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Abstract

In a preceding paper ���� a class of matrices �H�matrices� has been introduced which are data�sparse
and allow an approximate matrix arithmetic of almost linear complexity� Several types of H�matrices were
analysed in ��� �� 	� 
� which are able to approximate integral �nonlocal� operators in FEM and BEM
applications in the case of quasi�uniform unstructured meshes�

In the present paper� the special class of H�matrices on graded meshes is analysed� We investigate
two types of separation criteria for the construction of the cluster tree which allow to optimise either the
approximation power �cardinality�balancing strategy� or the complexity �distance�balancing strategy� of
the H�matrices under consideration� For both approaches� we prove the optimal complexity and approx�
imation results in the case of composite meshes and tensor�product meshes with polynomial�exponential
grading in Rd � d 
 �� �� ��

Keywords� fast algorithms� hierarchical matrices� data�sparse matrices� mesh re�nement� BEM� FEM�

� Introduction

Consider the h�version of the Galerkin FE method for approximation of the integral operator A � L�W�W ��
de�ned in the Sobolev space W � Hr���� In the typical BEM applications� we deal with integral operators
of the form

�Au��x� �

Z
�

s�x� y�u�y�dy� x � ��

with s being the fundamental solution �singularity function� associated with the pde under consideration or
with s replaced by a suitable directional derivatives Ds of s� Here � is either a bounded �d � ���dimensional
manifold �surface� or a bounded domain in R

d � d � 	� 
� In this paper� we con�ne ourselves to the case of
an ansatz space Wh �� spanf�igi�I � W of piecewise constant�linear basic functions with respect to the
graded tensor�product meshes �and the associated triangulation if necessary� on the computational domain
� � �
� ��d� � Therefore� we specify Hr��� � Hr

����� and d� � d � � in the BEM applications� while
W � H�r��� and d� � d for the volume integral calculations� The extension of our approach to the case of
closed surfaces is rather straightforward�

We assume that the singularity function s is asymptotically smooth�� i�e��

j��x ��y s�x� y�j � c�j�j� j�j�jx � yj�j�j�j�jg�x� y� for all j�j� j�j � m �����

and for all x� y � Rd � x �� y� where �� � are multi�indices with j�j � �� � � � �� �d� We consider two particular
choices of the function g � 
 de�ned on ���� The �rst case g�x� y� � s�x� y�� s�x� y� � 
� is discussed in ����
The second variant to be considered is g�x� y� � jx�yj��d��r� Here 	r � R is the order of the integral operator
A � Hr��� � H�r��� in the BEM applications� Similar smoothness prerequisites are usually required in the
wavelet or multi�resolution techniques� see also the related mosaic�skeleton approach in ��	� as well as �
��

�This paper is a contribution to the proceedings of the conference MAFELAP ���� in Uxbrigde �J�R� Whiteman� ed��
�The estimate ����� with g � s�x� y� is valid in many situations� e�g�� in the case of the singularity function �

��
jx� yj�� for

d � ��

�



We analyse a data�sparseH�matrix approximation for the integral operators A with asymptotically smooth
kernels� see ������ The construction consists of three essential stages�

�a� the admissible block�partitioning P� of the tensor product index set I � I � where � in our example �
I is isomorphic to the set of supports of the FE basis functions from Wh�

�b� the construction of an approximate integral operator AH � L�W�W �� with the kernel sH��� �� de�ned
on each block X����X��� � ���� �� � � P�� by a separable expansion s����x� y� �

P
i�k ai�x�ci�y� of the

order k 	 n � dimWh�
�c� the setup of approximating the Galerkin H�matrix AH � hAH�i� �jii�j�I for the operator AH� where

the near��eld �respectively far��eld� components are evaluated with the exact �respectively approximate�
kernel�

Consider the important step �a� in more details� Let I be the index set of unknowns �e�g�� the FE�nodal
points�� For each i � I � the support of the corresponding basis function �i is denoted by X�i� �� supp��i��
The cluster tree T �I� is characterised by the following properties�

�i� all vertices of T �I� are subsets of I �

�ii� T � T �I� is the root�

�iii� if � � T �I� contains more than one element� the set S��� of sons of � consists of at least 	 disjoint subsets
satisfying � �

S
��S��� ��

�iv� the leaves of the tree are fig for all i � I �

For � � T �I� we extend the de�nition of X��� by X��� �
S
i�� X�i��

In the standard quasiuniform FE application� the cluster tree T �I� is obtained by a recursive division of I
into subsets of almost equal size having a diameter as small as possible� In the quasiuniform case� the term
�almost equal size� can be understood in a geometrical sense �i�e�� diam�X�� ��� 
 diam�X�� ���� as well as with
respect to the cardinality �� � 
 �� ��� An appropriate construction of T �I� will ful�l both criteria� However�
in the non�quasiuniform case� these two properties cannot be satis�ed in parallel� The remedy is that the �rst
property can be substituted by diam�X�� ��� 
 dist�X�� ��� X�� ���� due to admissibility condition ���
� below�

The matrix entries belong to the index set I � I� In a canonical way �cf� ����� a block�cluster tree T �I � I�
can be constructed from T �I�� where all vertices b � T �I � I� are of the form b � � � � for �� � � T �I��
Given a matrix M � RI�I � the block�matrix corresponding to b � T �I � I� is denoted by M b � �mij��i�j��b�
A block partitioning P� � T �I � I� is a set of disjoint blocks b � T �I � I�� whose union equals I � I� A block
partitioning P� determines the H�matrix format� We use the following explicit de�nition of H�matrices�

De�nition ��� Let a block partitioning P� of I � I and k 	 n be given� The set of real H�matrices induced
by P� and k is

MH�k�I � I� P�� �� fM � RI�I � � b � P�� there holds rank�M b� � kg� ���	�

The admissibility conditions are used to incorporate the singularity location of the kernel function s�x� y��
�x� y� � �� �� in order to balance the size of matrix�blocks b and their distance from the singularity points�
see ��� for more details� For the BEM applications� we assume that the following admissibility condition

minfdiam���� diam���g � 	� dist��� �� ���
�

holds for all ��� � P�� where � � � is a �xed parameter� We estimate the approximation error jjA�AHjjW�W �

and the global perturbation of the solution arising at the stage �b� above as well as the computational
complexity of certain H�formats in the following cases�

�i� J�level composite meshes characterised by h� � 	�p and hmin � 	�Jh� �see Fig� �a��

�ii� polynomially graded tensor�product meshes f	igd� where 	i �
�
i
N

��
� � � � �see Fig� �b�� with

Nd � dimWh�

�iii� exponentially graded tensor�product geometric meshes f	igd� with 	i � �N�i� � 
 ��

	



a� p � 
� J � 	 b� � � 
��� N � �

Figure �� Composite and tensor�product graded meshes

Note that in the cases �i� and �ii� the proper h�version of the Galerkin BEM is directly applied in the setup
phase �c�� A possible extension of this scheme to the case of hp�version of FEs is based on the corresponding
construction for the exponentially graded meshes� see item �iii� above� However� in this paper we shall not
discuss approximations with higher order �nite elements�

We develop two di�erent strategies to construct the H�matrices on graded meshes� The �rst approach is
as closed as possible to the structure of the block partitioning P� of I � I on the uniform mesh with hi � h�
It is based on the cardinality�balanced cluster tree and yields almost linear complexity� The analysis of the
arising geometrical partition of ��� leads to the optimal approximation result� The second concept is based
on a separation criterion providing a cluster tree with well balanced geometrical decompositions of � on each
level� The corresponding admissible block partitioning P� is built using a ternary tree T �I� with �I � O�
p��
However� in the case hi�� 	 hi� the ternary tree approaches a binary one� see the �gure in Section 
�

� Cardinality�Balanced Partitions

In this section� we introduce the cardinality�balanced separation strategy for constructing the cluster tree�
We show that the corresponding hierarchical matrices are dense enough in the case of graded meshes� i�e��
they lead to the same asymptotically optimal approximations as the exact �nite element � boundary element
Galerkin schemes� Consider the tensor�product grid 	 � f	igd� where the grid points 	i� i � 
� �� ���� N � are
de�ned by a sequence of mesh parameters fhigi�I� � hi � 
� I� �� f�� ���� Ng�

	� � 
� 	N � �� 	i � 	i�� � hi� i � I��

The associated tensor�product index set I is given by

I �� fi � �i�� ���� id� � � � ik � N� k � �� ���� dg� N � 	p�

where each multi�index i � I corresponds to the box �i �� �	ik � 	ik���
d�
k�� � �
� ��d� � In the case of Sobolev

spaces W � Hr
����� with negative index r 
 
� we use the ansatz space Wh of piecewise constant FEs on a

rectangular mesh� while for r � 
 the linear elements on the associated triangulation are chosen� For each
t � R de�ne the weight�function 
�x� � L���� by


