM is called the velocity phase space� The Lagrangian
function can also be generalized to allow explicit dependence on time� Thus
it is now a function

L � R� TM � R� or locally L � L�t� q� �q�� ���

The critical points of the corresponding action satisfy the Euler�Lagrange
equations

d

dt

�
�L

� �qi

�
�

�L

�qi
� � � i � n � ���

We note that the Lagrangian formalism has been extended from systems
with 	nitely many degrees of freedom to those with in	nitely many degrees
of freedom and constitutes a basic tool in obtaining the 	eld equations in
physical theories� For example� Einstein�s 	eld equations of gravitation and
the Yang�Mills equations can be obtained as the Euler�Lagrange equations
for appropriate choices of Lagrangians 
����

It is easy to see that the system of n second order di�erential equations ���
for the variables qi is equivalent to the following system of �n 	rst order
di�erential equations for the variables qi� pi

dqi

dt
� pi �

dpi

dt
� �

�V

�qi
� � � i � n � ���

If we de	ne the Hamiltonian function H�q� p� by

H�q� p� ��
�

�
jjpjj� � V �q� � H � Rn �Rn � R� �
�
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then equations ��� for the variables qi� pi can be written in the form

dqi

dt
�

�H

�pi
�

dpi

dt
� �

�H

�qi
� ���

The system of equations ��� for the variables qi� pi is called the Hamiltonian
system of equations� The variables pi are called the momenta conjugate to
the coordinates qi � The Hamiltonian function in the system of equations ���
for the variables qi� pi has a simple physical interpretation as the total energy
of the system� Using the system of equations ��� it is easy to check that

dH

dt
�

nX
i��

dqi

dt

�H

�qi
�
dpi

dt

�H

�pi
� ��

This means that H is constant on the trajectories �solutions� of the system�
This statement is the law of conservation of energy in classical mechanics�

As we shall see later� the domain of the Hamiltonian must be identi	ed
with the cotangent bundle T �Rn of Rn� and not with the tangent bundle as
in the Lagrangian case� In general� if the manifold M is the con	guration
space of the system� T �M is called the momentum phase space or simply
the phase space� The Hamiltonian function can also be generalized to allow
explicit dependence on time� Thus it is now a function

H � R� T �M � R or locally H � H�t� q� p� � Ht�q� p� ���

It is possible that H� or the family Ht� may be de	ned for t in some subset
of R�

In the system of equations that we are considering it is easy to establish
the equivalence of the Lagrangian and Hamiltonian formalisms� To see this
we observe that the pi and H are given in terms of the Lagrangian by

pi �
�L

� �qi
and H � pi �q

i � L � ����

The 	rst set of equations ���� can be solved for �qi as a function of �qi� pi�
and the result used in the de	nition of H to obtain a function of �qi� pi� that
satis	es equations ���� The transformation of variables from �qi� �qi� to �qi� pi�
is called the Legendre transformation� Conversely� starting with Hamilton�s
equations we can obtain in this case the Euler�Lagrange equations� However�
the Legendre transformation need not exist for arbitrary L� The condition

�



that guarantees the existence of the Legendre transformation is the Legendre
condition

det

�
��L

� �qi� �qj

�
�� �� ����

Now we can state the following theorem�

Theorem ��� Let L � L�t� q� �q� be a C� function satisfying the Legendre
condition ����� Let pi� H be de�ned by the set of equations ����� Then q�t�
is a solution of the Euler�Lagrange equations ��� if and only if qi� pi sat�
isfy Hamiltons equations ���� Conversely	 Hamiltons equations can be trans�
formed into the Euler�Lagrange equations if H satis�es the condition

det

�
��H

�pi�pj

�
�� �� ����

In what follows we shall be mainly concerned with Hamiltonian systems�
Hamiltons equations point to a special structure on the phase space called
the symplectic structure� In general� a Hamiltonian function is de	ned on a
manifold that carries such a symplectic structure� The concepts of classical
mechanics such as Poisson bracket� integrals of motion� etc� can be expressed
in terms of the symplectic structure� We now consider this in some detail�

Symplectic Manifolds

Let M be an m�dimensional manifold and let � � ���M�� the space of
di�erential forms of degree � on M � We say that � is nondegenerate if�
�p �M �

