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Abstract

In a preceding paper [6], a class of matrices (H-matrices) has been introduced which are data-sparse
and allow an approximate matrix arithmetic of almost linear complexity. Several types of H-matrices were
analysed in [6, 7, 8, 9] which are able to approximate integral (nonlocal) operators in FEM and BEM
applications in the case of quasi-uniform unstructured meshes.

In the present paper, the special class of H-matrices on graded meshes is analysed. We investigate
two types of separation criteria for the construction of the cluster tree which allow to optimise either the
approximation power (cardinality—balancing strategy) or the complexity (distance-balancing strategy) of
the H{-matrices under consideration. For both approaches, we prove the optimal complexity and approx-
imation results in the case of composite meshes and tensor-product meshes with polynomial/exponential
grading in R?, d = 1,2, 3.

Keywords. fast algorithms, hierarchical matrices, data-sparse matrices, mesh refinement, BEM, FEM.

1 Introduction

Consider the h-version of the Galerkin FE method for approximation of the integral operator A € L(W, W)
defined in the Sobolev space W = H"(X). In the typical BEM applications, we deal with integral operators
of the form

(Au)(z) = / s@yuly)dy, el

with s being the fundamental solution (singularity function) associated with the pde under consideration or
with s replaced by a suitable directional derivatives Ds of s. Here ¥ is either a bounded (d — 1)-dimensional
manifold (surface) or a bounded domain in R, d = 2, 3. In this paper, we confine ourselves to the case of
an ansatz space W, := span{y;}ic;r C W of piecewise constant/linear basic functions with respect to the
graded tensor-product meshes (and the associated triangulation if necessary) on the computational domain
¥ = (0,1)%=. Therefore, we specify H"(X) = HJ,(X) and ds = d — 1 in the BEM applications, while
W = H?"(X) and ds. = d for the volume integral calculations. The extension of our approach to the case of
closed surfaces is rather straightforward.
We assume that the singularity function s is asymptotically smooth?, i.e.,

0200 s(z, )] < clal, [8)|e =y 1 Pg(e,y)  for all fal, 18] < m (L1)

and for all z,y € R?, 2 # y, where «, 3 are multi-indices with |a| = a; + ...+ ay. We consider two particular
choices of the function g > 0 defined on ¥ x . The first case g(z,y) = s(z,y), s(z,y) > 0, is discussed in [7].
The second variant to be considered is g(x,y) = |z —y|*~?~2". Here 2r € R is the order of the integral operator
A:H"(X) - H"(X) in the BEM applications. Similar smoothness prerequisites are usually required in the
wavelet or multi-resolution techniques, see also the related mosaic-skeleton approach in [12] as well as [3].

*This paper is a contribution to the proceedings of the conference MAFELAP 1999 in Uxbrigde (J.R. Whiteman, ed.)
I The estimate (1.1) with g = s(=,y) is valid in many situations, e.g., in the case of the singularity function ﬁ\ax —y|~! for
d=3.



We analyse a data-sparse H-matrix approximation for the integral operators A with asymptotically smooth
kernels, see (1.1). The construction consists of three essential stages:

(a) the admissible block-partitioning P> of the tensor product index set I x I, where — in our example —
I is isomorphic to the set of supports of the FE basis functions from Wp,;

(b) the construction of an approximate integral operator Ay € L(W,W') with the kernel sy(-,-) defined
on each block X (o) x X(7) € ¥ x X, 0 x 7 € P, by a separable expansion s ,(x,y) =Y . ai(x)c;i(y) of the
order k <« n = dim Wy; -

(c) the setup of approximating the Galerkin H-matrix Ay = (Aypi, ¢;)ijer for the operator Ay, where
the near-field (respectively far-field) components are evaluated with the exact (respectively approximate)
kernel.

Consider the important step (a) in more details. Let I be the index set of unknowns (e.g., the FE-nodal
points). For each i € I, the support of the corresponding basis function ; is denoted by X (¢) := supp(y;)-
The cluster tree T(I) is characterised by the following properties:

(i) all vertices of T'(I) are subsets of I,
(ii) T € T(I) is the root;

(iii) if 7 € T'(I) contains more than one element, the set S(7) of sons of T consists of at least 2 disjoint subsets
satisfying 7 = U, ¢g(;) 73

(iv) the leaves of the tree are {i} for all i € I.

