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ABSTRACT. In this note we introduce a gradient flow equation for
compatible metrics on symplectic manifolds with respect to the
Blair-Tanus energy functional and prove the short time existence
of the flow. We provide an example where the flow exists globally.

1. INTRODUCTION.

Let (M,w) be a symplectic manifold of dimension 2n. An almost
complex structure J on M is called compatible with the symplectic
structure w if

gy = w(+, J-) defines a Riemannian metric on M.

Any Riemannian metric of the form g, is called a compatible metric
with the symplectic form w.

Let J(M,w) (simply denoted by J(M)) be the space of compati-
ble almost complex structures. We identify J(M,w) with the space
Met(M,w) of all compatible metrics by

(1.1) G:J(M)— Met(M,w),J — gs(-, ).

A compatible almost complex structure is called harmonic if it is a
critical point of the following functional

(1.2) E(J) = / IV, J|2dvolg,
M

in J(M). Here V,, is the Levi-Civita connection with respect to the
metric g;. The functional £ measures the extend of how close of a
compatible almost structure being integrable. The functional E(J)
was proposed by James Eells to the first named author in 1995 to find
a “best” almost complex structure on symplectic manifolds. However,
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2 H.-V. LE AND G. WANG

later we realized that it was already introduced by Blair an Ianus in
[BI].

Let Ricy, denotes the Ricci curvature of the metric g;. The anti-
complexified Ricci curvature is defined by

Ric® = Ricy, — J*(Ric,),

where J* denotes the induced action of J on the space of 2-symmetric
forms S: (J*S)(X,Y) = S(JX,JY). It is easy to check (see also next
section) that Ric® € TyMet(M,w).

Blair and Tanus [B-I] has shown that a compatible almost complex
structure .J is harmonic if and only if its anti-complexified Ricci van-
ishes, i.e.,

(1.3) Ric® = 0.

This fact is a consequence of the following first variational formula for
E ([B-I], see also [Le]):

dE(J;)

(1.4) T 2/M<—RZCQJ,G*(V)>9J,

where V' := d.J;/dt;—o is the direction of the variation and G,(V) is
the associated variation in the space of Met(M,w) and g; denotes the
induced metric, which is the natural metric on the space Met(M,w).

Since J can be seen as a section of twistor bundle over M with fiber
Sp(2n,R) (see [Le] or (2.1) below), (1.4) means that J is a harmonic
section. However, unlike the usual harmonic sections (maps), (1.4) is
a quasi-linear equation, for the harmonicity is defined with respect to
J itself.

It is clear that if (M, w) is Kéhler then its Ké&hler complex structure
is harmonic (that is actually our motivation to study the energy func-
tional ). From equation (1.3) (we note that Ricj, is the orthogonal
projection of the Ricci curvature on the tangent space T'Met(M,w))
and taking into account the fact that the volume element dvol,, = w"
is fixed, we see that, if ¢g; is an Einstein metric, then the associated
almost complex structure is also harmonic. When n = 1 the functional
E is trivial. In [D-M] there are examples of harmonic almost complex
structures which are not Kahler, for n > 3.

There are several works about the classification of the harmonic al-
most complex structures. We are interested in the existence of har-
monic almost complex structures. In this paper, as a first step to study
the existence of harmonic almost complex structures, we consider the
(negative) gradient flow equation

d e
(1.5) 397 = Ricj .
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Equivalently,

d
(1.6) %J =w ' Ric",
where w™! : TM x TM — End(TM) is defined, in local coordinates,

(w‘l . T); = (w‘l)ikaj.