��p��u� v� � �� �v � TpM � u � �� ����

If �ij�p� are the components of ��p� in a local coordinate system at p� then
the above condition ���� is equivalent to

det �ij�p� �� �� �p �M� ����

Condition ���� and the skew symmetry of � imply that the dimensionmmust
be even� i�e� m � �n� Then condition ���� is equivalent to the condition that
�n �� � � � � � � � � � is a volume form on M � i�e�

�n�p� �� �� �p �M� ����
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Recall that any ��form � can be regarded as a bilinear map on TpM � and
hence induces a linear map

���p� � TpM � T �
pM

de	ned by the equality

���p��u��v� � ��p��u� v��

where u� v � TpM� The nondegeneracy of � � ���M� de	ned above is equiv�
alent to �� being an isomorphism� Its inverse is denoted by ��� Thus a
nondegenerate ��form sets up an isomorphism between vector 	elds and ��
forms�

De�nition ��� A symplectic structure on a manifold M is a ��form �

that is nondegenerate and closed �i�e� d� � ��� A symplectic manifold is
a pair �M���	 where � is a symplectic structure on the manifold M �

Example ��� Let Q be an n�dimensional manifold� Let P � T �Q be the
cotangent space of Q
 then P carries a natural symplectic structure � de�ned
as follows� Let � be the ��form on P de�ned by

���p��X� � �p����X��� ��p � T �Q�X � T�p
P�

where � is the canonical projection of P � T �Q to Q� We de�ne � �
�d�� The form � is called the canonical ��form and � the canonical

symplectic structure on T �Q� By de�nition	 � is exact	 and hence closed�
Its nondegeneracy follows from a local expression for � in a special coordinate
system	 called a canonical coordinate system de�ned as follows� Let fqig
be local coordinates at p � Q� Then �p � P can be expressed as �p � pidq

i�
We take Qi � qi	�� Pi � pi	� as the canonical coordinates of �p � P � Using
these coordinates	 we can express the canonical ��form � as

� � PidQ
i�

It is customary to denote the canonical coordinates on P by the same let�
ters qi� pi and from now on we follow this usage� The canonical symplectic
structure � is given by

� � �d�pidq
i� � dqi � dpi� ����






From this expression it follows that

�n � dq� � dp� � � � � � dqn � dpn �� ��

Further	 the components of � in this coordinate system are given by the matrix

��ij� �

�
�n In
�In �n

�
�

where In �resp� �n� denotes the n� n unit �resp� zero� matrix�
When Q � Rn	 P can be identi�ed with R�n	 and in this case equa�

tion ���� is valid globally and de�nes the standard symplectic structure on
R�n�

The above example is of fundamental importance in the theory of symplectic
manifolds in view of the following theorem� which asserts that� at least locally�
every symplectic manifold looks like the standard symplectic R�n�

Theorem ��� �Darboux� Let � be a nondegenerate ��form on a �n dimen�
sional manifold M � Then � is symplectic if and only if each p � M has a
local coordinate neighborhood U with coordinates �q�� � � � � qn� p�� � � � � pn� such
that

�jU � dqi � dpi�

One consequence of Darboux�s theorem is that there are no local invariants of
symplectic manifolds� This is in stark contrast to the situation in Riemannian
manifolds and is the simplest expression of the symplectic rigidity�

Example ��� is also associated with the geometrical formulation of clas�
sical Hamiltonian mechanics� where Q is the con	guration space of the me�
chanical system and P is the corresponding phase space� We now explain
this formulation�

If �M��� is a symplectic manifold� then the charts guaranteed by Dar�
boux�s theorem are called symplectic charts and the corresponding co�
ordinates �qi� pi� are called canonical coordinates� If M � T �Q and �

is the canonical symplectic structure on it� then� in the physical literature�
the qi�s are called canonical coordinates and the pi�s the corresponding
conjugate momenta� This terminology arises from the formulation of clas�
sical mechanics on T �Q� We now indicate brie�y the connection between the
classical Hamilton�s equations and symplectic manifolds�
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Let �M��� be a symplectic manifold� A vector 	eld X � X �M� is called
Hamiltonian �resp� locally Hamiltonian or symplectic� if ���X� is exact
�resp� closed�� The set of all Hamiltonian �resp� locally Hamiltonian� vector
	elds is denoted by HX �M� �resp� LHX �M��� If X � HX �M�� then there
exists an H � F�M� such that

