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Abstract

In this paper, we will present integral equations for general elliptic
boundary value problems of second order with constant coefficients.
The jump conditions, existence and uniqueness theorems are proved.
In combination with black box numerical integration schemes devel-
oped recently for general boundary integral equations it becomes fea-
sible to implement a black box software package for solving this class
of problems, just by providing the coefficients of the boundary value
problems. Numerical examples performed by such a black-box soft-
ware package will illustrate the good convergence behaviour of the
integral equation method.

1 Introduction

The integral equation method for solving partial differential equations has a
long history (see [23], [24], [29], [30], [31], [15], [25], [26], [8], [21], [22], [38],
[37], [2]). Since the treatment of partial differential equations via variational
principles was established in the first part of this century, integral equation
methods have lost significantly importance from the theoretical point of view
due to the difficulties related to sharp existence and uniqueness theorems for
partial differential equations in the classical setting. However, with increasing
importance of numerical techniques for solving boundary value problems,
integral equation method are becoming more and more popular as a starting
point for numerically solving boundary value problems for the reasons listed
below:



e The treatment of equations on complicated (time depending) 3-d do-
mains is simpler from the viewpoint of mesh generation since only the
surface of the physical body has to be (re-) meshed,

e Fast techniques for the sparse representation of the arising pseudo-local
operators (panel clustering, multipole, wavelets) have been developed
overcoming the drawback of full system matrices for boundary integral
equations.

e The treatment of problems on unbounded domains is especially simple.

e Parameter dependent problems (as, e.g., the Helmholtz equation with
high wave number and problems where finite element discretizations
suffer from “locking”) cause less difficulties as for the corresponding
finite element discretizations.

e The arising large systems of linear equations are, typically, better con-
ditioned as the direct finite element discretizations of the underlying
boundary value problem.

However, in mathematical textbooks and also in engineering software pack-
ages, usually, only integral equations for the prototype operators as, e.g. the
Laplace operator, the biharmonic operator, the Lamé operator, the Stokes
operator are discussed and realised numerically. From the practical view-
point, it would be interesting to develop the relevant integral equations for
the general second order elliptic boundary value problems with constant co-
efficients

Lu = —div (Agrad u) + 2 (b, Vu) + cu, (1)

since in the farfield, i.e., as |z| becomes large, equations with non-constant
coefficients or non-linear equations could be linearized.

In [35], [36], [14], [32], [13], [1], [33], [6], [34], black box numerical quadrature
schemes have been developed for a class of integral kernels including those
arising by treating (1) with integral equation methods. In the present paper,
we will define potential operators for the (elliptic) operator L in (1) and derive
corresponding integral equations. We will prove the relevant jump conditions
by employing weak assumptions on the smoothness of the surface, either
Holder continuity or only continuity which is not elaborated in the classical
references. Such an approach can be found in [12] while that exposition is



mainly restricted to the Laplace operator. A much more general approach
can be found in [4], [42] while the formulae are not completely explicit.

Our motivation of this paper was to define explicit integral operators for
boundary value problems with differential operator L as in (1) and prove the
relevant jumping conditions, existence and uniqueness theorems. In combi-
nation with the numerical integration techniques described in [36], [14], [32],
[13], [1], [33], [6] a black box software package for solving boundary values
problems with differential operator L as in (1) could be derived. We have
tested both, the integral equation formulations and the black box implemen-
tation (based on the program libbem described in [18], [19]) and show that
the expected convergence rates are obtained also for general second order
elliptic equations.

The numerical methods and formulations of the integral equations are such
that is sufficient to specify the (positive definite) matrix A € R??, the vector
b € C¢ and the coefficients ¢ € C and the program solves the correspond-
ing boundary value problem, similarly, as it is widely realised in software
packages for solving elliptic boundary value problems by, e.g., finite elements
directly.

The paper is organized as follows:

After having introduced some preliminary notations in the next section we
formulate the boundary value problems which we want to solve via integral
equations. The key role for the transformation into integral equations plays
the fundamental solution to the elliptic operator. In Section 4, the relevant
fundamental solutions are provided and some properties concerning their
singular behaviour at the origin and their decay behaviour for large |z| are
proved. By employing these fundamental solutions, the corresponding po-
tential operators are defined in the next section. The jump relations, i.e., the
behaviour of these potentials as x crosses the surface, play the essential role
for the transformation of the boundary value problem into integral equations.
These relations are derived in Section 6 for the principal part of the operator
and the corresponding boundary integral equations are obtained. The case
of general elliptic equations is considered in Section 7. Numerical results
showing the good convergence behaviour of the method and the possibility
of designing a black box software package where just the coefficients of the
underlying elliptic operator have to be described are included in Section 8.



Figure 1: Domain with slit 5553

2 Preliminaries and Notations

Let €2_ be an open and bounded set in R? with boundary I" which coincides
with the boundary of Q, := R?\ Q_.

Definition 1. A boundary point u € T' is regular if there exists a neigh-
bourhood U of u in R so that [ N U is a (d — 1)-dimensional submanifold
in R?. All non-regular boundary points of Q_ are singular boundary points.

The set of regular boundary points of ©_ is denoted by X := X(Q_), the
singular boundary points form the set S := S(£2_).

Example 2. In Figure 1 the boundary points x1, x5 and y are regular points,
s1, $2 and s3 are singular boundary points. Because of our assumption, that
[' is the common boundary of €2 and €2, , boundary points like ¥, s, and s3
could not occur in I'.

Throughout the paper, we assume that Assumption 3 holds:

Assumption 3. Let E = {t € R""' : |t1],...,[ta1] < 1}. There exist a
neighbourhood E of E and C'™#-parametrisations ¢; : E — R, j =1,...,m,
with sets M; := 1;(E) and disjoint subsets M; := 1),;(E) which satisfies
(i) U}”le i=1,
(ii) U, M; C X,
(iii) for all M;, there exists a continuous unit normal vector field which
coincides with the exterior normal vector field n of X on M; N X.
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Conclusion 4. Assumption 3 implies a vanishing (d — 1)-dimensional Min-
kowski measure of S. Hence, the Gauf$’ divergence theorem can be applied to
Q_ (cf. [16], Folgerung 7.5).

