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Abstract

In this paper� we will present integral equations for general elliptic

boundary value problems of second order with constant coe�cients�

The jump conditions� existence and uniqueness theorems are proved�

In combination with black box numerical integration schemes devel�

oped recently for general boundary integral equations it becomes fea�

sible to implement a black box software package for solving this class

of problems� just by providing the coe�cients of the boundary value

problems� Numerical examples performed by such a black�box soft�

ware package will illustrate the good convergence behaviour of the

integral equation method�

� Introduction

The integral equation method for solving partial di�erential equations has a
long history �see ����� ����� ����� ��	�� ��
�� �
��� ����� ����� �
�� ��
�� ����� ��
��
����� ����� Since the treatment of partial di�erential equations via variational
principles was established in the �rst part of this century� integral equation
methods have lost signi�cantly importance from the theoretical point of view
due to the di�culties related to sharp existence and uniqueness theorems for
partial di�erential equations in the classical setting� However� with increasing
importance of numerical techniques for solving boundary value problems�
integral equation method are becoming more and more popular as a starting
point for numerically solving boundary value problems for the reasons listed
below�






� The treatment of equations on complicated �time depending� ��d do�
mains is simpler from the viewpoint of mesh generation since only the
surface of the physical body has to be �re�� meshed�

� Fast techniques for the sparse representation of the arising pseudo�local
operators �panel clustering� multipole� wavelets� have been developed
overcoming the drawback of full system matrices for boundary integral
equations�

� The treatment of problems on unbounded domains is especially simple�

� Parameter dependent problems �as� e�g�� the Helmholtz equation with
high wave number and problems where �nite element discretizations
su�er from �locking�� cause less di�culties as for the corresponding
�nite element discretizations�

� The arising large systems of linear equations are� typically� better con�
ditioned as the direct �nite element discretizations of the underlying
boundary value problem�

However� in mathematical textbooks and also in engineering software pack�
ages� usually� only integral equations for the prototype operators as� e�g� the
Laplace operator� the biharmonic operator� the Lam�e operator� the Stokes
operator are discussed and realised numerically� From the practical view�
point� it would be interesting to develop the relevant integral equations for
the general second order elliptic boundary value problems with constant co�
e�cients

Lu �� � div �A gradu� � � hb�rui� cu� �
�

since in the far�eld� i�e�� as jxj becomes large� equations with non�constant
coe�cients or non�linear equations could be linearized�
In ����� ����� �
��� ����� �
��� �
�� ����� ���� ����� black box numerical quadrature
schemes have been developed for a class of integral kernels including those
arising by treating �
� with integral equation methods� In the present paper�
we will de�ne potential operators for the �elliptic� operator L in �
� and derive
corresponding integral equations� We will prove the relevant jump conditions
by employing weak assumptions on the smoothness of the surface� either
H�older continuity or only continuity which is not elaborated in the classical
references� Such an approach can be found in �
�� while that exposition is
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mainly restricted to the Laplace operator� A much more general approach
can be found in ���� ���� while the formulae are not completely explicit�
Our motivation of this paper was to de�ne explicit integral operators for
boundary value problems with di�erential operator L as in �
� and prove the
relevant jumping conditions� existence and uniqueness theorems� In combi�
nation with the numerical integration techniques described in ����� �
��� �����
�
��� �
�� ����� ��� a black box software package for solving boundary values
problems with di�erential operator L as in �
� could be derived� We have
tested both� the integral equation formulations and the black box implemen�
tation �based on the program libbem described in �

�� �
��� and show that
the expected convergence rates are obtained also for general second order
elliptic equations�
The numerical methods and formulations of the integral equations are such
that is su�cient to specify the �positive de�nite� matrix A � Rd�d � the vector
b � C d and the coe�cients c � C and the program solves the correspond�
ing boundary value problem� similarly� as it is widely realised in software
packages for solving elliptic boundary value problems by� e�g�� �nite elements
directly�
The paper is organized as follows�
After having introduced some preliminary notations in the next section we
formulate the boundary value problems which we want to solve via integral
equations� The key role for the transformation into integral equations plays
the fundamental solution to the elliptic operator� In Section �� the relevant
fundamental solutions are provided and some properties concerning their
singular behaviour at the origin and their decay behaviour for large jxj are
proved� By employing these fundamental solutions� the corresponding po�
tential operators are de�ned in the next section� The jump relations� i�e�� the
behaviour of these potentials as x crosses the surface� play the essential role
for the transformation of the boundary value problem into integral equations�
These relations are derived in Section � for the principal part of the operator
and the corresponding boundary integral equations are obtained� The case
of general elliptic equations is considered in Section �� Numerical results
showing the good convergence behaviour of the method and the possibility
of designing a black box software package where just the coe�cients of the
underlying elliptic operator have to be described are included in Section 
�
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Figure 
� Domain with slit s�s�

� Preliminaries and Notations

Let �� be an open and bounded set in Rd with boundary � which coincides
with the boundary of �� �� Rd n ���
De�nition �� A boundary point u � � is regular if there exists a neigh�
bourhood U of u in Rd so that � � U is a �d � 
��dimensional submanifold
in Rd � All non�regular boundary points of �� are singular boundary points�

The set of regular boundary points of �� is denoted by X �� X����� the
singular boundary points form the set S �� S�����

Example �� In Figure 
 the boundary points x�� x� and y are regular points�
s�� s� and s� are singular boundary points� Because of our assumption� that
� is the common boundary of �� and ��� boundary points like y� s� and s�
could not occur in ��

Throughout the paper� we assume that Assumption � holds�

Assumption �� Let E � ft � R
d�� � jt�j� ���� jtd��j � 
g� There exist a

neighbourhood �E of E and C����parametrisations �j � �E � Rd � j � 
� ���� m�
with sets �Mj �� �j� �E� and disjoint subsets Mj �� �j�E� which satis�es
�i� �mj��M j � ��

�ii� �mj��Mj � X�
�iii� for all �Mj� there exists a continuous unit normal vector �eld which

coincides with the exterior normal vector �eld n of X on �Mj � X�

�



Conclusion �� Assumption � implies a vanishing �d� 
��dimensional Min�
kowski measure of S� Hence� the Gau�� divergence theorem can be applied to
�� �cf� ��	
� Folgerung ���
�

Let A � Rd�d denote a symmetric and positive de�nite matrix� b � C d

and c � C � Let h �� �i denote the symmetric bilinear form on C d de�ned by
�x� y� ��Pd

j�� xjyj� We de�ne the symmetric bilinear form h �� �iA on C d by

hx� yiA �� hA��x� yi� If x is in R
d � we write jxjA short for

phx� xiA� Let us
consider the elliptic operator

L �� � div�A grad� � �hb�r�i� c � ���

In the classical sense and in the sense of distribution theory any elliptic
di�erential operator of order � with constant coe�cients is of the form ���
modulo multiplication by the factor �
� The conormal vector �eld l on X is
given by l�x� �� An�x��

