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A New Approach to Variational Problems with

Multiple Scales�

Giovanni Alberti a� Stefan M�uller b

Abstract� We introduce a new concept� the Young measure on micro�patterns� to

study singularly perturbed variational problems which lead to multiple small scales

depending on a small parameter �� This allows one to extract� in the limit � � ��

the relevant information at the macroscopic scale as well as the coarsest microscopic
scale �say ���� and to eliminate all �ner scales� To achieve this we consider rescaled

functions R�sx�t� �� x�s	 ��t� viewed as maps of the macroscopic variable s � 
 with

values in a suitable function space� The limiting problem can then be formulates as a

variational problem on the Young measures generated by R
�x� As an illustration we

study a one�dimensional model that describe the competition between formation of

microstructure and highest gradient regularization� We show that the unique mini�

mizer of the limit problem is a Young measure supported on sawtooth functions with

a given period�

�� Introduction

Many problems in science involve structures on several distinct length scales� Two typical

examples are the hierarchy of domains� walls and �Bloch� lines in ferromagnetic materials

��Do�� �HS�� and the layers�within�layers pattern often observed in �ne phase mixtures induced

by symmetry breaking solid�solid phase transitions ��BJ�� �Kh�� �PZ�� �WLR���

An important feature in these examples is that the relevant length scales are not known a

priori� but emerge from an attempt of the system to reach its minimum energy �or maximum

entropy� or at least an equilibrium state� In ferromagnetic materials� for example� the typical

length scale of Bloch walls can be predicted by dimensional analysis but the size of the do�

mains is determined by a complex interplay of specimen geometry� anisotropy and �nonlocal�

magnetostatic energy�

De Giorgi
s notion of ��convergence has proved very powerful to analyze variational prob�

lems with one small length scale and the passage from phase �eld models �with small� but

�nite� transition layers between di�erent phases� to sharp interface models �the rapidly grow�

ing literature begins with �MM��� �MM��� �Mo�� recent work includes �AB�� �BF�� where many

further references can be found�� More recently an alternate approach� mostly for evolution
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problems� based on viscosity solutions has been applied very successfully to situations where a

maximum principle is available �see for instance �BES�� �CGG�� �ES�� �ESS�� �KS������

Much less is known for problems with multiple small scales� Matched asymptotics expan�

sion� renormalization or intermediate asymptotics are powerful methods to predict the limiting

behaviour but few rigorous results are known�

In this paper� we propose a new approach for a rigorous analysis of variational problems

with two small scales� based on an extension of the ��convergence approach� As in formal

asymptotics we begin by introducing a slow �i�e�� order one� and a fast scale� Instead of the

original quantity v��s�� where � represents a parameter that determines the smallness of the

scales� we consider rescaled functions R�sv
��t� � ���v��s 	 ��t� of the two variables s and t�

where �� represents the fast scale and ��� is a suitable renormalization� We then consider

s �� R
�
sv

� as a map from the original domain 
 to a function space K �which can be chosen

compact and metrizable�� Finally we derive a variational problem for the Young measure that

arises as limit of the maps s �� R
�
sv

��

The Young measure �see section � for precise de�nitions and references� is a map � from 


to the space of probability measures on K� and for each s � 
 the measure ��s�� often written

as �s� represents the probability that R�sv
� assumes a certain value in a small neighbourhood of

s in the limit �� �� In terms of the original problem� �s gives the probability to �nd a certain

pattern �i�e�� an element of the function space K� on the scale �� near the point s� We thus

refer to � sometimes as a Young measure on �micro�� patterns� or a two�scale Young measure�

A precise description is given in section � below�

To illustrate our concept and its application we consider the following one dimensional

problem which already shows a rather interesting two�scale behaviour� minimize

I��v� ��

Z �




���v� 	W � �v� 	 a�s� v� ds �����

among one�periodic functions v � R � R� where �v and �v denote the �rst and second derivative�

respectively� A typical choice for the double�well potential W is

W �t� �� �t� � ���

but any other continuous function W that vanishes exactly at �� and is bounded from below

by cjvj at in�nity will do�

If � � � and a � � then there exist in�nitely many minimizers� indeed any sawtooth

function with slope �� realizes the minimum� If � � � is small and a � � a unique �up

to translation and re�ection� minimizer is selected� It is very close to a sawtooth function

with slope �� and two corners per period� Such a result is a typical application of classical

��convergence� indeed for a � � the ��limit of �
� I

� is only �nite on sawtooth functions and

counts the number of corners �cf� the sketch of proof after Theorem �����

If conversely � � � but a � � then no minimizers exist and minimizing sequences are

�essentially� given by highly oscillatory sawtooth functions with slope �� that converge uni�

formly to � �more precisely� the Young measure generated by the derivatives of any minimizing
sequence is �

��� 	
�
���� at almost every point��

If � � � and a � � the excitation of oscillations due to a � � and their penalization due

to � � � lead to the emergence of a new structure�

Theorem ���� ��Mu�� Suppose that a is constant and strictly positive� Then� for � positive

and su�ciently small� all minimizers of I� among one�periodic functions have minimal period

P � � L
a
�������� 	O������ �

�



where L
 ��
�
��
R �
��

p
W
����

�

The derivatives of minimizers exhibit indeed a structure with two fast scales� transition

layers of order � are spaced periodically with the period P � � ���� �see Fig� ���

∼ ε

−1

1 εv.

1/3∼ ε

Fig��� Two scale structure of minimizers

This behaviour was predicted by Tartar �Ta�� on the basis of matched asymptotic expan�

sions� It can equivalently be guessed by a formal application of ��convergence� The purpose of

our work is to create a framework in which such reasoning can be made rigorous� As corollary

of our new approach we obtain the following result �see section �� and in particular Corollary

����� for precise de�nitions and a more detailed statement��

Theorem ���� Suppose that a � L� and a � � a�e�� let v� be a sequence of minimizers of

I� and let R�sv
� and the Young measure � be as above� Then for a�e� s the measure �s is

supported on the set of all translations of the sawtooth function yh with slope �� and period

h � L
�a�s��
���� �see Fig� ���

t
−h/2 h/2

 y
h

Fig��� The sawtooth function yh

Thus the Young measure on patterns � provides a useful tool to localize the result in

Theorem ���� More importantly� it gives a precise meaning to the statement that v� is locally

nearly periodic with a period L
���a�s��
���� which depends on the point s� In addition to

this� the main advantage of the new object � is� in our view� the possibility to make a formal

reasoning rigorous� Let us illustrate this in the context of Theorem ����

Denote by H�
per the Sobolev space of functions on the interval ��� �� whose periodic exten�

sion belongs to H�
loc�R�� and by Sper the space of functions on ��� �� whose periodic extension

are �continuous� sawtooth functions with slope ��� Consider the functionals

J��v� ��

Z �




��v� 	
�

�
W � �v� if v � H�

per�

and

J�v� ��
A


�

Z �




j�vj � A
�
�
S �v � ��� ��

�
if v � Sper�

where A
 �� �
R �
��

p
W � and S �v denotes the points of discontinuity of �v�

�



We know that ��MM��� �MM��� J�� extended to 	� on W ��� nH�
per� ��converges in the

W ��� topology to J � extended to 	� on W ��� nSper� Thus it is plausible to replace

I��v� � �J��v� 	

Z �




a v�ds �����

by

�I��v� �� �J�v� 	

Z �




a v�ds � �����

The minimization of �I� is a discrete problem since J is only �nite on sawtooth functions with

a �nite even numbers of corners � � s� � s� � � � � � s�N � �� A short calculation yields the

�sharp� bound Z si��

si

v�ds 	 �

��
�si�� � si�

�

and a convexity argument shows that for a given number �N of corners the minimum of �I��v�

is given by ��A
N 	 a
��N

��� and is achieved by the sawtooth function with period ��N and

vanishing average� Finally minimization over N yields the assertion

P � � ��N � ���A
��a�
��� � L
a

�������� �

while the energy of minimizers is

E� � E
a
������� where E
 ��

�
�
�A


����
�
�
�
�

R �
��

p
W
����

� �����

The main point is to justify the passage from ����� to ������ This hinges on fact that the

scale � involved in the passage from J� to J �removal of ��transition layers� is much smaller than

����� By introducing the rescalings R�sv�t� �� �����v�s	 ����t� and by replacing derivatives of

v with respect to s by derivatives of R�sv with respect to t� we represent I��v� as an integral
over functionals in R

�
sv

�����I��v� �

Z �




f��R�sv� ds � �����

where

f��x� ��

Z r

�r

�
�����x� 	 �����W � �x� 	 a x�

�
dt

for a given positive r� Now we have that f� ��converge to f � where

f�x� ��
A


�r
�
�
S �x � ��r� r�� 	 a

Z r

�r

x� dt

if x agrees with a sawtooth function on ��r� r�� and is 	� otherwise� We then essentially

have to show that the ��limit commutes with the integration in s in ������ More precisely we

reformulate all functionals in term of Young measures and we show that the limiting �rescaled�

energy �����I��v�� of a sequence �v�� is given by

Z �




h�s� fi ds � �����

where � is the Young measure �on patterns� generated by R�v��

To determine the minimizing Young measure we need to know which Young measures arise

as limits of R�v�� This is not obvious since for �nite � the blowups R�sv
� at di�erent points s

�



are not independent� In the limit� the measures �s� however� become independent and the only

restriction is that �s be invariant under translation in the space of patterns K �see Proposition

��� and Remark ����� Thus the minimization of ����� can be done independently for each s

and one easily arrives at the conclusions of Theorem ��� in the case a constant� The details of

this argument are carried out in section ��

There are a number of other mathematical approaches to problems with small scales� For

sequences v� converging weakly to � in L�
loc�R

N �� Tartar �Ta�� and G�erard �Ge�� introduced

independently a measure on RN 
 SN�� �called the H�measure or microlocal defect measure�

respectively� that measures how much energy �in the sense of squared L��norm� concentrates

at x � R
N and high frequency oscillations with direction � � SN��� While this measure

has no natural length scale� there are variants with characteristic scale ���� � � ��Ge���� An

interesting issue is to design similar objects for problems with multiple length scales� this is

easy if the oscillations are additively superimposed but� as G�erard and Tartar pointed out�

multiplicative interaction leads to new phenomena due to interference� The H�measure and its

variants can only predict the limits of quadratic expressions in v� �the expression may� however�

involve pseudodi�erential operators� and hence have no direct applications to the study of I��

The classical Young measure� by contrast� gives the limit of arbitrary �continuous� non�

linearities but contains no information on patterns� For further discussion of H�measures and

their relation with Young measures see �Ta��� �Ta���

Our work was inspired by the concept of two�scale convergence� although our approach is

ultimately rather di�erent� Two�scale convergence was introduced by �Ng� and employed by

a number of researchers� in particular Allaire ��Al�� �AlB�� see also �E��� The main idea is to

recover additional structure in a weakly converging sequence v� by using test functions of the

form 	�s� s����� where 	 is periodic in the last variable�

If v� is of the form v��s� � v
�s� 	 v��s� s��
�� 	 o���� where v� is P �periodic in the

last variable and
R P

 v��s� t� dt � � for every s� and if one takes a test function 	�s� t� ��


�s� 	 ���s� ���t�� where �� is P �periodic and has vanishing average on the period� then

Z �




	
�
s�

s

��

�
v��s� ds�

Z �




v
�s�
�s� ds	

Z �




Z P




v��s� t� ���s� ���t� dt ds �

Thus both the weak limit v
 and the oscillatory term on the scale �� related to v� can be

retrieved�

If� however� the period or even the phase of the oscillatory part is not exactly known� then

it can usually not be retrieved� Consider for instance

v��s� �� v�

�
�� 	 ���

s

��

�

with � � � � 
� v� continuous� one periodic� and with vanishing average� and let 	 be a test

function as above� Then Z �




	
�
s�

s

��

�
v��s� ds� � �

Since we do not know the precise period of the minimizers of I� �and moreover we cannot

expect precise periodicity if a is not constant� two�scale convergence does not su�ce for our

purposes�

The organization of the paper is as follows� In section � we recall the notions of Young mea�

sures �associated to sequences of functions with values in a metric space� and ��convergence�

We follow mainly �BL� and �Ba�� the main new result concerns the convergence of functionals

�



de�ned on Young measures �Theorem ������ Section � is the core of the paper� we obtain the

��limit of the functionals I� de�ned in ����� after suitable rescaling and extension to Young

measures �Theorem ����� As a corollary we obtain Theorem ��� above �see Corollary ������ The

proof of Theorem ��� is contained in section � up to a density result to be discussed in sections

� and �� More precisely� in these sections we show that every translation invariant measure

on the space K of patterns can be approximated by a sequence of invariant measures� each of

them being supported on the class of all translations of one�periodic function �see Theorems

��� and ����� and Corollary ������
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�� Young Measures which take values in a metric space

Young measures are maps from a measure space 
 to probability measures on another

spaceK� They arise naturally as limits of �usually rapidly oscillating� sequences of maps from 


toK� and provide a good framework for existence of minimizers and optimal controls� Since the

pioneering work of L�C� Young �Yo���� there has been a large number of important contributions

to this area� often in settings that are much more general than the one discussed below� We

only mention here the fundamental papers of Berliocchi and Lasry �BL� and Balder �Bal�� the

recent reviews of Valadier �Va���� and the book by Roubi cek �Ro�� A closely related but slightly

di�erent approach was pursued by Sychev �Sy�� who emphasizes the view of Young measures as

�strongly� measurable maps into a suitable metric space and the use of selection theorems rather

than the L��L� duality� The theory of Young measures gained important momentum from

the connections with partial di�erential equations and the theory of compensated compactness

discovered by Tartar ��Ta����� �DP�� �MT��� and with �ne phase mixtures that arise in phase

transitions modelled by nonconvex variational problems ��BJ�� �CK�� �KP����� �Sv�� �Pe�� �Kr���

Our appraoch is inspired by �Ba� �see also the comments in �BL�� p� ����� The main new

result concerns the convergence of functions de�ned on Young measures �see Theorem �����iv���

Our point of view is the following� one can obtain precise information about the asymptotics

of minimizers for a sequence of problems �such as the singularly perturbed problems studied in

�Mu�� that involve maps from 
 to K by studying a limit problem de�ned on Young measures�

To proceed we �rst �x the notation� Throughout this paper� a measure on a topological

space X is a ��additive function on the ��algebra of Borel sets� Unless stated di�erently�

measurability always means Borel measurability�

In the rest of this section 
 is a locally compact separable and metrizable space� endowed

with a �nite measure � �however� most of the results can be extended with some care to ���nite

measures�� We often suppress explicit reference to �� The case of an open set 
 � R
n equipped

with the Lebesgue measure su�ces for the applications we have in mind�

We also consider a compact metric space �K� d�� the class Meas�
�K� of all measurable

maps from 
 to K� the Banach space C�K� of all continuous real functions on K� and the

spaceM�K� of �nite real Borel measures on K� M�K� is identi�ed with the dual of C�K� by

�



the duality pairing h�� gi �� R
K
g d� for � � M�K�� g � C�K�� and is always endowed with

the corresponding weak! topology� For every x � K� �x is the Dirac mass at x� P�K� is the

set of all probability measure on K �that is� positive measures with mass equal to ���

As far as possible we shall conform to the following notation� the letter s denotes a point

in 
� and x a point in K� � is a measure in M�K�� k is a positive integer� g� h� and f are real

functions on K� on 
� and on 
 
K� respectively� 	 is a map from 
 to C�K� and � a map

from 
 to M�K�� we often use the notation fs and �s to denote the function f�s� �� and the

measure ��s� respectively�

By L�
�

� C�K�

�
we denote the Banach space of all measurable maps 	 � 
� C�K� such

that k	k� ��
R
�
j	�s�jC�K� ds is �nite� The space L�w

�

�M�K�

�
is the Banach space of all

weak� measurable maps � � 
 � M�K� which are ��essentially bounded� endowed with the

obvious norm� More precisely� the elements of L�
�

� C�K�

�
and L�w

�

�M�K�

�
are equivalence

classes of maps which agree a�e�� we usually do not distinguish a map and its equivalence class�

Remarks� Since C�K� is a separable Banach space� and 
 is endowed with a ���nite measure

�� then the Banach space L�
�

� C�K�

�
is separable� while L�w

�

�M�K�

�
is never separable

unless � is purely atomic and K is a �nite set�

By de�nition� a map � � 
�M�K� is weak! measurable if the pre�image of every set in

the Borel ��algebra generated by the weak! topology ofM�K� is a Borel subset of 
� Therefore
the map � is weak! measurable if and only if the function s �� h�s� gi is measurable for every g

in �a dense subset of� C�K�� SinceM�K� is not separable� there are many weak! measurable

maps that are not strongly measurable� a typical example is the map wich takes every s in an

interval I into �s �M�I�� Indeed the ��algebra generated by the weak! topology and the one

generated by strong topology do not agree �the strong topology itself has cardinality strictly

larger than the ��algebra generated by the weak! topology��

The space L�w
�

�M�K�

�
is isometrically isomorphic to the dual of L�

�

� C�K�

�
via the

duality pairing �see �Ed�� section �������

h�� 	iL�� L� ��

Z
�

h�s� 	siM� C ds �

where � � L�w
�

�M�K�

�
and 	 � L�

�

� C�K�

�
� In the following we shall refer to the weak!

topology of L�w
�

�M�K�

�
as the topology induced by this duality pairing� Since L�

�

� C�K�

�
is a separable Banach space� every closed ball in L�w

�

�M�K�

�
endowed with the weak!

topology is compact and metrizable�

Remark ���� Given g � C�K� and h � L��
�� the map h 
 g which takes every s � 
 in

h�s� � g � C�K� belongs to L�
�

� C�K�

�
� and the class of all h 
 g with g and h ranging in

dense subsets of C�K� and L��
�� respectively� spans a dense subspace of L�
�

� C�K�

�
� Hence

a bounded sequence ��k� in L�w
�

�M�K�

�
weak! converges to � if and only ifZ

�

h�ks � gih�s� ds�
Z
�

h�s� gih�s� ds �����

for every g� h in dense subsets of C�K� and L��
�� respectively� In particular this condition is

immediately veri�ed when �ks ��� �s for almost every s � 
�

Furthermore� on every bounded subset of L�w
�

�M�K�

�
the weak! topology is induced

by the following norm�

"��� ��
X
i�j

�

�i�j
i�j

Z
�

h�s� giihj�s� ds � �����

#



where the functions gi� with i � �� �� � � �� are dense in C�K�� the functions hj � with j � �� �� � � ��

are bounded and dense in L��
�� and 
i�j �� kgik� � khjk�� In fact one easily checks that

"��k � �� tends to � if and only if ����� holds with g and h replaced by gi and hj for all i� j�

De�nition ���� �Young measures�

A K�valued Young measure on 
 is a map � � L�w
�

�M�K�

�
such that �s is a probability

measure for a�e� s � 
� The set of all Young measures is denoted by YM �
�K�	 it is always

endowed with the weak� topology of L�w
�

�M�K�

�
� and hence metrized by the norm " in ������

The elementary Young measure associated to a measurable map u � 
� K is the map �u
given by

�u�s� �� �u�s� for s � 
�

The set of all elementary Young measures is denoted by EYM �
�K��

We say that a sequence of measurable maps uk � 
 � K generates the Young measure

�� if the corresponding elementary Young measures �uk converge to � in the weak� topology of

L�w
�

�M�K�

�
�

Remarks� The map �u is weak! measurable if and only if u is measurable� and thus EYM �
�K�

is exactly the set of all � � L�w
�

�M�K�

�
such that �s is a Dirac mass for a�e� s � 
�

Young measures are often de�ned as the weak! closure of the class of elementary Young

measures in L�w
�

�M�K�

�
� By Theorem ����iii� below� this de�nition turns out to be equiva�

lent to ours when the measure � is non�atomic� In �BL� and �Bal� Young measures are endowed

with the so�called narrow topology� which in the particular case we consider agrees with the

weak! topology of L�w
�

�M�K�

�
�

The following theorem characterizes YM �
�K� as the closure of EYM �
�K��

Theorem ���� Assume that the measure � is non�atomic� Then

�i� YM �
�K� is a weak� compact� convex and metrizable set in L�w
�

�M�K�

�
	

�ii� EYM �
�K� is the set of all extreme points of YM �
�K�	

�iii� EYM �
�K� is weak� dense in YM �
�K��

Proof� These three statements are given in �BL� as Proposition �� xII��� p� ���� Proposition ��

xII��� p� ���� Proposition �� xII��� p� ���� respectively�
Remarks� Statement �i� holds when � is not non�atomic too� Statements �i� and �iii� show

that from every sequence of measurable maps we can extract a subsequence which generates a

Young measure� and conversely all Young measures are generated by sequences of measurable

maps�
When the measure � has atoms �namely� points with positive measure� it can be de�

composed in a unique way as the sum of a non�atomic measure �n and and a purely atomic

measure �a �i�e�� a countable linear combination of Dirac masses�� and statements �ii� and �iii�

of Theorem ��� should be modi�ed as follows� the extreme points of YM �
�K� are the Young

measures � such that �s is a Dirac mass for �n a�e� s� and the weak! closure of EYM �
�K�

is the set of all � � YM �
�K� such that �s is a Dirac mass for �a a�e� s� The proof of this

generalization is left to the interested reader�

Theorem ���� �Fundamental theorem of Young measures�

For every sequence of measurable maps uk � 
 � K there exists a subsequence �not

relabelled� which generates a Young measure �� Moreover � has the following properties�

�i� If f � 
 
 K � R is measurable� continuous with respect to the second variable� and

satis
es jf�s� x�j � h�s� for some h � L��
�� thenZ
�

f
�
s� uk�s�

�
ds ��

Z
�

h�s� fsi ds as k � 	�	 �����

�



�ii� The maps uk converge in measure to some u � 
 � K if and only if � is the elementary

Young measure associated to u�

�iii� Assume that K is a subset of a �separable� Banach space E� let Id denote the identity map

on E� and de
ne u � 
� E by

u�s� ��

Z
K

Id d�s � �����

Then u�s� is well�de
ned and belongs to the convex hull of K for a�e� s� and the maps uk

weak� converge to u in L�w �
� E�� that is� the functions s �� h$� uk�s�i weak� converge to

s �� h$� u�s�i in L��
� for every $ � E��

Regarding statement �iv�� it is necessary to embedK in a linear structure in order to de�ne

the average �or the expectation� u�s�� Notice moreover that the integral ����� is well�de�ned

�e�g�� as a Riemann integral� because K is compact and metrizable and Id is a continuous map

on K� Moreover u is measurable because one has h$� u�s�i � h�s�$jKi� and $jK belongs to

C�K� for every $ � E��

Proof� The existence of a subsequence of �uk� which generates a Young measure � follows from

the compactness of YM �
�K� �Theorem ����i���

To prove �ii�� notice that the map s �� fs belongs to L�
�

� C�K�

�
�cf� �BL�� Remark ��

xI��� p� ����� and then ����� follows immediately from the de�nition of weak! convergence in

L�w
�

�M�K�

�
�

We assume now that the maps uk generate the Young measure �u� and we apply statement

�i� with f�s� x� �� d
�
x� u�s�

�
� Then

Z
�

d
�
uk�s�� u�s�

�
ds�

Z
�

d
�
u�s�� u�s�

�
ds � � �

and we deduce that uk converge to u in measure�

Conversely� assume that the maps uk converge to u in measure� Then the integralsR
d
�
uk�s�� u�s�

�
ds converge to � by the Lebesgue dominated convergence theorem� and by

����� we obtain Z
�

h�s� fsi ds � � � �����

Since f is non�negative� ����� implies that for a�e� s � 
 the measure �s is supported on the

set of all x � K such that fs�x� � �� that is� on the point u�s�� Thus �s � �u�s�� and statement

�ii� is proved�

Finally �iii� follows by applying �i� with f�s� x� �� h�s� h$� xi for h � L��
�� $ � E��

Before discussing functionals on YM �
�K� we add some elementary remarks which will

be useful in the following�

Remark ���� If the maps uk generate the Young measure � on 
� then they generate the same

Young measure on every Borel subset of 
� that is� �uk weak! converges to � in L�
�
A�M�K�

�
for everyA � 
� We deduce the following locality property of Young measures� if two sequences

�uk�� and �uk�� generate the Young measures �� and ��� respectively� and uk� and uk� agree on a

Borel set A � 
 for k su�ciently large� then �� and �� agree a�e� on A�

Remark ���� We say that the sequences �uk�� and �uk�� are asymptotically equivalent when the

functions s �� d
�
uk��s�� u

k
��s�

�
converge in measure to � as k � 	�� One easily checks� using

�



the convergence criterion in Remark ���� that asymptotically equivalent sequences generate the

same Young measure�

Lemma ���� Let 
 � R
n be endowed with the Lebesgue measure� Consider a sequence of

maps uk� de
ned on a given neighbourhood of 
� which generate a Young measure � and a

sequence of vectors �k � R
n such that �k � �� Then the translated maps uk�� � �k� also

generate the Young measure ��

Proof� Take g � C�K� and h � L��
�� extended to � on Rn n
� ThenZ
h�s� g

�
uk�s� �k�

�
ds �

Z
h�s	 �k� g

�
uk�s�

�
ds �

�

Z �
h�s	 �k�� h�s�

�
g
�
uk�s�

�
ds	

Z
h�s� g

�
uk�s�

�
ds � �����

Now the second integral in line ����� converges to
R
h�s�h�s� gi ds by assumption� while the

modulus of the �rst one is controlled by
��h��	 �k�� h���

��
�
�
��g�����

�
� and since the �rst term

tends to � for every h � L��Rn�� we obtainZ
h�s� g

�
uk�s� �k�

�
ds ��

Z
h�s� h�s� gi ds �

By Remark ��� this su�ces to prove the assertion�

In the following we introduce integral functionals on the class of measurable maps

Meas�
�K�� and we show how to extend them to all Young measures� Then we discuss some
semicontinuity properties of these extensions� and their behaviour with respect to relaxation

and ��convergence �Theorem ������ In order to do this� we brie�y recall the de�nitions of

relaxation and ��convergence �we refer to �DM�� chapters ���� for more general de�nitions and

further details��

De�nition ���� �Relaxation�

Let X be a metric space and let F � X � ���	��� The relaxation F of F on X is

the lower semicontinuous envelope of F � that is� the supremum of all lower semicontinuous

functions which lie below F � Alternatively F is characterized by the following formula


F �x� � inf
�
lim inf
k��

F �xk� � xk � x
�
� ���#�

De�nition ��	� ���convergence and continuous convergence�

Let X be a metric space� A sequence of functions F � � X � ���	�� are equicoercive on

X if every sequence �x�� such that F ��x�� is bounded is pre�compact in X�

We say that the functions F � ��converge to F on X� and we write F ���� F � if the

following properties are ful
lled


Lower bound inequality� �x � X� � �x�� � X s�t� x� � x� lim inf F ��x�� 	 F �x�	

Upper bound inequality� �x � X� � �x�� � X s�t� x� � x and lim supF ��x�� � F �x��

The functions F � converge continuously to F on X if F ��x��� F �x� whenever x� � x�

Here and in the following we use the term %sequence& also to denote families �of points

of X� labelled by the continuous parameter �� which tends to �� A subsequence of �x�� is any

sequence �x�n� such that �n � � as n � 	�� and we say that �x�� is pre�compact in X if

every subsequence admits a sub�subsequence which converges in X � To simplify the notation

��



we often omit to relabel subsequences� and we say %a countable sequence �x��& to mean a

sequence de�ned only for countably many � � �n such that �n � ��

Remark ����� Given a lower semicontinuous function F � X � ���	��� we say that a set D

is F �dense in X if for every x � X with F �x� � 	� there exists a sequence of points xk � D
such that xk � x and F �xk� � F �x�� A simple diagonal argument shows that the upper

bound inequality in De�nition ��� is veri�ed provided that for every x in some F �dense set D

and every � � � we can �nd a sequence �x�� such that

lim sup
��


d�x�� x� � � and lim sup
��


F ��x�� � F �x� 	 � � �����

Proposition ����� �see �DM�� chapters � and #�

�i� Every ��limit F is lower semicontinuous on X	

�ii� the constant sequence F � �� F ��converge on X to the relaxation F of F 	
�iii� F ���� F if and only if F

���� F 	

�iv� if F ���� F and G� � G continuously� then �F � 	G����� �F 	G�	

�v� assume that the functions F � are equicoercive on X and F ���� F � and that X is con�

tinuously embedded in X �
 if we extend F � and F to 	� on X � n X� then F ���� F on

X �	

�vi� if the points 'x� minimize F � for every �� then every cluster point of the sequence �'x��

minimizes F �

We next consider integral functionals on measurable maps from 
 toK and their extension

to Young measures� An integrand on 
 
K is a measurable function f � 
 
K � ���	���

Each integrand f de�nes a functional on Meas�
�K� via

u ��
Z
f�s� u�s�� ds �

This functional can be viewed as a functional on elementary Young measures� and it can be

extended to YM �
�K� in two natural ways� by 	� or by linearity� Set

Ff ��� ��
	

�
R
�
f
�
s� u�s�

�
ds if � � EYM �
�K� and � � �u�

	� elesewhere in YM �
�K��

�����

and

Ff ��� ��

Z
�

h�s� fsi ds for every � � YM �
�K�� ������

Clearly for every elementary Young measure �u we have

Ff ��u� � Ff ��u� �
Z
�

f
�
s� u�s�

�
ds � ������

Theorem ���� below shows that the relaxation or the ��convergence of functionals of the �rst

type always lead to functionals of the second type� We recall that the set YM �
�K� is always

endowed with the weak! topology of L�w
�

�M�K�

�
� which makes it compact and metrizable�

Theorem ����� If the measure � is non�atomic the following statements hold�

�i� If the integrand f satis
es f�s� x� � h�s� for some h � L��
� and fs is continuous on K

for a�e� s � 
� then Ff is continuous and 
nite on YM �
�K��

��



�ii� If fs is lower semicontinuous on K for a�e� s � 
 then Ff is lower semicontinuous on

YM �
�K��

�iii� The relaxation of Ff and Ff on YM �
�K� is the functional F �f where (f is any integrand

such that (fs agrees with the relaxation of fs on K for a�e� s � 
�

�iv� Assume that the integrands f� satisfy f�s ��� fs on K for a�e� s � 
� and that the envelope

functions Ef� de
ned by

Ef��s� �� inf
x�K

f��s� x� for s � 
� ������

are equi�integrable on 
� Then Ff� ��� Ff and Ff� ��� Ff on YM �
�K��

Remarks� Concerning statement �iii�� we remark that such an integrand (f exists in view of

Lemma ���� below �this is a subtle point� the map �s� x� �� 'fs�x� may be not Borel measurable

on 

K��

In statement �iv�� we notice that the assumption f�s ��� fs for almost every s � 
 is quite

strong� and far from necessary� Indeed the ��convergence of the functionals may occur even with

a more complicate asymptotic behaviour of the integrands �e�g�� some kind of homogeneization��

but the analysis of such situations is beyond the purposes of this paper�

If the functions Ef� in ������ are not equi�integrable on 
� some concentration e�ect

occurs� and the ��convergence results may not hold� In particular� if kEf�k� � 	� then

Ff� and Ff� ��converge to the constant functional 	�� On the other hand� if there exist

sets B� � 
 such that jB�j � �� the restrictions of Ef� to the complements of B� are equi�

integrable on 
� and
R
B� Ef

�ds converge to some constant c� then both Ff� and Ff� ��converge
to Ff 	 c �this generalization of statement �iv� can be proved by suitably modifying the proof

below�� However� both Ff� and Ff� verify the lower bound inequality without any assumption

on Ef��

Finally we notice that the functions Ef� are ��measurable �see for instance �CV�� Lemma