Let A € R™? denote a symmetric and positive definite matrix, b € C¢
and ¢ € C. Let (-, -) denote the symmetric bilinear form on C? defined by
(z,y) — Z?Zl z;y;. We define the symmetric bilinear form (-, -) 4 on C? by

(r,y)a = (A7 z,y). If z is in R, we write |z|4 short for \/(z,x)4. Let us
consider the elliptic operator

L := —div(A grad) + 2(b, V-) + c. (2)

In the classical sense and in the sense of distribution theory any elliptic
differential operator of order 2 with constant coefficients is of the form (2)
modulo multiplication by the factor —1. The conormal vector field [ on X is
given by [(z) := An(x).

3 Boundary Value Problems

Let us consider the following boundary value problems:

Interior Dirichlet Problem. Find u € C%(Q_) N C(Q_) satisfying
Lu=0 in Q_ and u=f onl (3)

where f is a given continuous function.

Exterior Dirichlet Problem. Find u € C%(Q,) N C(€,) such that
Lu=0 in Q4 and u=f onl (4)

holds where f is a given continuous function on I'.

Interior Natural Boundary Value Problem. Find u in C*(Q_)NC(Q.)
satisfying, for a given g € C(X), the equations

Lu=0 in Q_ and

lig})(l(x), Vu(z — al(x))) = g(z) locally uniformly on X. (5)



Exterior Natural Boundary Value Problem. Find v in C?(Q,)NC(Q,)
satisfying, for a given g € C(X), the equations

Lu=0 in ©, and
lim(I(z), Vu(z + al(z))) = g(x) locally uniformly on X. (6)

a\0

Uniqueness and Radiation Conditions. For the uniqueness of the exte-
rior problems certain (physically motivated) radiation conditions, depending
on L, have to be imposed. We give some examples:

(a) Consider Ly = — div(Agrad) (if A = I, this is the Laplace operator) and
the radiation condition

u(z) =0(1) as|z| — o0 (d=2),
u(x) -0 as|z] =00 (d>3).

(7)

For the following uniqueness results we refer to [17], §6.2, and [9], §4.1.

(al) The exterior Dirichlet problem for Ly has at most one solution u satis-
fying (7).

(a2) If the interior Dirichlet problem for Ly has a solution u, then u is uniquely
determined.

These statements are proved by using the maximum-minimum principle of
harmonic functions. Thus it is not necessary to require any kind of regularity
of the boundary I" .

For the exterior natural boundary value problem we impose the radiation
condition

u(r) = 0 as |z| — co. (8)

(a3) If Q is connected and T is a C?-submanifold, the exterior natural value
problem has at most one solution satisfying (8).

(ad) If Q_ is connected and I' a C?-submanifold, two solutions of the interior
natural value problem can differ only by a constant.

The last two results can be proved by applying Equation (20), i.e., Green’s
theorem.

(b) Consider the Helmholtz equation Au + k*u = 0, Im(k) > 0 in R3. The
emission or radiation condition of Sommerfeld

<|§_| Vu(x)> ~iku(z) = 0<%> as [z] = oo (9)



ensures, that the solution u of the Helmholtz equation represents a divergent
travelling wave.

(bl) If Q, is connected and T" is the union of a finite number of disjoint,
closed C?-submanifolds, the exterior Dirichlet problem, and also the exterior
Neumann problem, has at most one solution satisfying (9).

(b2) On the other hand, there exist discrete values £ € R such that the
interior Dirichlet problem is not uniquely solvable. The same holds true for
the interior Neumann problem (cf. [3], Section 3.3).

(c) Let £ > 0 and consider the convection-diffusion problem

—Au+ kOyu=g in

10
u=0 onl. ( )

in three dimensions. For a,b € R define the weighted L%-space

Lop(Qe) = {v € Lin () = o, [o(@)* (1 + [2)*(1 + |2] — 21)" do < o0}

Let I' be a Lipschitz continuous boundary, 5 > 0, = < o < 0 and g €
L2158 ). Then there exists a unique weak solution u € Hy, (Q4) of (10)
satisfying the generalized radiation condition

ue Ll 4(Q4) and Vue L 5(Q),

i.e., u is an element of an anisotropically weighted Sobolev space (cf. [7],
Theorem 2.7).

The exterior Dirichlet problem for the convection-diffusion operator L =
—A + k0 and a given boundary function f can be transformed into (10) if
a function vy on 4 is known with vy|r = f: If u is a solution of (10) for
g = Avg — kO1vg, then v := u + vy is a solution of the exterior Dirichlet
problem.

4 Fundamental Solutions

The boundary value problems can be transformed into integral equations over
(a subset of) I" by the so called “integral equation method”. The keyrole in
this transformation plays a fundamental solution of the differential operator
L, i.e., a distribution F satisfying the equation LF' = d, where J is the Dirac
distribution supported in the origin.



A table of fundamental solutions of the most common differential operators
can be found in the second part of [27]. For the construction of fundamental
solutions we refer to [28].

The definition of fundamental solutions for L involves Macdonald functions
K, which, for example, are stated in [39], p.79, 80, [20], §5.7.

Theorem 5. Let ¥ :=c+ (b,b)4 = 0. Then, ko : R? — R defined by

1 1
_ ebm)a g — d=2
e n or
/et A ET
Ko(z) == (11)
1 elb2)a

or d+# 2,
(d — 2)wgv/det A |z|%> f 7

where wq s the volume of the unit sphere in R?, is a fundamental solution
of L. For 9 # 0, there exists A € C\] — oo, 0] with \* = 9. A fundamental
solution ky of L is given by

et 2a) ™ 0 12
k)= (27r)d/2\/detA< A ) ipiela), 220 (12)
Ford = 2,3, we obtain
e(b’I>A (1) T
d=2: kax(r) = ————1H,  (i\|x if —7m<arg(\) < =,
1 e(b,a:>A—/\\a:\A
d=3: Ka(x)

T ArvdetA4 |zla

where Hél) is a Hankel function (or Bessel function of the third kind).

For Hankel functions we refer to [20], §5.7, and [39]. A proof of Theorem 5
can be found in [9], Kapitel 3.

Lemma 6. The gradient of the fundamental solution ky, A € C\| — 00,0,
has the asymptotic behaviour

1 Ay < 1
- g to
wVdet A |z|%

If d is odd, we could replace o(|z|'T"=9) by O(|z|>~9).

Via(z) =

) for any v €]0,1].

|x|d—1—u
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The behaviour of the fundamental solution k) is considered in

Lemma 7. Let b € C? and ¢ € C with ¥ := ¢+ (b,b)4 = 0 and

L = —div(A grad) +2(b,V-) + c.