For 7 € T(I) we extend the definition of X (-) by X(7) = U, X (7).

In the standard quasiuniform FE application, the cluster tree T'(I) is obtained by a recursive division of I
into subsets of almost equal size having a diameter as small as possible. In the quasiuniform case, the term
“almost equal size” can be understood in a geometrical sense (i.e., diam(X (7')) ~ diam(X (")) as well as with
respect to the cardinality #7' ~ #7'". An appropriate construction of 7'(I) will fulfil both criteria. However,
in the non-quasiuniform case, these two properties cannot be satisfied in parallel. The remedy is that the first
property can be substituted by diam(X (7')) & dist(X(7'), X (7"")) due to admissibility condition (1.3) below.

The matrix entries belong to the index set I x I. In a canonical way (cf. [7]), a block-cluster tree T'(I x I)
can be constructed from T'(I), where all vertices b € T'(I x I) are of the form b = 7 x ¢ for 7,0 € T(I).
Given a matrix M € R/, the block-matrix corresponding to b € T'(I x I) is denoted by M® = (m;) i jyes-
A block partitioning P, C T'(I x I) is a set of disjoint blocks b € T'(I x I), whose union equals I x I. A block
partitioning P, determines the H-matrix format. We use the following explicit definition of H-matrices.

Definition 1.1 Let a block partitioning P> of I X I and k < n be given. The set of real H-matrices induced
by P> and k 1is

Moy (I x I,Py) :={M € R™*! : Vb€ Py, there holds rank(M®) < k}. (1.2)

The admissibility conditions are used to incorporate the singularity location of the kernel function s(z,y),
(z,y) € ¥ x X, in order to balance the size of matrix-blocks b and their distance from the singularity points,
see [8] for more details. For the BEM applications, we assume that the following admissibility condition

min{diam(e), diam(7)} < 27 dist(o, 7) (1.3)

holds for all o x7 € Ps, where n < 11is a fixed parameter. We estimate the approximation error ||A—Ay||lw—w
and the global perturbation of the solution arising at the stage (b) above as well as the computational
complexity of certain #-formats in the following cases:

(i) J-level composite meshes characterised by hg = 277 and Ay, = 277 ho (see Fig. 1a);

(ii) polynomially graded tensor-product meshes {w;}¢, where w; ~ (%)’8, B > 1 (see Fig. 1b), with
N = dim Wp;

(iii) exponentially graded tensor-product geometric meshes {w;}9, with w; ~ oV ~% o < 1.



a)p=3,J=2 b)oe=05N=5

Figure 1: Composite and tensor—product graded meshes

Note that in the cases (i) and (ii) the proper h-version of the Galerkin BEM is directly applied in the setup
phase (c). A possible extension of this scheme to the case of hp-version of FEs is based on the corresponding
construction for the exponentially graded meshes, see item (iii) above. However, in this paper we shall not
discuss approximations with higher order finite elements.

We develop two different strategies to construct the H-matrices on graded meshes. The first approach is
as closed as possible to the structure of the block partitioning P> of I x I on the uniform mesh with h; = h.
It is based on the cardinality-balanced cluster tree and yields almost linear complexity. The analysis of the
arising geometrical partition of ¥ x 3 leads to the optimal approximation result. The second concept is based
on a separation criterion providing a cluster tree with well balanced geometrical decompositions of ¥ on each
level. The corresponding admissible block partitioning P, is built using a ternary tree T'(I) with #I = O(3P).
However, in the case h;—1 < h;, the ternary tree approaches a binary one, see the figure in Section 3.

2 Cardinality-Balanced Partitions

In this section, we introduce the cardinality-balanced separation strategy for constructing the cluster tree.
We show that the corresponding hierarchical matrices are dense enough in the case of graded meshes, i.e.,
they lead to the same asymptotically optimal approximations as the exact finite element / boundary element
Galerkin schemes. Consider the tensor-product grid w = {w;}¢, where the grid points w;, i = 0,1,..., N, are
defined by a sequence of mesh parameters {h;}icr,, hi >0, I :={1,...,N},

wo =0, wy =1, w; =w;_1 + hy, 1 € 1.
The associated tensor-product index set [ is given by
I={i=(i1,..,iq): 1 <ix <N, k=1,..,d}, N =27,

where each multi-index i € I corresponds to the box d; := [wi,,wi,—1]4=, C [0,1]?=. In the case of Sobolev
spaces W = H{,(X) with negative index r < 0, we use the ansatz space W}, of piecewise constant FEs on a
rectangular mesh, while for » > 0 the linear elements on the associated triangulation are chosen. For each
t € R define the weight-function u(x) € L*(Z) by

ot : Shohe — i .
w(x) :==h atzx € with by 11;11612d{hlk}.

