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Abstract: We introduce a new concept, the Young measure on micro-patterns, to
study singularly perturbed variational problems which lead to multiple small scales
depending on a small parameter €. This allows one to extract, in the limit ¢ — 0,
the relevant information at the macroscopic scale as well as the coarsest microscopic
scale (say %), and to eliminate all finer scales. To achieve this we consider rescaled
functions Rz (t) := z(s +€*t) viewed as maps of the macroscopic variable s € Q with
values in a suitable function space. The limiting problem can then be formulates as a
variational problem on the Young measures generated by R°z. As an illustration we
study a one-dimensional model that describe the competition between formation of
microstructure and highest gradient regularization. We show that the unique mini-
mizer of the limit problem is a Young measure supported on sawtooth functions with
a given period.

1. Introduction

Many problems in science involve structures on several distinct length scales. Two typical
examples are the hierarchy of domains, walls and (Bloch) lines in ferromagnetic materials
([Do], [HS]) and the layers-within-layers pattern often observed in fine phase mixtures induced
by symmetry breaking solid-solid phase transitions ([BJ], [Kh], [PZ], [WLR]).

An important feature in these examples is that the relevant length scales are not known a
priori, but emerge from an attempt of the system to reach its minimum energy (or maximum
entropy) or at least an equilibrium state. In ferromagnetic materials, for example, the typical
length scale of Bloch walls can be predicted by dimensional analysis but the size of the do-
mains is determined by a complex interplay of specimen geometry, anisotropy and (nonlocal)
magnetostatic energy.

De Giorgi’s notion of I'-convergence has proved very powerful to analyze variational prob-
lems with one small length scale and the passage from phase field models (with small, but
finite, transition layers between different phases) to sharp interface models (the rapidly grow-
ing literature begins with [MM1], [MM2], [Mo], recent work includes [AB], [BF], where many
further references can be found). More recently an alternate approach, mostly for evolution
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problems, based on viscosity solutions has been applied very successfully to situations where a
maximum principle is available (see for instance [BES], [CGG], [ES], [ESS], [KS1-2]).

Much less is known for problems with multiple small scales. Matched asymptotics expan-
sion, renormalization or intermediate asymptotics are powerful methods to predict the limiting
behaviour but few rigorous results are known.

In this paper, we propose a new approach for a rigorous analysis of variational problems
with two small scales, based on an extension of the I'-convergence approach. As in formal
asymptotics we begin by introducing a slow (i.e., order one) and a fast scale. Instead of the
original quantity v°(s), where € represents a parameter that determines the smallness of the
scales, we consider rescaled functions Rv°(t) = e Pv°(s + £°t) of the two variables s and ¢,
where €% represents the fast scale and €7 is a suitable renormalization. We then consider
s — RSv® as a map from the original domain € to a function space K (which can be chosen
compact and metrizable). Finally we derive a variational problem for the Young measure that
arises as limit of the maps s — RSv®.

The Young measure (see section 2 for precise definitions and references) is a map v from 2
to the space of probability measures on K, and for each s € Q the measure v(s), often written
as Vs, represents the probability that REv® assumes a certain value in a small neighbourhood of
s in the limit € — 0. In terms of the original problem, v gives the probability to find a certain
pattern (i.e., an element of the function space K) on the scale ¢* near the point s. We thus
refer to v sometimes as a Young measure on (micro-) patterns, or a two-scale Young measure.
A precise description is given in section 3 below.

To illustrate our concept and its application we consider the following one dimensional
problem which already shows a rather interesting two-scale behaviour: minimize

IF(v) == /0 26 + W (0) + a(s) v? ds (1.1)

among one-periodic functions v : R — R, where © and ¢ denote the first and second derivative,
respectively. A typical choice for the double-well potential W is

W(t) := (t* = 1)2

but any other continuous function W that vanishes exactly at £1 and is bounded from below
by c|v| at infinity will do.