Further, let (by)nen, (Cn)nen be sequences in Ct and C which converge to b
and ¢ respectivly with 9, := ¢, + (bp,by)a # 0. Let L, denote the operator
—div(A grad) + 2(b,, V-) + ¢, and let A, € C\] — 00,0] be a square root of
.

d=2: For all z € R* \{0}: |k, (z)] = 00 as n — <.

d > 3: The singularity functions ky, of L,, n € N, converge uniformly on
compact subsets of R2\{0} to the singularity function ko of L.

Moreover (ky, )nen converges to kg in the sense of distribution theory, i.e.,
for all test functions ¢ € D(RY), there holds

Kx, (@) = /dmncpdx% dmocpdx =:ko(p) as n— 0.
R R

This lemma and the next theorem are proved in [9], Kapitel 3.

Theorem 8. Let b € RY and ¢ € C. Further let 9 = ¢ + |b|} and
A € C\] — 00, 0] with \* =9 and Re()\) > 0. Let ky be as in Theorem 5.
(a) Letb = 0. Forc € C\|—00,0], |k\| decreases exponentially as || — oc.

If ¢ = 0, we have, in two dimensions, |ky(x)] = O(ln|z|), in higher
dimensions |ky(z)] = O(|z|>~%) as |x| tends to infinity.

If ¢ €] — 00,0], then |k)| decreases as O(|x|#)

2
(b) Let b # 0 and © = —(llm(c)> . If Re(c) > O, |ky)| decreases exponen-

2 |ba
tially as |z| — co. If Re(c) = O, |ka(z)| = O(|z|=")| as |z| — co. If
Re(c) < ©, |ky| grows exponentially in some directions (cf. Figure 2).

5 Single- and Double-Layer Potentials

Recall that the patches M, and Mj belong to C1™ (cf. Assumption 3).

Lemma 9. There exists a constant C' > 0 such that, for every j € {1,...,m}
and all x, y € M;, we obtain

[(n(y),z — y)| < Clz —y|". (13)



exponential decay 3

exponential growths in some directions

D

[ I I I I

1 08 06  -04  -0.2 0.2 0.4 Re(©)

Figure 2: The decay of ky for b € R%, |b]4 =1

The proof is analogous with the proof in [9], Satz 3.11.

Definition 10. For a given elliptic differential operator L let k) be as in
Theorem 5. The single-layer potential @ and the double-layer potential ®p
with density ¢ € L*(X) are given on 2 U, by

By (r) = / (e — 9)o(y) do(y) (14)
and

vo(o) = [ FHE o) dot), (19

where o is the surface measure of X.
Proposition 11.

(a) On RE\T the functions ®y and ®p are arbitrarily often differentiable
under the integral sign and there holds L®r =0 and L®p = 0.

(b) ®g can be extended continuously on R? by

Dp(z) = /X ix( — y)p(y) do(y) Vo € RY. (16)

10



Proof. (a): Using a standard theorem about differentiation under the integral
sign it is easy to verify that &z and ®p are arbitrarily often differentiable on
R?\ . Therefore Lky =0 on R? \{0} implies L&z = 0= LPp on R? \ I..
(b): The singular behaviour of k)(z) as |z| — 0 can be characterized by

1 1
In +0(1 for d=2,
orvaerd lala T O
ra(T) = ,

25+ Oz ~4) for d>3.

(d — 2)wd\/ det A

In view of the continuity of s, in R? \ {0}, the assertion (b) follows, for
example, from [12], Lemma 8.1.5. O

6 The Principal Part

In this section, we will study the behaviour of elliptic differential operators
with constant coefficients of the form L, := —div(Agrad). According to
Theorem 5 a singularity function for Ly is given by

1 1

In for d=
2mvdet A 2| a
ka(z) = (17)
! L for d#2

(d — 2wgv/det A |z|% 2

For z € R?, y € X\{z}, the gradient of k4 has the representation

1 Az
Vkale) = = aer A ol 18)
and
Okaw—y) 1L (nQy),x—y) Okaly—2) (19)
dl(y) wgVdet A |z —yl¢ o(y)

We are interested in the decay behaviour of the single- and double-layer
potential at infinity:

11



Proposition 12.
(a) For d > 3, we have ®x(x) = O(|z|*~?) and VOg(x) = O(|z|*"?) as
For d = 2, limjy 00 () = 0 iff [, pdo =0.
In general, for all d > 2, the relation fxcpda = 0 wmplies
Op(x) = O(z|' ) and VOg(z) = O(|x] ) for |z| — oc.
(b) The decay of ®p at infinity is O(|z|*9).

The proof is analogous with the proof of Satz 4.16 in [9].
In the sequel, we will state some auxiliary theorems.

Theorem 13. For u,v € C*(Q_) N C* (1) the equation

/ ((Vu, AVv) — uLgv) do = Xu% do , (20)

holds if both integrals exist. If, in addition, the integrals in (20) exist after
interchanging the roles of u and v, we have

ov ou
/ (vLou — uLgv) do = /X (ua — va) do . (21)

Since the (d — 1)-dimensional Minkowski measure of S is zero, formulae (20)
and (21) can be proved using a version of Gauf}’ integral theorem stated in
[16], Folgerung 7.5.
The next theorem is a generalisation of Green’s representation formula of
harmonic functions.

Theorem 14. Let u € C*(Q_) N CYQ_) with Loyu = 0 in Q_. Then the
following formula holds for each x € Q_ :

o) = [ (Ghate =) a0 PG dot). 2

By using the following Lemma 15, the proof is analogous with the proof
of Green’s representation formula (cf. [17], Theorem 6.5) by taking into
account that, for B € GL(R?) with BTB = A™!, we have |Bz| = |z|4 and
|det B|7* = v/det A (cf. [9], Satz 3.37). Such B exists and is unique up to
multiplication by orthogonal matrices from the left hand side. A possible
choice is B = F~! where F is the Cholesky factorization of A: FFT = A.