Our anti-complexified Ricci flow is motivated by the Hamilton’s Ricci
flow, which is inspired by the heat flow of harmonic maps introduced
by Eells-Sampson [ES]. In this paper, we shall show the short time exis-
tence of (1.5) (see Theorem 3.17). We first like to use a more geometric
way to prove the local existence of (1.5). Since (1.5) is not a parabolic
equation, we want to change it to an equivalent parabolic equation
by using an automorphism group as in [D]. (Here the automorphism
group is the symplectomorphism group.) As in the Ricci flow case,
the complexified Ricci operator Ric® is not elliptic. The degeneracy
of the anti-complex Ricci operator Rict is related to the fact that it
is invariant under the action of the symplectomorphism group. Using
this invariance we obtain a Bianchi type identity

(1.7) d* JORict = 0.

for the complexified Ricci operator Ric®. However we observe that
unlike the Ricci operator, the degeneracy of Ric® is not completely de-
termined by the symplectomorphism group. The reason is simple: the
symbol of the operator Ric® oD Ric® has null of dimension two gener-
ated by £® JE+ JE®E and £ ® € — JE® JE, while the (Hamiltonian)
symplectomorphism group only generates a one dimension line (which
is generated by £ ® J€ + J€ ® &) in the symbol level. Furthermore, one
even can show that the symbol o¢ DRic* is complex (with respect to the
Kahler structure on the space of compatible almost complex structures,
see below). So it is not enough to use the symplectomorphism group to
deal with the degeneracy of the operator Ric®. This leads us to consider
complexifying the Hamiltonian symplectomorphism group of the sym-
plectomorphism group. However, in general, there is no such a com-
plexified (Hamiltonian) symplectomorphism group, see [Do2]. Hence
we consider to use the complexification of the action of the Hamilton-
ian symplectomorphism group on the space J(M,w). Such a way of
complexification of the action was first suggested by Donaldson in [Do].
It is a Hamiltonian flow on the infinite dimensional Kahler manifold
J(M,w). It is difficult to show its global existence, but we can show
the local existence, see also [Do2]. Unfortunately, this flow may not
preserve the complexified Ricci operator. At least till now we are un-
able to show it. So we have to use a more analytic way to deal with
(1.5) which was introduced in [H1]. The Bianchi type identity (1.7)
gives us a “half” of the integrability condition introduced in [H1],
see section 2 below. The discussion above leads us to find another
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“half” of the integrability condition. Altogether guarantees that we
can apply the Nash-Moser inverse function theorem ([H1] and [H2]) to
our problem (1.5) to obtain the short time existence.

We will consider the global existence of (1.4) for certain symplectic
manifolds in forthcoming papers.

Acknowledgement. We are grateful to James Eells heartly for intro-
ducing us to this problem and for his interest in this project. Thanks
are also due to Frank Loose for interests and some discussions, to H.-D.
Cao and B. Chow for sending us a copy of DeTurck’s paper [DT] which
is useful for preparing our note. We would like to thank Jiirgen Jost
for providing us an excellent environment for working on this project.

2. SPACE OF COMPATIBLE ALMOST STRUCTURES

In this section we describe the space J(M,w) of compatible almost
complex structures.

(2.1). The space J(M) of compatible almost complex structures
can be identified with the space of the sections I'(P), where P is a
(twistor) bundle over M whose fiber is Sp(2n,R)/U(n). Thus a com-
patible almost complex structure J is a section of P. The tangent space
T;J (M) is therefore a space of sections of the vector bundle V'(.J) with
the adjoint U, action. (Every J gives rise to a U,(J)-principal bun-
dle, and V/(J) is the orthogonal complement of the subalgebra w,,(.J)
in sp(2n,R).) Since Sp(2n,R)/U(n) is a Hermitian symmetric space,
the space J (M) inherits the natural Kéhler structure. We denote by
Z the complex structure on J (M), and by € the symplectic struc-
ture on J (M) (see also [Do].) Of course we can consider L? or C*
compatible almost complex structures and provide J (M) with certain
Banach (or Hilbert) structures. But in this note we are concerned only
with smooth compatible almost structures and the smooth structure
on J(M,w).

We also present here the second description of the tangent space
TJ (M) which is more convenient for calculations.

Let j = d/dti—gJ; € T),J(M). Denote by s the skew-star (adjoint)
operator with respect to the symplectic form w i.e.

w(Av,w) = w(v, A%w).