� Boundary Value Problems

Let us consider the following boundary value problems�

Interior Dirichlet Problem� Find u � C����� � C���� satisfying

Lu � 	 in �� and u � f on � ���

where f is a given continuous function�

Exterior Dirichlet Problem� Find u � C����� � C���� such that

Lu � 	 in �� and u � f on � ���

holds where f is a given continuous function on ��

Interior Natural Boundary Value Problem� Find u in C������C����
satisfying� for a given g � C�X�� the equations

Lu � 	 in �� and

lim
���

hl�x��ru�x� �l�x��i � g�x� locally uniformly on X� ���
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Exterior Natural Boundary Value Problem� Find u in C������C����
satisfying� for a given g � C�X�� the equations

Lu � 	 in �� and

lim
���

hl�x��ru�x� �l�x��i � g�x� locally uniformly on X� ���

Uniqueness and Radiation Conditions� For the uniqueness of the exte�
rior problems certain �physically motivated� radiation conditions� depending
on L� have to be imposed� We give some examples�
�a� Consider L� � � div�A grad� �if A � I� this is the Laplace operator� and
the radiation condition

u�x� � O�
� as jxj � 	 �d � �� �

u�x�� 	 as jxj � 	 �d 
 �� � ���

For the following uniqueness results we refer to �
��� x���� and ���� x��
�
�a
� The exterior Dirichlet problem for L� has at most one solution u satis�
fying ����
�a�� If the interior Dirichlet problem for L� has a solution u� then u is uniquely
determined�
These statements are proved by using the maximum�minimum principle of
harmonic functions� Thus it is not necessary to require any kind of regularity
of the boundary � �
For the exterior natural boundary value problem we impose the radiation
condition

u�x�� 	 as jxj � 	 � �
�

�a�� If �� is connected and � is a C
��submanifold� the exterior natural value

problem has at most one solution satisfying �
��
�a�� If �� is connected and � a C��submanifold� two solutions of the interior
natural value problem can di�er only by a constant�
The last two results can be proved by applying Equation ��	�� i�e�� Green�s
theorem�
�b� Consider the Helmholtz equation �u � k�u � 	� Im�k� 
 	 in R� � The
emission or radiation condition of Sommerfeld�

x

jxj �ru�x�
�
� iku�x� � o

�



jxj
�

as jxj � 	 ���

�



ensures� that the solution u of the Helmholtz equation represents a divergent
travelling wave�
�b
� If �� is connected and � is the union of a �nite number of disjoint�
closed C��submanifolds� the exterior Dirichlet problem� and also the exterior
Neumann problem� has at most one solution satisfying ����
�b�� On the other hand� there exist discrete values k � R such that the
interior Dirichlet problem is not uniquely solvable� The same holds true for
the interior Neumann problem �cf� ���� Section �����
�c� Let k � 	 and consider the convection�di�usion problem

��u� k��u � g in �� �

u � 	 on � �
�
	�

in three dimensions� For a� b � R de�ne the weighted L��space

L�
a�b���� � fv � L�

loc���� �
R
��
jv�x�j��
 � jxj�a�
 � jxj � x��

b dx �	g �

Let � be a Lipschitz continuous boundary� � � 	� �� � � � 	 and g �
L�
���������� Then there exists a unique weak solution u � H�

loc���� of �
	�
satisfying the generalized radiation condition

u � L�
��������� and ru � L�

������� �

i�e�� u is an element of an anisotropically weighted Sobolev space �cf� ����
Theorem �����
The exterior Dirichlet problem for the convection�di�usion operator L �
�� � k�� and a given boundary function f can be transformed into �
	� if
a function v� on �� is known with v�j� � f � If u is a solution of �
	� for
g � �v� � k��v�� then v �� u � v� is a solution of the exterior Dirichlet
problem�

� Fundamental Solutions

The boundary value problems can be transformed into integral equations over
�a subset of� � by the so called � integral equation method�� The keyrole in
this transformation plays a fundamental solution of the di�erential operator
L� i�e�� a distribution F satisfying the equation LF � �� where �� is the Dirac
distribution supported in the origin�

�



A table of fundamental solutions of the most common di�erential operators
can be found in the second part of ����� For the construction of fundamental
solutions we refer to ��
��
The de�nition of fundamental solutions for L involves Macdonald functions
K� which� for example� are stated in ����� p���� 
	� ��	�� x����
Theorem �� Let 	 �� c� hb� biA � 	� Then� 
� � R

d � R de�ned by


��x� ��

������
�����




��
p
detA

ehb�xiA ln



jxjA for d � �




�d� ���d
p
detA

ehb�xiA

jxjd��A

for d �� � �
�

�

where �d is the volume of the unit sphere in Rd � is a fundamental solution
of L� For 	 �� 	� there exists 
 � C n� �	� 	� with 
� � 	� A fundamental
solution 
� of L is given by


��x� ��
ehb�xiA

����d��
p
detA

� jxjA



���d��
Kd�����
jxjA�� x �� 	� �
��

For d � �� �� we obtain

d � � � 
��x� �
ehb�xiA

�
p
detA

iH
��	
� �i
jxjA� if � � � arg�
� �

�

�
�

d � � � 
��x� �



��
p
detA

ehb�xiA��jxjA

jxjA �

where H
��	
� is a Hankel function �or Bessel function of the third kind
�

For Hankel functions we refer to ��	�� x���� and ����� A proof of Theorem �
can be found in ���� Kapitel ��

Lemma �� The gradient of the fundamental solution 
�� 
 � C n� � 	� 	��
has the asymptotic behaviour

r
��x� � � 


�
p
detA

A��x
jxjdA

� o

�



jxjd����
�

for any � ��	� 
��

If d is odd� we could replace o�jxj����d� by O�jxj��d��






The behaviour of the fundamental solution 
� is considered in

Lemma �� Let b � C d and c � C with 	 �� c� hb� biA � 	 and
L � � div�A grad� � �hb�r�i� c�
Further� let �bn�n�N� �cn�n�N be sequences in C d and C which converge to b
and c respectivly with 	n �� cn � hbn� bniA �� 	� Let Ln denote the operator
� div�A grad� � �hbn�r�i � cn and let 
n � C n� �	� 	� be a square root of
	n�
d � �� For all x � R� nf	g� j
�n�x�j � 	 as n�	�
d 
 �� The singularity functions 
�n of Ln� n � N� converge uniformly on
compact subsets of Rd nf	g to the singularity function 
� of L�
Moreover �
�n�n�N converges to 
� in the sense of distribution theory� i�e��
for all test functions � � D�Rd�� there holds