12



Lemma 15. For every B € GL(R?) there holds

1 Wy
do () = .
&wwid@ det B

(23)
Proof. We define ¢ : R — R by 7+ r2¢~"". On one hand we have
det B / det B / / dr
o [ g o=t [ [ S aot
1
— |det B ddw/ ”)m_—mtm
o T

on the other hand there holds

(|B~ B~
| det B atid) dw:/ p(Bz)) / / o(r|B~Myl) dr do(y)
R |Bx|d o J2l? 51 ryltri-d

B~ 1
/ / | Kl drdo(y )—wd/ d r=-wq.
S 0 r 2

do(y),

1
S1 |B?J|d S1 |By|d

6.1 Jump Relations
For r > 0 and x € R?, we define H(x,7) := S(x,7)NQ_, where S(x,7) is the
sphere of radius r centred in x, and the function §; : R? — [0, wg] by

0i(x) = do(y). (24)

\/ det A / H(z,r) y|A
The proof of Lemma 16 implies that the limit in (24) exists for all z € R.
Hence, Lemma 15 ensures that §;(z) € [0, wq] holds (let therefor B € GL(R?)
such that B'B = A™1).

For z € X, there exists a neighbourhood V' of x in X and a constant L > 0

. . : . Oi(x) 1
satisfying [(n(z),z —y)| < L|x — y|*™ for all y € V. That implies % = 3.

Lemma 16. The function = : R — R defined by

(11

(x) = /X e do(y), has the representation =(z) = o

13



Proof. First let x € Q. This implies (Ly),ka(z —y) = 0 in Q_. Equation
(20) with u =1 and v = k4 (x — -) implies Z(z) = 0.

For x € Q_, the relation Z(x) = —1 follows directly from Theorem 14 applied
to u = 1. Lemma 15 shows that d;(x) = wy.

Now let € I". The normal vector field n on H(z,r) is chosen such that
n(&) = (€ — ). Denote with B(z,r) the open ball with radius r centred
in 2 and define Q_ := Q_\ B(x,r). If r is sufficiently small, we have a

vanishing (d — 1)-dimensional Minkowski measure of S(€2_) and, modulo a
set of surface measure zero,

X(Q.) = (X\ B(z,r)) UH(z,7).

Hence Gauf}’ divergence theorem (cf. [16], Folgerung 7.5.) can be applied
and we obtain

/ akA(I — y) dU(y) o / akA(x — y) dO’(y) =0.
X\B(z,r) H(z,r)

0l(y) Ol(y)
Using the dominated convergence theorem we conclude
Ok a(z — y) ) Oka(z —y)
————do(y) = lim ————do
iy =t [,y

. r / 1 do(y) di(x)
— 11m ———--—--- — a0 = —
"N wevdet A Juary 17— yl4 ’ Wd

€ [-1,0].

For n € N we use the notation (cf. Figure 3)

Kni={2€B1:2g=0A|2[ <1} and R, :=K,\ Kn41.

The (d — 1)-dimensional Lebesgue measure of R,, is bounded by wy_1n %

Remark 17. There exists 6 > 0 such that for every z € I we find an open
set U containing the ball B(z, ) and, if 2 € M}, there is a diffeomorphism
0 : By — U with 9(0) = z and 9(K,) = M, NU =: V. Let us denote 9 (y)
by y" and J(z') by z. There exist constants g, N, independent of x, with

sup {[DO() oy 1DV () oy} < N
Y

14



and ¢ is an upper bound for the Gram determinant of the parametrisation
V|k,. Thus, we obtain for all y, 2 € U the equivalence of the norms

1
NIV —F S ly =2 < Ny =2

The proof of Remark 17 is elementary (cf. [10]).

Theorem 18. Let () be a sequence in Qy converging to x € T'. Then,
the jump relation (25) holds for the double-layer potential ®p with a density
© € L®(X) which is continuous in x:

tim @p(a) = [ U doty) £ 0ot ()

with

dp(x) == 26i(m) , 0_(x):= 2(1 - 52@)) :

Wy

In particular, for v € X, we have

Jim @) = [ Moty dolo) & 5ela).

Proof. For fixed z € T and £ € R?, we define
o ka( —y) .
¥(©) = [ o) - ola) doty).
Hence, for £ ¢ T', ©p(&) = p(2)=(§) + ¥(€). Using Lemma 16 we obtain

i p(e)=(ak) = [ P o) doty) £ 50ula)o (o)

Thus, it suffices to prove

lim (¥(z) — ¥(zF)) = 0.

n
n—o0

Define

<n(y), T — y) . <n(y),§ - y> |90(y) — gp(l‘)| .

z = yl% € —yl4

C(& 2,y) =

15



(1) First, for £ close to x, it is clear that the term

1(6) = / g om0 o)

tends to 0 as £ tends to .

(2) Let Mj, be a surface piece with 2 € M. We extend ¢ by ¢(y) = ¢(z)
for all y € My \ M. In the sequel we use the notation as in Remark 17.
To prove the theorem, it suffices to show that

J(E) = /Vg(g,x,y) do(y) >0 as&—x. (26)

Let (z,) be a sequence in U \ I" converging to .

(a) Consider (z]) to be a null sequence in B; \ K satisfying the “angle
condition”, i.e., there exists a €]0, 1] with |(x], )4 > alal,].

For sufficiently large n € N, there exists m := m(n) € N with

If n — oo, then also m — oco. We decompose K into K,, and Ry,....,R,,_
(cf. Figure 3). Employing the notations

T:= ((Tn,z,y)dy' and Tj:= C(zn,z,y)dy", where y=y(y'),
Km R;

we have
m—1
N < va(T+ X 15).
j=1

Introducing

we obtain



Figure 3: “Centred Decomposition” of K; for m = 6

which becomes arbitrarily small for sufficiently large n, because ¢ is contin-
uous in x. Consider the integrands of 7}, j = 1,...,m — 1:

|z — yl% |z — Y|4

(n(y),z—y) (ny),zn —y) ‘

1 1

< —
[z —yla  fzn—yla

3~ Mnl)wmu)l _ finly).o = o)

o =yl G e, —yli |20 — 1%
d

<3 Clay| v

Ty R g, -y
k=0 n

The inequalities |y'| > ]% and |z, —y'| >

1
2(j+1)

. 1d
T]SCM_
m

for ¢ € R; imply
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We derive

(J+
Tj<C—— [Rj| p(5) <

The continuity of ¢ at  implies that (p(%)) is a null sequence. This yields

—1
T; <
1 J

3

MS

C 1 :
- p(;) — 0 ifm— oo.
1

J

(b) Consider (z!,) to be a null sequence in By \ K violating the angle condition
in the following sense:

If y) is the orthogonal projection of 2!, on K; and m := m(n), m = m(n)
are positive numbers with