Then clearly an element j € End(TM) is in T,,J (M) iff the two
following conditions holds

(2.2.&) jJ() + J()j =0

(2.2.b) i+ =0

By a direct computation we get
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2.3. Lemma. The skew-star operator (sx) can be defined via J and
star (x) operator as follows

A% = AT

As a direct consequence we get
2.4. Corollary. The conditions (2.2.a) and (2.2.b) are equivalent
to the following

(2.2.&) jJ() + J()j =0

(2.2.0/) i =

Thus the orthogonal projection to the tangent space 1,7 equals the
composition of the symmetrization and the operator of taking anti-
complex linear part.

2.5. Remark. Let j' := Jy-j. Then the conditions (2.2.a) and
(2.2.b") are equivalent to the following

(2.2.d") 3'Jo + Joj' =0,

(2.2.0") (=4
Thus we see: the multiplication with Jy defines the natural Symp(M)-

invariant complex structure Z on J (M) which is arisen in 2.1 (see also
[Do]).

Under the identification G of the space J (M) with the space Met(M,w)
of compatible Riemannian metrics on M, we can rewrite the conditions
(2.2.a) and (2.2.b) as follows. The symmetric tensor

d

D = %W\t:o

satisfies the following anti-complex-linear condition
J (D)X, Y)=w(JX,jJY)=-w(JX,JjY)=-D(X,Y).

We can write this condition as

(2.2 J*(D) = -D.
In term of matrix multiplication ! we get from (2.2')
(2.6) J*DJ=—-D <= DJ+ JD = 0.

Thus the tangent spaces of T;J and T,,J are canonically identified.

2.7. We denote by Sympgam(M,w) the group of Hamiltonian sym-
plectomorphisms of (M,w). (The reason why we are interested in
Sympyam 18 that this group is a normal subgroup of the symplecto-
morphism group Symp(M,w), and a) the quotient Symp/Sympyam is
of finite dimension, b) The group Sympyan, is easier to handle from
the analytical point of view.) Clearly this group acts on the space

las in [BI]
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J(M,w). First we recall that any vector field v on M acts on the
space of metrics by taking the Lie derivative (resp. the space of almost
complex structures) as follows (see e.g. [Be, lemma 1.60])

(2.8) L,(g) = 26%,

where §* is the symmetrization of the covariant derivative, and v" de-
notes the dual 1-form (w.r.t. the metric g) of the vector field v. An
explicit formula for £,J is more complicated. We do not need it here.
We refer to [Do, Lemma 10] for such an expression. But when v is
symplectic vector fields, its expression is simple:

(2.9) Lo, =2wt- 6%,

3. A BIANCHI TYPE IDENTITY AND THE INTEGRABILITY
CONDITION

In this section, we obtain a Bianchi type identity by using the invari-
ance of the energy functional under the action of the symplectomor-
phism group. As mentioned in the introduction, this identity is not
enough in order to show the short time existence of (1.5). We find the
another part of the integrability condition using the Kahler structure
7 defined in the previous section.

Recall the definition of action of symplectomorphism on [J. Let
¢ € Symp(M) and J € J. One define a new compatible almost
complex structure by

¢ J(X) = 67 (I (¢:(2))),
forany X € TM.
3.1 Lemma. The following formula
9prs = " (97)
holds if ¢ is a symplectomorphism.

Proof. For completeness, we give the proof of the Lemma. For any
symplectomorphism ¢, we have, for any p € M and X,Y € T,M,

wy(9"J(X),Y) = wp((¢_1)*J(¢*X)a Y)
= Wo(p) (Jp: X, 9.Y)
- ¢*gJ(X7 Y)7

The second equality holds, since ¢ is a symplectomorphism. O

3.2 Proposition. The functional E is invariant under the action
of Symp(M,w).
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Proof. From Lemma 3.1, we have

E(¢*) = [u Vo9 5 (g, v0l6 (91)
= fu |¢*(Vgé<]) i*(gJ)vOl¢*(gJ)
= fM |VQJJ|gJUOZgJ = E(J)

O

3.3 Corollary. the group Symp(M,w) preserves Rict, i.e., for any
symplectomorphism ¢,

(3.3) ¢*(Ric®) = Ric” ).
(I

Equality (3.3) implies that the harmonicity of an almost complex
structure is preserved under the action of symplectomorphisms. Hence
the operator Ric® is not elliptic.