�n��� ��

Z
Rd


�n�dx�
Z
Rd


��dx �� 
���� as n�	 �

This lemma and the next theorem are proved in ���� Kapitel ��

Theorem 	� Let b � Rd and c � C � Further let 	 � c � jbj�A and

 � C n� �	� 	� with 
� � 	 and Re�
� 
 	� Let 
� be as in Theorem ��
�a
 Let b � 	� For c � C n��	� 	�� j
�j decreases exponentially as jxj � 	�

If c � 	� we have� in two dimensions� j
��x�j � O�ln jxj�� in higher
dimensions j
��x�j � O�jxj��d� as jxj tends to in�nity�

If c ���	� 	�� then j
�j decreases as O�jxj ��d� ��
�b
 Let b �� 	 and  � �

�
�
�
Im�c	
jbjA

	�
� If Re�c� �  � j
�j decreases exponen�

tially as jxj � 	� If Re�c� �  � j
��x�j � O�jxj ��d� �j as jxj � 	� If
Re�c� �  � j
�j grows exponentially in some directions �cf� Figure �
�

� Single� and Double�Layer Potentials

Recall that the patches Mj and �Mj belong to C
��� �cf� Assumption ���

Lemma 
� There exists a constant C � 	 such that� for every j � f
� ���� mg
and all x� y �M j� we obtain

jhn�y�� x� yij � Cjx� yj��� � �
��

�



��

��

�


	




�

�

�
 �	�
 �	�� �	�� �	�� 	 	�� 	��
Re�c�

Im�c�
exponential decay

exponential growths in some directions

Figure �� The decay of 
� for b � Rd � jbjA � 


The proof is analogous with the proof in ���� Satz ��

�

De�nition ��� For a given elliptic di�erential operator L let 
� be as in
Theorem �� The single�layer potential !E and the double�layer potential !D

with density � � L��X� are given on �� � �� by

!E�x� �

Z
X


��x� y���y� d��y� �
��

and

!D�x� �

Z
X

�
��x� y�

�l�y�
��y� d��y� � �
��

where � is the surface measure of X�

Proposition ���

�a
 On Rd n � the functions !E and !D are arbitrarily often di�erentiable
under the integral sign and there holds L!E 
 	 and L!D 
 	�

�b
 !E can be extended continuously on Rd by

!E�x� �

Z
X


��x� y���y� d��y� �x � R
d � �
��


	



Proof� �a�� Using a standard theorem about di�erentiation under the integral
sign it is easy to verify that !E and !D are arbitrarily often di�erentiable on
Rd n �� Therefore L
� 
 	 on Rd nf	g implies L!E 
 	 
 L!D on R

d n ��
�b�� The singular behaviour of 
��x� as jxj � 	 can be characterized by


��x� �

������
�����




��
p
detA

ln



jxjA �O�
� for d � � �




�d� ���d
p
detA

jxj��dA �O�jxj��d� for d 
 � �

In view of the continuity of 
� in Rd nf	g� the assertion �b� follows� for
example� from �
��� Lemma 
�
���

� The Principal Part

In this section� we will study the behaviour of elliptic di�erential operators
with constant coe�cients of the form L� �� � div�A grad�� According to
Theorem � a singularity function for L� is given by

kA�x� ��

������
�����




��
p
detA

ln



jxjA for d � �




�d� ���d
p
detA




jxjd��A

for d �� � �
�
��

For x � Rd � y � Xnfxg� the gradient of kA has the representation

rkA�x� � � 


�d
p
detA

A��x
jxjdA

�

�

and

�kA�x� y�

�l�y�
�




�d
p
detA

hn�y�� x� yi
jx� yjdA

�
�kA�y � x�

�l�y�
� �
��

We are interested in the decay behaviour of the single� and double�layer
potential at in�nity�







Proposition ���

�a
 For d 
 �� we have !E�x� � O�jxj��d� and r!E�x� � O�jxj��d� as
jxj � 	�

For d � �� limjxj��!E�x� � 	 i�
R
X
�d� � 	�

In general� for all d 
 �� the relation
R
X
�d� � 	 implies

!E�x� � O�jxj��d� and r!E�x� � O�jxj�d� for jxj � 	�

�b
 The decay of !D at in�nity is O�jxj��d��
The proof is analogous with the proof of Satz ��
� in ����
In the sequel� we will state some auxiliary theorems�

Theorem ��� For u� v � C����� � C����� the equationZ
�
�

�hru�Arvi � uL�v� dx �

Z
X

u
�v

�l
d� � ��	�

holds if both integrals exist� If� in addition� the integrals in ���
 exist after
interchanging the roles of u and v� we haveZ

�
�

�vL�u� uL�v� dx �

Z
X

�
u
�v

�l
� v

�u

�l

	
d� � ��
�

Since the �d� 
��dimensional Minkowski measure of S is zero� formulae ��	�
and ��
� can be proved using a version of Gau"� integral theorem stated in
�
��� Folgerung ����
The next theorem is a generalisation of Green�s representation formula of
harmonic functions�

Theorem ��� Let u � C����� � C����� with L�u 
 	 in ��� Then the
following formula holds for each x � �� �

u�x� �

Z
X

��u
�l
�y�kA�x� y�� u�y�

�kA�x� y�

�l�y�

	
d��y� � ����

By using the following Lemma 
�� the proof is analogous with the proof
of Green�s representation formula �cf� �
��� Theorem ���� by taking into
account that� for B � GL�Rd� with BTB � A��� we have jBxj � jxjA and
j detBj�� � p

detA �cf� ���� Satz ������ Such B exists and is unique up to
multiplication by orthogonal matrices from the left hand side� A possible
choice is B � F�� where F is the Cholesky factorization of A� FF T � A�


�



Lemma ��� For every B � GL�Rd� there holdsZ
S�




jBxjd d��x� �
�d

j detBj � ����

Proof� We de�ne � � R � R by r �� r�e�r
�

� On one hand we have

j detBj
Z
Rd

��jxj�
jBxjd dx � j detBj

Z �

�

Z
S�

��r�rd��

rdjByjd d��y� dr

� j detBj
Z
S�




jByjd d��y�
Z �

�

��r�

r
dr �




�
j detBj

Z
S�




jByjd d��y� �

on the other hand there holds

j detBj
Z
Rd

��jxj�
jBxjd dx �

Z
Rd

��jB��xj�
jxjd dx �

Z
S�

Z �

�

��rjB��yj�
jryjd r��d dr d��y�

�

Z
S�

Z �

�

��rjB��yj�
r

dr d��y� � �d

Z �

�

��r�

r
dr �




�
�d �

��� Jump Relations

For r � 	 and x � R
d � we de�ne H�x� r� �� S�x� r����� where S�x� r� is the

sphere of radius r centred in x� and the function �i � R
d � �	� �d� by

�i�x� �� lim
r��

rp
detA

Z
H�x�r	




jx� yjdA
d��y� � ����

The proof of Lemma 
� implies that the limit in ���� exists for all x � Rd �
Hence� Lemma 
� ensures that �i�x� � �	� �d� holds �let therefor B � GL�Rd�
such that BTB � A����
For x � X� there exists a neighbourhood V of x in X and a constant L � 	
satisfying jhn�x�� x� yij � Ljx� yj��� for all y � V � That implies �i�x	