���X� � dH� ��
�

The function H is called a Hamiltonian corresponding to X� If M is con�
nected� then any two Hamiltonians corresponding to X di�er by a constant�
Conversely� given any H � F�M�� ���dH� de	nes the corresponding Hamil�
tonian vector 	eld which is denoted by XH � The integral curves of XH are
said to represent the evolution of the classical mechanical system speci	ed
by the Hamiltonian H� In a local coordinate system� these integral curves
appear as solutions of the system of di�erential equations

dxi

dt
� XH � � � i � �n� ����

In particular� in a local canonical coordinate system� these di�erential equa�
tions can be expressed as

dqi

dt
�

�H

�pi
� ����

dpi

dt
� �

�H

�qi
� ����

This is the form of the classicalHamilton�s equations� which were obtained
for the special Hamiltonian in ���� Let f� g � F�M�� The Poisson bracket

of f and g� denoted by ff� gg� is the function

ff� gg �� ��Xf � Xg��

If X is a Hamiltonian vector 	eld with �ow Ft� then Hamilton�s equations
can be expressed in the form

d

dt
�f 	 Ft� � ff 	 Ft� Hg� ����

We now introduce the symmetry group of a Hamiltonian system�
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De�nition ��� Let �M��� be a symplectic manifold� A di
eomorphism of
M that preserves the symplectic structure is called a symplectomorphism

of �M���� Thus the set Symp�M��� of all symplectomorphisms is given by

Symp�M��� �� f	 � Di
�M� j � � 	����g � ����

It is easy to check that the set Symp�M��� is a subgroup of the group
Di
�M� of di
eomorphisms of M � Now let Ht � t � 
�� �� be a smooth time�
dependent family of Hamiltonians� A symplectomorphism 	 � Symp�M���
is called a Hamiltonian symplectomorphism if there exists a smooth
time�dependent family of symplectomorphisms 	t � t � 
�� ��	 satisfying the
condition

d

dt
�	t� � XHt

	 	t � 	� � idM � ����

The family 	t � t � 
�� ��	 satisfying the above condition is called a Hamilto�

nian isotopy� It can be shown that the set Ham�M��� of all Hamiltonian
symplectomorphisms is a normal subgroup of Symp�M����

Arnold�s conjecture about periodic solutions of time dependent Hamiltonian
systems provided the major impetus for many important developments in
symplectic geometry� topology� and their applications in the second half of
this century �see� for example� 
����� In the next section we return to the
developments in the 	rst half of this century that paved the way for later
work�

� Poincar�e�s Last Geometric Theorem

Inspite of the great success of perturbative methods in the study of the solar
system� the problem of obtaining periodic solutions in the n�body problem
seemed to be insurmountable even in the case n � �� In ��

� more than ���
years after Lagrange�s discovery of special periodic solutions� the American
mathematician and astronomer G� W� Hill found new periodic solutions of
the three body problem� Hill�s work was greatly appreciated by Poincar�e
and is considered a milestone not only in the three body problem but in
the study of dynamical systems in general� Poincar�e�s thesis of ��
� and his
early papers already contain several new ideas on the qualitative study of
dynamical systems� The most important among these is to regard a solution
of a system of di�erential equations as a curve in the con	guration space
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and then to study it by using global geometric and topological methods� He
	rmly believed that many questions regarding properties of dynamical sys�
tems and� in particular� those of the solar system should really be thought of
as questions of qualitative geometry� and that the answers to these questions
would only come when one can construct qualitatively the trajectories of the
system� Using these ideas Poincar�e was able to generalize Hill�s work to prove
the existence of an uncountable family of periodic solutions in a special three
body problem� A general study of this problem was the core of his memoir
that won the gold medal in the prize competition sponsored by king Oscar�
It was this event that spread Poincar�e�s fame as a great mathematician in
the mathematical community and in the public at large� This memoir and
its subsequent revision formed the basis for his celebrated three volume work
�Les M�ethodes Nouvelles de la M�ecanique C�eleste�� The work contains his
discovery of asymptotic solutions of Hamiltonian systems and the results on
the existence of periodic solutions for such systems� In particular� Poincar�e�s
theory shows the existence of an in	nite number of asymptotic and periodic
solutions in the n�body problem� Weierstrass� one of the judges of the prize
competition� described these discoveries as epoch�making� However� Poincar�e
was fully aware that he was nowhere near a complete solution of the n�body
problem�

After nearly ten years Poincar�e returned to the problem of periodic orbits
in a paper on the existence and stability of closed geodesics on a convex
surface that he presented at the St� Louis congress in ����� Using methods
of variational calculus he was able to show the existence of at least one
stable closed geodesic and to conclude that� in general� their number should
be odd� In fact� he strongly believed that the minimum number of closed
geodesics should be three� Birkho� proved this result in the late ����s with
certain restrictions� A complete proof was given a bit later by Lyusternik
and Schnirelman� There is a large body of work on the higher dimensional
generalization of this problem with many interesting applications� In ����
K� F� Sundman� an astronomer at the Helsinki Observatory� was a major
contribution to the ��body problem� However� Sundman�s solution is in
terms of series which converge too slowly to be of practical computational
use� Furthermore� the results could not be used to obtain any qualitative
information about the trajectories such as their periodicity or stability and
work on these questions continues to this day� An excellent account of the
��body problem with special emphasis on Poincar�e�s work may be found in

���
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In his last work Poincar�e developed and used methods of algebraic topol�
ogy to formulate a certain statement which if true� would imply the existence
of an in	nite number of periodic solutions in the restricted three body prob�
lem� This statement has come to be known as �Poincar�e�s last geometric
theorem�� Even though he did not prove this theorem� he felt that it was
important to bring it to the attention of the mathematical community and it
was published in ����� In the following year� shortly after Poincar�e�s death
this result was proved by Birkho� 
�� and is now often called the Poincar�e�
Birkho� theorem� We now state this theorem�

Theorem ��� Let A be the annular region bounded by circles with radii a
and b� Thus

A � f�x� y� � R� j a� � x� � y� � b�g�

Any area�preserving homeomorphism of A that leaves the boundary circles
invariant but twists them in opposite directions must have at least two �xed
points�

Poincar�e had shown that the existence of one 	xed point would imply the
existence of a second one� but the complete proof eluded him� Birkho��s
elegant proof re�ected his great interest in and understanding of the topo�
logical methods introduced by Poincar�e in the study of dynamical systems�
He pursued this approach in his later work and founded the modern subject
of dynamical systems and separated it from astronomy�

In ���� Birkho� 
�� extended his proof to apply to ring shaped regions
with arbitrary boundary curves� This result can be used to prove the exis�
tence of periodic orbits in dynamical systems with two degrees of freedom�
Birkho��s work raised the following natural question �What is the appropri�
ate generalization of the Poincar�e�Birkho� theorem to higher dimensions��
Birkho� knew that the right generalization was not obtained by considering
volume�preserving di�eomorphisms� We have here a situation that occurs
frequently in mathematics� In low dimensions several di�erent structures
may be equivalent and the generalization to higher dimensions is not clear�
A suitable generalization often depends on a reformulation of the problem
under consideration� Thus from equation ���� we see that in two dimensions
any symplectic structure is a multiple of the volume �here area� form� So an
area preserving di�eomorphism is also a symplectomorphism� But an arbi�
trary symplectomorphism of a compact symplectic manifold need not have
any 	xed points� hence some restrictions must be imposed on allowable sym�
plectomorphism� A reasonable conjecture was formulated nearly �� years
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after Birkho��s proof and is the celebrated �Arnold Conjecture�� In the next
section we discuss various attempts at proving the Arnold conjecture in some
special cases and comment on its recent complete proof�

� The Arnold Conjecture

As with other famous conjectures� the Arnold conjecture is easy to state and
understand� Coming from one of the great mathematicians of this century�
it attracted immediate attention� Attempts at proving it have led to many
important developments in symplectic geometry and topology� We now state
it in its most general form�

Theorem ��� �The Arnold Conjecture�
Let �M��� be a compact symplectic manifold� Then a symplectomorphism
generated by a time�dependent Hamiltonian vector �eld has at least as many
�xed points as the minimal number of critical points of a function on the
manifold� If all the �xed points are nondegenerate then their number is at
least the number of critical points of a Morse function on the manifold�

Originally Arnold formulated the conjecture for the standard ��torus� The
general form stated above was given later 
��� Even in two dimensions the
proof did not come quickly� In an unpublished paper� Eliashberg proved it for
Riemann surfaces in ��
�� His methods are speci	c to the two dimensional
case� In ����� Conley and Zehnder 
�� used new ideas to prove the conjecture
for standard Tori T �n� n 
 �� Their result was extended to some other
quotients of Rn �which include� in particular� Riemann surfaces� by Floer 
��
and Sikorav 
�
��

A fundamental change in the mehods of proof came through Floer�s proof

�� ��� of the Arnold conjecture for a class of manifolds called monotone
symplectic manifolds� The main new ingredient in Floer�s proof was the
introduction of a new homology theory for symplectic manifolds� now well
known as the Symplectic Floer Homology� Floer was motivated by the
construction of the Morse cohomology given in Witten�s celebrated paper

����

Classical Morse theory on a 	nite dimensional compact di�erentiable
manifold M relates the behavior of critical points of a suitable function on
M with topological information about M � The relation is generally stated
as an equality of certain polynomials as follows� Recall 	rst that a smooth
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function f � M � R is called a Morse function if its critical points are
isolated and nondegenerate� If x � M is a critical point �i�e� df�x� � ���
then the Taylor expansion of f around x yields the Hessian of f at x de	ned
by

f
��f

�xi�xj
�x�g�

The nondegeneracy of the critical point x is equivalent to the nondegeneracy
of the quadratic form determined by the Hessian� The dimension of the
negative eigenspace of this form is called the Morse index� or simply the
index� of f at x and is denoted by 
f�x�� or simply 
�x� when f is understood�
It can be veri	ed that these de	nitions are independent of the choice of the
local coordinates� Let mk be the number of critical points with index k�
Then the Morse series of f is the formal power series

X
k

mkt
k�

Recall that the Poincar�e series of M is given by
P

k bkt
k� where bk � bk�M�

is the k�th Betti number of M � The relation between the two series is given
by X

k

mkt
k �

X
k

bkt
k � �� � t�

X
k

qkt
k� ����

where qk are non�negative integers� Comparing the coe�cients of the powers
of t in this relation leads to the well�known Morse inequalities

iX
k��

mi�k����
k 


iX
k��

bi�k����
k � � � i � n� �� ����

and to the expression for the Euler characteristic � of M in terms of the
Morse indices of the Morse function f �

� ��
nX

k��

bk����
k �

nX
k��

mk����
k� ����

In his fundamental paper 
���� Witten used a suitable supersymmetric quan�
tum mechanical Hamiltonian and its ground states �identi	ed with the criti�
cal points of f� to construct his Morse complex� He showed how the standard
Morse theory can be modi	ed by considering the gradient �ow of the Morse
function f between pairs of critical points of f � One may think of this as a

��



sort of relative Morse theory� He was motivated by the phenomenon of the
quantum mechanical tunneling� In a classical system the transition from one
ground state to another is forbidden� but in a quantum mechanical system
it is possible to have tunneling paths between two ground states� In gauge
theory �for an introductory account see� for example� Marathe and Martucci

���� the role of such tunneling paths is played by instantons� Indeed� Witten
uses the prescient words �instanton analysis� to describe the tunneling e�ects
obtained by considering the gradient �ow of the Morse function f between
two ground states �critical points�� The relation to Morse theory arises in
the following way� A Morse function f on M de	nes a one�parameter family
of operators

dt � e�ftdeft� �t � eft�e�ft� t � R ��
�

It is easy to verify that d�t � ��t � �� Witten de	nes Cp� the set of p�chains
of his complex� to be the free group generated by the critical points of f of
Morse index p� He then argues that the operator dt de	ned in ��
� de	nes
in the limit as t�� a coboundary operator