Let S*(T'M) denote the space of symmetric 2-tensors. Recall that
for any J € J, the tangent space of Met(M,w) at g5, Ty, Met(M,w)
is the space of sections of S?(T M) satisfying (2.2'). Let Q'(M) be the
space of 1-forms and QY(M) the space of functions with average zero.
Define an operator 6* : Q' (M) — S*(TM) by

o= Loxgr,

where o is the dual vector of & with respect to the metric g; and £, #
is the Lie derivative. Giving S?*(TM) and Q'(M) the induced metrics
of g7, we can define the adjoint operator of 6*, ¢ : S*(T'M) — € which
can be given, in local coordinates,

(5h)k = gijhjk,z'-

3.4 Proposition. We have the following Bianchi type identity
(3.4) d* JoRic® = 0.

Proof. For any function f on M, one can define a so-called Hamil-
tonian vector field Xy by

w(Xf7 Y) = _df(Y)7

forany Y € TM. Let ¢; be a family of symplectomorphisms generated
by Xy, i.e.,

d
%qﬁt = Xy(o).

Since symplectomorphisms preserve the energy functional £, we have

(3.5) m:%m@*u»:AAM§@mL&mmwm.
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From (3.5), we have
0= / fd* 6 Riccvol(M),
M
for all function f, which yields (3.4). O

3.6. Now we compute the symbol of the operator Ric¢. First, the lin-
earization operator of the Ricci operator in the direction h € S*(T'M)
is

DRic(g)h = %ALh — 0"(0G(h)),

where A is the Lichnerowicz Laplacian defined by A h = D*Dh +

Ricy 0 h + h o Ric, — Qi)zgh. (See [Be].) Locally the derivative of the

Ricci operator can be expressed as follows:

0*h 0?hos 0?h 0?h.s

DR « h/a = 0 af — @ _ B Y
ie(Gap)hap = g {3x78xd 0xY0zP  Qx20x®  Jw*dxb

where the dots denote lower order terms. The symbol of the the linear

differential operator DRic(gags), which maps S?(R*") to itself, in the
direction &; is

UDRiC(gaﬁ)(fe)haﬂ — lgvé[ha'yfﬂfé + hﬂ&faf’y - haﬁfvfé - h’stfafﬁ]‘

2
(See [D] and [H1].)

Let S%(T'M) denote the subspace of symmetric tensors which satisfy
(2.2"). In fact, S3(TM) = TysMet(M,w). Let ¢(J) = Id — J* such
that 1c(J) is a projection operator from S*(T'M) to S3(T'M). The
linearization operator D Ric® of Ric® is

DRict(g§)(has) = c(J)DRic(g%)(ha,g) + - i i
2
=c(J )aegw{aivhaef:d ~ iy — aa:e}gfé + 383,!:9?5} o
: : 9%hys

__ (Sp sS4 _ 7p 79\ ,70 9%hpq _ O%hps 32h'yq
o (5045/3 JaJﬂ)g {837781051 Oz Oz OxPOxd + OxP x4
_|_ SR

where hos € TyMet(M,w). The symbol of the linear differential oper-
ator DRic®, is
(3.7)

- C o] 1
o¢DRic (gﬂ)(haﬁ) = 5(5g5,%_J5J5)975[hqufﬁ"’hqéfpfv_hpq§7€5_h75§pfq]-

Clearly hag = (6505 — JEJE) (68 + &4&p) and hap = J3Eu&y + J76:Es
are the zero eigenvalues of 0 D Ric(£)(g5)(hag). (See also the proof of
Proposition 3.12.)