�d
� �

�
�

Lemma ��� The function # � Rd � R de�ned by

#�x� ��

Z
X

�kA�x� y�

�l�y�
d��y� � has the representation #�x� � ��i�x�

�d
�


�



Proof� First let x � ��� This implies �L��ykA�x � y� 
 	 in ��� Equation
��	� with u 
 
 and v � kA�x� �� implies #�x� � 	�
For x � ��� the relation #�x� � �
 follows directly from Theorem 
� applied
to u 
 
� Lemma 
� shows that �i�x� � �d�
Now let x � �� The normal vector �eld n on H�x� r� is chosen such that
n��� � �

r
�� � x�� Denote with B�x� r� the open ball with radius r centred

in x and de�ne ��� �� �� n B�x� r�� If r is su�ciently small� we have a
vanishing �d � 
��dimensional Minkowski measure of S����� and� modulo a
set of surface measure zero�

X����� �


X nB�x� r�� �H�x� r� �

Hence Gau"� divergence theorem �cf� �
��� Folgerung ����� can be applied
and we obtainZ

XnB�x�r	

�kA�x� y�

�l�y�
d��y��

Z
H�x�r	

�kA�x� y�

�l�y�
d��y� � 	 �

Using the dominated convergence theorem we conclude

Z
X

�kA�x� y�

�l�y�
d��y� � lim

r��

Z
H�x�r	

�kA�x� y�

�l�y�
d��y�

�� lim
r��

r

�d
p
detA

Z
H�x�r	




jx� yjdA
d��y� � ��i�x�

�d
� ��
� 	� �

For n � N we use the notation �cf� Figure ��

Kn �� fz � B� � zd � 	 � jzj � �
n
g and Rn �� Kn nKn�� �

The �d� 
��dimensional Lebesgue measure of Rn is bounded by �d��n�d�

Remark ��� There exists � � 	 such that for every x � � we �nd an open
set U containing the ball B�x� �� and� if x � Mk� there is a di�eomorphism
	 � B� � U with 	�	� � x and 	�K�� � �Mk � U �� V � Let us denote 	���y�
by y� and 	�z�� by z� There exist constants g�N � independent of x� with

sup
y�U

�jD	�y��jop � jD	���y�jop
 � N


�



and g is an upper bound for the Gram determinant of the parametrisation
	jK�

� Thus� we obtain for all y� z � U the equivalence of the norms




N
jy� � z�j � jy � zj � N jy� � z�j �

The proof of Remark 
� is elementary �cf� �
	���

Theorem �	� Let �x�n � be a sequence in �� converging to x � �� Then�
the jump relation ���
 holds for the double�layer potential !D with a density
� � L��X� which is continuous in x�

lim
n��

!D�x
�
n � �

Z
X

�kA�x� y�

�l�y�
��y� d��y�� 


�
���x���x� � ����

with

���x� �� �
�i�x�

�d
� ���x� �� �

�

� �i�x�

�d

	
�

In particular� for x � X� we have

lim
n��

!D�x
�
n � �

Z
X

�kA�x� y�

�l�y�
��y� d��y�� 


�
��x� �

Proof� For �xed x � � and � � R
d � we de�ne

$��� ��

Z
X

�kA�� � y�

�l�y�
���y�� ��x�� d��y� �

Hence� for � �� �� !D��� � ��x�#��� � $���� Using Lemma 
� we obtain

lim
n��

��x�#�x�n � �
Z
X

�kA�x� y�

�l�y�
��x� d��y�� 


�
���x���x� �

Thus� it su�ces to prove

lim
n��

�$�x��$�x�n �� � 	 �

De�ne

���� x� y� ��

����hn�y�� x� yi
jx� yjdA

� hn�y�� � � yi
j� � yjdA

����j��y�� ��x�j �


�



�
� First� for � close to x� it is clear that the term

I��� ��

Z
XnB�x��	

���� x� y� d��y�

tends to 	 as � tends to x�

��� Let Mk be a surface piece with x � Mk� We extend � by ��y� � ��x�
for all y � �Mk nMk� In the sequel we use the notation as in Remark 
��
To prove the theorem� it su�ces to show that

J��� ��

Z
V

���� x� y� d��y�� 	 as � � x � ����

Let �xn� be a sequence in U n � converging to x�
�a� Consider �x�n� to be a null sequence in B� n K� satisfying the �angle
condition�� i�e�� there exists � ��	� 
� with j�x�n�dj 
 �jx�nj�
For su�ciently large n � N � there exists m �� m�n� � N with




�m
� jx�nj �




�m
�

If n � 	� then also m � 	� We decompose K� into Km and R������Rm��
�cf� Figure ��� Employing the notations

T ��

Z
Km

��xn� x� y� dy
� and Tj ��

Z
Rj

��xn� x� y� dy
� � where y � y�y�� �

we have

J�xn� � p
g

�
T �

m��X
j��

Tj

�
�

Introducing

���� �� sup
�j����� ��x�j � j��j � �



for � � 	 �

we obtain

T � C�� �
m
�

Z
Km

�



jy�jd���� �
�
m

�

�d���
dy� �


�



0

R2

K6

Figure �� �Centred Decomposition� of K� for m � �

which becomes arbitrarily small for su�ciently large n� because � is contin�
uous in x� Consider the integrands of Tj� j � 
� ���� m� 
�����hn�y�� x� yi

jx� yjdA
� hn�y�� xn � yi

jxn � yjdA

����
�
���� 


jx� yjA �



jxn � yjA

����
dX

k��

jhn�y�� x� yij
jx� yjd�kA jxn � yjk��A

�
jhn�y�� x� xnij
jxn � yjdA

�
dX

k��

Cjx�nj
jy�jd�kjx�n � y�jk �� %j �

The inequalities jy�j 
 �
j��

and jx�n � y�j 
 �
��j��	

for y� � Rj imply

%j � C
�j � 
�d

m
�


�



We derive

Tj � C
�j � 
�d

m
jRjj ���j � �

C

m
���

j
� �

The continuity of � at x implies that ����
j
�� is a null sequence� This yields

m��X
j��

Tj � C

m

m��X
j��

���
j
� � 	 if m�	�

�b� Consider �x�n� to be a null sequence inB�nK� violating the angle condition
in the following sense�
If y�n is the orthogonal projection of x