2 4 1
ESWHSE and  — < |(z))al = |75, — Y| <

4m " = 2m’

the sequence (k,), defined by &, := 2, is a null sequence.
Let n € N be sufficiently large such that m > m holds. We define
K} :={ e K;: |y7'1—z'| <4},
S = {n'EKl. 71 < In" =yl | < 1}
D ={n € Ki: 0| > 55 AMyp =11 = 55, W'l <5 Vg — 0] < 5}

We decompose K into the subsets K,,, Kz, D', i = 1,..,m — 1 and 57,
j=m,...,m—1 (cf. Figure 4).
(i)

1
T

(@0, 7, y) dy’SCp(i)/K (

+md_1)dy'—>0 as n — 0o.
K

f()iil)1 For y € K2 we have |y/| > £ and |2}, —¢/| > ;=. That implies the
ollowing estimate:

C(zp, z,y) dy' <C’(1+|K”|( )= 1)p(%)—>0 as n — oo.
Kn
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Figure 4: “Dipole-Decomposition” of K; with m =4, m =6

(iii) We obtain, for y' € D}, j € {1,...,m

and |y'| < ?. This results in

(n(y),z—y) (n(y),

|z — y|% |2 — yIA

Due to |D}| ~ j~%, we conclude

Z Slan,@,y)dy' <

(iv) Let ¢' € SJ’-‘, Jj € {m,...,m— 1},

estimates
[(n(y), z — y)|
|z —yl|4

19

: 1
— 1}, the estimates |27, —y'| > 75

-d

j
§ : <o,
“|y'|* ’“Ift’ yiET m




and

[(n(¥), 20 = )| _ [0(¥), 20 = )| + [(n(y), Yo — 1)) <C<j_d+jd—1—u>
o0 —ylh T |20 — 1% B 7 '

d

In view of [ST| ~ j~%, we conclude

m—1 m—1 -d

J d—1— n
> | Sway)dyf <CY (E + 54 “)ISj ()
j=m j j=m

= 1
§C<1+2j1+u>p(%) — 0 asn — oc.
j=1

(¢) Because 9(K;) may contain points not lying in I', we have to consider a
sequence (z,) in My \ I converging to z. Let 3y’ € K;. Then,
007D it g 00—
|z —yl% |z — yl%

< Clay, — /|77

Let m := m(n) with 4~ < |2/,| < 5. We obtain

(@0, 2, y)dy' < Cp(L).
Km

To estimate the integrals over the annuli R;, j = 1,...,m — 1, we can proceed
as in part (a).

Next, consider an arbitrary sequence (x,) in U \ I" converging to z € I':

If (z,) has a subsequence (z;) in M; \ I', we have shown in part (c) that
limy oo J(x;) = 0. Without loss of generality, assume that the whole se-
quence lies in U \ Mj,. We prove (26) by contradiction: Assume that (J(z,))
does not converge to zero. This implies that there exists ¢ > 0 and a subse-
quence (z;) of (z,) with |J(z;)| > € for all [. Since (z;) converges to z, our
results in (a) imply, that any infinite subsequence of (z;) violates the angle
condition. According to (b), J(x;) converges to zero yielding a contradiction.
Hence, lim,, o J(x,) = 0. O

Lemma 19. Let X be a C%-submanifold, x € X and ¢ € L®(X) continuous
in x. Then

ii{‘r(l)(l(w), Vop(z+al(z)) — VOp(r —al(z))) =0.
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For a proof see [9], Satz 4.38(c). The proof is a generalization of the proof
of Lemma 8.2.17 in [12] treating the special case Ly = —A in dimension
d=2,3.

Let us turn to the conormal derivative of the single-layer potential:

Theorem 20. Let W C X be open and ¢ € L*(X) continuous in W. Then
the limits

T (1(2), Vi % hi(2))) = /X W o) o) F Sole) (27

exist locally uniformly on W.

Proof. Let K be a compact subset of W. Then there exists € > 0 such that,
for s €]0,¢[ and 2 € K, the inclusions x — sl(z) € Q_ and z + sl(z) € Q,
hold (cf. [9], Satz 3.23).

Theorem 18 implies that the double-layer potential ®, with density ¢ satis-
fies

Ok a(z — y) 1

lin (2 + hi(z)) = / oly) do(y) & 3 ¢(x)

X dl(y)

uniformly on K. So it is sufficient to prove

Jim ((l(x), Vop(z + hi(z))) + $p(x + hl(w)))
_ n(x)jf “9 oy do(y)

_ 1 /(n(y)
wgVdet A Jx |z —yl%

uniformly on K.

There exists § > 0 such that, for every x € K, B(z,d) N T' C W and K =
{£ € T: dist(§, K) < 6} is compact. Furthermore we find for any z € K
a diffeomorphism ¥ : By — U, B(z,d) C U, with 9¥(0) = z as described in
Remark 17. We denote z, := z+al(z), o € R, and & := max{|I(¢)| : £ € K}.
For |a| < & and y € X\ B(z,6), using a generic constant C which does not
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depend on z € K or a, we can estimate

n(y) — n(x), za — y n(y) —n(x),x —y
’y(xa,x,y)::<() ()d ) {n(y) ()d )‘
|xa_y|A |x_y|A
_ - 1
<[ {nw) n(x),fa z) ZI ] z)||a Jy1|
| =yl 2o —yla |$—?J|A 7 |20 — ylA =yl
K|a| a 2|z, — Y K
<C—z +|xa_$|Azl|xa—y|dj+1|x—y|ﬁgcﬁ|a| —0 asa—0.