d� � Cp � Cp��

and that the cohomology of this complex� called the Morse cohomology� is
isomorphic to the deRham cohomology of M � The parameter t interpolates
between the deRham cohomology and the Morse cohomology as t goes from
� to ��� The idea of instanton tunnelling and the corresponding Witten
complex was extended by Floer to do Morse theory on the in	nite dimen�
sional moduli space of gauge potentials on a homology ��sphere Y and to
de	ne a new �co�homology theory� This cohomology is called Floer�s instan�
ton cohomology� It is di�erent from the deRham cohomology of Y and leads
to new topological invariants of Y � Instanton �co�homology and some of its
generalizations are discussed in 
���� Floer also used these ideas to de	ne a
�symplectic �co�homology� associated to a symplectic manifold and it is this
�co�homology that enters into his proof of the Arnold conjecture� A detailed
study of the homological concepts of 	nite dimensional Morse theory in anal�
ogy with Floer homology may be found in M� Schwarz 
���� While many basic
concepts of �Morse homology� can be found in the classical investigations of
Milnor� Smale� and Thom� its presentation as an axiomatic homology the�
ory in the sense of Eilenberg and Steeenrod 

� is given for the 	rst time in

���� One consequence of this axiomatic approach is the uniqueness result for
�Morse homology� and its natural equivalence with other axiomatic homol�

��



ogy theories de	ned on a suitable category of topological spaces� Witten�s
isomorphism is then a corollary of this result�

An important new tool for the study of symplectic manifolds is provided
by the pseudo�holomorphic curves introduced by Gromov in 
���� They play
an essential role in Floer�s de	nition of symplectic cohomology� We now
review Gromov�s de	nition of pseudo�holomorphic curves� Recall 	rst that
a complex structure on a real vector space V is a linear transformation
J � V � V such that J� � �IV � where IV is the identity transformation
of V � A complex structure on the tangent bundle TM is called an almost

complex structure on M � Thus for each x �M� Jx is a complex structure
on TxM � If �M��� is a symplectic manifold and J is an almost complex
structure on M � then we say that J is compatible with � if

��X� Y � �� ��JX� JY �� �X� Y � TM ����

In that case the bilinear form gJ de	ned by

gJ�X� Y � �� ��X� JY �� �X� Y � TM ����

is a J�invariant Riemannian metric on M i�e�

gJ�X� Y � �� gJ�JX� JY �� �X� Y � TM ����

Given a symplectic manifold �M��� there always exists an almost complex
structure J compatible with �� The set of all such compatible J forms a con�
tractible space� An almost complex structure J can be used to de	ne local
complex coordinates on some neighborhood of each point� When two such
neighborhoods intersect the transition functions between the two complex
coordinate systems is smooth but� in general� is not holomorphic �i�e� com�
plex analytic�� If there is a covering of M by neighborhoods such that the
transition functions on every intersection are holomorphic then J is said to
be integrable� The manifold M is then a complex manifold� A symplectic
manifold �M��� with an integrable almost complex structure J compati�
ble with � is called a K�ahler manifold� We note that every almost complex
structure on a Riemann surface is integrable� and hence a Riemann surface is
a K ahler manifold� We are now in a position to de	ne a pseudo�holomorphic
curve in M �

De�nition ��� Let �M��� be a symplectic manifold with an almost com�
plex structure J compatible with �� Let ! be a Riemann surface with com�

��



plex structure J�� A map f � ! � M is called pseudo�holomorphic or J�
holomorphic if

J 	 df � df 	 J�� ����

In particular� if f is an embedding� then the image f�!� is a complex curve
in M �

Floer combined the ideas of Morse theory with the variational methods
of Conley and Zehnder 
�� and the pseudo�holomorphic curves introduced by
Gromov 
��� to de	ne his �symplectic �co�homology� associated with a closed
monotone symplectic manifold and used it to prove the Arnold conjecture
for this class of manifolds� We brie�y describe the main features of his
construction� If H is a time�dependent Hamiltonina function on a symplectic
manifold �M��� then in local coordinates� Hamilton�s equations of motion
are given by

dxi

dt
� XHt

� � � i � �n� ����

Let 	t denote the �ow on M generated by the solutions of the system of
Hamilton�s equations� Let P�H� be the set of periodic solutions of equa�
tions ���� of period �� Then the set of 	xed points of the time one �ow 	�
is in one to one correspondence with the set P�H�� For a generic H the
graph of 	� is transversal to the diagonal M � M � It follows that in this
case the set P�H� is 	nite� We shall only consider this nondegenerate case�
The Lefschetz 	xed point theorem of algebraic topology then gives the Euler
charactersistic ��M� �the alternating sum of the Betti numbers� as a lower
bound for the cardinality of the set P�H� whereas the Arnold conjecture
gives the sum of the Betti numbers as a lower bound� This is yet another
illustration of the symplectic rigidity� To 	nd the periodic orbits Floer now
uses a variational formulation of the problem as follows� Let L be the space
of contractible loops on M and "L its universal covering� An element of "L
can be represented by a pair 
�� f �� where f � D � M is a smooth map of
the standard disc D with boundary values given by �� The symplectic action
functional AH is de	ned by