�
n on K� and m �� m�n�� �m �� �m�n�

are positive numbers with

�

m
� jx�nj �

�

m
and




� �m
� j�x�n�dj � jx�n � y�nj �




� �m
�

the sequence �
n�� de�ned by 
n ��
m

m
� is a null sequence�

Let n � N be su�ciently large such that �m � m holds� We de�ne

Kn

m �� fz� � K� � jy�n � z�j � �


m
g �

Sn
j ��

�
�� � K� �

�
j��

� j�� � y�nj � �
j



�

Dn
j �� f�� � K� � j��j 
 �

j��
� jy�n � ��j 
 �

j��
� j��j � �

j
� jy�n � ��j � �

j
g �

We decompose K� into the subsets Kn� K
n

m� D

n
i � i � 
� ���� m � 
 and Sn

j �
j � m� ���� �m� 
 �cf� Figure ���
�i�

Z
Km

��xn� x� y� dy
� � C�� �

m
�

Z
Km

� 


jy�jd���� �md��
	
dy� � 	 as n�	 �

�ii� For y� � Kn

m we have jy�j 
 �

m
and jx�n � y�j 
 �

� 
m
� That implies the

following estimate�

Z
Kn

�m

��xn� x� y� dy
� � C




 � jKn


mj� �m�d��
�
�� �

m
�� 	 as n�	�







n
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Figure �� �Dipole�Decomposition� of K� with m � �� �m � �

�iii� We obtain� for y� � Dn
j � j � f
� ���� m� 
g� the estimates jx�n � y�j 
 �

j��

and jy�j � �
j
� This results in

����hn�y�� x� yi
jx� yjdA

� hn�y�� xn � yi
jxn � yjdA

���� � C

m

dX
k��




jy�jd�kjx�n � y�jk � C
jd

m
�

Due to jDn
j j � j�d� we conclude

m��X
j��

Z
Dn
j

��xn� x� y� dy
� � C

m

m��X
j��

���
j
� � 	 if n�	 �

�iv� Let y� � Sn
j � j � fm� ���� �m � 
g� then �

�m
� jy�j � �

m
� We have the

estimates

jhn�y�� x� yij
jx� yjdA

� Cmd���� � Cjd����


�



and

jhn�y�� xn � yij
jxn � yjdA

� jhn�y�� xn � ynij� jhn�y�� yn � yij
jxn � yjdA

� C

�
jd

�m
� jd����

�
�

In view of jSn
j j � j�d� we conclude


m��X
j�m

Z
Snj

��xn� x� y� dy
� �C


m��X
j�m

�
jd

�m
� jd����

�
jSn

j j�� �m�

�C
�

 �

�X
j��




j���

�
�� �

m
� � 	 as n�	�

�c� Because 	�K�� may contain points not lying in �� we have to consider a
sequence �xn� in �Mk n � converging to x� Let y� � K�� Then�

jhn�y�� x� yij
jx� yjdA

� Cjy�j����d and
jhn�y�� xn � yij
jxn � yjdA

� Cjx�n � y�j����d �

Let m �� m�n� with �
�m

� jx�nj � �
�m
� We obtainZ

Km

��xn� x� y� dy
� � C�� �

m
� �

To estimate the integrals over the annuli Rj� j � 
� ���� m�
� we can proceed
as in part �a��
Next� consider an arbitrary sequence �xn� in U n � converging to x � ��
If �xn� has a subsequence �xl� in �Mk n �� we have shown in part �c� that
limk�� J�xl� � 	� Without loss of generality� assume that the whole se�
quence lies in U n �Mk� We prove ���� by contradiction� Assume that �J�xn��
does not converge to zero� This implies that there exists � � 	 and a subse�
quence �xl� of �xn� with jJ�xl�j � � for all l� Since �xl� converges to x� our
results in �a� imply� that any in�nite subsequence of �xl� violates the angle
condition� According to �b�� J�xl� converges to zero yielding a contradiction�
Hence� limn�� J�xn� � 	�

Lemma �
� Let X be a C��submanifold� x � X and � � L��X� continuous
in x� Then

lim
���

hl�x��r!D�x� � l�x���r!D�x� � l�x��i � 	 �

�	



For a proof see ���� Satz ���
�c�� The proof is a generalization of the proof
of Lemma 
���
� in �
�� treating the special case L� � �� in dimension
d � �� ��
Let us turn to the conormal derivative of the single�layer potential�

Theorem ��� Let W � X be open and � � L��X� continuous in W � Then
the limits

lim
h��

hl�x��r!E�x� hl�x��i �
Z
X

�kA�x� y�

�l�x�
��y� d��y�� 


�
��x� ����

exist locally uniformly on W �

Proof� Let K be a compact subset of W � Then there exists � � 	 such that�
for s ��	� �� and x � K� the inclusions x � sl�x� � �� and x � sl�x� � ��

hold �cf� ���� Satz ������
Theorem 

 implies that the double�layer potential !D with density � satis�
�es

lim
h��

!D�x� hl�x�� �

Z
X

�kA�x� y�

�l�y�
��y� d��y�� 


�
��x�

uniformly on K� So it is su�cient to prove

lim
h��

�
hl�x��r!E�x� hl�x��i � !D�x� hl�x��

	

�



�d
p
detA

Z
X

hn�y�� n�x�� x� yi
jx� yjdA

��y� d��y�

uniformly on K�
There exists � � 	 such that� for every x � K� B�x� �� � � � W and �K ��
f� � � � dist���K� � �g is compact� Furthermore we �nd for any x � K
a di�eomorphism 	 � B� � U � B�x� �� � U � with 	�	� � x as described in
Remark 
�� We denote x� �� x��l�x�� � � R� and 
 �� maxfjl���j � � � �Kg�
For j�j � �

�	
and y � X nB�x� ��� using a generic constant C which does not

�




depend on x � K or �� we can estimate

��x�� x� y� ��

����hn�y�� n�x�� x� � yi
jx� � yjdA

� hn�y�� n�x�� x� yi
jx� yjdA

����
�
����hn�y�� n�x�� x� � xi

jx� yjdA

�����
���� 


jx� � yjA �



jx� yjA

����
dX

j��

jn�y�� n�x�jjx� � yj
jx� � yjd�jA jx� yjj��A

�C
j�j
�d

� jx� � xjA
dX

j��

�jx� � yj
jx� � yjd�j��jx� yjjA

� C



�d
j�j � 	 as �� 	 �

This yields Z
XnB�x��	

��x�� x� y�j��y�j d��y� � 	 as �� 	

uniformly on K�
Now we use the notation introduced in Remark 
�� Let m � N with




�m
� jx� � x��j �




�m
�

Remark 
� implies �
cm

� j�j � c
m
� with c � 	 independent from x � K� We

decompose K� into its subsets Km and Rj� j � 
� ���� m � 
� as in the proof
of Theorem 

 �cf� Figure ��� By using Lemma � it follows
Z
Km

��x�� x� y� dy
� � C

Z
Km

jn�x�� n�y�j
�
jx� � yj�d�� � jx� yj�d��

	
dy�

� C

��
N

m

�� Z
Km

jx� � yj�d�� dy� �
Z
Km




jx� yjd���� dy
�
�
�

For j�j su�ciently small� there exists �C � 	 independent of x � K such that
dist�x�� �K� 
 �Cj�j� That ensures the existence of C � 	� independent of
x � K� such that