Assumption 2.1 (Inverse inequality) For t € [0, 1], the following inequality holds:

[lu(z) - vllox < ¢|v]|—tz for allv € Wy, (2.1)



The estimate (2.1) was discussed in [2] in an equivalent form for rather general nonuniform grids, see
conditions (A1)-(A3) therein. These conditions remain valid for the grids under consideration, see (i)-(iii) in
Introduction.

In the case of quasi-uniform meshes (i.e., there are constants ¢;, co > 0 such that e;h < h; < eoh, i € I
with h = N71), a class of hierarchical matrix formats My (I x I, P,) was shown to have almost linear
complexity and optimal approximation in the BEM applications. Our goal here is an extension of this result
to the situation with strongly refined grids. Set d = 1 for the moment. Let T'(I) be the binary cluster tree

Figure 2: Block-partitionings using (a) binary and (b) ternary trees

of the uniform depth p, where #I = 2P, which has the root IY = I on level £ = 0. It is built by successive
splitting of each vertex into two parts of equal cardinality. 7'(I) contains the subsets I f ,0<(<p 1<j<2f
on each level ¢ such that at level p, we reach the one-element sets (leaves) IY = {1},...,12 = {n}. The
sons If;rl, Ifjl of If are defined by the separation criterion #Ifjl = #Ifjl, see Fig. 3a. The cluster tree

I 1 0o 1

(a) #I} = #13 (b) I, k =1,2,3, satisfy (3.1)

Figure 3: (a) Cardinality- and (b) distance-balanced separation criteria.

T := T(I x I) has the following set of vertices, If; := If x I§ for 0 < £ < p, 1 <4,j < 2. The set Sy(t) of
sons for t = Ifj € Ty is given by Sy(t) :={rxo:7€ S1(If), 0 € Sl(If)}, where S (f) denotes the set of sons

belonging the parent cluster f € T'(I). Finally, we obtain the explicit block partitioning P» := UfZQPf , where
P ={I1{,} U{I4} and
Pi={l,€Ty: li-jl>1landI;NP{ =0, 0 <t} forl=3,..,p.

The construction for d = 2,3 is completely similar.



Fig.: P2 uniform, p=7, bet=1 Fig.: P2 nonuniform, p=7, bet=5
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Figure (b1) depicts the P, partitioning of the product index set for n = 27 based on the binary tree with
the cardinality-balanced separation criterion. Figure (b2) presents the associated geometrical decomposition
of the product domain [0, 1]? for the grading parameter 8 = 5. Figures (t1) and (t2) depict the corresponding
partitionings for the same separation strategy in the case of the ternary tree with n = 3* and with the grading
parameter 8 = 4. In both figures (b1l) and (t1), the left bottom corner corresponds to the index (1,1). Note
that the unshaded diagonal stripes in figures (b1) and (t1) correspond to 1 x 1 blocks of the near-field zone in
IxI.

We make a technical assumption which is connected with a certain kind of monotonicity of the refinement.

Assumption 2.2 Let p and t be as in (2.1). For each T x 0 € P{, { = 1,...,p, there holds

/ p 2 (2)p 2 (y)dady < c dist(r, o)X=+ fort=—3 andt=0. (2.2)
X(r)xX (o)
Assumption 2.2 may be varified for the mesh-refinements considered. There are many opportunities to
build separable expansions of the form

k

Sro(z,y) =D aj(@)e;(y),  (z,y) € X(1) x X(0) (2.3)
j=1

for each cluster 7 X o € P, where k = O(logd_1 N) is the order of expansion. Let z,y vary in the respective
sets X (7) and X (o) corresponding to the admissible clusters 7,0 € T'(I) and assume without loss of generality



that diam(X (¢0)) < diam(X (7)). The optimal centre of expansion is the Chebyshev centre? y. of X (o), since
then ||y — y.|| < % diam(X (o)) for all y € X (o). We recall the familiar approximation result (see, e.g., [7] for
the proof) based on the Taylor expansion with respect to y.