This yields
/ V(a7 ) ()| doly) —0 as a0
X\B(z,9)

uniformly on K.
Now we use the notation introduced in Remark 17. Let m € N with

1
TS -l <

Am 2m

Remark 17 implies % < |a| < %, with ¢ > 0 independent from z € K. We

decompose K into its subsets K, and R;, j = 1,...,m — 1, as in the proof
of Theorem 18 (cf. Figure 3). By using Lemma 9 it follows

/ Va2, y)dy < C [ In(@) = n@)|(Jza =y + o = y| 1) dy
m Km
N)* )
< — o — *d+1d ! / -4 ' '
<o((@) [ttt [ )

For |a| sufficiently small, there exists C > 0 independent of x € K such that
dist(z4, K) > C|a|. That ensures the existence of C' > 0, independent of
x € K, such that

1 -
/ Y(@a, @, y) dy < C<7 +/ Jy/ |7 dy’) :
m m Km

i.e., [ 7(Ta,r,y)dy’ tends uniformly to 0 for all z € K as |a] — 0.
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For y € R;, j € {1,...,m — 1}, we obtain |y/| > ? and |z, — | > m
Thus we can estimate

'd—[L
V(e 2.y) € CU + 1) g —a] < C7

Finally
C m— m—l
Z/ (a2, ) d s—Z(“IRI) Oy o
R; m j=1 j:1
holds uniformly in |a| for all z € K. That proves the theorem. O

Theorem 21. Let v € X and ¢ € L>®(X) be continuous at x. Let (z) be a

sequence in 2y converging to x. If ¢ is Holder continuous with exponent \ on
a neighbourhood of x or if there exist ¢, p > 0 with dist(xX, T) > c|lz — 2F|P,

we obtain

i (1), V(0 = [ % o) doly) F So(e).  (29)

n—oQ 2

The proof is done in detail in [10].

6.2 Integral Equations

Definition 22. The integral operators K and K* are given formally, for
every ¢ € L>*(X), by
Oka(z — y) 20;(x)
K =2 | —/———— d ———1 r
p(x) /X oY) w(y) do(y) + ( " )@(w), zel,

K*s@(w)ZQ/XWSO(y)dO(y), zeX.

Theorem 23. K is a continuous linear operator on (L*(T),| - ) and on
(C@); |+ l)-

Proof. (a) ¢ € C(I') implies K¢ € C(T).
Proof of (a): With Theorem 18: K¢(&) = 2®p4 (&) — ¢(§).

(b)
{2 [

A 2
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Proof of (b): (i) Since §;(£) is an element of the interval [0, wy] for all £ € T
we can estimate |% -1/ <3.

(ii) Let § be as in Remark 17. Recall that U™, M; = I'. For £ € T, the set
{1,...,m} can be decomposed into disjoint sets I := {i : £ € M,},

J = {j : dist(&, M;) > 0/2} and K := {k : 0 < dist(§, M;) < 6/2}. For
1 € I, we obtain with Lemma 9

/m ‘W‘da(y) S(J/Miﬁda(y)_

There is a constant C' > 0, independent of £ and 4, so that the last term of
the inequality can be majorized by C'. We derive

S [ [P dotw) < me
el
Furthermore:
Z/ akAf Yy ‘ <CZ 51 d<CO’( )51_d.
jeJ M; jed

Let kK € K and 2 € M, with dist(£, M) = |€ — z|. Let V be as in Remark
17. Then we obtain

Oka(§ —y) Oka(§ —y)

/Mk dl(y) ‘ doly) = /Mk\B(x,J) Il(y) doly) +
Oka(€—y) Okalz—y) Oka(z —y)
R o T LUR R os ‘ do(y)-

The first intgral on the right hand side is smaller than Co(M})d ¢, the
third integral is bounded by a constant independent of &, x and k. Let o
be a diffeomorphism with 9J(0) = z as in Remark 17. Let m € N with
ﬁ <€ < ﬁ The proof of

/ <n(y),£—dy> 3 <n(y),w—dy>‘dy, <c.
Ki € —yl% [z —yl%
where C' is independent of £, x and k, is derived by decomposing K into its

subsets Ky, Rj, j =1,...,m — 1, and using similar arguments as in part (a)
of the proof of Theorem 18.

O
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Remark 24. Although K is a compact operator on C(I') if " is globally
smooth (see Theorem 31), this is in general not true if S # (:
Consider the special case Ly = —A and d = 3. In [40] it is shown that

inf{|K — V|, : V linear and compact on C'(I')} = w (29)

for boundaries being piecewise C?, having only convex (in the sense of [40])
corners and edges and

w:=sup{|l — 0;(x)/27| :z €T} <1,

i.e., boundaries, which differ slightly from those defined in section 1. Due
to w < 1, equation (29) implies that Fredholm theory is applicable to the
operator I + K (cf. [12], Remark 8.2.25): the Fredholm radius of K is 1/w
and exceeds one. For boundaries, containing “non-convex” edges, a modified
version of (29) could be derived (cf. [40], §4.7, [41], §3).

In [12], §8.2.7, an analogous statement for the Laplace operator in two di-
mensions is proved, provided I is piecewise Holder differentiable.

Proposition 25. K* maps L*>*(X) into C(X).

Proof. Let ¢ € L*°(X) and x € X. Without loss of generality we can assume
that v € M := M; for j € {1,...,m}. Let (z,) be a sequence in M converging
to x. We want to show K*p(z,) — K*¢(x) as n — oo. We define

<n(xn)> Tn — y> <n(x), T — y>

|z — Y|4 |z —yl%

<(l‘n7 xz, y) =

Then there holds
K" o(x) — K*p(z,)] < C / C(m 2,9 0(y)] doy) (30)

If we restrict the domain of integration to the complement of a small neigh-
bourhood of z in X, it is clear that the integral in (30) would tend to 0 as
n tends to infinity. So let ¥ : By — U be a diffeomorphism with 9J(0) = «
as described in Remark 17. To prove that the integral in (30), with U as
domain of integration instead of X, tends to 0 as n — oo, we can employ
the centered decomposition (cf. Figure 3) and estimate similarlily as in the
proof of Theorem 18.

O
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Remark 26. Functions v € K*(C(X) N L*°(X)) are continuous on X while,
in general, they can be singular at non-regular boundary points x € S.

Proof. We consider the square @ := Q_ in R? with boundary
= 0Q = {(0.1),(1,1): 0 <t < 1}U{(5,0),(5,1): 0< 5 < 1}

and Ly := —A, ie., A = 1. Put ¢ = 1 and define boundary points z.,
0<e<1,byxz. =(0,6). We obtain:

n\Te), Te —
etedl = 7| [ S doty
2 [t 1
Zw_d o 1% +e? dt = w_d[ln(l +e?) —In(e?)] — o0 as € —0,
e, K*p ¢ L>(X). -
Theorem 27.

(a) The double-layer potential ®p with density ¢ € C(I') solves the interior
Dirichlet problem for the operator Ly and a given boundary function
f € C(T) iff ¢ solves the integral equation

p—Kp=-2f on T. (31)

(b) The double-layer potential ®p solves the exterior Dirichlet problem for
a given boundary function f € C(T) iff ¢ € C(T') solves the integral
equation

o+ Kp=2f on I. (32)

Proof. The assertion follows from Proposition 11 and Theorem 18. U

Remark 28. It follows from Lemma 16 that ¢ = 1 lies in ker(/ + K), i.e.,
a solution of (32) is not uniquely determined. For this reason it is preferable
to work with a modified double-layer potential to solve the exterior Dirichlet
problem (cf. Section 6.3).
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Theorem 29.