Z
Km

��x�� x� y� dy
� � C

�



m�
�

Z
Km

jy�j�d���� dy�
�
�

i�e��
R
Km

��x�� x� y� dy
� tends uniformly to 	 for all x � K as j�j � 	�

��



For y � Rj� j � f
� ���� m � 
g� we obtain jy�j 
 �
j��

and jx�� � y�j 
 �
��j��	

�
Thus we can estimate

��x�� x� y� � C�j � 
�d��jx� � xj � C
jd��

m
�

Finally

m��X
j��

Z
Rj

��x�� x� y� dy
� � C

m

m��X
j��

�
jd��jRjj

	
�

C

m

m��X
j��

j�� � 	

holds uniformly in j�j for all x � K� That proves the theorem�

Theorem ��� Let x � X and � � L��X� be continuous at x� Let �x�n � be a
sequence in �� converging to x� If � is H�older continuous with exponent 
 on
a neighbourhood of x or if there exist c� p � 	 with dist�x�n ��� 
 cjx� x�n jp�
we obtain

lim
n��

hl�x��r!E�x
�
n �i �

Z
X

�kA�x� y�

�l�x�
��y� d��y�� 


�
��x� � ��
�

The proof is done in detail in �
	��

��� Integral Equations

De�nition ��� The integral operators K and K� are given formally� for
every � � L��X�� by

K��x� � �

Z
X

�kA�x� y�

�l�y�
��y� d��y� �

���i�x�
�d

� 

	
��x� � x � � �

K���x� � �
Z
X

�kA�x� y�

�l�x�
��y� d��y� � x � X �

Theorem ��� K is a continuous linear operator on �L����� j � j�� and on
�C���� j � j���
Proof� �a� � � C��� implies K� � C����
Proof of �a�� With Theorem 

� K���� � �!D����� �����
�b�

sup

��

�
�

Z
X

�����kA�� � y�

�l�y�

���� d��y� �
������i����d

� 

����
�
�	 �

��



Proof of �b�� �i� Since �i��� is an element of the interval �	� �d� for all � � �
we can estimate j��i�
	

�d
� 
j � ��

�ii� Let � be as in Remark 
�� Recall that �mi��M i � �� For � � �� the set
f
� ���� mg can be decomposed into disjoint sets I �� fi � � �M ig�
J �� fj � dist���Mj� 
 ���g and K �� fk � 	 � dist���Mj� � ���g� For
i � I� we obtain with Lemma �Z

Mi

�����kA�� � y�

�l�y�

���� d��y� � C

Z
Mi




j� � yjd���� d��y� �

There is a constant C � � 	� independent of � and i� so that the last term of
the inequality can be majorized by C �� We derive

X
i�I

Z
Mi

�����kA�� � y�

�l�y�

���� d��y� � mC � �

Furthermore�

X
j�J

Z
Mj

�����kA�� � y�

�l�y�

���� d��y� � C
X
j�J

��Mj��
��d � C��X����d �

Let k � K and x � Mk with dist���Mk� � j� � xj� Let V be as in Remark

�� Then we obtainZ

Mk

�����kA�� � y�

�l�y�

���� d��y� �
Z
MknB�x��	

�����kA�� � y�

�l�y�

���� d��y� �
�

Z
V

�����kA�� � y�

�l�y�
� �kA�x� y�

�l�y�

���� d��y� �
Z
V

�����kA�x� y�

�l�y�

���� d��y� �
The �rst intgral on the right hand side is smaller than C��Mk��

��d� the
third integral is bounded by a constant independent of �� x and k� Let 	
be a di�eomorphism with 	�	� � x as in Remark 
�� Let m � N with
�
�m

� j��j � �
�m
� The proof of

Z
K�

����hn�y�� � � yi
j� � yjdA

� hn�y�� x� yi
jx� yjdA

���� dy� � C �

where C is independent of �� x and k� is derived by decomposing K� into its
subsets Km� Rj� j � 
� ���� m� 
� and using similar arguments as in part �a�
of the proof of Theorem 

�

��



Remark ��� Although K is a compact operator on C��� if � is globally
smooth �see Theorem �
�� this is in general not true if S �� ��
Consider the special case L� � �� and d � �� In ��	� it is shown that

inffjK � V jop � V linear and compact on C���g � � ����

for boundaries being piecewise C�� having only convex �in the sense of ��	��
corners and edges and

� �� supfj
� �i�x����j � x � �g � 
 �
i�e�� boundaries� which di�er slightly from those de�ned in section 
� Due
to � � 
� equation ���� implies that Fredholm theory is applicable to the
operator I � K �cf� �
��� Remark 
������� the Fredholm radius of K is 
��
and exceeds one� For boundaries� containing �non�convex� edges� a modi�ed
version of ���� could be derived �cf� ��	�� x���� ��
�� x���
In �
��� x
����� an analogous statement for the Laplace operator in two di�
mensions is proved� provided � is piecewise H�older di�erentiable�

Proposition ��� K� maps L��X� into C�X��

Proof� Let � � L��X� and x � X� Without loss of generality we can assume
that x �M ��Mj for j � f
� ���� mg� Let �xn� be a sequence inM converging
to x� We want to show K���xn�� K���x� as n�	� We de�ne

��xn� x� y� ��

����hn�xn�� xn � yi
jxn � yjdA

� hn�x�� x� yi
jx� yjdA

���� �
Then there holds

jK���x��K���xn�j � C

Z
X

��xn� x� y�j��y�j d��y� � ��	�

If we restrict the domain of integration to the complement of a small neigh�
bourhood of x in X� it is clear that the integral in ��	� would tend to 	 as
n tends to in�nity� So let 	 � B� � U be a di�eomorphism with 	�	� � x
as described in Remark 
�� To prove that the integral in ��	�� with U as
domain of integration instead of X� tends to 	 as n � 	� we can employ
the centered decomposition �cf� Figure �� and estimate similarlily as in the
proof of Theorem 

�

��



Remark ��� Functions u � K��C�X� � L��X�� are continuous on X while�
in general� they can be singular at non�regular boundary points x � S�
Proof� We consider the square Q �� �� in R� with boundary

� � �Q � f�	� t�� �
� t� � 	 � t � 
g � f�s� 	�� �s� 
� � 	 � s � 
g

and L� �� ��� i�e�� A � I� Put � 
 
 and de�ne boundary points x��
	 � � � 
� by x� � �	� ��� We obtain�

jK���x��j � �

�d

����
Z
X

hn�x��� x� � yi
jx� � yj� d��y�

����

 �

�d

Z �

�

t

t� � ��
dt �




�d
�ln�
 � ���� ln����� �	 as �� 	 �

i�e�� K�� �� L��X��

Theorem ���

�a
 The double�layer potential !D with density � � C��� solves the interior
Dirichlet problem for the operator L� and a given boundary function
f � C��� i� � solves the integral equation