AH�
�� f �� ��
Z
D
f ���� �

Z
�
Ht���t��� �
�� f � � "L� ����

Then the pair 
�� f � is a critical point of the symplectic action functional AH

if and only if � is a periodic solution of equations ���� of period �� With
each critical point� and hence with each periodic orbit �� there is associated

�




an integer 
��� called the Conley�Zehnder index 
��� ���� Let J be an almost
complex structure compatible with � and gJ the corresponding J�invariant
metric� This metric induces an L��metric on "L� Let c be a gradient �ow
line of the action AH connecting periodic orbits � and �� These �ow lines
satisfy several conditions which ensure that for a generic choice of �J�H� the
moduli space M�J�H� �� �� of unparametrized �ow lines quotiented out by
the action ofR is a smooth manifold of dimension 
����
������ Floer then
shows that this moduli space has a natural compacti	cation provided thatM
satis	es a certain condition �monotonicity�� This compacti	ed moduli space
is denoted by M��� �� and has the expected dimension 
��� � 
��� � ��
The rest of the construction is similar to that of Witten�s Morse cohomology�
The cochain Ck is a vector space generated by the critical points with the
Conley�Zehnder index k� If 
��� � k and 
��� � k � � then the dimension
ofM��� �� is zero� and hence it is a collection of 	nitely many signed points�
The algebraic sum of the signs measures the distinct connecting orbits with
orientation and is denoted by n��� ��� The coboundary operator � is de	ned
as follows�

���� ��
X

n��� ��� � Ck��

where the sum is over all � such that 
��� � k � �� It can be shown that
�� � �� The cohomology of this complex is the symplectic Floer cohomology
�SFH for short�� A succint introduction to SFH may be found in 
���� The
total dimension of this complex is the cardinality of period one orbits� The
	nal step in Floer�s proof is to show that SFH is isomorphic to the standard
deRham cohomology ofM with total dimension equal to the sum of the Betti
numbers� Thus Arnold�s conjecture is a consequence of the SFH� Floer�s ideas
were extended by Hofer and Zehnder 
��� and Ono 
��� to prove the Arnold
conjecture for other classes of manifolds� These manifolds include the family
of Calabi�Yau manifolds which play fundamental role in string theory�

In view of these results it became clear that an extension of Floer coho�
mology to arbitrary symplectic manifolds would prove the Arnold conjecture�
However� the Floer construction did not work for arbitrary symplectic man�
ifolds for the following reason� The natural compacti	cation of the moduli
spaceM�J�H� �� �� may� in general� add boundary components with dimen�
sion higher than that of the moduli space M�J�H� �� �� itself� Thus Floer�s
construction can not be carried out in this setting� A similar problem arises in
other applications of J�holomorphic curves� notably� in the study of new in�
variants of symplectic manifolds called the Gromov�Witten invariants and in

��



the de	nition of quantum cohomology 
��� ���� Liu and Tian and their collab�
orators had successfully dealt with these problems by introducing the notion
of virtual moduli cycles� They have now used a modi	cation of this idea in
the symplectic situation to de	ne Floer cohomology for arbitrary symplectic
manifolds� The proof of the general Arnold conjecture in the nondegenerate
case follows from this 
�
�� In their proof of the general Arnold conjecture in
the nondegenerate case Fukaya and Ono 
��� use the idea of stable maps in�
troduced by Kontsevich and Manin in 
��� ��� and the Kuranishi structure on
the moduli space of stable maps� Recall that Kuranishi�s well known method
was used by him to study the deformation theory of complex structures and
has been extended to study moduli spaces of instantons in gauge theory� The
Kuranishi structure of Fukaya and Ono is an extension of these ideas to the
case of the moduli space of stable maps in symplectic manifolds�
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