(a) Pplg_ solves the interior natural boundary value problem for a given
g € C(X) iff the density ¢ € C(X)NL>®(X) is a solution of the integral
equation

o+ K'p=29 on X. (33)

(b) Pplg, is a solution of the exterior natural boundary value problem for
a given g € C(X) iff the density ¢ € C(X) N L>®(X) solves the integral
equation

p—K'¢o=-29g on X. (34)

Remark 30. If we require that the solution u = ®g of the exterior natural
boundary value problem suffices the radiation condition (8), it follows from
Proposition 12 that, in the case of dimension d > 3, the radiation condition
is always fulfiled, whereas in the situation of dimension d = 2 the radiation
condition is fulfiled iff the continuous density ¢ satisfies the identity

fxcpdazo.

Proof of the theorem. The assertion follows from Proposition 11 and the jump
relations (27). O

6.3 The Case of C?-Boundaries

Let us consider the situation where 2_ and Q, are connected sets and the C*-
submanifold I' is the common boundary of €2_ and {2,. Here, we have better
results than in the previous situation. The results stated in this subsection
are proved in detail in [9], Kapitel 4, or, for the case Ly = —A and dimension
d = 2,3, in [17], Chapter 6.

Theorem 31. If I = X is a C%-submanifold of R we have 26;(x) = wq
for every x € X. The linear operators K and K* are compact operators on
(C(T),]| - |oo). Furthermore, there holds

/F(ch)w do = / o(K*Y)do  for all p,1p € C(T).

r
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Theorem 32.
(a) The operators I — K and I — K* are bijections on C(T').

(b) The kernels of I + K and I + K* are one-dimensional. To be more
precise,

ker(I + K) =span{l}  and  ker(I + K*) = span{p},
where p is a function in C(T) satisfying fr pdS # 0. Furthermore,

(I +E9)(CT) ={v € C(I') : [r¢pdo =0} =: Co(T).

Since the operator I + K is neither injectiv nor surjectiv (according to the
Fredholm alternative), we will define a modified operator I + K’ for the
exterior Dirichlet problem.

Definition 33. Let £ € 2. The modified double-layer potential ®,; on €2,
with continuous density ¢ is given by

= Okalx —y) L o or w
vuo) = [ o) (Pt ) dol) o e 0 (59

The integral operator K': C'(I') — C(T') is given for all ¢» € C(T") by

Oka(z —y) 1
_2/¢ < dl(y) +|x_f|ix2> do(y), zel.

Conclusion 34.

(i) On Qy, @y is infinitly often differentiable under the integral sign and
Lo®,; = 0. The modified double-layer potential satisfies the radiation
condition @y (x) = O(|z[*7%) at infinity.

(i) K' is a compact operator on C(T).

(iii) The jump relations (25) for the double-layer potential ®p imply that
the_modiﬁed double-layer potential @y could be continuously extended
on 2y by

_ Oka(z —y) 1 Lo o
Dpr(2) —/Fw(y)< o Iw—élii?) do(y) + 5¢(z), z€T.
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Theorem 35. The integral operator I + K' is an automorphism on C(T).

Theorem 36. The extended modified double-layer potential ®,; solves the
exterior Dirichlet problem for a given boundary function f € C(T') iff the
continuous density ¢ satisfies the equality

o+ Ko=2f on T. (36)

Theorem 37.

(a) For a given boundary function f € C(I') the interior Dirichlet problem
has a unique solution. This solution is the double-layer potential ®p
with density ¢, fulfilling (31).

(b) For a given boundary function f € C(T') the exterior Dirichlet problem
with the radiation condition (7) has a unique solution. This solution is
the modified double-layer potential @y with density o, fulfilling (36).

Theorem 38.

(a) The interior natural boundary value problem is solvable iff the integral
over I' of the given boundary function g € C(T') vanishes, i.e.,
g € Co(T"). The solution is then given by the single-layer potential @
with density ¢, satisfying (33).

(b) For a given boundary function g € C(I') and d > 3, the exterior natural
boundary value problem with radiation condition (8) is uniquely sovable.

In R?, the exterior natural boundary value problem with radiation con-
dition (8) has a unique solution iff the given boundary function g lies
The solution is in both cases given by the single-layer potential ® i with
density ¢, satisfying (34).
In the case of C2-boundaries all integral equations mentioned before are of
the form

M +T)u=f,

where A # 0 and 7' is a compact integral operator. Such kind of equations
can be solved very efficiently by applying the multi-grid method of second
kind (cf. [11], Chapter 16, [12], Chapter 5 and §9.3.1). Note that, due to
the compactness of I', classical Neumann series converge as well while the
convergence speed is much slower as for multi-grid methods.
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Theorem 39. The solutions to the Dirichlet und natural boundary value
problems (with radiation conditions (7) and (8) for exterior problems) depend
continuously on the given boundary data in C(T') in the maximum norm.

7 The General Situation

In this section, we will state the integral equations for Dirichlet and natural
boundary value problems corresponding to a general elliptic partial differen-
tial operator L of order two with constant coefficients. We have to compute
the jump relations of the double-layer potential and the conormal derivative
of the single-layer potential. Therefor consider the fundamental solution k4
of the principal part Ly = — div(A grad) of the differential operator L (de-
fined in (17)), the double-layer potential ®Y, and the single-layer potential
®Y of Ly with density ¢ (as defined in Chapter 4).

Proposition 40. Consider a density function ¢ € L*(X). Then ®p — @Y,
can be continuously extended on R% by

(@ - })(a) = [

X

(8/@\(30 - 9) B Oks(z —y)

Bl (y) al(y) )w(y)da(y), zeR.

Proof. Let R be sufficiently large so that By contains I', define G := B and
the function f: G x X\ {(§,€) : £ € X} — C by

fe,y) = %(w k)@ —1).