Lemma 2.3 Assume that (1.1) is valid and that the admissibility condition (1.8) holds with 1 satisfying
¢(0,1)n < 1. Then for m > 1, the remainder of the Taylor expansion satisfies the estimate

m

m—1
a”S(w,y*) c(0,m)
< 2.4
g7 | < o ygl)?();)lg(w Yl (24)

Sl

|v|=0
forz e X(1), y € X(o).

Let Ay be the integral operator with s replaced by the Taylor expansion s, . for (z,y) € X (1) x X(0)
provided that 7 x ¢ € P, is an admissible block and no leaf. Construct the Galerkin system matrix from Ay
instead of A. The perturbation of the matrix induced by Ay — A yields a perturbed discrete solution of the
original variational equation

(M + A)u,v) = (f,v) Yoe W :=H"(X), r <1,

where A € R is a given parameter. The effect of this perturbation in the panel clustering methods is studied
in several papers (cf. [10]). Here, we give the consistency error estimate for the #H-matrix approximation.
Define the integral operator A with the kernel

N plo,T)max|g(z,y)|  for (z,y) € X(1) x X(0), #7,#0 >m®
(2,y) = ver (2.5)
0 otherwise,

where p(o,7) = (g;:tr(na(‘:)))m For the given ansatz space Wj, C W of piecewise constant/linear FEs, consider

the perturbed Galerkin equation for uy € Wj,

(M + Ap)ug,v) = (f,v) Yv € W,

Theorem 2.4 Assume that (1.1) is valid and set n = @. Suppose that the operator \I + A € LW, W') is
W -elliptic. Then there holds

¢(0,m)

llu —unllw < nf [lw = onllw + == 0" [ Allw, —wy [[ullw- (2.6)

Under Assumptions 2.1 and 2.2 the norm off/l\ 15 estimated by

|All ifg=s(x,y) ands(x,y) >0
Wiy S { My 502000 0 @)
for the range of Sobolev index —1 < 2r <14 dy —d.
Proof. The continuity and strong ellipticity of A imply
. A— Ay)u,v
b=l S inf flu— ol + sup KAl
vEW), uvew,  |lullwllvllw

(cf. first Strang lemma). On the other hand, under the assumption (1.1), Lemma 2.3 yields

[((A = Ap)u, v)| 5 "y / s(z,y)uly) v(z)|dzdy (2.8)

TXoEP> T)XX(U

c(0,m -~
S (,;L. )nm||A||Wﬁw,;||u||w||v||w Vu, € Wi,

2Given a set X, the centre of the minimal sphere containing X is called the Chebyshev centre.



Now, assuming that ° (0 m) pym ||A\||Wh4)W}./L is sufficiently small, the estimate (2.7) and n < 1 imply the strong
ellipticity of the dlscrete Galerkin operator yielding the stability ||uy||w < ¢||u|lw. This implies (2.6). In the
case g = s(x,y), the first assertion in (2.7) follows from p(o,7) < 1 and from the bound || |u|||w < ||u||w for
all u € W,. Consider the case g = |z — y|! =472, If > 0, the standard L?-norm estimate combined with the
imbedding H"(X) C L*(¥) implies

R 1/2
(Au,v)]| < ( / @(x,yfdxdy) ally s o]l -

Setting e = 1 — d — 2r, we then proceed

||A||Wh—>W’ / 8(z,y) dady < Z / (o,7)(dist(o,7))* dady

oXTEP, J)XX(T
<Z Z (dist(o,7))%|X (0)]| X (7 |<Z Z (dist(o, 7))2(1Hd=—d=21)
= QUXTEPZ (= QUXTEPZ
S IRE L
=2 oxTEPS

where the first estimate in the last line is based on the property of the admissible partitioning: #P§ = O(29=¢).
In the case r < 0, we first obtain the bound in the weighted L?-norm and then apply the inverse inequality
on graded meshes, see (2.2). It is enough to consider the value r = —% only. For such a choice there holds

[(Au,v)| < (/Z p R (@) ()3, y) dedy) 2 lull o]l

ARy, ;S / 1 (@) ()3, y) dedy

b
P
<Y Y @istna)t [ )dady
(=2 oxTEP; X(o)xX(7)
P
< Z (dist(r, 0))2(1Fd==D < ¢ N9z
(=2 gxTEP!
This completes our proof. [

By the construction, our P, partitioning generates the same block-structure of H-matrices as the
corresponding one for the case of uniform meshes. Then, following to [8], we obtain the almost linear
complexity bound.