III���� and therefore they agree a�e� with Borel functions�

Proof of statements �i� and �ii� of Theorem �����

Regarding �i�� one can easily verify that the map s �� fs belongs to L
�
�

� C�K�

�
�cf� �BL��

Remark �� xI��� p� ����� Hence Ff belongs to the pre�dual of L�w
�

�M�K�

�
� and is therefore

weak! continuous on YM �
�K��

Assertion �ii� is contained in �BL�� Proposition �� xII��� p� ���� and Theorem �� xI��� p�
���� Alternatively one can use �i� and the approximation from below established in Lemmas

���� and ���� below�

To prove assertions �iii� and �iv� of Theorem ���� we need two lemmas on approximation

by continuous integrands and a density result for Young measures � with �nite energy Ff ����

Lemma ����� Consider an integrand f and for every integer k set

fk�x� s� �� k � inf
x��K

�
f�x�� 	 k � d�x� x��� for s � 
� x � K ������

�here a � b denotes� as usual� the minimum of a and b�� Then

�i� for every s� fks is k�Lipschitz on K and � � fks � k	

�ii� for every s� fks increases to the relaxation of fs as k � 	�	

�iii� there exists a negligible set N � 
 such that each fk is measurable on �
 nN�
K�

Proof� Statements �i� and �ii� follow by straightforward computations� Statement �iii� is slightly

more subtle� and indeed fk may be not Borel measurable on 

K� Let k be �xed� For every

��



Borel function g on 
 
 K the map s �� inf
�
g�s� x� � x � K

�
is ��measurable �cf� �CV��

Lemma III���� and thus it agrees a�e� in 
 with a Borel function� Hence for every x � K we

can �nd a negligible Borel set Nk
x � 
 such that the map s �� fk�s� x� is Borel measurable on


 nNk
x �cf� �������� Now we take Nk as the union of all Nk

x as x ranges in a countable dense

subset D of K� thus Nk is a negligible Borel set� fk is Borel measurable in �
 nNk�
D� and
then also on �
 nNk� 
K because fk is continuous in the second variable and D is dense in

K� Finally we take N �� �kNk�

Lemma ����� Consider an integrand f and let 'fs be the relaxation of fs for every s � 
�

Then there exists a negligible measurable set N � 
 such that 'f is measurable on �
 nN�
K�

In particular there exists an integrand (f such that (fs is the relaxation of fs for a�e� s � 
�

Proof� Take N as in statement �iii� of Lemma ����� all the functions fk are measurable on

�
 nN�
K� and then the same holds for 'f by statement �ii� of Lemma �����

Proposition ���
� ��BL�� Proposition �� xII��� p� ����
Assume that � is non�atomic� Consider an integrand f such that fs is lower semicontin�

uous on K for a�e� s � 
� and the set

Mf ��
�
� � YM �
�K� � Ff ��� � �

�
� ������

Then EYM �
�K� �Mf is dense in Mf �

Theorem ����� Take f as in Proposition ����� Then EYM �
�K� is Ff �dense in YM �
�K��

that is� for every � � YM �
�K� such that Ff ��� � 	� there exist a sequence of elementary

Young measures �k such that �k ��� � and Ff ��
k�� Ff ����

Proof� We may assume without loss of generality that Ff ��� � �� Then � � Mf and by

Proposition ���� we can �nd a sequence of elementary Young measures ��k� � Mf which

converge to �� Then Ff ��
k� � Ff ��� for every k� and since Ff is lower semicontinuous� we

deduce that Ff ��
k� converge to Ff ����

Proof of statements �iii� and �iv� of Theorem �����

Statement �iii� of Theorem ���� follows from statement �iv� and Proposition �����ii��

To prove statement �iv�� it su�ces to prove the lower bound inequality for the functionals

Ff� � and then the upper bound inequality for the functionals Ff� �recall that Ff� � Ff���
For the lower bound inequality� we begin with a simple remark� if g���� g on K� then

for every continuous function g� such that g � g� on K there holds g� 	 g� on K for every �

su�ciently small �this can be easily proved by contradiction��

We �x now an integer k and we take fk as in ������ �we set it equal to � in the set N given

in Lemma �����iii� to make it Borel measurable�� Since fs 	 fks on K �see Lemma �����ii���

there holds fs � fks � �
kh�s�� and since fks is continuous on K �Lemma �����i��� by the previous

remark for � su�ciently small there holds

f�s 	 fks � �
k � ������

Consider a maps �� which converge to � in YM �
�K�� Then ������ yields

lim inf
��


Ff���
�� � lim inf

��


Z
�

h��s � f�s i ds

	 lim inf
��


Z
�

h��s � fks � �
k i ds �

Z
�

h�s� fks i ds� �
k��
� � ������

��



where the last equality follows by statement �i� of Theorem ����� Now we pass to the limit in

������ as k � 	�� and by Lemma �����ii� and the monotone convergence theorem we deduce

lim inf
��


Ff���
�� 	

Z
�

lim
k��

h�s� fks i ds �
Z
�

h�s� fsi ds � Ff ��� �

We consider now the upper bound inequality� Since EYM �
�K� is Ff �dense in YM �
�K�

�Theorem ����� and each Ff� is �nite only on EYM �
�K�� by Remark ���� it su�ces to

show that every elementary Young measure can be approximated in energy by a sequence

of elementary Young measures� more precisely� for every u � Meas�
�K� we will exhibit a

sequence of maps u� which converge to u a�e� in 
 and satisfy

lim
��


Z
�

f�
�
s� u��s�

�
ds �

Z
�

f
�
s� u�s�

�
ds � ����#�

Since f�s ��� fs for a�e� s � 
� for every � � � and a�e� s � 
 we can choose x�s � K so that

lim
��


x�s � u�s� and lim
��


f��s� x�s� � f
�
s� u�s�

�
� ������

By ������� for every � � � and a�e� s � 
 we can also choose y�s so that

f��s� y�s� � Ef��s� 	 � � ������

We de�ne the approximating maps u� � 
� K by

u��s� ��

	

�
x�s if f��s� x�s� � f

�
s� u�s�

�
	 ��

y�s otherwise�

������

From ������ we deduce that for a�e� s � 
 there holds u��s� � x�s for � small enough� and thus

u��s�� u�s� and f�
�
s� u��s�

�� f
�
s� u�s�

�
� We claim that the functions s �� f�

�
s� u��s�

�
are

equi�integrable� henceforth ����#� follows from Lebesgue
s dominated convergence theorem� To

prove the claim� notice that by ������ and ������

f�
�
s� u��s�

� � Ef��s� 	 f
�
s� u�s�

�
	 � �

and that the functions Ef� are equi�integrable by assumption� while f
�
s� u�s�

�
is summable�

To complete the proof of the upper bound inequality� we have to show that for every �xed

� � � the maps s �� y�s and s �� x�s can be chosen Borel measurable�

In the �rst case� we modify Ef� in a negligible set in order to make it Borel measurable

�cf� the remarks after Theorem ������ hence the set of all �s� y� � 
 
 K which satisfy

f��s� y� � Ef��s� 	 � is Borel measurable and the projection on 
 is equal to 
� and we can

apply the Von Neumann�Aumann measurable selection theorem �see �CV�� Theorem III���� to

�nd a ��measurable selection s �� y�s �which henceforth ful�lls �������� �nally we modify such

a map in a negligible set to make it Borel measurable�

In the second case we need to re�ne the previous argument� First we set

h��s� �� inf
x�K

h��f��s� x�� f�s� u�s��
��	 d�x� u�s��

i
�

��



the function h� is ��measurable �see �CV�� Lemma III����� and thus we can modify it in a

negligible set to make it Borel measurable� Hence the set of all �s� x� � 

K which satisfy

��f��s� x� � f�s� u�s��
��	 d�x� u�s�� � h��s� 	 � ������

is Borel measurable and the projection on 
 is equal to 
� and we procced as before to �nd

a Borel measurable selection map s �� x�s which satis�es ������ for a�e� s � 
� One readily

checks that h��s�� � for a�e� s � 
� and thus ������ holds�

�� Application to a two�scale problem

In this section we apply the notion of Young measure developped in section � to the

two�scale problem presented in the introduction�

We �rst introduce some additional notation� As in section �� measurability always means

Borel measurability� for sequences we follow the convention introduced after De�nition ����

Throughout this section 
 is a bounded open interval endowed with Lebesgue measure�

the letter s denotes the �slow� variable in 
 and v is a real function on 
� periodically extended

out of 
� The letter x denotes functions of the �fast� variable t � R� the space of patterns K is

the set of all measurable functions x � R � ����	�� modulo equivalence almost everywhere�

and G is the group of functional translations on K� We represent G by R� for every � � R

and every function x � K� T�x is the translated function x�t � ��� Thus a function x in K is

h�periodic if Thx � x�

By identifying the extended real line ����	�� with the closed interval ���� �� via the

function x �� �
� arctan�x�� we can identify K with the closed unit ball of L��R� and endow

it with the weak! topology� Thus K is compact and metrizable �a distance is given in �����

taking n � �� and G acts continuously on K �cf� Proposition ����� If the functions xk converge

to some x pointwise a�e�� or even in measure� then they converge to x also in the topology

of K� in particular the Fr�echet space Lploc�R� embeds continuously in K for � � p � �� See

section � For more details and precise statements�

For every measure � on K and every � � R� T�
� � is the push�forward of the measure �

according to the map T� � K � K� that is� T�
� ��B� �� ��T��� B� for every measurable B � K�

We say that a probability measure � on K is invariant if it is invariant under the action of the

group G� namely if ��T�B� � ��B� for every B � K and every � � R� I�K� is the class of all

invariant probability measures on K� The orbit of x � K is the set O�x� of all translations of

x� this set is compact in K whenever x is periodic� In this case �x is the measure given by

h�x� gi �
Z h




g�T�x� d� �����

for every positive Borel function g on K �here h is the period of x�� �x is the unique invari�

ant probability measure supported on O�x�� and we call it the elementary invariant measure

associated to x �see section �� and in particular Lemma ������

For every bounded open interval I � we denote by H�
per�I� �resp�� W k�p

per �I�� the Sobolev

space of all real functions on I � extended to R by periodicity� which belong to H�
loc�R� �resp��

to W k�p
loc �R��� and by S �I� the class of all functions x � K which are continuous and piecewise

a�ne on the interval I with slope �� only �sawtooth functions�� S �x is the set of all points in

where x is not di�erentiable� and thus the points in S � I are %corners& of x� Sper�I� is the

��



class of all real functions on I extended to R by periodicity and of class S on every bounded

interval� The space S �I� can be characterized as the class of all functions x � K which are

continuous on I and whose distributional derivative �x is a BV function on I and takes values

�� only� if S �x � I consists of the points t� � t� � � � � � tN � then ��x �
P

����i��ti � and in

particular the total variation of the measure �x on I is twice the number of points of S �x� I � in
short� k�xk � ���S �x � I��

For every function v and every s � 
 the ��blowup of v at s is de�ned by

R
�
sv�t� �� ����� v�s	 ����t� for t � R� �����

The ��blowup of v is the map R
�v which takes every s � 
 into R�sv � K�

As we explained in the introduction� our goal is to identify the Young measures � �
YM �
�K� generated as �� � by ��blowups of minimizers v� of the functionals

I��v� ��

Z
�

���v� 	W � �v� 	 a v� ds � �����

where v � H�
per�
�� a � L��
� is strictly positive a�e�� and W is a continuous non�negative

function on R which vanishes at �� only and has growth at least linear at in�nity� This goal

is achieved in several steps�

Step �� Identify the class of all Young measures � � YM �
�K� which are generated by

sequences of ��blowups of functions v� �Proposition ��� and Remark �����

Step �� Write the rescaled functionals �����I��v� as
R
�
f�s �R

�
sv� ds for suitable functionals f

�
s

on K �cf� ����� and ���#���

Step �� Identify the ��limit fs of f�s as �� � for a�e� s � 
 �Proposition �����

Step �� Prove that the ��limit of the rescaled functionals �����I�� viewed as functionals of

the elementary Young measures associated with ��blowups of functions� is given by

F ��� ��
R
�h�s� fsi ds for all Young measures � described in Step � �Theorem �����

Step 
� Let � be a Young measure generated by ��blowups of minimizers v� of I�� and use

Step � to show that � minimizes F �Corollary ������ use this fact to identify �

�Theorem ���� and Corollary ������

Step �� Admissible Young measures

The �rst step of our program consists in understanding which � � YM �
�K� are generated

by the ��blowups R�v� of sequences �v��� We have the following result�

Proposition ���� Let � � YM �
�K� be a Young measure generated by the ��blowups R�v�

of a countable sequence �v�� � H��
�� Then �s is an invariant measure on K of a�e� s � 
�

Proof� Set u� �� R
�v� for every � � � and �x � � R� By ����� we have

T�
�
u��s�

�
� u��s� ������ � �����

Since the functions u� generate the Young measure �� the functions T�u
� generate the Young

measure T�
� �� on the other hand Lemma ��# shows that the functions u��� 	 ������ generate

the same Young measure as the functions u�� and thus identity ����� yields T�� � �� Therefore

we can �nd a negligible set N� � R such that

T�
� �s � �s for every s � R nN� �

��



Let now N be the union of N� over all rational � � Then N is negligible� and for every

s � 
 n N there holds T�
� �s � �s for every rational � � and by approximation also for every

real � �the map � �� T�
� � is weak! continuous for every � �P�K��� Hence �s is an invariant

measure�

Remark ���� The converse of Proposition ��� is also true� for every � � YM �
�K� such that

�s � I�K� for a�e� s � 
 we can �nd a sequence �v�� such that R�v� generate �� The proof of

this fact is more di�cult� and is essentially included in the proof of Theorem ��� below�

Step �� Rewriting I��v� in term of R�v

We extend a by periodicity out of 
 and set a�s�t� �� a�s 	 ����t� for every s and t� We

�x a function v � H�
per�
� and set xs �� R

�
sv for every s � 
� Thus

xs�t� � �����v�s	 ����t� � �xs�t� � �v�s	 ����t� � �xs�t� � �����v�s	 ����t� �

Hence

�����v� 	 �����W � �v� 	 �����av� � �����x�s 	 �����W � �xs� 	 a�sx
�
s � �����

where all functions at the left�hand side are computed at s	����t� and those at the right�hand

side are computed at t�

Now we �x r � � and for every x of class H� on ��r� r� we set

f�s �x� ��

Z r

�r

�����x� 	 �����W � �x� 	 a�sx
� dt � �����

Taking the average of the right�hand side of ����� over all t � ��r� r� and then integrating over

all s � 
 we get
R
�
f�s �xs� ds� On the other hand� if we integrate the left�hand side of �����

over all s � 
 we get �����I��v� for every t� and nothing changes if we take the average over

all t � ��r� r�� Therefore
�����I��v� �

Z
�

f�s �xs� ds � ���#�

Step �� Asymptotic behaviour of f�s

We �x now s � 
 and consider the ��limit on K of the functionals f�s de�ned in ������

Proposition ���� Let s be a point in 
 such that the function a is L��approximately contin�

uous at s� Then the functionals f�s � extended to 	� on all functions x � K which are not of

class H� on ��r� r�� ��converge on K to

fs�x� ��

	



�
A


�r
�
�
S �x � ��r� r�� 	 a�s�

Z r

�r

x� dt if x � S ��r� r�

	� otherwise�

�����

where A
 �� �
R �
��

p
W �

Proof� This proposition is an immediate consequence of the following theorem by L� Modica

and S� Mortola �see �MM����� �Mo��� for every bounded open set 
 � R
n the functionals given

�#



by
R
�
�jryj� 	 �

�W �y� for all y � H��
�� such that jyj � � ) and extended to 	� elsewhere

) are equicoercive on L��
� and ��converge to the functional given by A
 kDyk when y is a

function of bounded variation on 
 which takes only the values �� a�e�� and 	� otherwise�

We immediately deduce that the functionals

Z r

�r

�����x� 	 �����W � �x�

��converge on on W �����r� r� to the functional given by A�

�r�
�
S �x � ��r� r��� if x � S ��r� r��

and by 	� otherwise�

The assumption that a is L��approximately continuous at s implies that the rescaled

functions a�s�t� �� a�s 	 ����t� converge in L�
loc�R� to the constant value a�s�� Thus the

functionals
R r
�r

a�sx
� converge to a�s�

R r
�r

x� continuously on W ������ r� r��
Hence the functionals f�s are equicoercive on W �����r� r� and ��converge to fs� Now it

su�ces to apply Proposition �����v�� taking into account that W �����r� r� embeds continuosly

in K�

Step �� The main ��convergence result

Using identity ���#�� we can view the rescaled functionals �����I��v� as functionals on

YM �
�K�� More precisely we set

F ���� ��

	



�
R
�h�s� f�s i ds if � is the elementary Young measure

associated to R�v for some v � H�
per�
��

	� otherwise�

�����

Hence F ���� is �nite if and only if � is the elementary Young measure associated with the

��blowup R
�v of some v � H��
�� and �cf� ���#��

F ���� � �����I��v� � ������

Propositions ��� and ��� clearly suggest the ��limit of F �� and indeed we have�

Theorem ���� The functionals F � in ����� ��converge on YM �
�K� to

F ��� ��

�R
�
h�s� fsi ds if �s � I�K� for a�e� s � 
�

	� otherwise�

������

Remark� If x belongs to Sper��� h�� and �x is the associated elementary invariant measure� a

simple computation yields �cf� ������

h�x� fsi � A


h
�
�
S �x � ��� h�

�
	 a�s�

Z h




x� dt � ������

Hence the value of h�� fsi does not depend on the the constant r which appears in ����� and

����� when � is an elementary invariant measure� and the same conclusion holds for every

invariant measure by Corollary ����� Therefore also F does not depend on r�

��



Proof of theorem ���

In view of future applications we will try to present a proof of Theorem ��� as much

independent as possible of the particular example we have considered so far� In fact� one could

be tempted to view Theorem ��� as a particular case of the following general result� if the

functionals F � are de�ned as in ����� for some integrands f�s which ��converge on K to fs�

then they ��converge on YM �
�K� to the functional F de�ned as in ������� Unfortunately no

such abstract result holds� the convergence of the integrands alone is not su�cient to guarantee

the convergence of the functionals�

However� the proof of Theorem ��� below can be adapted to a large class of problems with

few straightforward modi�cations� and in order to make its structure clear we have gathered

in the paragraph below the relevant properties of f�s and fs� Indeed the whole proof will be

derived by these properties� with the only exception of estimates ����� � ���� where we use

more speci�c arguments based on the de�nition of f�s �

In the following� B�s� �� denotes the open ball of center s and radius �� that is� the open

interval �s� �� s	 ���

��
� Essential ingredients of the proof

�a� Pointwise convergence of the integrands� for a�e� s � 
� f�s ��� fs on K�

This condition is veri�ed in Proposition ���� and is one of the basis upon which we propose

Theorem ���� the other being Proposition �����

�b� Existence of a %nice& dense subset of I�K�� for a�e� s � 
� every invariant measure

� � I�K� can be approximated in the weak� topology of P�K� with elementary invariant

measures �x associated with functions x � Sper��� h� for some h � �� so that h�x� fsi
approximates h�� fsi�
Both sections � and � are devoted to the approximation of invariant measures by elemen�

tary invariant measures� and in Corollary ���� we prove that condition �b� is veri�ed by every

fs of the form ������

�c� Uniformity in s of fs� there exists a negigible set N � 
 such that� for every h � �

and x � Sper��� h�� the function s �� h�x� fsi is L��approximately upper semicontinuous at

every point of 
 nN �

More precisely� formula ������ shows that s �� h�x� fsi is L��approximately continuous at

every point where a is L��approximately continuous� We expect that condition �c� is easily

veri�ed by any %reasonable& integrand�

�d� Uniformity in s of the ��convergence of f�s � for every h � �� x � Sper��� h�� and a�e� 's � 


there exist functions x� � H�
per��� h� which converge to x in K and satisfy

lim sup
��


Z
���
�h�
s�B��s���

f�s �T�x
�� d� ds �

Z
���
�h�
s�B��s���

fs�T�x� d� ds	 ���� � ������

where the error ���� tends to � as �� �� Moreover one can assume j �x�j � ��

Proposition ���� The integrands f�s de
ned in ����� satisfy condition �d� above�

Proof� We prove a stronger assertion� for every 's � 
 and � � �� the functional given by

the average at the left�hand side of ������ for all ��Lipschitz functions x in H�
per��� h�� and

��



extended to 	� elsewhere� ��converges on W ���
per��� h� to the functional eqaul to the average

at the right�hand side of ������ for x � Sper��� h�� and to 	� elsewhere�

Hence� for every x � Sper��� h� we could �nd ��Lipschitz functions x� which converge to x

in W ���
per��� h�� and thus in K� and satisfy ������ with ���� � ��

To prove the claim� we �rst notice that for every x � H�
per��� h� the average at the left�hand

side of ������ can be written as

Z h




�
�����x� 	 �����W � �x�

�
	

Z
���
�h�
s�B��s���

hZ r

�r

a�s �T�x�
�
i
d� ds � ������

and for every function x � Sper��� h� the integral at the right�hand side of ������ can be written

as
A


h
�
�
S �x � ��� h�

�
	

Z
���
�h�
s�B��s���

h
a�s�

Z r

�r

�T�x�
�
i
d� ds � ������

Now we proceed as in the proof of Proposition ���� the �rst integral in ������ ��converge on

W ���
per��� h� to the �rstintegral in ������� while the second integral in ������ converge continuously

on W ���
per��� h� to the second integral in ������ for every 's� ��

Remark� Given positive functions f�s on a metric space X which ��converge to fs for every

parameter s� it may be not true that the average of the functions f�s �with respect to a �xed

probability distribution on the space of parameters s� ��converge to the average of fs� In

particular� condition �a� above does not immediately imply condition �d�� In fact� condition

�a� implies that for every x � K� � � R� and a�e� s � 
 there exists a sequence �x��� depending

on x� s and � � such that x� � x in K and f�s �T�x
�� � fs�T�x�� while in �d� we essentially

require that such a sequence can be chosen independent of � � ��� h� and of s in a neighbourhood

of a given 's�

We now start with the proof of Theorem ����

We begin with the lower bound inequality� In view of Proposition ��� and the de�nitions

of F � and F � it su�ces to show that

lim inf
��


Z
�

h��s � f�s i ds 	
Z
�

h�s� fsi ds ������

where �� are the elementary Young measures associated with the ��blowup R�v� of a countable

sequence of functions v�� and � is the limit of ��� Since f�s ��� fs onK for a�e� s � 
 �condition

�a� of x����� then ������ follows from Theorem �����iv�� We remark that since we only use the

lower bound part of the convergence result stated in Theorem ����� as remarked after that

theorem we do no need to verify the equi�integrability of the envelope functions in �������

While the proof of the lower bound inequality follows from an quite general and relatively

simple convergence result for functionals on Young measures� the proof of the upper bound

inequality is de�nitely more delicate� The �rst step is to �nd a set D of Young measures with

relatively simple structure which is F �dense in YM �
�K� �cf� Remark ������

De�nition ���� Let D be the class of all Young measures � � YM �
�K� which satisfy the

following condition
 there exist countably many disjoint intervals which cover almost all of

��




� and on every such interval � agrees a�e� with an elementary invariant measure �x� with

x � Sper��� h� and h � � �depending on the interval��

Lemma ���� The set D is F �dense in YM �
�K�� that is� for every � � YM �
�K� such that

F ��� is 
nite there exist �k � D such that �k � � in YM �
�K�� and lim supF ��k� � F ����

Proof� We �rst recall that there exists a norm 	 on the space of all measuresM�K� which in�

duces the weak! topology on every bounded subset� and in particular onP�K� �cf� Proposition

�����

Take � � YM �
�K� such that
R h�s� fsi ds is �nite� and �x � � �� By condition �b� of

x���� for a�e� 's � 
 we can �nd h�'s� � � and x�s � Sper��� h�'s�� so that

	��x�s � ��s� � � and h�x�s � f�si � h��s� f�si	 � � ����#�

For a�e� 's � 
 we can also take ��'s� � � such that� for every � � ��'s� there holdsZ
B��s���

	���s � �s� ds � � and h��s� f�si �
Z

B��s���

h�s� fsi ds	 � � ������

and �cf� condition �c� of x���� Z
B��s���

h�x�s � fsi ds � h�x�s � f�si	 � � ������

Putting together ����#� ��� we getZ
B��s���

	��x�s � �s� ds � �� and

Z
B��s���

h�x�s � fsi ds �
Z

B��s���

h�s� fsi ds	 �� � ������

Using Besicovitch covering theorem �see �EG�� chapter �� we cover almost all of 
 by countably

many disjoint intervals Bi � B�'si� �i� with �i � ��'si�� For every i we set xi �� x�si � fi �� f�si �

and �nally we de�ne �� � D by

��s �� �xi if s � Bi for some i�

Then �� belongs to D� and ������ yieldsZ
�

	���s � �s� ds �
X
i

Z
Bi

	��xi � �s� ds �
X
i

��jBij � ��j
j � ������

and Z
�

h��s � fsi ds �
X
i

Z
Bi

h�xi � fsi ds �
X
i

h Z
Bi

h�s� fsi ds	 ��jBij
i

�

Z
�

h�s� fsi ds	 ��j
j � ������

Inequality ������ shows that 	��s� ��s � converge in measure to � as � � �� and then pointwise

a�e� provided that we pass to a suitable subsequence� Hence ��s weak! converge to �s for

a�e� s � 
� and �� converge to � in YM �
�K� �cf� Remark ����� Inequality ������ yields

lim supF ���� � F ���� and the proof is complete�

��



According to Remark ����� to prove the upper bound inequality for the functionals F �

) thus completing the proof of Theorem ��� ) it su�ces to show that every � � D can be

approximated �in energy� by ��blowups of functions on 
� We �rst construct the approximating

sequence for constant Young measure �� and then we show how to localize such a construction

to adapt to a general Young measure in D�

Let be given a bounded interval I � a function x � Sper��� h� with h � �� and a sequence

of functions x� � H�
per��� h� which converge to x in K and satisfy

lim sup
��


Z
���
�h�
s�I

f�s �T�x
�� d� ds �

Z
s�I

h�x� fsi ds	 � � ������

For every � � � we choose �� � ��� h� and we set

v��s� �� ����x�������s� ��� for every s � R� ������

Lemma ��	� The functions v� in ������ belong to H�
per��� h�

����� and the ��blowups R�v�

generate on I the constant Young measure �x� Moreover the numbers �� in ������ can be

chosen so that

lim sup
��


Z
I

f�s
�
R
�v�

�
ds �

Z
I

h�x� fsi ds	 � � ������

Proof� Let � be a Young measure on I generated by a subsequence of R�v�� For every s � R

we have �cf� ������

R
�
sv

� � T���������s�x
� � ������

Since x� tends to x in K� R�sv
� tends to the orbit O�x� for every s � 
� and then '�s is

supported on O�x� for a�e� s� Thus '�s � �x because '�s is invariant �Proposition ����� and the

only invariant probability measure supported on O�x� is �x�

Let us consider the second part of the assertion� By identity ������ we getZ
I

f�s
�
R
�v�

�
ds �

Z
I

f�s �T���������s�x
�� ds �

Now we choose �� so that the integral at the right�hand side is not larger than the average ofR
I
f�s �T��������s�x

�� ds over all � � ��� h�� and taking into account that x� is h�periodic we get

Z
I

f�s
�
R
�v�

�
ds �

Z h




h Z
I

f�s �T��������s�x
�� ds

i
d� �

Z h




h Z
I

f�s �T�x
�� ds

i
d� �

Finally we pass to the limit as �� � and apply inequality �������

We have thus shown that the ��blowups of the functions v� de�ned in ������ converge in

energy to the constant Young measure �s � �x� provided that the functions x� ful�ll �������

Using condition �d� in x��� we can show that such approximating sequence exist %locally& for

every � � D�
Lemma ����� Let be given � � D and � � �� Then there exist 
nitely many intervals Ii
with pairwise disjoint closures which cover 
 up to an exceptional set with measure less than

�� such that the following statements hold for every i


�i� there exist hi � � and xi � Sper��� hi� such that �s � �xi for a�e� s � Ii	

��



�ii� for every � � � there exist ��Lipschitz function x�i � H�
per��� hi� which converge to xi in

K and satisfy ������ �with I� h� x� x� replaced by Ii� hi� xi� x
�
i ��

Proof� Using the fact that � belongs to D and the uniformity assumption �d� in x���� for

almost every point 's � 
 we can �nd an interval of the form I � B�'s� �� � 
 with arbitrary

small �� and a function x � Sper��� h� for some h � �� so that �s � �x for a�e� s � I � and

there exist functions x� � H�
per��� h� which converge to x in K and satisfy inequality ������

or� equivalently� ������ �notice that the right�hand sides of ������ and ������ agree because

I � B�'s� �� and h�x� fsi is the average of fs�T�x� over all � � ��� h���

We apply now Besicovitch covering theorem to �nd �nitely many intervals of the type

above whose closures are pairwise disjoint and cover 
 up to an exceptional set with measure

less than ��

We can now complete the proof of the upper bound inequality�

Since D is F �dense in YM �
�K�� by Remark ���� it su�ces to construct� for every � � �

and � � D� functions v� � H�
per�
� so that the elementary Young measures �� associated with

the ��blowups R�v� satisfy �cf� ������

lim sup
��


"��� � �� � � and lim sup
��


Z
�

fs�R
�
sv

�� ds �
Z
�

h�s� fsi ds	 � � ����#�

where " is the norm which metrizes YM �
�K� de�ned in ������

We �x � � D� � � � and � � � �which will be later chosen in order to get ����#��� We take

Ii� xi� hi and x�i as in Lemma ����� and de�ne v�i as in ������� namely

v�i �s� �� ����x�i ��
����s� ��� for every s � R�

where ��i are chosen as in Lemma ���� We denote the intervals Ii by �ai� bi�� ordered so that

ai � bi � ai�� � bi��� and set

v��s� �� v�i �s� if s � �ai 	 r����� bi � r����� for some i� ������

It remains to extend the function v� out of the union of the intervals �ai 	 r����� bi � r������

Take a positive number M �larger than � and r� such that jxi�t�j 	 � � M for every i

and every t � R� Since the functions x�i converge to xi in K and are ��Lipschitz� then they

also converge uniformly� in particular� for � su�ciently small� jx�i �t�j � M for every i� t� and

thus jv��s�j � M���� for every s where it is de�ned� Notice that M depends on the choice of

xi� and ultimately on �� therefore the dependence on M cannot be neglected in the estimates

below�

For � su�ciently small� we extend v� to the interval �bi � r����� ai�� 	 r����� as shown in

the �gure below�

∼ ε

 M ε 1/3

 ε 1/3

∼M ε1/3

v   out of Jε
extension of v   on J�ε

b  −r εi 1/3 a     +r εi+1 1/3
1/3∼ ε∼M ε1/3

Fig��� Construction of v� in J �� �bi � r����� ai�� 	 r�����

��



More precisely� �v� takes alternately the values 	� and �� in a sequence of intervals with

length of order ���� �except the �rst and the last one� which have length of order M������ two

consecutive intervals are saparated by a transition layer �marked in grey in the �gure above�

with length of order � where �v� is of order ���� The value of v� is of order ���� in each interval

except the �rst and the last one where it is of order M�����

Let us prove the �rst inequality in ����#��

Let '� be a Young measure generated by any subsequence �not relabelled� of the ��blowups

R
�v�� Since v� and v�i agree on �ai	r����� bi�r����� �cf� �������� given a point s � Ii � �ai�bi��

the ��blowups R�sv� and R
�
sv

�
i agree on the larger and larger intervals

�� �s� ai��
���� 	 r� �bi � s������ � r

�
�

and therefore their distance in K vanishes as �� � �Proposition �����

Hence R�v� and R
�v�i generate on Ii the same Young measure �see Remark ����� that is�

'�s � �xi for a�e� s � Ii �see Lemma ����� On the other hand �xi � �s for a�e� s � Ii by

construction �cf� Lemma ������ and then � and '� agree on the union of the intervals Ii� taking

into account that the complement in 
 of this union has measure lower than �� by the de�nition

of " in ����� we get "�'� � �� � �� This gives the �rst inequality in ����#�� provided we choose

� smaller than ��

Let us consider now the second inequality in ����#�� For simplicity we assume that the

function a in the de�nition of the energy I� is bounded� The proof in the general case requires

some additional care when dealing with the estimates ������ ��� below�
If s belongs to the interval �ai 	 �r����� bi � �r����� for some i� the function R

�
sv

� agrees

with R
�
sv

�
i on the interval ��r� r�� and then �cf� ������� ������

f�s �R
�
sv

�� � f�s
�
R
�
sv

�
i

�
� ������

If s belongs to �bi 	M����� ai�� �M������ R�sv
� agrees on ��r� r� with the ��blowup of the

extension described in �gure �� and then it is of order �� while its derivative is always 	� or ��
apart a number ) not exceeding �r 	 � ) of transition layers with size ����� where the second

derivative is of order ������ A direct computation gives the estimate

f�s �R
�
sv

�� � O��� � ������

If s belongs to �ai�M����� ai� or �bi� bi	M������ then agrees on ��r� r� with the ��blowup of

the extension described in �gure �� but it is now of order M � and reasoning as before we get

f�s �R
�
sv

�� � O�M�� � ������

Finally� if s belongs to �ai� ai	�r����� or �bi � �r����� bi�� then R
�
sv

� agrees with the ��blowup
of v�i on part of the interval ��r� r� and with the ��blowup of the extension described in Fig�

� elsewhere� By coupling estimates ������ and ������� we get

f�s �R
�
sv

�� � f�s
�
R
�
sv

�
i

�
	 O�M�� � ������

Now we put together ������ ���� and since the measure of the complement of the union of all
Ii is less than �� we obtainZ

�

f�s �R
�
sv

�� ds �
X
i

Z
Ii

f�s
�
R
�
sv

�
i

�
ds	O��� � � 	O�M�� � ���� �

��



Passing to the limit as �� �� and recalling inequality ������� we get

lim sup
��


Z
�

f�s �R
�
sv

�� ds �
X
i

h Z
Ii

h�xi � fsi ds	 �jIij
i
	O��� � �

Z
�

h�s� fsi ds	O��� � �

which gives the second inequality in ����#� provided that we choose � small enough�

Step �� Minimizers of F

An immediate consequence of Theorem ��� is the following�

Corollary ����� For every � � �� let v� be a minimizer of I� on H�
per�
�� and let � be a Young

measure in YM �
�K� generated by a subsequence of the ��blowups R�v�� Then � minimizes

the functional F in ������� which means that for a�e� s � 
 the measure �s minimizes h�� fsi
among all invariant probability measures � on K�

Proof� Apply Proposition �����vi� and Theorem ���� taking into account ������ ������� and

�������

Now we want to show that every Young measure generated by the ��blowups of the min�

imizers of I� is uniquely determined by the minimality property established in the previous

corollary� For every h � �� let yh be the h�periodic function on R given by

yh�t� �� jtj � h�� for t � ��h��� h��� ������

�cf� Fig� � in section ��� We have the following�

Theorem ����� Fix s � 
 and let fs be given in ������ If '� minimizes h�� fsi among all

� � I�K�� then '� is the elementary invariant measure associated with the function yh�s� where

h�s� �� L
�a�s��
���� � ������

and L
 �� ���A
�
��� � ���

R �
��

p
W �����

Taking Corollary ���� into account� we immediately deduce the following� which concludes

our analysis of the asymptotic behaviour of the minimizers of I��

Corollary ����� For every � � �� let v� be a minimizer of I� on H�
per�
�� Then the ��

blowups R�v� generate a unique Young measure � � YM �
�K�� and� for a�e� s � 
� �s is the

elementary invariant measure associated with the sawtooth function yh�s��

Proof of Theorem ����

Throughout this subsection s � 
 is �xed� and for simplicity we write 'h� 'y instead of h�s��

yh�s�� We begin with a computation which determines the optimal periodic function 'y�

Lemma ����� The measure ��y minimizes h�� fsi among all invariant measures ��

Proof� Fix x � Sper��� h� with h � �� Up to a suitable translation� we may assume that

S �x � ��� h� consists of the points t
 � � � t� � t� � � � � � tn � h and n � �
�
S �x � ��� h�

�
is an

even number� For every i � �� � � � � n� let Ii be the interval �ti��� ti�� hi �� jIij � ti � ti��� and

��



pi be the average of x on Ii� Thus� recalling ������ and taking into account that �x is constant

�� on each Ii� we get

h�x� fsi � A


h
n	 a�s�

Z h




x� dt �

nX
i��

�

h

h
A
 	 a�s�

Z
Ii

x� dt
i

�

nX
i��

hi
h

hA


hi
	 a�s�

Z hi��

�hi��

�t	 pi�
�dt

i

�

nX
i��

hi
h

hA


hi
	
a�s�

��
h�i 	 a�s� p�i

i
�

We rewrite the last identity as

h�x� fsi �
nX
i��

hi
h
g�hi� pi� � ������

where we have set

g�h� p� ��
A


h
	
a�s�

��
h� 	 a�s� p� � ������

A simple computation shows that �'h��� �� is the unique minimum point of g� Furthermore� for

x �� 'y we have n � �� h� � h� � 'h��� p� � p� � �� and ������ becomes

h��y� fsi � g�'h��� �� � min g � ����#�

Hence� ������� ����#�� and the fact that
P

hi�h � �� yield

h�x� fsi �
nX
i��

hi
h
g�hi� pi� 	 min g � h��y� fsi �

We have thus proved that ��y minimizes h�� fsi among all elementary invariant measures �� We

conclude by a density argument based on Corollary �����

A careful examination of the previous proof leads to the conclusion that no other elemen�

tary invariant measure minimizes h�� fsi among all � � I�K�� However� proving Theorem ����

means showing that no other invariant measure minimizes h�� fsi� and this requires a more

re�ned argument�

Since we know that every invariant measure can be approximated by elementary invariant

measures� we �rst look for general criteria which ensure that a sequence of elementary invariant

measures converge to a given elementary invariant measure�

Lemma ���
� Let be given �x � Sper��� �h� with �h � �� and� for k � �� �� � � �� xk � Sper��� hk�
with hk � �� Then the elementary invariant measures �xk weak� converge to ��x if �and only

if� the probability that � � ��� hk� satis
es d
�
T�x

k �O��x�
�
� � vanishes as k � 	� for every

� � � �here d is the distance in K and O��x� is the orbit of �x��

Proof� Let � be an invariant measure on K� Since ��x is the only invariant measure supported

on the orbit of �x� � � ��x if �and only if� � is supported on the compact set O��x�� that is to

say� ��A�� � � for every � � �� where A� is the open set of all x � K such that d
�
x�O��x�

�
� ��

Now� if � is the limit of �a subsequence of� the measures �xk � which in turn are the averages

of the Dirac masses centered at T�x
k over all � � ��� hk� �see ������� then

��A�� � lim inf
k��

�xk�A�� � lim inf
k��

�

hk
��f� � ��� hk� � T�x

k � A�g
�� �

��



Since the last term in the previous line vanishes by assumption� it follows that � � ��x� and the

assertion is proved �the converse is immediate��

The criterion in the previous lemma can be consistently improved when �x has the special

form described in ������� For every k� we de�ne nk� Iki � h
k
i � p

k
i as in the proof of lemma �����

replacing x and h by xk and hk� and consider the probability measures on ���	��
 R given

by

�k ��
X
i

hki
hk

��hk
i
�pk
i
� � ������

Lemma ����� Let be given �h � � such that

lim
k��

Z
C

�
� 	

�

h

�
d�k�h� p� � � ������

for every closed set C � ���	�� 
 R which does not contain the point ��h��� ��� Then �xk

weak� converge to ��x with �x �� y�h�

Proof� In view of Lemma ����� it su�ces to show that for every � � � the probability that

� � ��� hk� satis�es d
�
T�x

k�O��x�
�
� � vanishes as k � 	��

Let � � � be �xed� We can assume with no loss in generality that hk � 	� as k � 	�
�if x is h�periodic then it is also nh�periodic for every positive integer n�� We also use the fact

that� since the distance on K is the one in ����� for n � �� by Proposition ��� and Remark ���

there exists m � � such that

d�x�� x�� � ��� 	 kx� � x�kL���m�m� for x�� x� � K� ������

The proof is now divided in two steps�

Step �� Consider � � � and � � ��� hk� such that

�a� � belongs to �m�hk �m�	

�b� for every index i such that Iki and �� �m� � 	m� intersect� there holds jhki � �h��j � �	

�c� there exists an index j such that Ikj and �� �m� � 	m� intersect� and jpkj j � ��

Then� for a suitable choice of the parameter � �not depending on � and k�� there holds

d
�
T��x

k �O��x�
� � � � ������

More precisely� in case that xk has slope �� in Ikj � we prove that xk is close to Ttj �x �the

case when xk has slope 	� in Ikj can be treated in a similar way�� We set 'x �� Ttj �x� and notice

that xk�tj� � pkj � hkj �� and 'x�tj� � �x��� � ��h��� by assumptions �b� and �c� we infer

��xk�tj�� 'x�tj�
�� � jpkj j	

�

�
jhkj � �h��j � �� � ������

We label the points of S �'x as 'ti� so that 'ti�� � 'ti for every i and 'tj � tj �tj belongs to S �'x

because � belongs to S ��x�� and we let 'Ii denote the interval �'ti��� 'ti��

 t

 τ − m
 x k  x−  ti i t−

 τ + mj t−j t =

Fig��� The functions xk and 'x �� Ttj �x in �� �m� � 	m�

�#



Thus xk and 'x have the same derivative in 'Ii � Iki for every i �cf� Fig� ��� since tj � 'tj by

construction� assumption �b� implies that the measure of 'Ii n Iki is less than � when i � j� j	��

less than �� when i � j � �� j 	 �� less than �� when i � j � �� j 	 �� and so on�

Taking into account that the total number of indeces i such that 'Ii and �� �m� � 	m�

intersect does not exceed N �� �	�m��h� we obtain that j'Ii n Iki j � N� for all such i� and then

the derivatives of xk and 'x agree in �� �m� � 	m� minus a set with measure less than N���

Using ������ we deduce that for every t � �� �m� � 	m�

��xk�t�� 'x�t�
�� � ��xk�tj�� 'x�tj�

��	 Z t

tj

�� �xk � �'x
�� � ��� 	N�� � �

Therefore� if we choose � so that ��� 	N�� � � ���� by ������ we get

d
�
T��x

k � Ttj�� �x
�
� d

�
T��x

k� T�� 'x
� � ��� 	 kxk � 'xkL����m���m� � � �

which implies �������

Step �� The probability that � � ��� hk� does not satisfy either assumption �a� or �b� or �c�

above vanishes as k � 	��

The probability that �a� fails amounts to �m�hk� which vanishes as k � 	� because

hk � 	��

The points � � �m�hk �m� which do not satisfy �b� belong to the union of all interval

�tki�� � m� tki 	 m� over all indeces i such that jhki � �h��j 	 �� therefore they occur with

probability not exceeding

X
i such that
jhk

i
��h��j�	

hki 	 �m

hk
�

Z
C

�
� 	

�m

h

�
d�k�h� p� �

where the measures �k are de�ned in ������ and C is the set of all �h� p� such that jh��h��j 	 ��

The integral at the right�hand side vanishes as k � 	� by assumption �������

The points � � ��� hk� which do not satisfy �c� belong to the union of the intervals

�ti�� �m� ti 	m� over all indeces i such that jpki j 	 �� therefore they occur with probability

not exceeding X
i such that
jpk
i
j�	

hki
hk

�

Z
C

d�k�h� p� �

where C is the set of all �h� p� such that jpj 	 �� and again the integral at the right�hand side

vanishes as k � 	� by �������

We can now conclude the proof of Theorem �����

Let '� minimize h�� fsi among all � � I�K�� By Lemma ���� and equality ����#� we

deduce that h'�� fsi � h��y� fsi � min g� with g given in ������� By applying Corollary ���� we

�nd elementary invariant measures �xk � with xk � Sper��� hk� for some hk � �� which converge

weakly! to '� and satisfy

h�xk � fsi � h'�� fsi � min g � ������

Hence� to prove the assertion of Theorem ����� namely that '� � ��y� it su�ces to show that

assumption ������ of Lemma ���� is veri�ed when �h is equal to 'h�

��



Possibly passing to a subsequence� we may assume that the measures �k weak! converge

on ���	��
 ����	�� to a probability measure �� Since g� extended to 	� at the boundary

of ���	��
 R� is a positive lower semicontinuous function� ������ and ������ yield

min g � h�� gi � lim inf
k��

h�k � gi � lim
k��

h�xk � fsi � min g �

Hence h�� gi � min g� which implies that � is supported on the set of all minimum points of g�

that is� � is the Dirac mass centered at �'h��� ���

Moreover h�k � gi � h�� gi� which implies that the measures g ��k converge weakly! and in

variation to g � �� which is supported at the point �'h��� ��� Therefore� for every closed set C

which does not contain �'h��� �� there holds

lim
k��

Z
C

g d�k � � �

This implies ������ because� up to a suitable multiplicative constant� the function g is larger

than the function � 	 ��h�

�� Approximation of invariant measures on abstract spaces

In this section we will focus on the approximation properties of probability measures

on a compact metric space K which are invariant under the action of a certain group G of

transformations of K� In the applications we have in mind K is a space of functions on Rn

and G is the group of translations �cf� section ��� this speci�c case is discussed in detail in

Section �� Since the case of a non�commutative group G presents some additional di�culties

which would make the exposition of the results more technical� we restrict our attention to the

commutative case� the non�commutative case is brie�y discussed at the end of this section�

We �rst �x some notation� Throughout this section �K� d� is a compact metric space�

M�K� is the Banach space of �nite real Borel measures on K and P�K� is the subset of all

probability measures� we usually denote by the letter x a point of K� and by the letter � a

measure on K� If K � is a locally compact topological space� � is a measure on K� and f is a

Borel map from K to K �� then the push�forward of � on K � via f is the measure f�� given

by �f����B� �� ��f���B�� for every Borel set B � K ��

It is also given a topological group G which is �rst countable and locally compact� and

acts on K via the continuous left action �T� x� �� Tx� every element of G is regarded as an

homeomorphism of K onto itself� and is usually denoted by the capital letter T � Given a map

g and a measure � de�ned on K� gT and T�� denote the composed function g � T and the

push�forward of � according to T � respectively� Notice that T��x � �Tx for every x � K� andR
K g d�T��� �

R
K gT d� for every �� g� A measure � on K is called invariant if it is invariant

under the action of G� that is� if T�� � � for every T � G� I�K� denotes the class of all

invariant probability measures on K�

If H is a subgroup of G� G�H is the left quotient of G� and �T � is the equivalence class in

G�H which contains T � If H is closed then G�H is a Hausdor� locally compact space� if in

addition G�H is compact we say that H is co�compact� The orbit of a point x � K is the set

O�x� ��
�
T �x� � T � G

�
�notice that G is not assumed to act transitively on K�� The point x

has a period T if Tx � x� the set of all periods of x is denoted by P �x�� Thus P �x� is always

��



a closed subgroup of G� and P �x� � P �x�� whenever x and x� belong to the same orbit� We

distinguish some cases�

� when P �x� is not co�compact we say that x is non�periodic�

� when P �x� is co�compact we say that x is periodic�

� when P �x� includes a co�compact subgroup H we say that x is H�periodic�

Notice that the map �T � �� Tx is continuous and one�to�one from G�P �x� to O�x�� If