��K� � ��f on � � ��
�

�b
 The double�layer potential !D solves the exterior Dirichlet problem for
a given boundary function f � C��� i� � � C��� solves the integral
equation

��K� � �f on � � ����

Proof� The assertion follows from Proposition 

 and Theorem 

�

Remark �	� It follows from Lemma 
� that � 
 
 lies in ker�I �K�� i�e��
a solution of ���� is not uniquely determined� For this reason it is preferable
to work with a modi�ed double�layer potential to solve the exterior Dirichlet
problem �cf� Section �����

��



Theorem �
�

�a
 !Ej�
�

solves the interior natural boundary value problem for a given
g � C�X� i� the density � � C�X��L��X� is a solution of the integral
equation

��K�� � �g on X � ����

�b
 !Ej�� is a solution of the exterior natural boundary value problem for
a given g � C�X� i� the density � � C�X� � L��X� solves the integral
equation

��K�� � ��g on X � ����

Remark ��� If we require that the solution u � !E of the exterior natural
boundary value problem su�ces the radiation condition �
�� it follows from
Proposition 
� that� in the case of dimension d 
 �� the radiation condition
is always ful�led� whereas in the situation of dimension d � � the radiation
condition is ful�led i� the continuous density � satis�es the identityR
X
�d� � 	�

Proof of the theorem� The assertion follows from Proposition 

 and the jump
relations �����

��� The Case of C��Boundaries

Let us consider the situation where �� and �� are connected sets and the C
��

submanifold � is the common boundary of �� and ��� Here� we have better
results than in the previous situation� The results stated in this subsection
are proved in detail in ���� Kapitel �� or� for the case L� � �� and dimension
d � �� �� in �
��� Chapter ��

Theorem ��� If � � X is a C��submanifold of Rd we have ��i�x� � �d
for every x � X� The linear operators K and K� are compact operators on
�C���� j � j��� Furthermore� there holds

Z
�

�K��� d� �

Z
�

��K��� d� for all �� � � C����

��



Theorem ���

�a
 The operators I �K and I �K� are bijections on C����

�b
 The kernels of I � K and I � K� are one�dimensional� To be more
precise�

ker�I �K� � spanf
g and ker�I �K�� � spanf�g �
where � is a function in C��� satisfying

R
�
� dS �� 	� Furthermore�

�I �K���C���� � f� � C��� �
R
�
� d� � 	g �� C���� �

Since the operator I � K is neither injectiv nor surjectiv �according to the
Fredholm alternative�� we will de�ne a modi�ed operator I � K � for the
exterior Dirichlet problem�

De�nition ��� Let � � ��� The modi�ed double�layer potential !M on ��

with continuous density � is given by

!M �x� ��

Z
�

��y�

�
�kA�x� y�

�l�y�
�




jx� �jd��A

�
d��y� for x � �� � ����

The integral operator K � � C���� C��� is given for all � � C��� by

K ���x� � �
Z
�

��y�

�
�kA�x� y�

�l�y�
�




jx� �jd��A

�
d��y� � x � � �

Conclusion ���

�i
 On ��� !M is in�nitly often di�erentiable under the integral sign and
L�!M 
 	� The modi�ed double�layer potential satis�es the radiation
condition !M�x� � O�jxj��d� at in�nity�

�ii
 K � is a compact operator on C����

�iii
 The jump relations ���
 for the double�layer potential !D imply that
the modi�ed double�layer potential !M could be continuously extended
on �� by

!M�x� �

Z
�

��y�

�
�kA�x� y�

�l�y�
�




jx� �jd��A

�
d��y� �




�
��x� � x � ��

�




Theorem ��� The integral operator I �K � is an automorphism on C����

Theorem ��� The extended modi�ed double�layer potential !M solves the
exterior Dirichlet problem for a given boundary function f � C��� i� the
continuous density � satis�es the equality

��K �� � �f on � � ����

Theorem ���

�a
 For a given boundary function f � C��� the interior Dirichlet problem
has a unique solution� This solution is the double�layer potential !D

with density �� ful�lling ���
�

�b
 For a given boundary function f � C��� the exterior Dirichlet problem
with the radiation condition ��
 has a unique solution� This solution is
the modi�ed double�layer potential !M with density �� ful�lling ��	
�

Theorem �	�

�a
 The interior natural boundary value problem is solvable i� the integral
over � of the given boundary function g � C��� vanishes� i�e��
g � C����� The solution is then given by the single�layer potential !E

with density �� satisfying ���
�

�b
 For a given boundary function g � C��� and d 
 �� the exterior natural
boundary value problem with radiation condition ��
 is uniquely sovable�

In R� � the exterior natural boundary value problem with radiation con�
dition ��
 has a unique solution i� the given boundary function g lies
in C�����

The solution is in both cases given by the single�layer potential !E with
density �� satisfying ���
�

In the case of C��boundaries all integral equations mentioned before are of
the form

�
I � T �u � f �

where 
 �� 	 and T is a compact integral operator� Such kind of equations
can be solved very e�ciently by applying the multi�grid method of second
kind �cf� �

�� Chapter 
�� �
��� Chapter � and x����
�� Note that� due to
the compactness of �� classical Neumann series converge as well while the
convergence speed is much slower as for multi�grid methods�

��



Theorem �
� The solutions to the Dirichlet und natural boundary value
problems �with radiation conditions ��
 and ��
 for exterior problems
 depend
continuously on the given boundary data in C��� in the maximum norm�

� The General Situation

In this section� we will state the integral equations for Dirichlet and natural
boundary value problems corresponding to a general elliptic partial di�eren�
tial operator L of order two with constant coe�cients� We have to compute
the jump relations of the double�layer potential and the conormal derivative
of the single�layer potential� Therefor consider the fundamental solution kA
of the principal part L� � � div�A grad� of the di�erential operator L �de�
�ned in �
���� the double�layer potential !�

D and the single�layer potential
!�
E of L� with density � �as de�ned in Chapter ���

Proposition ��� Consider a density function � � L��X�� Then !D � !�
D

can be continuously extended on Rd by

�!D � !�
D��x� �

Z
X

��
��x� y�

�l�y�
� �kA�x� y�

�l�y�

	
��y� d��y� � x � R

d �

Proof� Let R be su�ciently large so that BR contains �� de�ne G �� BR and
the function f � G� X n f��� �� � � � Xg � C by

f�x� y� ��
�

�l�y�
�
� � kA��x� y� �

The continuity of !D�!�
D follows from Lemma � and �
��� Lemma 
�
���

Theorem ��� If �x�n � is a sequence in �� which converges to x� � �� the
jump relation ���
 holds for the double�layer potential !D with a density
� � L��X� being continuous at x��

lim
n��

!D�x
�
n � �

Z
X

�
��x� � y�

�l�y�
��y� d��y�� 


�
���x����x�� � ����

where �� are as in Theorem ��� In particular� for x� � X� we have

lim
n��

!D�x
�
n � �

Z
X

�
��x� � y�

�l�y�
��y� d��y�� 


�
��x�� �

�	



Proof� There holds

!D��� � �!D���� !�
D���� � !