Globally, the linearization operator of Ric¢ is

}4_...7

DRic(9)(h) = e(J) {5 Ach — 8°(5G(0))} + De( ) Ric(47), .

for h € S2(T'M). Here we use the notation given in [H1].
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A crucial point is that the (highest) symbol o D Ric® is complex with
respect to the complex structure Z, namely for any h € S%(T' M),

(3.8) oeDRic‘(Zh) = ZogDRic(h).

3.9. For a given metric g on M let us denote by O, be the subspace
of Q'(M) defined by O, = Im{d : Q°(M) — Q*(M)} and

(3.10) p: QY M) — 0, C Q'(M)

the orthogonal projection. It is to see that p is a zero order pseudo-
differential operator. In fact,

p=dA~'d",
where A~! is the inverse operator of the Laplacian A = d*d : Q(M) —

QY(M). The operator A~ : Q5 (M) — QJ(M) is well-defined. Define
Ly : S3(TM) — QY(M) by L, = pJi. By (3.4) we have

(3.11) Ly Ric® = 0.

Let Ly : S3(TM) — Q'(M) be defined by Ly = L;Z. Though LyRic®
may not vanish, we will show that the operator L, Ric‘, at most, has
degree 1 w.r.t. g;. Now we define L,, : S3(TM) — Q' (M) & Q' (M)
by L= (Ll,Lg).

3.12 Proposition. (1) The operators Ly, and L,, Ric® have degree
1.
(2) All the eigenvalues of e DRic in NullogL are positive.

Proof. (1). Since the projection p is a pseudodifferential operator of
degree 0, we get that L,, is a pseudodifferential operator of degree 1.
We have to show that Ly Ric® has degree 1. We know that Lo Rict is a
third order operator. Now we first show that the third order symbol of
D(LyRic®) is zero. It is easy to check that

0¢D(LyRic®) = Zog D(Ly Ric®).

Hence (3.11) implies that oLy Ric® vanishes. Now we compute the
second order symbol of D(LyRic®). We first have the following relation

(3.13) 0; D(LyRic®) = 0 (L1 I)og DRic + 0 (L1 T)o¢ DRic*.
For a point x € M we use normal coordinates around x to compute

that at the given point x we have ofDRic‘(x) = 0. On the other hand,
from (3.8) and (3.11), we get

0¢ (L1 T)oiDRic = 0{(L1)o; DRic’T = 0.

Altogether yields that of Ly Ric*(x) = 0. Hence LyRic® is a first order
operator, so is L.

(2). For convenience, we use the similar calculation presented in [H1]
to show (2). We choose coordinates at a point such that -2, -2 d

ozl 92 T v Ggno
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J%, J%, - ,J% is a orthonormal basis. Sometimes, we denote

k=n+kfork=1,2,---,n. Assume & =1 and & = 0 for ¢ # 1. Let
T}, be a symmetric tensor and hj, = Ty, — Jkaquq its anti-complex
part with respect to the almost complex structure J. Then the symbol
of DRic® acts on the tensor hj is

(3.14)
[UgDRiCCh]jk = thk; lf] 7§ 1or L k 75 1or i,
[UgDRiCCh]lk = hlk; if k 7§ 1, or L
[o¢ DRic°h];1 =0,
[O’gDRiCCh]H = ?:2(11]‘]' + h;;)

Let h be an element of Null space of o¢L(g). It is clear that h is an
element of null space of 0¢{d*L(g)} = 0¢d* 0 0¢L(g). Since d*p = d*,
d*L = (d*J6,d* JOZ). Hence h satisfies

(3.15.a) [oed” J6h] =0
and
(3.15.0) loed* J6Ih] = 0.

Using the same form of £ and ¢ in local coordinates, one can readily
to compute the symbols of o¢d*Jo and o¢d*JOZ,

(3.16) [oed* JOh] = hy1 and [o¢d* JOLZh] = hy.