P �x� is co�compact� then O�x� is compact and homeomorphic to G�P �x��

We assume now that G is commutative� Thus the quotient G�P �x� is also a group� and if

in addition x is periodic� G�P �x� is a compact group which acts continuously and transitively

on the orbit of x� Therefore there exists a unique probability measure �x� called the elementary

invariant measure associated to x� which is supported on O�x� and is invariant under the action

of G�P �x� �see for instance �Ru�� Theorem ����� or �Fe�� section ��#� cf� also Lemma ���� below�

and the remarks on the non�commutative case at the end of this section�� It may be easily

veri�ed that �x is also invariant under the action of G� and that �x � �x� when x and x� belong

to the same orbit�

The elementary invariant measures are the simplest invariant probability measures we can

construct on K� and within the class of invariant probability measures� they play a r(ole similar

to Dirac masses within the class of all probability measures �cf� Remark ��#�� So the following

question naturally arises�

Problem� Under which hypothesis is it possible to approximate �in the weak� topology of

M�K�� every invariant probability measure by convex combinations of elementary invariant

measures�

When G is a compact group� such an approximation is easily obtained by exploiting the

existence of a �nite Haar measure on G �see Remark ����� When G is not compact we can

obtain this approximation under some additional hypothesis on G and K� to state which we

need some more de�nitions�

Let H be a co�compact subgroup of G and let � � G � G�H be the canonical projection

of G onto G�H � Since we assumed that G is commutative� G�H is a compact group and

then there exists a unique �left� Haar probability measure " on G�H � that is� a probability

measure which is invariant under the left action of G�H on itself �see �Ru�� Theorem ����� or

�Fe�� section ��#��

De�nition ���� Let H be a co�compact subgroup of G� and let "G�H denote the unique Haar

probability measure on G�H� We say that a Borel set A � G is a representation of the quotient

G�H if A is pre�compact in G and � is one�to�one from A to G�H� We denote by "A the

push�forward of the measure "G�H onto A according to the inverse of � restricted to A�

Notice that such an inverse is a Borel measurable map� and then "A is well�de�ned� in

fact ��"A � "G�H � In the following G�H and A are always endowed with the measures "G�H

and "A given above� When no confusion may arise� we omit write explicitely the measure "A

�resp� "G�H� in integrals on A �resp� on G�H��

The existence of a representation is guaranteed by the following result�

Proposition ���� A representation A of G�H exists for every co�compact subgroup H�

Proof� Since the topology of G is �rst countable� it can be metrized by a distance dG which

satis�es dG�T�� T�� � dG�ST�� ST�� for every T�� T�� S � G �cf� �Ke�� chapter �� exercise O� or

�Bi��� Thus G�H can be metrized by the quotient distance

dG�H
�
�T��� �T��

�
�� inf

�
dG�ST�� T�� � S � H

�
for �T��� �T�� � G�H �

��



The �rst step is to construct a compact set K � G such that ��K� � G�H �

Since G�H is compact� then it is totally bounded with respect to the quotient distance�

and for every integer k 	 � we can �nd �nitely many points yki in G�H �the total number

of which depends on k� so that the balls with radius ���k��� centered at these points cover

G�H � We choose a representant T k
i in every equivalence class yki by the following inductive

procedure� if k � �� we just take T 

i in ����y
i �� if k � �� for every yki there exists yk��j such

that dG�H�yki � y
k��
j � � ���k���� and by the de�nition of dG�H we can choose T k

i in ����yki �

such that dG�T
k
i � T

k��
j � � ��k� According to this procedure� for every T k

i and every integer

h � k� there exists T h
j such that

dG�T
k
i � T

h
j � � ��k 	 ��k�� 	 � � �	 ���h��� � ��h �

Let K be the closure of the collection of T k
i for all k� i� Thus K is closed and totally bounded

�because for every h � � it is covered by the closed balls with radius ��h centered at the points

T
�h
i with 'h � h� which are �nitely many�� and therefore compact� hence ��K� is compact too�

and contains all points yki � which are dense in G�H � that is� ��K� � G�H �

Finally we consider the multifunction which takes every y � G�H into the non�empty

closed set ����y� � K� Since the graph of this multifunction is closed in �G�H� 
 K� by

Theorem III�� in �CV�� we can �nd a Borel selection� namely� a Borel map � � G�H � K such
that ����y�� � y for every y � G�H � We conclude by taking A equal to the image of � �which

is Borel measurable because G�H is compact and � is one�to�one� cf� �Fe�� x��������
De�nition ���� A set X � K is called uniformly approximable if for every � � � there exists

a co�compact subgroup H and a representation A of G�H such that for every point x � X we

may 
nd an H�periodic point 'x � K which satis
esZ
A

d�Tx� T 'x� d"A�T � � � � �����

Roughly speaking this de�nition means that we can approximate every point x � X by

a periodic point 'x so that not only 'x is close to x� but also T 'x is close to Tx for %most& T �

Moreover we ask that this approximation is in some sense uniform in x� Using the compactness

ofK it may be proved that the notion of uniform approximability depends only on the topology

of K �and on the action of G� but not on the speci�c choice of the distance d�

We can now state the main result of this section�

Theorem ���� If K is uniformly approximable in the sense of De
nition ���� then every

invariant probability measure � on K can be approximated �in the weak� topology of M�K��

by a sequence ��k� of convex combinations of elementary invariant measures� More precisely�

each �k can be taken the form
P

i �i��xi where all points 'xi are H�periodic for some co�compact

group H �which depends only on k��

Comments and remarks on Theorem ���

We do not know if the uniform approximability assumption in Theorem ��� is necessary

or not� In particular we do not know if it su�ces to assume that periodic points are dense in

K �which would already give a large class of elementary invariant measures��

Remark ���� When G is the additive group Rn and H is a subgroup of the form �aZ�n with a �

�� a representation of G�H is given by the cube A �� ��� a�n endowed with Lebesgue measure

��



Ln suitably renormalized� In particular K is uniformly approximable when the following

condition holds� for every � � � there exists a � � such that for every x � K we may �nd an

�aZ�n�periodic point 'x which satis�esZ
T��
�a�n

d�Tx� T 'x� dLn�T � � � �

Remark ���� If G is compact it is always possible to approximate an invariant probability

measure by convex combinations of elementary invariant measures� A simple direct proof of

this fact can be obtained by considering a �left� Haar probability measure " on G� To every

� � P�K� we can associate an invariant probability measure P� by taking the average of all

T�� with respect to the measure "� that is

hP�� gi ��
Z
G

hT��� gi d"�T � � �
��
R
G
gT d"�T �

� � g � C�K� � �����

Thus P is a projection of P�K� onto I�K� that is continuous with respect to the weak!

topology� and takes every Dirac mass �x into the elementary invariant measure �x �recall that

every point of K is periodic because G is compact�� Let now � be an invariant measure on K�

and let �k be convex combinations of Dirac masses which converge to �� Then the measures

P�k are convex combinations of elementary invariant measures� and converge to P� � ��

Remark ���� The set I�K� of all invariant probability measures on K is weakly! compact

and convex� thus it is natural to look for its extreme points� indeed every point in a compact

convex subset C of a separable locally convex space �in our case� M�K� endowed with the

weak! topology� can be approximated by convex combinations of extreme points of C by the

Krein�Millman theorem �cf� �Ru�� Theorem ������

It may be proved that � is an extreme point of I�K� if and only if every Borel set invariant

under the action of G has either full measure or zero measure �see �Ma�� chapter II� Proposition
���� when G is the group generated by one transformation�� Clearly every elementary invariant

measure �x is an extreme point of I�K�� but in general the converse is not true� even if periodic

points are dense in K �consider for instance the product K �� �R�Z� 
 �N � f�g� and the

group G generated by the transformation T �x� k� �� �x 	 ak� k� where all ak with �nite k are

rational numbers and converge to a� irrational��

The situation simpli�es when G is compact� In this case the quotient K�G is a compact

metrizable space� and for every � �M�K� we may de�ne the push forward ��� �M�K�G��

where � is the canonical projection of K into K�G� Then �� is a weak! continuous operator

which maps I�K� into P�K�G� bijectively� and takes elementary invariant measures into

Dirac masses� Hence the extreme points of I�K� are the elementary invariant measures only�

If G is not compact� K�G may be neither metric nor even Hausdor�� that is� the quotient

topology may not separate points �cf� the remark after Proposition �����

Proof of Theorem ���

It is convenient to introduce the following norm on M�K�� we take a sequence �gk� of

Lipschitz functions which is dense in C�K�� we let 
k �� kgkk� 	 Lip�gk�� and set

	��� ��

�X
k��

��h�� gki��
�k
k

� �����

��



It can be easily shown �cf� Proposition ��� below� that 	 induces the weak! topology on every

bounded subset of M�K�� For the rest of this section we only consider measure in the class

of probability measures P�K�� which is always endowed with the weak! topology of M�K��

Therefore� in the following the notions %approximation& or %distance& always refer to 	�

Proposition ���� The function 	 given in ����� has the following properties


�i� 	 is a norm on M�K�� and 	��� � k�k for every �	

�ii� 	 induces on every bounded subset of M�K� the weak� topology	

�iii� for every x� y � K one has 	
�
�x � �y

� � d�x� y��

Proof� The function 	 is clearly a norm� and for every � �M�K� there holds

	��� �

�X
�

��h�� gki��
�k
k

�
�X
�

k�k � kgkk�
�k
k

�
�X
�

k�k
�k

� k�k �

Regarding statement �ii�� it may be easily veri�ed that 	��i���� � if and only if h�i� gki
converge to h�� gki for every k� Since the functions gk are dense in C�K�� and the sequence

��i� is bounded� this implies weak! convergence�

We �nally prove �iii��

	��x � �y� �
�X
�

��gk�x�� gk�y�
��

�k
k
�

�X
�

Lip�gk� � d�x� y�
�k
k

�
�X
�

d�x� y�

�k
� d�x� y� �

The idea of the proof of Theorem ��� is roughly the following� We �rst de�ne the notion of

average for a family of measures� and show that for anH�periodic point x the average of �Tx over

all T in a representation A of the quotient G�H is the elementary invariant measure �x� Then
we notice that the operator P which associates to every � �P�K� the average of the translated

measures T�� over all T � A is continuous� Finally we approximate an invariant probability

measure � by convex combinations �k of Dirac masses at H�periodic points� and then apply the

averaging operator P � the measures P�k are then convex combination of elementary invariant

measures� and approximate P�� which agrees with � because � is invariant�

De�nition ��	� Let B be a bounded Borel set of a locally compact space and let � be a

probability measure supported on B� Let f�t � t � Bg be a family of measures in P�K�

parametrized by t � B and assume that this parametrization is measurable� that is� t �� h�t� gi
is a Borel real function for every g � C�K�� The average of the measures �t over all t � B

�weigthed by �� is the measure � �P�K� de
ned by

h�� gi ��
Z
B

h�t� gi d��t� � g � C�K� � �����

and is denoted by
R
�t d��t��

The previous de�nition is well�posed because the right�hand side of ����� is a well�de�ned

bounded linear functional on C�K�� Notice moreover that the class F of all bounded function

g � K � R such that the map t �� h�t� gi is Borel measurable contains C�K� by de�nition� and

is closed with respect to pointwise convergence� thus F contains all bounded Borel functions�

and identity ����� can be extended to every bounded Borel function g � K � R�

Fix now � � P�K� and consider the push�forward measures T�� with T � G� The

identity hT��� gi � h�� gT i immediately shows that the parametrization T �� hT��� gi is

measurable in T � and for every probability measure " on G and every g � C�K� one has

�R
T�� d"�T � � g

�
�

Z
G

h�� gT i d"�T � � h�� �gi � �����

��



where �g�x� ��
R
G
g�Tx� d"�T � for every x � K�

Lemma ����� Let H be a co�compact subgroup of G� and let A be a representation of G�H�

Then the elementary invariant measure �x associated with an H�periodic point x is given by

�x �

Z
A

T��x dT �

Z
A

�Tx dT � �����

Proof� Obviously the two integrals in ����� de�ne the same probability measure � on K� which

is supported on O�x�� and since �x is the only invariant measure supported on O�x�� it su�ces

to verify that � is invariant� To this end we recall that �T � �� �T �x �� Tx is a well�de�ned

continuous map from G�H to O�x�� and that the push�forward of the canonical measure on A

by the canonical projection of G onto G�H is �by de�nition� the Haar probability measure on

G�H �see De�nition ����� Hence for every function g � C�K� and every S � G we have

hS��� gi � h�� gSi � �R
A�Tx dT � gS

�
�

Z
T�A

g�STx� dT �

�

Z
�T ��G�H

g
�
�S��T �x

�
d�T � �

Z
�T ��G�H

g
�
�T �x

�
d�T � �

This shows that for every g � C�K� the value of hS��� gi is independent of S� and thus � is

invariant�

Lemma ����� Let " be a probability measure on G� Then every � �P�K� can be approxi�

mated by convex combination �k of Dirac masses so that

lim
k��

	
� R

G
T�� d"�T �� R

G
T��k d"�T �

�
� � � ���#�

Proof� For every � � P�K�� let P� be the average of T�� over all T � G weigthed by the

measure "� that is� P� ��
R
G T

�� d"�T �� Thus P is a continuous operator from P�K� into

P�K� �use for instance identity ������� Now we take any sequence of convex combinations �k
of Dirac masses which converge to �� thus P�k converge to P�� and by Proposition ����ii� we

get 	�P�k � P��� �� which is ���#��

Lemma ����� Assume that K is uniformly approximable� consider � � � and a co�compact

subgroup H as in De
nition ���� and let A be a representation of G�H� Then for every

� � P�K� we may 
nd a convex combination of elementary invariant measures '� �
P

�i��xi
so that all 'xi are H�periodic and

	
�R

A
T�� dT � '�

�
� �� � �����

Proof� By applying Lemma ���� with " replaced by "A we may �nd a convex combination of

Dirac masses (� �
P

i �i �xi so that

	
�R

A T
�� dT � R

A T
�(� dT

�
� � � �����

��



Now we exploit the fact that the subgroup H was chosen according to De�nition ���� and we

approximate every xi with an H�periodic point 'xi so that ����� holds� Therefore� recalling

statement �iii� of Proposition ���� we obtain

	
�R

A T
��xi dT �

R
A T

���xi dT
�
�
Z
A

	
�
T��xi � T���xi

�
dT

�
Z
A

d�Txi� T 'xi� dT � � � ������

By Lemma ���� the average of the measures T���xi over all T � A is the elementary invariant

measure ��xi �recall that 'xi is H�periodic�� Hence we set

'� ��
X
i

�i ��xi �

and by ������ we get

	
�R

A T
�(�dT � '�

�
�
X
i

�i	
�R

A T
��xi dT �

R
A T

���xi dT
�
�
X
i

�i� � � � ������

Inequalities ����� and ������ yield ������

We can now prove Theorem ���� Let � be an invariant probability measure and �x � � ��

Apply Lemma ���� to �nd a convex combination '� of elementary invariant measures such that

����� holds� Since � � T�� for every T � G� ����� becomes

	�� � '�� � �� �

Approximation in energy

In the applications we have in mind� K is a function space endowed with some %natural&

lower semicontinuous functional f � K � ���	��� In this situation we may need to ap�

proximate an invariant probability measure � on K by convex combinations �k of elementary

invariant measures which verify the additional constraint

lim
k��

h�k� fi � h�� fi � ������

In the following we modify De�nition ��� and Theorem ��� in order to incorporate such con�

straint�

Remark ����� Notice that the map � �� h�� fi is well�de�ned and weak! lower semicontinuous

onP�K� because f is non�negative and lower semicontinuous� Therefore ������ holds whenever

lim suph�k � fi � h�� fi�

De�nition ����� A set X � K is called f �uniformly approximable if for every � � � there

exists a co�compact subgroup H and a representation A of G�H such that for every point x � X

we may 
nd an H�periodic point 'x � K which satis
esZ
A

d�Tx� T 'x� dT � � � ������

��



and Z
A

f�T 'x� dT �
Z
A

f�Tx� dT 	 � � ������

Theorem ���
� If K is f�uniformly approximable� then every invariant probability measure