The continuity of ®p — @Y, follows from Lemma 6 and [12], Lemma 8.1.5. O

Theorem 41. If (zF) is a sequence in Qi which converges to xg € T, the
Jump relation (37) holds for the double-layer potential ®p with a density
@ € L>(X) being continuous at xg:

tim @p(a) = [ P oty) doty) & Shateolplen) (6T)

where 04 are as in Theorem 18. In particular, for ro € X, we have

tim @p(a) = [ PRI o) doty) £ jpteo).
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Proof. There holds
@p(€) = (2n(§) — Pp(€)) + (&)

Hence, Theorem 41 follows from Theorem 18 and Proposition 40. U

Lemma 42. Let ¢ € L*(X). Then the function ®p — @Y is continuously
differentiable on R?. For all x € R holds

V(@p — 8%)(z) = /X (Vir(a — ) — Vha(e — 1)g(y) do(y)

Proof. According to Lemma 6 there exists a compact neighbourhood G of T,
v €]0,1[ and C' > 0 such that on (G x T') \ {(£,€) : £ € T'} the inequality

[V(kx = ka)(z — )| < Clo —y|7
holds. Hence, Lemma 42 follows from [12], Lemma 8.1.5. O

Theorem 43. Let W C X be open and ¢ € L*(X) continuous in W. Then
the limits

tinl(e), V(o + hi(o)) = [ Www do(y) ¥ 1o(@) (38

exist locally uniformly on W.

Proof. There exists ¢ > 0 such that + < [/(z)| < ¢ holds on X. Hence,
Lemma 42 implies

lim (1(2), (V (@5 — @) (x & hi(x)) - /XV(m — k)= — y)e(y) doy)) )

h\O
=0

uniformly on X. Now the theorem follows from Theorem 20 and
lim(i(z), Ve5(z £ hi(z)))
:llzi{‘% ((U(z), V(@p — @) (z £ hi(z))) + (I(z), VO (2 £ hi(z)))) .
O

Because of (37) and (38), we get the same integral equations for the Dirichlet
and natural boundary value problems for L as stated in the Theorems 27 and
29 (of course in Definition 22 k4 has to be replaced by k).
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8 Numerical Examples

In this section, we will report on the numerical realization of the integral
equation formulations presented in the previous sections for solving elliptic
boundary value problems. As stated in the introduction the motivation for
this paper was to develop explicit integral equation formulations so that only
the coefficients of the underlying operator L as in (1) have to be specified.
The essential bottle neck in the realization of the boundary element method
(as the most flexible discretization method for boundary integral equations
being applicable to a large class of problems of engineering interest) is the
computation of the entries of the arising stiffness matrix. These entries are
defined as surface integrals with singular, nearly singular, and regular inte-
grands. In [35], [36], [14], [13], [1], [33], [6] efficient, black-box quadrature
methods have been developed for these integrals in the sense that

e it is sufficient to provide the coefficients of the differential operator
L and the numerical integrator automatically computes a sufficiently
accurate result,

e the numerical quadrature method converges exponentially with respect
to the order (independent on the distance from the singularity).

The class of integral kernels includes those which arise by applying the
method of integral equations to the operator L. Along with the boundary
integral equations derived in this paper it is now possible to solve bound-
ary value problems via integral equation methods just by prescribing the
coefficients of the operator L.

The numerical implementation was based on the boundary element library
LIBBEM written by C. Lage (cf. [18], [19]) where the black-box numerical
integrator was incorporated by S. Erichsen (cf. [6], [5]).

As a model problem serves the natural boundary value problem in the (clas-
sical) form: Seek u € C? (Q4) N C (€2) satisfying

Lu=0 in Q, :=R\B,
Ouy _
al

¢ uniformly on I' := 0B, (39)
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with L = =V (AV:) and g = — (2, A"'2)™*?. The positive definite matrix
A is chosen as

23 a 1 7 11
A L A
A= o 5 5 | At=| -2 L
e T T ERI S
442 12 4 6v2 6v2 6
and has eigenvalues 2/3,1,3/2. The exact solution is given by

u(x) = <x,A’1x>_1/2.

We represent the solution as a single-layer potential with density ¢: u = ®p
leading to the integral equation:

e =2 [o) 2oy = 229, wer. ()
r (z)

In order to employ the Galerkin method for its discretization we start with
defining finite element spaces on the surface I'. Let I'y denoting the dou-
ble pyramid with vertices (£1,0,0)", (0,£1,0)T, (0,0,+1)". The surface
triangles define the initial mesh 7;. Finer triangulations are defined re-
cursively. Assume 7T; | is already generated. Then, refine each triangle
T=A (Al,AQ,A:;) (Wlth edge midpoints M12, M13, M23) by projecting Mij
onto the true surface (resulting in M;;) and defining the four sons of 7 by

n = A (A1,M12,M13) ) Ty =A (AQ;MQPJ;MIZ) ’
T3 = A (A3; M13; ]\7[23) ) Ty = A (]\7[12; M13; ]\7[23) .

This results in the triangulation 7; and the approximate surface I'; = [ T;.
The set of vertices in 7; is denoted by ©,.
The space of continuous, piecewise linear finite elements on I'; is given by

Si:={veC () |VreT,:v|, isaffine}.

The computations have been performed on levels i = 0,1, 2, 3,4 where the
dimension of S; is listed below:

l 0] 1 2 3 4
11; 8132|128 | 512 | 2048
dimS; | 6 | 18 | 66 | 258 | 1026
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—A L
€ \ ei/ei1 € \ ei/eit1

2.167162e-01 2.333187e-01
2.6878009 2.5749276
8.062956e-02 9.061175e-02
3.9331032 4.3091592
2.050024e-02 2.102771e-02
4.1212427 4.0420282
4.974286e-03 10502795 2.202267e-03 10019906
1.228134e-03 1.300170e-03

= W N =D~

Table 1: L = —div(A grad)

The Galerkin formulation to (40) is given by seeking ¢; € S; such that

k _

(@i, v)or — 2/ v () pi(y) MdFydI‘$ =—2(9,7)1 Yv € S,
’ I'xT’ al (x) '

where (-, ), - denotes the Ly scalar product on I'. The approximate Galerkin

solution to (39) on level i is denoted by u; = ®p;, where ®p; is the single-

layer potential with density ¢;.

The relative error in the discrete f5-norm is defined by

Paco, lui (#) = u (@)’
Yoco, U@

Due to the regularity of our problem and the stability of the Galerkin method
we expect that the Galerkin method converges quasi-optimally, i.e., quadrat-
ically. The table below clearly shows this convergence behaviour and, addi-
tionally, that the error has about the same magnitude as the error for the
Laplace problem.
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