By (3.15) and (3.16), an element in the null space of o¢{d*L(g)} satisfies
hi1 = hi1 = 0. By (3.14), we have shown that the eigenvalues of
o¢DRic® in NullogL are positive. O

Following [Hal], we call the operator L the integrability condi-
tion.

3.17 Thereom. For any smooth compatible almost complex struc-
ture Jy, there exists T > 0 such that (1.5) admits a unique solution
J(t) satisfying J(0) = Jy.

Proof. Using Proposition 3.12, we can follow the argument of Hamil-
ton in [Hal, sections 5 and 6] to show the Theorem. The only difference
is that the projection operator p = dA~'d* in our integrability condi-
tion L is a pseudo-differential operator. The crucial point to apply
the Hamilton-Nash-Moser inverse function theorem for tamed Frechet
spaces developed in [Ha2, Part III, Theorem 1.1.1] is to check that all
relevant operators are tame and the linearized equation has a unique
solution. This can be done as in [Hal| for our operators, since p is a
bounded operator.

For convenience, we sketch the proof of Theorem 3.17 adapted from
the proof of Hamilton.

Step 1. Reduction to the Hamilton-Nash-Moser inverse function the-
orem. We denote by Met(M x [0,1],w) the space of smooth sections
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of the induced bundle of compatible metrics over M x [0,1]. Let us
consider the operator

E: Met(M x [0,1],w) = Met(M x [0,1],w) x Met(M,w),

£(9) = (% — Rics(g). gl{1 = 0}).

In order to apply the Hamilton-Nash-Moser inverse function theorem
we have to show that the linearized equation
0a -
DE(9) = 5, — DRic(9)3 = h,

has a unique solution for the initial value problem g = gy at ¢ = 0 and
verify that the solution ¢ is a smooth tame function of h and go.

Step 2. The integrability condition reduces the linearized equation to
a system of two PDEs. We denote by (g) the composition L(g) o
Rict(g). Let us consider new two differential operators M (g) and P(g)
such that

M(g)g = DL){3. 22} ~ DL(5) (Ric*(9). 3} + DQ(9)3.

P(g) = DRic*(g) + L*(g)L(g)-

Operator M appears in the evolution equation for é = L(g)g. Namely
we have

oe

ot
where k = L(g)h. The operator P is obtained from DRic® by “killing”
the kernel of its symbol and hence is a a parabolic pseudo differential
operator. Now as in [Hal] the uniqueness of the solution of the lin-
earized equation DE(g) is equivalent to the uniqueness of the (smooth)
solution of the system

(m&{%—wa+¢@w

9% — M(g)g = k,

— M(g)g =k,

h,

for unknown sections g, e and for given h,k, and given g with initial
data g = g() and e = é() = L(go)(go) at t = 0.

Step 3. The ezistence and uniqueness of the solution of (3.18). The
existence and uniqueness is obtained by the iteration method and by
using uniform estimate for the second equation in (3.18) delayed in
time 0. Roughly speaking, we can assume without loss of generality
that all €, g, k, h vanish in the negative time ¢ < 0. Then we solve the
second delayed equation on the time interval (0, d), then use it to solve
the first parabolic equation on the time interval (0,d), and advance
this procedure further. To get the true solution we need to consider
the limit solution when § goes to zero and get a uniform estimate on
the solutions. This will be done in the last step.

11
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Step 4. The tameness of the solution (g, €) of the system (3.18). We
recall that [Ha 2] a continuous nonlinear map P of a Frechet space
F} to a Frechet space F, is tame if it satisfies a tame estimate in a
neighborhood U of each point in Fj

1Pl < C(+lgllntr)

for all f € U and all n > b = const(U) and C is a constant which may
depend on n. Here the norm ||g||, is defined as follows

2 r j
loll2 = X [ 10/0t gl

2j<n

with |g|, measure Ly norm of g and its derivates up to degree n. Now
it is easy to verify that all the tame estimates ( Lemma 6.10 in [Ha 1])
are also valid here ( for the delayed equation in Step 3) also valid in
our case of pseudo-differential operator L.