� on K can be approximated by convex combinations �k of elementary invariant measures so

that ������ holds�

The proof of this theorem is obtained by adapting the proof of Theorem ���� To this end

we have to modify Lemmas ���� and �����

Lemma ����� Let " be a probability measure on G� Then every � �P�K� can be approxi�

mated by convex combinations �k of Dirac masses which satisfy ���#� and

�R
G T

��k d"�T �� f
� � �R

G T
�� d"�T �� f

�
for every k� ������

Proof� For every � � P�K� we consider P� �
R
G T

�� d"�T � as in the proof of Lemma �����

Then we claim that every � � P�K� may be approximated by a sequence ��k� of convex

combinations of Dirac masses so that ������ holds� that is� hP�k� fi � hP�� fi for every k�

Once this claim is proved� the rest of the proof of Lemma ���� follows that of Lemma �����

Fix now � �P�K� and set a �� hP�� fi� With no loss of generality we may assume that

a is �nite� and then set

C ��
�
� �P�K� � hP�� fi � a

�
� ������

By ����� we have that hP�� fi � h�� �fi where �f�x� ��
R
f�Tx� d"�T � for every x � K� and

since �f is lower semicontinuous and positive� the set C is convex and weak! compact� Moreover

the extreme points of C are convex combinations of two Dirac masses �see �BL�� Proposition ��

xII��� p� ����� Since � belongs to C� we can apply the Krein�Milman theorem to approximate

� with convex combinations �k of extreme points of C� and thus ������ follows from �������

Lemma ����� Assume that K is f�uniformly approximable� consider � � � and a co�compact

subgroup H as in De
nition ����� and let A be a representation of G�H� Then for every

� �P�K� we may 
nd a convex combination of elementary invariant measures '� �
P

i �i��xi
so that each 'xi is H�periodic� ����� holds and

h'�� fi � � R
A
T�� dT � f

�
	 � � ����#�

Proof� We proceed as in the proof of Lemma ����� we apply Lemma ���� to �nd a convex

combination of Dirac masses (� �
P

i �i �xi so that ����� holds and

�R
A T

�(� dT � f
� � �R

A T
�� dT � f

�
� ������

Now we can exploit the choice of H and approximate every xi with an H�periodic point 'xi so

that ������ and ������ hold� We de�ne '� ��
P

�i��xi � and hence ����� follows as in the proof of

Lemma ����� On the other hand by identity ����� and inequality ������ we get

h'�� fi �
X
i

�i

Z
A

f�T 'xi� dT �
X
i

�i

Z
A

f�Txi� dT 	 � �
�R

A T
�(� dT � f

�
	 � �

��



which together with inequality ������ implies ����#��

We can now prove Theorem ����� As in the proof of Theorem ��� we �x a real number

� � � and an invariant probability measure � on K such that h�� fi is �nite� Then we apply

Lemma ���# to get a convex combinations of elementary invariant measures '� so that both

����� and ����#� hold� Since � is invariant ����� and ����#� become respectively

	��� '�� � �� and h'�� fi � h�� fi	 � �

By Remark ���� this concludes the proof of Theorem �����

Extension to the non�commutative case

Theorems ��� and ���� hold also when the group G is a non�commutative� In this case�

however� some of the previous de�nitions need to be modi�ed� We �rst remark that if x is a

periodic point but P �x� is not a normal subgroup� then the quotient G�P �x� is not a group�

Therefore our construction of the elementary invariant measure �x fails� and in fact the orbit

of x� although compact� may support no invariant probability measure�

Consider for instance the following example� K is the projective line R � f�g and G

the group of all projective transformations of K� that is� transformations of the form x ��
�ax	b�

�
�cx	d� with ad�bc �� �� Then the orbit of any point x isK� G�P �x� is homeomorphic

to K and then P �x� is co�compact� but K supports no invariant measures �since translations

x �� x 	 b are projective transformations� any invariant measure should be supported at ��

but on this is also impossible� because G acts transitively on K��

The previous example motivates the following de�nition� we say that a co�compact sub�

group H of G is a W �subgroup if there exists a probability measure on G�H which is invariant

under the left action of G�

This probability measure is unique �see �Fe�� Theorem ��#�������� and is denoted by "G�H �

A co�compact subgroup H is a W �subgroup if and only if it satis�es the so�called Weil�s

condition� namely that the modular functions of G and H agree on H � in particular Weil
s

condition is veri�ed when H is normal� or when G is compact �see �Fe�� Theorem ��#��� and

x��#���� or �HR�� section ���� Notice that if H is a W �subgroup� then also every co�compact

subgroupH � which includesH is aW �subgroup� When x is a periodic point� the map �T � �� Tx

is a homeomorphism of G�H to O�x�� and then O�x� supports an invariant probability measure

if and only if P �x� is a W �subgroup�

Therefore the following modi�cations should be introduced to adapt the results of this

section to the non�commutative case� the elementary invariant measures can be de�ned only

for periodic points x such that P �x� is a W �subgroup� and in De�nitions ���� ���� ����� and

Proposition ���� it must be required that H is a W �subgroup�

�� Approximation of invariant measures on function spaces

In this section we present in detail the case where K is a space of functions on Rn� and

show that the assamptions of Theorem ��� are veri�ed� Then we restrict our attention to the

particular situation considered in section �� we show that the assumptions of Theorem ���� are

satis�ed� and obtain the approximation in energy used in the proof of Theorems ��� and �����

�#



We conform to the notation of section �� with the only di�erence that K is now the set of

all Borel functions x � Rn � ����	�� modulo equivalence almost everywhere� and G is the

group of functional translations� and is represented by Rn� for every � � Rn and every x � K�

T�x is the translated function x�t� ���

By identifying the extended real line ����	�� with the closed interval ���� �� via the

function x �� �
� arctan�x�� we can identify K with the closed unit ball of L��Rn� and endow it

with the weak! topology of L��Rn�� Thus K is compact and metrizable� In particular we can

consider the following distance� let �yk� be a sequence of bounded functions which are dense in

L��Rn�� and such that each yk has support included in the cube ��k� k�n� for every x�� x� � K

set

d�x�� x�� ��

�X
k��

�

�k
k

��� Z
R
n

yk

� �
�
arctanx� � �

�
arctanx�

�
dLn

��� � �����

where 
k �� kykk� 	 kykk��

It follows immediately from ����� that when the functions xk converge to x locally in

measure� then they converge to x also in the distance d� Hence Lploc�R
n� embeds continuously

in K for � � p � �� Moreover� ����� yields� for every p � ������

d�x�� x�� �
�X
k��

�

�k
k

Z
Rn

jykj jx� � x�j �
�X
k��

kykkqkx� � x�kp
�k
�kykk� 	 kykk�

� � kx� � x�kp � �����

�The �rst inequality follows from the fact that �
� arctan is ��Lipschitz� the second one is

H�older
s� and the last one follows from the interpolation kykkq � kykk� 	 kykk���

Remark� Embedding into K may be no longer continuous if we consider weaker forms of

convergence� if the functions xk � Rn � fa� bg weak! converge to the constant function �
� �a	b�

in L��Rn�� then they converge on K to the constant function tan
�
�
� �arctana	 arctan b�

�
�

The main feature of the distance d is the following locality property� which in fact is shared

by every distance which metrizes K�

Proposition 
��� For every � � � there exists m � � such that the following implication

holds for x�� x� � K


�x� �m� � �m � �x� �m� � �m a�e� in ��m�m�n � d�x�� x�� � � � �����

�Here a � b and a � b denote respectively the in�mum and the maximum of a and b��

Proof� Fix a positive real number m and take x�� x� such that the hypothesis of ����� holds�

Then
�� arctanx��t�� arctanx��t�

�� � ���� arctanm for a�e� t � ��m�m�n� and since spt yk �
��k� k�n� for k � m we have��� Z

Rn

yk
�
arctanx� � arctanx�

�
dLn

��� � kykk������ arctanm� � ���� arctanm �

Hence

d�x�� x�� �
mX
k��

���� arctanm

�k
	

�X
k�m��

�kykk�
�k

� �

�
� arctanm	

�

�m
�

To �nish the proof it su�ces to choose m large enough�

Remark ���� Given x�� x� � K� let x be the function which agrees with x� in the cube

��m�m�n� and with x� elsewhere� Hence d�x�� x�� � d�x�� x� 	 d�x� x��� and if we estimate

d�x�� x� by ������ and d�x� x�� by ������ we obtain the following useful inequality�

d�x�� x�� � �	 kx� � x�kLp���m�m�n� for x�� x� � K� �����

��



where m and � are taken as in Proposition ���� and p is any number in ���	���

Proposition 
��� The group of functional translations G acts continuously on K� and K

is uniformly approximable� Hence Theorem ��� applies� and thus every invariant probability

measure on K can be approximated by convex combinations of elementary invariant measures�

Proof� We prove that G acts continuously on K by showing that the group of translations act

�sequentially� continuously on L��Rn� endowed with the weak! topology� Consider �k � � in

R
n� xk ��� x in L��Rn�� and y � L��Rn�� Then T��ky � T��y in L��Rn� and thus

hT�kxk � T�x� yi � hxk� T��kyi � hx� T��yi �� � �

Since this holds for every y � L��Rn� we deduce that T�kxk ��� T�x in L��Rn��

Let us show that K is uniformly approximable� Fix � � � and take m so that implication

����� holds� and then choose a so that a� 	 m� For every x � K� let 'x be the function on Rn

which agrees with x on the cube ��� a�n and is extended periodically to the whole of Rn� Then

'x is �aZn��periodic� and 'x�t � �� � x�t � �� whenever t � ��m�m�n and � � �m� a � m�n�

Hence ����� yields d�T� 'x� T�x� � � for every � � �m� a�m�n� on the other hand the distance
d is never larger than one� and recalling that a� 	 m we obtainZ

�
�a�n

d�T� 'x� T�x� dLn��� � � an 	 �nman��

an
� �� 	 �n�� �

Remark� Notice that there exist points x � K whose orbit is dense in K� In other words O�x�

is an element of the quotient space K�G which is dense in K�G� and then the topology of K�G

is not Hausdor�� and not even T
� To construct such a function x� we take a sequence �xk�

which is dense in K� and for every k we choose the positive real number mk corresponding to

� � ��k in Proposition ���� then we take pairwise disjoint open cubes Ck � ��k	��mk�mk�
n

and we choose as x any function which agrees with T��kxk on each cube Ck� Hence T�kx � xk
in ��mk�mk�

n for every k� and ����� yields d�T�kx� xk� � ��k for every k� Hence the orbit of

x is dense in K�

A similar argument can be used to prove that every convex combination of elementary

invariant measures can be approximated by elementary invariant measures� Together with

Proposition ���� this would yield that every invariant probability measure on K is in fact the
limit of a sequence of elementary invariant measures� In Lemma ���� we prove this fact� and

something more� for n � ��

A one�dimensional example

We apply now Theorem ���� to the choice of K and f considered in section �� Thus G

and K are given as before with n � �� and in particular G is represented by R� Every proper

co�compact subgroup of R is of the form hZ for some h � �� and a representation is given by

the interval ��� h�� endowed with Lebesgue measure� suitably renormalized�

For the rest of this section the letter h will be mainly used to denote periods of elements of

X � The spaces S �I� and Sper��� h� are de�ned at the beginning of section �� while Sper�
��� h�

denotes the space of all x � Sper��� h� such that x��� � x�h� � �� r is a �xed positive real

number and we set �cf� ������

f�x� ��

	

�

�

�r
�
�
S �x � ��r� r��	Z r

�r

x��t� dt if x � S ��r� r��

	� otherwise�

�����

��



Proposition 
��� The function f is lower semicontinuous on K�

Proof� Let �xk� be a sequence such that xk � x in K and the values f�xk� are uniformly

bounded� Then the functions xk belong to S ��r� r� for every k� and in particular they are ��

Lipschitz on ��r� r� and uniformly bounded in L���r� r�� Hence they converge to x uniformly in

��r� r�� This implies that the distributional derivatives �xk converge to �x weakly! in BV ��r� r��
hence x belongs to S ��r� r�� and lim inf f�xk� 	 f�x��

Now we want to prove that K is f �uniformly approximable �recall De�nition ������ To

this end we need some preliminary lemmas and de�nitions� In what follows� � denotes the

ususal convolution products� �B is the characteristic function of the set B� and we set

��t� ��
�

�r
���r�r��t� for t � R� �����

Lemma 
�
� Let x � K satisfy
R h

 f�T�x� d� � 	�� Then x � S �I� for every I relatively

compact in ��r� h	 r� and

Z h




f�T�x� d� �
�

h

h X
t�S �x

�� � ��
�h���t� 	

Z
R

�� � ��
�h��x� dt
i

���#�

�notice that the convolution product � � ��
�h� vanishes out of ��r� h � r��� Moreover� if x is

h�periodic� then x � Sper��� h� and

h�x� fi �
Z h




f�T�x� d� �
�

h

h
�
�
S �x � ��� h�

�
	

Z h




x�dt �
i

�����

Proof� As
R h


f�T�x� d� � 	�� then f�T�x� is �nite for a�e� � � ��� h�� which implies x �

S �� � r� � 	 r�� and since every interval I relatively compact in ��r� h	 r� can be covered by

�nitely many such intervals �� � r� � 	 r�� then x � S �I��

To obtain ���#�� we consider the measure � given by ��B� �� �
�
B � S �x � ��r� h	 r�

�
	R

B x� dt� and thus we write f�T�x� as

f�T�x� �

Z
R

��t� �� d��t� �

Integration over � � ��� h� yields ���#�� The second part of the assertion follows from the fact

that on R modulo h there holds � � ��
�h� � � � � � ��

De�nition 
��� For every h � �r and every x � K� the h�periodic function Rhx is de
ned

as follows �see Fig� ��


� in the interval ��� r�� Rhx�t� is equal to t � ��t	 r�	

� in the interval �r� h���� Rhx�t� is equal to x�t� if jx�t�j � t� r� to t� r if x�t� � t� r� and

to ��t� r� if x�t� � ��t� r�	

� in the interval �h��� h � r�� Rhx�t� is equal to x�t� if jx�t�j � h � r � t� to h � r � t if

x�t� � h� r � t� and to ��h� r � t� if x�t� � ��h� r � t�	

� in the interval �h� r� h�� Rhx�t� is equal to �t� h	 r� � ��t	 h��

��



 t
 0  h r

h−r
 x

R  x  in [0, h)h

Fig�
� The function Rhx

Lemma 
��� Let h� x and Rhx as in De
nition ���� Thus Rhx is h�periodic and Rhx��� �

Rhx�h� � � by construction� Moreover

�i� for every m � � and t � �m	 r� h�m� r�� either x�t� � Rhx�t�� or x�t� 	 Rhx�t� 	 m�

or x�t� � Rhx�t� � �m	

�ii� if x � S �r� h � r� then Rhx � Sper�
��� h� and S �x � �r� h � r� contains S ��Rhx� � ��� h�

except at most six points�

Proof� Straightforward �see Fig� ���

Proposition 
��� For every � � � there exists h � � such that for every x � K

Z h




d�T�x� T�Rhx� d� � �� and

Z h




f�T�Rhx� d� �
Z h




f�T�x� d� 	 � � �����

In particular� K is f�uniformly approximable �see De
nition ������

Proof� Fix m � � such that implication ����� holds� and take h � ��m 	 r�� Then statement

�i� of Lemma ��# and ����� imply that d�T�x� T�Rhx� � � for every � � �m 	 r� h �m � r��

Hence� taking into account that d � ��

Z h




d�T�x� T�Rhx� d� � �	
��m	 r�

h
�

and the �rst inequality in ����� is recovered by choosing h 	 ��m�r�
� �

Let us consider now the second inequality in ������ We can assume that the integralR h


f�T�x� d� is �nite �otherwise there is nothing to prove�� Therefore Rhx � Sper�
��� h�� and
� �

�
S ��Rhx� � ��� h�

� � �
�
S �x � �r� h� r�

�
	 � �see Lemma ��#�ii���

� jRhxj � jxj in �r� h� r� �see Lemma ��#�i���

� jRhxj � r�� in ��� r� and �h� r� h� �by construction��

Hence� by ������

Z h




f�T�Rhx� d� �
�

h

h
�
�
S ��Rhx� � ��� h�

�
	

Z h




�
Rhx

��
dt
i

� �

h

h
�
�
S �x � �r� h� r�

�
	 � 	

Z h�r

r

x� dt	
r�

�

i
and since � � ��
�h� � � in �r� h� r��

� �

h

h X
t�S �x

�� � ��
�h���t� 	
Z
R

�� � ��
�h��x� dt	 �� 	 r�

�

i
and by ���#��

��



�

Z h




f�T�x� d� 	
�� 	 r�

�h
�

The second inequality in ����� is thus recovered by choosing h 	 ���r�

�� �

Corollary 
�	� Every invariant probability measure � on K can be approximated by a sequence

of convex combinations �k of elementary invariant measures so that ������ holds� Moreover�

if h�� fi is 
nite� each �k can be taken of the form �k �
P

�i��xki with 'xki � Sper�
��� hk� for
every i and a suitable hk � ��

Proof� By Proposition ��� the space K is f �uniformly approximable� and then the �rst part of

Corollary ��� follows from Theorem ����� Furthermore Proposition ��� shows that for every

x � K the approximating point 'x in De�nition ���� can be taken equal to Rhx� and if we

examine the construction of the measure '� described in the proof of Lemma ���# keeping this

fact in mind� we see that '� can be taken of the form
P

�i��xi with 'xi � Rhxi� and then 'xi is

h�periodic and 'xi��� � 'xi�h� � ��

Thus the same holds for the approximating measures �k given in Theorem ����� Moreover

h�� fi � 	� implies that h�k� fi is �nite �for k large enough�� Hence h��xki � fi is also �nite for

every i� and Lemma ����ii� yields 'xik � Sper�
��� hk��
We can re�ne the approximation result of Corollary ��� by showing that � can be directly

approximated by elementary invariant measures�

Lemma 
���� Given � � �� h � � and � �
PN

� �i�xi such that xi � Sper�
��� h� for every

i � �� � � � � N � we can 
nd 'h � � and x � Sper�
��� 'h� such that

	��� �x� � �� and
��h�� fi � h�x� fi

�� � � � ������

Proof� First of all� notice that all �i can be assumed rational �by a standard density argument��

We �xm � � such that implication ����� holds� and we write every �i as �i � pi�q with positive

integers q and pi� Notice that q can be taken arbitrarily large�

We set q
 �� �� qi �� qi�� 	 pi for i � �� � � � � N �in particular qN � q�� and we take

x � Sper�
��� qh� de�ned by

x�t� �� xi�t� for every t � �qi��h� qih� and i � �� � � � � N � ������

In other words x is equal to x� in the �rst p� periods of length h� it is equal to x� in the

following p� periods� and so on for a total of q periods �cf� Fig� � below��

h x  =1
h x  =2

 h σ  = 4 /101

σ  = 6 /102

 4h  6h

t

Fig��� Construction of x for N � �� q � ��� p� � �� p� � �

��



Taking into account ����� we get

�x �
�

qh

Z qh




�T�xd� � �xi �
�

h

Z h




�T�xid� �
�

pih

Z qih

qi��h

�T�xid� �

Hence

�� �x �
�X

i

�i�xi

�
� �x �

NX
i��

�

qh

Z qih

qi��h

�
�T�xi � �T�x

�
d� �

and by Proposition ����iii�

	��� �x� �
NX
i��

�

qh

Z qih

qi��h

d�T�x� T�xi� d� � ������

Thus we need to estimate the distance d�T�x� T�xi�� From ������ we deduce that for every � �
�qi��h	m� qih�m� and every i there holds x � xi in ���m� �	m�� and then d�T�x� T�xi� � �

by ������ Hence inequality ������ becomes �recall that d � ��

	�� � �x� �
NX
i��

�

qh
�pih�	 �m� �

NX
i��

pi�

q
	

�mN

qh
� �	

�mN

qh
�

and the �rst inequality in ������ is recovered by choosing q 	 �mN
q� �

Let us prove the second inequality in ������� From ������ we get S �x � �qi��h� qih� �

S �xi � �qi��h� qih� for every i� and then �
�
S �x� ��� qh�

� � N 	
P

i�
�
S �xi � �qi��h� qih�

�
� Hence

����� yields

h�x� fi � �

qh

h
�
�
S �x � ��� qh�

�
	

Z qh




x��t� dt
i

� N

qh
	
X
i

h �

qh
�
�
S �xi � �qi��h� qih�

�
	

�

qh

Z qih

qi��h

x�i �t� dt
i

�
N

qh
	
X
i

h pi
qh

�
�
S �xi � ��� h�

�
	

pi
qh

Z h




x�i �t� dt
i

�
N

qh
	
X
i

�ih�xi � fi �
N

qh
	 h�� fi �

and the second inequality in ������ is recovered by choosing q 	 N
h� �

Corollary 
���� Every invariant probability measure � on K which satis
es h�� fi � 	� can

be approximated by a sequence of elementary invariant measures ��xk� so that xk � Sper�
��� hk�
for some hk � � and

lim
k��

h�xk � fi � h�� fi �

Proof� Apply Corollary ��� and Lemma �����

�� Overview of further applications

In this section we brie�y sketch in di�erent detail some extensions of our approach to

other variational problems with multiple scales� We begin with some variations of the one�

dimensional problem studied in section ��

��



Boundary conditions

The periodic boundary conditions imposed in the study of the functional I� �see ������

can be replaced by other boundary conditions �Dirichlet� natural� � � �� without changing the

limit problem� In other words� the ��limit F de�ned in ������ is independent of the boundary

conditions� This is not surprising since the limit functional contains no correlations between

values of the slow variable s�

Additional externally imposed scales

The only property of the lower order term
R
av� in I� �cf� ������ used in the proof is that

the rescaled functionals
R r
�r

a�sx
� converge continuously for a�e� s � 
 as �� � �see De�nition

����� More precisely we need that the integralsZ r

�r

a�s	 ����t��x��t���dt

converge for any sequence x� which converges strongly in W ������ r� r��
Thus the proof of Theorem ���� can be extended �with almost no modi�cations� to more

complex lower order terms� In particular we can consider highly oscillatory coe�cients� For

example� we can take �cf� ������

I� ��

Z
�

���v� 	W � �v� 	 a����s� v� ds �

where a is a bounded� strictly positive and periodic function with average 'a�

If � � �
� � i�e�� if the externally imposed scale �� is shorter than the fast scale ���� used

in our blow�up procedure� then Theorem ��� holds true� provided that we replace a�s�
R r
�r

x�

with 'a
R r
�r

x� in ������ This requires no modi�cations in the proof� since the rescaled functions

a�s�t� �� a����s	������t� converge weakly to the constant function 'a� and then the functionalsR r
�r a

�
s�t�x

� converge continuously to 'a
R r
�r x

��

If � � �
� then this convergence no longer holds� We expect that minimizers of the ��problem

are locally well approximated by periodic sawtooth functions with period L
�a��
��s����������

and generate the homogeneous two�scale Young measure

�s �

Z
�xq dq for a�e� s � ��� ���

where xq is the sawtooth function with period h � L
a
�����q� de�ned in ������� and the

average is taken over a period of the function a�

The �rescaled� limiting energy is thus given by E


�R
a����q�dq

�
�cf� ������� In this case

the ��limit F �if it exists� cannot have the simple form ������� in fact it cannot be a�ne on

the a�ne set de�ned by the condition �s � I�K� a�e� This follows from the fact that for the

homogeneous two�scale Young measure �s � �x� where x is an h�periodic sawtooth function�

one has �cf� �������

F ��� �
A


h
��S �x � ��� h�� 	 'a

Z h




x� dt �

Hence if F was a�ne the minimal energy would involve 'a��� � �
R
a���� rather than the smaller

value
R
a���� In this case a more natural representation of the limit might be achievable by

��



performing a �hierarchical� blow�up with two smale scales �� and ���� and looking at the

corresponding Young measures and limit functionals� A detailed implementation of this idea

�and the veri�cation of the statements above� is left to the courageous reader�

The case � � �
� is particularly interesting since in this case the externally imposed scale

and the internally created scale are of the same order and relative phases may play an important

role� Note that the formula for the �rescaled� limiting energy changes discontinously at � � �
� �

since it is given by E
�
R
a���� for � � �

� �cf� ������� and by E
�
R
a���� for � � �

� �

Nonlocal terms� H����norm

A one�dimensional ansatz for a two�dimensional model of an austenite �nely�twinned

martensite phase boundary leads to a functional which involves the homogeneous H����norm

rather than the L��norm �see �KM���

I��v� ��

Z
�

���v� 	W � �v�ds	 kvk�
H
o
���

� �����

The minimization is taken over functions in v � H�
per�
� with zero average� and 
 � ���� ���

In the Fourier expansion v �
P

(v�k�e�iks� the homogeneous H����norm is given by

kvk�
H
o
���

�� ��

��X
k���

jkjj(vj� � �

�

��X
k���

�

jkj j
(�vj� �

and can be written as

kvk�
H
o
���

�

Z
���

g�s� s�� �v�s�� v�s����ds�ds �

Z
���

h�s� s�� �v�s� �v�s�� ds�ds� �����

where we have set

g�t� ��
�

���� cos�t�
and h�t� �� � �

��

�
ln � 	 ln��� cos�t�

�
� �����

�Notice that the second identity in ����� holds for functions in W ��� only��

The scheme developed in section � applies to this functional� too� even though some

essential modi�cations are required� First one easily checks that the fast scale is now ����

rather than ���� �see� e�g�� �KM��� Second the functional is invariant under the addition of

constants and therefore it is more natural to look for the Young measures generated by the

blow�up of the derivative rather than the function itself �for the latter choice it is easy to

construct minimizing sequences whose Young measure on micropatterns is concentrated both

at the function that is identically 	� and at the function that is identically ���� Let therefore
consider the blowup

R
�
s �v �� �v�s	 ����t� � �����

The competitors for the limit problem will be the class of all Young measures � � YM �
�K�

generated by sequences R�s �v
�� As in section �� these Young measures are characterized as those

� such that �s is an invariant measure on K for a�e� s � 
 �cf� Proposition �����

The second step in the program developed in section � consists in rewriting I��v� in terms

of the ��blowups� To avoid problems with integrals over unbounded domains we choose a

smooth positive function � on R such that
R
��t� dt � �� For v � H�

per�
� we set

xs �� �����v�s	 ����t� �

��



Thus

�xs � �v�s	 ����t� � R
�
s �v and �xs � �����v�s	 ����t� �

Setting s�� �� s	 ����t� s� �� s	 �����t	 �� we get

���v��s��� 	W � �v�s��� 	

Z
�

g�s�� � s�� �v�s���� v�s����ds� �

� ��x�s�t� 	W � �xs�t�� 	

Z �����

������
�g������� �xs�t	 �� � xs�t��

�d� �

Integrating in s � 
 and then taking the average over all t � R with respect to the weight �

we obtain

�����I��v� �

Z
�

f�� �xs� � �����

where

f�� �x� ��

Z
R

�
�����x� 	 �����W � �x�

�
��t�dt	

Z
R�R

g�����x�t 	 ��� x�t�����t� dt d� � �����

and

g���� ��

�
�g������� if j� j � ������

� otherwise�
���#�

Note that f� is invariant under addition of constants� and then only depends on x through �x�

From ����� we have that g��� � ������� then the functions g���� converge to ������� and

we claim that f� ��converge on K to the functional f given by

f� �x� �� A


X
t�S �x

��t� 	

Z
R�R

�

����
�x�t	 �� � x�t�����t� dt d� �����

for x � S loc�R�� and 	� elsewhere �here we view f� and f as functionals of �x � K�� To prove

the claim� we proceeds as for Proposition ���� the functionalsZ �
�����x� 	 �����W � �x�

�
� �����

are equicoercive and ��converge on W ���
loc �R� ) and therefore also in K ) to the sum at the

right�hand side of ������ while the double integrals at the right�hand side of ����� converge to

the double integral at the right�hand side of ����� for all sequences x� which converge to x

uniformly on R� and are uniformly Lipschitz� Unfortunately such a convergence is not implied

by convergence in W ���
loc �R�� and one has to be more careful� given functions �x� � �x such that

f�� �x�� is bounded� we have �x� � �x in L�
loc�R�� and� modulo addition of suitable constants�

x� � x in W ���
loc �R�� Then a careful application of Fatou
s lemma� and the fact that g and � are

positive functions� give the lower�bound inequality� To prove the upper�bound inequality for

x� it su�ces to construct functions x� which converge uniformly to x� are uniformly Lipschitz�

and satisfy the upper�bound inequality for the functionals in ������

Now we can proceed as in section �� and prove a suitable version of Theorem ���� which

leads to the following equivalent of Corollary ����� Suppose that the functions v� minimize I�

and the ��blowups R� �v� generate a Young measure �� Then� for a�e� s � 
� the measure �s
minimizes h�� fi among all invariant measures � � I�K��

��



We have not been able to carry out the last step of our program� the characterization of the

minimizing measures �� We conjecture that minimality implies that the measure is supported

on the orbit of the derivative of a single periodic sawtooth function like in Fig� � of section��

For every x � Sper��� h� one has �cf� �������

h� �x� fi � A


h
�
�
S �x � ��� h�

�
	

Z h




h Z �

��

�

����
�x�t	 �� � x�t���d�

i
dt �

It can be veri�ed that the in�mum of h� �x� fi over all x � Sper��� h� and h � � is strictly positive�

and hence the minimum of h�� fi over all � � I�K� is also strictly positive� This shows in

particular that the minima of energies I� in ����� are exactly of order �����

As a �rst step in the characterization of minimizing measures �� one should prove that

the in�mum of h� �x� fi over all x � Sper��� h� with h and �n �� ��S �x � ��� h�� �xed is given

by the sawtooth function yh�n �see �������� Then one could determine the optimal one by

minimization over all h � �� As discussed in section � this is� however� only the �rst step in

the proof of the conjecture stated above�

Concentration e�ects

A suitable modi�cation of the Young measure on micropatterns which uses the energy

density rather than the Lebesgue measure as background measure can also capture certain

concentration e�ects that occur� for example� in the passage from di�use interface models

to sharp interface models� The simplest possible example is the minimization of the one�

dimensional functional �already introduced in the proof of Proposition ����

J��v� �

Z �




� �v� 	
�

�
W �v�ds�

subject to periodic boundary conditions and volume constraint
R
v � �� As �� � minimizers

v� converge to a piecewise constant function v with two equidistantly spaced jumps� The

corresponding energy density

e� � � �v� 	
�

�
W �v�

converges �in the weak! sense� to a measure � � A
�a	A
�b� where a and b are the positions

of the jumps and A
 �� �
R �
��

p
W �

We consider now the ��blowups R�sv
��t� �� v��s	 �t�� and de�ne the associated measures

�� on 

K by

�� �

Z
�

��s 
 ��s � e
��s� ds �

where ��s is the Dirac mass concentrated at R�sv
� for every s� Then the measures �� converge�

up to a subsequence� to a limit measure � on 
 
 K� Since the projection of each �� on 


is the measure associated to the energy density e�� the projection of � is the limiting energy

measure �� and we can thus write � as

� � A
�a 
 �a 	A
�b 
 �b �

where �a and �b care probability measures on K which capture the asymptotic behaviour of

minimizers v� near the jumps a and b resp� If we assume that the limit v of the minimizers v�

�#



jumps from �� to � at a� and denote by x the optimal pro�le for the transition between the

two minima of W � namely the solution of

��x � W ��x� � lim
t���

x�t� � �� �

�which is unique up to translations�� and by e � �x�	W �x� the associated energy density� then

one can prove that

�a �
�

A


Z
R

�T�x e�t� dt �

and a similar result holds for �b�
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