Proposition 2.5 Let d € {1, 2,3}, A € My (I xI,P), and n = 4. Then the storage and matriz-vector
multiplication expenses are bounded by

Nt < @' =D)(Vdn™ + D)*pkN, Ny < N, (2.9)
where the cost unit of Nayrv is one addition and one multiplication. Both estimates are asymptotically sharp.

The local Rk-approximations in the Galerkin method may be computed as follows. The block entry A7*”
of the Galerkin matrix Ay = {{Any;, goj)}gj:l associated with each cluster 7 x o on level £ may be presented

m—1
as a rank- k matrix A7 7 = > a, * bl , where k := (dzntinl_l) = O((m — 1)4=) is the number of terms. In
|v|=0

No
B o _ 0"s(x,y«) ()
ay = {/X(T)(y Ys) %(y)dy} ;o by {/X(a) oy pj(z)d } :

where N, = #7 = 0(2?2~9) (resp. N, = #0 = 0(29=(P~9)) is the cardinality of 7 (resp. o).

turn,

N,

i=1



3 On distance-balanced partitions

In this section, we study the algorithm based on the concept of balanced geometrical partitionings. The main
topic to be discussed here is an argument for the linear complexity of the resulting #-matrices. For ease of
presentation consider the one dimensional case. In contrast to the cardinality-balanced partitioning, here we
use a ternary cluster tree Ty = T'(I) with N = 3P. Starting with the root {I} on level £ = 0, we introduce the
triple of sons I}, I} and I} on level £ = 1 (see Fig. 3b), satisfying the separation criteria

(a) #1} = #13; (b) diam I} = diam I, (3.1)

where i <i <k foralli € I, j € I}, k € I}. To analyse the complexity of the admissible P, partitioning, we
first construct the nonary tree To = T'(I x I) := {Ifj}fzo, where {Ifj} =1Ifx If, i,j < 3%, and then build P,
with respect to the admissibility condition (1.3). Note that the intermediate cluster I3 plays here an artificial
role because in the case of strong refinement we have #I3 < #I}. Therefore, the corresponding branch of
the block-cluster tree will be the shorter the stronger the refinement is. It it easy to see that for monotonous
refinement the conditions (3.1a,b) imply that the clusters o = I} and 7 = I3 satisfy the standard admissibility
requirement (1.3) (similar on each level £). The latter immediately yields the local approximation property, see
Lemma 2.3, for each admissible block ¢ x 7 € P,. Then the global error estimate similar to Theorem 2.4 holds
true. In this point, the number of blocks from Pj is bounded from above and below by the corresponding one
for the nonary and quad trees, respectively, constructed on the uniform grids. On the other hand, the ratio
of the latter two values is uniformly bounded with respect to the problem size. In the case of quasi-uniform

3=8 B=1

meshes, the complexity result is completely similar to those from Theorem 2.4 above, see [8] for the case of
binary tree.

Lemma 3.1 Letd € {1,2,3}, A€ My (I xI,Py), N=3%P andn= @ Then there holds

Na <3 =1)(Vdyp ' +1)*kNlogs N; Ny <N (3.2)

for the storage and matriz-vector multiplication (the cost unit of Nyrv is one addition and one multiplication).
Both estimates are asymptotically sharp.

In the general case, the complexity analysis is based on the observation that due to assumption h; < hjy1,
we obtain larger admissible blocks in P, on each level compared with those arising on the basis of the balanced
nonary tree T, for uniform grids. Thus, we have Ny, < eNy and Nyy,g < eNyy, where the abbreviation
"g'"" denotes graded meshes. Moreover, if h; < h;11 the corresponding nonary tree approaches the quad-tree
and the induced P, , partitioning becomes very close to the simplest one based on the binary tree for n = 27

(see the figure in this section drawn for the case of 1D polynomially graded mesh with n = 512, 8 = 1 and
B =28).



Remark 3.2 The analysis of H-matriz approzimations on the composite grids of Fig. 1a is a particular case
of the arguments above. In the case of piecewise linear elements, a standard modification of the FE space by
using slave nodes is required.

Acknowledgements. The authors want to thank Klaus Giebermann for his assistance in producing the
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