(I

4. EXAMPLE

In this section, we discuss the anti-complexified Ricci flow on the
Thurston manifold and show that the flow exists globally and converges
to a degenerate metric. It is easy to see that the energy of the evolving
metrics tends to zero.

Let G = H? x S! be the product of the Heisenberg group and S*.
L.e, G is a closed Lie subgroup of GL(4,C) defined by

1 =z 0
01 y O
0010
0 0 0 ¢

with x,y,2,t € R%. Let ' be a subgroup of G consisting of all matrices
of G which entries are integers. The quotient M = G/T" is the Thurston
manifold. Differential forms dz, dy, dz — xdy, dt are invariant under the
left translation by any element in G. A left invariant metric on G is
given in [A] by

ds* = dz® + dy* + (dz — xdy)” + dt*.

Clearly, from this metric we can get an metric on M, which is also
denoted by the same form. Set

w=dx ANdt+dy A (dz — zdy).

It is a symplectic form on G and invariant under the translation. Hence,
we can see it as a symplectic form on M. The metric ds? is a compatible
metric with w, since there is an almost complex structure

Jdx =dt, Jdt =—dx, Jdy=dz—zdy, J(dz—xdy)=—dy
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such that ds* = w(-, J-). Clearly, following metric
g = A72ds? + B~%dy* + B*(dz — xzdy)? + A%dt?, for anyA, B > 0

are compatible metrics. The corresponding almost complex structures
are

Jdr = A~2dt, Jdt = —A?dx,

Jdy = B™%(dz — zdy), J(dz — zdy) = —B?dy.
The anti-complexified Ricci flow starting from the Abbena metric (A =
B=1)is

iA_2 — 1A4B4
d 2
(4'1) { %3—2 — AQB6.

For this example, it is easy to solve (4.1). Its solution is

A2 = \2(5v2t+1)75

B? = (5V2+1)7
So, the anti-complexified Ricci flow (4.1) exists globally. However, at
infinity, it becomes degenerate.

REFERENCES

[A] ABBENA, E., An example of an almost Kdihler manifold which is not
Kahlerian, Boll.-Un.-Mat.-Ital.-A, 3 (1984), 383-392.

[Be] A. BESSE, Einstein Manifolds, Springer-Verlag 1987.

[B-I] D. E. BLAIR AND S. IANUS, Critical associated metrics on symplectic man-
ifolds, Cont. Math. 51 (1986), 23-29.

[D-M] J. Davipov AND O. MUSKAROV, Twistor spaces with Hermitian Ricci
Tensor, Proc. AMS, 109, 4 (1990), 1115-1120.

[Do] S. K. DONALDSON, Remark on Gauge theory, complex geometry and 4-
manifold topology, The Fields Medal Volume, Ed. M. F. Atiyah and D.
Tagolnitzer, World Scientific, 1997.

[Do2] S. K. DONALDSON, Private communication.

[DT] D. DETURCK, Deforming metrics in the direction of their Ricci tensors,
J. Differential Geom. 18 (1983) 157-162; ibid., improved version, to appear
in Selected Papers on the Ricci Flow, ed. H.-D. Cao, B. Chow, S.-C. Chu,
and S.-T. Yau, International Press.

[ES] J. EELLS AND SAMPSON, Harmonic mappings of Riemannian manifolds,
Amer. J. Math. 86 (1964), 109-160

[Ham] R. S. HAMILTON Three-manifolds with positive Ricci curvature, JDG, 17
(1982), 255-306.

[H2] R. S. HAMILTON The inverse function theorem of Nash and Moser, Bull.
AMS (new series), 7 (1982) 65-222.

[Le] H. V. LE, Harmonic almost complex structures on compact symplectic
manifolds, preprint 1998.

[Ta] M. E. TAYLOR, Partial differential equations III, Springer Verlag, 1996.

13