�x� �� ht
i

at x � �i with hi � min
��k�d

fhikg�

Assumption ��� �Inverse inequality� For t � �
� ��� the following inequality holds�

jj
�x� � vjj��� � cjjvjj�t�� for all v � Wh� �	���






The estimate �	��� was discussed in �	� in an equivalent form for rather general nonuniform grids� see
conditions �A����A
� therein� These conditions remain valid for the grids under consideration� see �i���iii� in
Introduction�

In the case of quasi�uniform meshes �i�e�� there are constants c�� c� � 
 such that c�h � hi � c�h� i � I�
with h � N���� a class of hierarchical matrix formats MH�k�I � I� P�� was shown to have almost linear
complexity and optimal approximation in the BEM applications� Our goal here is an extension of this result
to the situation with strongly re�ned grids� Set d � � for the moment� Let T �I� be the binary cluster tree

Figure 	� Block�partitionings using �a� binary and �b� ternary trees

of the uniform depth p� where �I � 	p� which has the root I�� � I on level � � 
� It is built by successive
splitting of each vertex into two parts of equal cardinality� T �I� contains the subsets I�j � 
 � � � p� � � j � 	��
on each level � such that at level p� we reach the one�element sets �leaves� Ip� � f�g� ���� Ipn � fng� The
sons I���j�

� I���j�
of I�j are de�ned by the separation criterion �I���j�

� �I���j�
� see Fig� 
a� The cluster tree

I�� I��

�a� �I�� � �I��

I�� I�� I��

�b� I�k � k � �� 	� 
� satisfy �
���

Figure 
� �a� Cardinality� and �b� distance�balanced separation criteria�

T� �� T �I � I� has the following set of vertices� I�ij �� I�i � I�j for 
 � � � p� � � i� j � 	�� The set S��t� of

sons for t � I�ij � T� is given by S��t� �� f� � � � � � S��I
�
i �� � � S��I

�
j �g� where S��f� denotes the set of sons

belonging the parent cluster f � T �I�� Finally� we obtain the explicit block partitioning P� �� 
p���P �
� � where

P �
� � fI��	g 
 fI�	�g and

P �
� � fI�ij � T� � ji� jj � � and I�ij � P ��

� � �� �� 
 �g for � � 
� ���� p�

The construction for d � 	� 
 is completely similar�

�



Fig.: P2 uniform, p=7, bet=1 Fig.: P2 nonuniform, p=7, bet=5

�b�� �b	�

�t�� �t	�

Figure �b�� depicts the P� partitioning of the product index set for n � 	
 based on the binary tree with
the cardinality�balanced separation criterion� Figure �b	� presents the associated geometrical decomposition
of the product domain �
� ��� for the grading parameter � � �� Figures �t�� and �t	� depict the corresponding
partitionings for the same separation strategy in the case of the ternary tree with n � 
	 and with the grading
parameter � � �� In both �gures �b�� and �t��� the left bottom corner corresponds to the index ��� ��� Note
that the unshaded diagonal stripes in �gures �b�� and �t�� correspond to �� � blocks of the near��eld zone in
I � I �

We make a technical assumption which is connected with a certain kind of monotonicity of the re�nement�

Assumption ��� Let 
 and t be as in ������ For each � � � � P �
� � � � �� ���� p� there holdsZ

X����X���


���x�
���y�dxdy � c dist��� ����d���t� for t � � �
� and t � 
� �	�	�

Assumption 	�	 may be vari�ed for the mesh�re�nements considered� There are many opportunities to
build separable expansions of the form

s����x� y� �

kX
j��

aj�x�cj�y�� �x� y� � X����X��� �	�
�

for each cluster � � � � P�� where k � O�logd��N� is the order of expansion� Let x� y vary in the respective
sets X��� and X��� corresponding to the admissible clusters �� � � T �I� and assume without loss of generality

�



that diam�X���� � diam�X����� The optimal centre of expansion is the Chebyshev centre� y� of X���� since
then ky � y�k � �

� diam�X���� for all y � X���� We recall the familiar approximation result �see� e�g�� ��� for
the proof� based on the Taylor expansion with respect to y�

Lemma ��� Assume that ����� is valid and that the admissibility condition ����� holds with � satisfying
c�
� ��� 
 �� Then for m � �� the remainder of the Taylor expansion satis	es the estimate

js�x� y��
m��X
j�j��

�

��
�y� � y��

��s�x� y��
�y�

j � c�
�m�

m�
�m max

y�X���
jg�x� y�j� �	���

for x � X���� y � X����

Let AH be the integral operator with s replaced by the Taylor expansion s��� for �x� y� � X��� � X���
provided that � � � � P� is an admissible block and no leaf� Construct the Galerkin system matrix from AH
instead of A� The perturbation of the matrix induced by AH � A yields a perturbed discrete solution of the
original variational equation

h��I �A�u� vi � hf� vi �v � W �� Hr���� r � ��

where � � R is a given parameter� The e�ect of this perturbation in the panel clustering methods is studied
in several papers �cf� ��
��� Here� we give the consistency error estimate for the H�matrix approximation�

De�ne the integral operator bA with the kernel

bs�x� y� �� � ���� ��max
y��

jg�x� y�j for �x� y� � X����X���� ����� � md� �


 otherwise�
�	���

where ���� �� � � diam���
dist������

m� For the given ansatz space Wh � W of piecewise constant�linear FEs� consider

the perturbed Galerkin equation for uH �Wh�

h��I �AH�uH� vi � hf� vi �v � Wh�

Theorem ��� Assume that ����� is valid and set � �
p
d
� � Suppose that the operator �I � A � L�W�W �� is

W �elliptic� Then there holds

jju� uHjjW � inf
vh�Vh

jju� vhjjW �
c�
�m�

m�
�m jj bAjjWh�W �

h
jjujjW � �	���

Under Assumptions ��� and ��� the norm of bA is estimated by

jj bAjjWh�W �

h
�

� jjAjj if g � s�x� y� and s�x� y� � 


cNd��� if g � jx� yj��d��r� �	���

for the range of Sobolev index �� � 	r � � � d� � d�

Proof� The continuity and strong ellipticity of A imply

jju� uHjjW � inf
v�Wh

jju� vjjW � sup
u�v�Wh

jh�A� AH�u� vij
jjujjW jjvjjW jjuHjjW

�cf� �rst Strang lemma�� On the other hand� under the assumption ������ Lemma 	�
 yields

jh�A �AH�u� vij � c�
�m�

m�
�m

X
����P�

Z
X����X���

jbs�x� y�u�y� v�x�jdxdy �	���

�
c�
�m�

m�
�m jj bAjjWh�W �

h
jjujjW jjvjjW �u� v �Wh�

�Given a set X� the centre of the minimal sphere containing X is called the Chebyshev centre�

�



Now� assuming that c���m�
m� �m jj bAjjWh�W �

h
is su�ciently small� the estimate �	��� and � 
 � imply the strong

ellipticity of the discrete Galerkin operator yielding the stability jjuHjjW � cjjujjW � This implies �	���� In the
case g � s�x� y�� the �rst assertion in �	��� follows from ���� �� � � and from the bound jj juj jjW � jjujjW for
all u �Wh� Consider the case g � jx� yj��d��r� If r � 
� the standard L��norm estimate combined with the
imbedding Hr��� � L���� implies

jh bAu� vij � �Z
�

bs�x� y��dxdy����

jjujjr��jjvjjr���

Setting � � �� d� 	r� we then proceed

jj bAjj�Wh�W �

h

�

Z
�

bs�x� y��dxdy � X
����P�

Z
X����X���

����� ���dist��� �����dxdy

�
pX

���

X
����P �

�

�dist��� ����� jX���jjX���j �
pX

���

X
����P �

�

�dist��� �������d��d��r�

�
pX

���

X
����P �

�

� �
pX

���

	�d� � cNd� �

where the �rst estimate in the last line is based on the property of the admissible partitioning� �P �
� � O�	d����

In the case r 
 
� we �rst obtain the bound in the weighted L��norm and then apply the inverse inequality
on graded meshes� see �	�	�� It is enough to consider the value r � � �

� only� For such a choice there holds

jh bAu� vij � �

Z
�


���x�
���y�bs�x� y��dxdy����jjujjr��jjvjjr���
jj bAjj�Wh�W �

h

�

Z
�


���x�
���y�bs�x� y��dxdy
�

pX
���

X
����P �

�

�dist��� �������d��r�
Z

X����X���


���x�
���y�dxdy

�
pX

���

X
����P �

�

�dist��� �������d��d� � cNd� �

This completes our proof�
By the construction� our P� partitioning generates the same block�structure of H�matrices as the

corresponding one for the case of uniform meshes� Then� following to ���� we obtain the almost linear
complexity bound�

Proposition ��� Let d � f�� 	� 
g� A � MH�k�I � I� P��� and � �
p
d
� � Then the storage and matrix�vector

multiplication expenses are bounded by

Nst � �	d � ���
p
d��� � ��d pkN� NMV � Nst� �	���

where the cost unit of NMV is one addition and one multiplication� Both estimates are asymptotically sharp�

The local Rk�approximations in the Galerkin method may be computed as follows� The block entry A���
H

of the Galerkin matrix AH �� fhAH�i� �jigNi�j�� associated with each cluster ��� on level � may be presented

as a rank� k matrix A���
H �

m��P
j�j��

a� � bT� � where k ��
�
d��m��
m��

�
� O��m � ��d�� is the number of terms� In

turn�

a� �

�Z
X���

�y � y����i�y�dy

�N�

i��

� b� �

�Z
X���

��s�x� y��
�y�

�j�x�dx

�N�

j��

�

where N� � �� � O�	d��p���� �resp� N� � �� � O�	d��p����� is the cardinality of � �resp� ���

�



� On distance�balanced partitions

In this section� we study the algorithm based on the concept of balanced geometrical partitionings� The main
topic to be discussed here is an argument for the linear complexity of the resulting H�matrices� For ease of
presentation consider the one dimensional case� In contrast to the cardinality�balanced partitioning� here we
use a ternary cluster tree T� � T �I� with N � 
p� Starting with the root fIg on level � � 
� we introduce the
triple of sons I�� � I

�
� and I�� on level � � � �see Fig� 
b�� satisfying the separation criteria

�a� �I�� � �I�� � �b� diam I�� � diam I�� � �
���

where i 
 i 
 k for all i � I�� � j � I�� � k � I�� � To analyse the complexity of the admissible P� partitioning� we
�rst construct the nonary tree T� � T �I � I� �� fI�ijgp���� where fI�ijg � I�i � I�j � i� j � 
�� and then build P�
with respect to the admissibility condition ���
�� Note that the intermediate cluster I�� plays here an arti�cial
role because in the case of strong re�nement we have �I�� 	 �I�� � Therefore� the corresponding branch of
the block�cluster tree will be the shorter the stronger the re�nement is� It it easy to see that for monotonous
re�nement the conditions �
��a�b� imply that the clusters � � I�� and � � I�� satisfy the standard admissibility
requirement ���
� �similar on each level ��� The latter immediately yields the local approximation property� see
Lemma 	�
� for each admissible block �� � � P�� Then the global error estimate similar to Theorem 	�� holds
true� In this point� the number of blocks from P �

� is bounded from above and below by the corresponding one
for the nonary and quad trees� respectively� constructed on the uniform grids� On the other hand� the ratio
of the latter two values is uniformly bounded with respect to the problem size� In the case of quasi�uniform

� � � � � �

meshes� the complexity result is completely similar to those from Theorem 	�� above� see ��� for the case of
binary tree�

Lemma ��� Let d � f�� 	� 
g� A � MH�k�I � I� P��� N � 
d�p and � �
p
d
� � Then there holds

Nst � �
d � ���
p
d��� � ��d kN log�N � NMV � Nst �
�	�

for the storage and matrix�vector multiplication �the cost unit of NMV is one addition and one multiplication��
Both estimates are asymptotically sharp�

In the general case� the complexity analysis is based on the observation that due to assumption hi � hi���
we obtain larger admissible blocks in P� on each level compared with those arising on the basis of the balanced
nonary tree T� for uniform grids� Thus� we have Nst�g � cNst and NMV�g � cNMV � where the abbreviation
��g�� denotes graded meshes� Moreover� if hi 	 hi�� the corresponding nonary tree approaches the quad�tree

and the induced P��g partitioning becomes very close to the simplest one based on the binary tree for n � 	p

�see the �gure in this section drawn for the case of �D polynomially graded mesh with n � ��	� � � � and
� � ���

�



Remark ��� The analysis of H�matrix approximations on the composite grids of Fig� �a is a particular case
of the arguments above� In the case of piecewise linear elements� a standard modi	cation of the FE space by
using slave nodes is required�
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