If e = 0 and @ = 0 then there exist infinitely many minimizers, indeed any sawtooth
function with slope +1 realizes the minimum. If ¢ > 0 is small and ¢ = 0 a unique (up
to translation and reflection) minimizer is selected. It is very close to a sawtooth function
with slope £1 and two corners per period. Such a result is a typical application of classical
I'-convergence; indeed for ¢ = 0 the I'-limit of %I ¢ is only finite on sawtooth functions and
counts the number of corners (cf. the sketch of proof after Theorem 1.2).

If conversely € = 0 but a > 0 then no minimizers exist and minimizing sequences are
(essentially) given by highly oscillatory sawtooth functions with slope +1 that converge uni-
formly to O (more precisely, the Young measure generated by the derivatives of any minimizing
sequence is %(51 + %(5,1 at almost every point).

If e > 0 and a > 0 the excitation of oscillations due to a > 0 and their penalization due
to € > 0 lead to the emergence of a new structure.

Theorem 1.1. ([Mu]) Suppose that a is constant and strictly positive. Then, for € positive
and sufficiently small, all minimizers of I¢ among one-periodic functions have minimal period

Pf = Loa~ /33 + 0(52/3) ,
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where Lo := (96 fil \/W)1/3.

The derivatives of minimizers exhibit indeed a structure with two fast scales: transition
layers of order ¢ are spaced periodically with the period P¢ ~ &'/3 (see Fig. 1).
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Fig.1. Two scale structure of minimizers

This behaviour was predicted by Tartar [Ta3] on the basis of matched asymptotic expan-
sions. It can equivalently be guessed by a formal application of I'-convergence. The purpose of
our work is to create a framework in which such reasoning can be made rigorous. As corollary
of our new approach we obtain the following result (see section 3, and in particular Corollary
3.13, for precise definitions and a more detailed statement).

Theorem 1.2. Suppose that a € L* and a > 0 a.e., let v° be a sequence of minimizers of
I and let REv® and the Young measure v be as above. Then for a.e. s the measure vy is
supported on the set of all translations of the sawtooth function y;, with slope £1 and period
h = Lo(a(s))~? (see Fig. 2).

/.' o o o g > 7
—h/2 h/2

Fig.2. The sawtooth function yp

Thus the Young measure on patterns v provides a useful tool to localize the result in
Theorem 1.1. More importantly, it gives a precise meaning to the statement that v*® is locally
nearly periodic with a period Lo(g/a(s))~'/% which depends on the point s. In addition to
this, the main advantage of the new object v is, in our view, the possibility to make a formal
reasoning rigorous. Let us illustrate this in the context of Theorem 1.1.

Denote by ngr the Sobolev space of functions on the interval (0, 1) whose periodic exten-
sion belongs to HZ (R), and by Her the space of functions on (0,1) whose periodic extension
are (continuous) sawtooth functions with slope £1. Consider the functionals

1
1
T (v) ;:/ i+ LW(o) ifve H?
0

er’
€ per

and

J(v) : 5

1

/ 5] = Ao #(SvN1[0,1)) if v € Fers
0

where Ay := 2 fil VW, and Sv denotes the points of discontinuity of ©.
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We know that ([MM1], [MM2]) J¢, extended to +o00 on W'\ HZ , T-converges in the
Wt topology to J, extended to +o0o on Wit \ fe.. Thus it is plausible to replace

IF(v) =eJ(v) + /1 avids (1.2)
by )
IF(v) :=eJ(v) —}—/0 av’ds . (1.3)

The minimization of I is a discrete problem since J is only finite on sawtooth functions with
a finite even numbers of corners 0 < s7 < s < ... < sany < 1. A short calculation yields the
(sharp) bound

—

Sit1 1
/ vids > _2(Si+1 - si)°

and a convexity argument shows that for a given number 2N of corners the minimum of I¢(v)
is given by 2e AgN + N —2, and is achieved by the sawtooth function with period 1/N and
vanishing average. Finally minimization over NV yields the assertion