�
D��� �

Hence� Theorem �
 follows from Theorem 

 and Proposition �	�

Lemma ��� Let � � L��X�� Then the function !E � !�
E is continuously

di�erentiable on Rd � For all x � Rd holds

r�!E � !�
E��x� �

Z
X

�r
��x� y��rkA�x� y����y� d��y� �

Proof� According to Lemma � there exists a compact neighbourhood G of ��
� ��	� 
� and C � 	 such that on �G� �� n f��� �� � � � �g the inequality

jr�
� � kA��x� y�j � Cjx� yj����d

holds� Hence� Lemma �� follows from �
��� Lemma 
�
���

Theorem ��� Let W � X be open and � � L��X� continuous in W � Then
the limits

lim
h��

hl�x��r!E�x� hl�x��i �
Z
X

�
��x� y�

�l�x�
��y� d��y�� 


�
��x� ��
�

exist locally uniformly on W �

Proof� There exists c � 	 such that �
c
� jl�x�j � c holds on X� Hence�

Lemma �� implies

lim
h��

D
l�x��

�
r�!E � !�

E��x� hl�x���
Z
X

r�
� � kA��x� y���y� d��y�
	E

� 	

uniformly on X� Now the theorem follows from Theorem �	 and

lim
h��

hl�x��r!E�x� hl�x��i
� lim

h��


hl�x��r�!E � !�
E��x� hl�x��i � hl�x��r!�

E�x� hl�x��i� �

Because of ���� and ��
�� we get the same integral equations for the Dirichlet
and natural boundary value problems for L as stated in the Theorems �� and
�� �of course in De�nition �� kA has to be replaced by 
���

�




� Numerical Examples

In this section� we will report on the numerical realization of the integral
equation formulations presented in the previous sections for solving elliptic
boundary value problems� As stated in the introduction the motivation for
this paper was to develop explicit integral equation formulations so that only
the coe�cients of the underlying operator L as in �
� have to be speci�ed�
The essential bottle neck in the realization of the boundary element method
�as the most &exible discretization method for boundary integral equations
being applicable to a large class of problems of engineering interest� is the
computation of the entries of the arising sti�ness matrix� These entries are
de�ned as surface integrals with singular� nearly singular� and regular inte�
grands� In ����� ����� �
��� �
��� �
�� ����� ��� e�cient� black�box quadrature
methods have been developed for these integrals in the sense that

� it is su�cient to provide the coe�cients of the di�erential operator
L and the numerical integrator automatically computes a su�ciently
accurate result�

� the numerical quadrature method converges exponentially with respect
to the order �independent on the distance from the singularity��

The class of integral kernels includes those which arise by applying the
method of integral equations to the operator L� Along with the boundary
integral equations derived in this paper it is now possible to solve bound�
ary value problems via integral equation methods just by prescribing the
coe�cients of the operator L�
The numerical implementation was based on the boundary element library
LIBBEM written by C� Lage �cf� �

�� �
��� where the black�box numerical
integrator was incorporated by S� Erichsen �cf� ���� �����
As a model problem serves the natural boundary value problem in the �clas�
sical� form� Seek u � C� ���� � C



��

�
satisfying

Lu � 	 in �� �� R
�nB�

�u�
�l
� g uniformly on � �� �B�

����

��



with L � �r �Ar�� and g � �hx�A��xi����� The positive de�nite matrix
A is chosen as

A �

�
��

��
��



��

� �
�
p
�



��

��
��

� �
�
p
�

� �
�
p
�
� �

�
p
�

�
�

�
�� � A�� �

�
��



�

��
�

�
�
p
�

��
�



�

�
�
p
�

�
�
p
�

�
�
p
�

�
�

�
��

and has eigenvalues ���� 
� ���� The exact solution is given by

u �x� �
�
x�A��x

�����
�

We represent the solution as a single�layer potential with density �� u � !E

leading to the integral equation�

� �x�� �
Z
�

� �y�
kA �x� y�

�l �x�
d��y� � ��g �x� � x � �� ��	�

In order to employ the Galerkin method for its discretization we start with
de�ning �nite element spaces on the surface �� Let �� denoting the dou�
ble pyramid with vertices ��
� 	� 	��� �	��
� 	��� �	� 	��
��� The surface
triangles de�ne the initial mesh T�� Finer triangulations are de�ned re�
cursively� Assume Ti�� is already generated� Then� re�ne each triangle
� � ��A�� A�� A�� �with edge midpoints M���M���M��� by projecting Mij

onto the true surface �resulting in �Mij� and de�ning the four sons of � by

�� � �
�
A�� �M��� �M��

	
� �� � �

�
A�� �M��� �M��

	
�

�� � �
�
A�� �M��� �M��

	
� �� � �

�
�M��� �M��� �M��

	
�

This results in the triangulation Ti and the approximate surface �i �
S
Ti�

The set of vertices in Ti is denoted by  i�
The space of continuous� piecewise linear �nite elements on �i is given by

Si �� fv � C ��i� j �� � Ti � v j
 is a�neg �
The computations have been performed on levels i � 	� 
� �� �� � where the
dimension of Si is listed below�

i 	 
 � � �
�Ti 
 �� 
�
 �
� �	�

dimSi � 

 �� ��
 
	��

��



�� L
i ei ei�ei�� ei ei�ei��

	 ��
��
��e�	
 �����

�e�	


 
�	�����e�	�

���
�
		�
��	�

��e�	�

���������

� ��	�		��e�	�
�����
	��

��
	���
e�	�
���	�
���

� ������
�e�	�
��
�
����

���	����e�	�
��	��	�
�

� 
���

��e�	�
��	�	����


��		
�	e�	�
��		
��	�

Table 
� L � � div�A grad�

The Galerkin formulation to ��	� is given by seeking �i � Si such that

��i� v���� � �
Z
���

v �x��i �y�
kA �x� y�

�l �x�
d�yd�x � �� �g� v���� � �v � Si�

where ��� ����� denotes the L� scalar product on �� The approximate Galerkin
solution to ���� on level i is denoted by ui � !E�i� where !E�i is the single�
layer potential with density �i�
The relative error in the discrete ���norm is de�ned by

ei ��

vuutP
x��i

jui �x�� u �x�j�P
x��i

ju �x�j� �

Due to the regularity of our problem and the stability of the Galerkin method
we expect that the Galerkin method converges quasi�optimally� i�e�� quadrat�
ically� The table below clearly shows this convergence behaviour and� addi�
tionally� that the error has about the same magnitude as the error for the
Laplace problem�
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