P =1/N ~ (484pe/a)/® = Loa™/3c'/3 |
while the energy of minimizers is
E° ~ Boa'/3e*/® where By = (24,)7° = (2 [*, vIV)*". (1.4)

The main point is to justify the passage from (1.2) to (1.3). This hinges on fact that the
scale ¢ involved in the passage from J¢ to J (removal of e-transition layers) is much smaller than
/3. By introducing the rescalings Riv(t) := e~ /3v(s + £'/3t) and by replacing derivatives of
v with respect to s by derivatives of Riv with respect to ¢, we represent I¢(v) as an integral
over functionals in Rv

1
=23 () = / F(REw) ds | (1.5)
0
where .
fe(x) ::][ [€2/342 + e7**W (&) + aa®] dt
T
for a given positive r. Now we have that f¢ I'-converge to f, where

T

f(z) = g—ﬁ#(S:bﬁ (—r, 7)) + a][ T dt

—-Tr

if = agrees with a sawtooth function on (—r,r), and is +oco otherwise. We then essentially
have to show that the I'-limit commutes with the integration in s in (1.5). More precisely we
reformulate all functionals in term of Young measures and we show that the limiting (rescaled)
energy € 2/31°(v°) of a sequence (v°) is given by

/ (vs, fds , (1.6)
0

where v is the Young measure (on patterns) generated by R°v®.
To determine the minimizing Young measure we need to know which Young measures arise
as limits of R°v®. This is not obvious since for finite € the blowups Riv® at different points s
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are not independent. In the limit, the measures v, however, become independent and the only
restriction is that vy be invariant under translation in the space of patterns K (see Proposition
3.1 and Remark 3.2). Thus the minimization of (1.6) can be done independently for each s
and one easily arrives at the conclusions of Theorem 1.2 in the case a constant. The details of
this argument are carried out in section 3.

There are a number of other mathematical approaches to problems with small scales. For
sequences v° converging weakly to 0 in L2, (RY), Tartar [Ta4] and Gérard [Gel] introduced
independently a measure on RY x N1 (called the H-measure or microlocal defect measure,
respectively) that measures how much energy (in the sense of squared L?-norm) concentrates
at € RY and high frequency oscillations with direction ¢ € SN¥~!. While this measure
has no natural length scale, there are variants with characteristic scale d(¢) — 0 ([Ge2]). An
interesting issue is to design similar objects for problems with multiple length scales; this is
easy if the oscillations are additively superimposed but, as Gérard and Tartar pointed out,
multiplicative interaction leads to new phenomena due to interference. The H-measure and its
variants can only predict the limits of quadratic expressions in v® (the expression may, however,
involve pseudodifferential operators) and hence have no direct applications to the study of I°¢.

The classical Young measure, by contrast, gives the limit of arbitrary (continuous) non-
linearities but contains no information on patterns. For further discussion of H-measures and
their relation with Young measures see [Ta5], [Ta6].

Our work was inspired by the concept of two-scale convergence, although our approach is
ultimately rather different. Two-scale convergence was introduced by [Ng] and employed by
a number of researchers, in particular Allaire ([Al], [A1B], see also [E]). The main idea is to
recover additional structure in a weakly converging sequence v¢ by using test functions of the
form ¢(s, s/e®), where ¢ is periodic in the last variable.

If v° is of the form v*(s) = wo(s) + vi(s,s/e*) + o(1), where v; is P-periodic in the
last variable and fOP v1(s,t)dt = 0 for every s, and if one takes a test function ¢(s,t) :=
P(s) + m(s)n2(t), where 72 is P-periodic and has vanishing average on the period, then

/o1 ¢(Ssia) v (s)ds = /Olvo(s)w(é’) ds + /Ol]épvl(sat) 1 (s)m2(t) dt ds .

Thus both the weak limit vy and the oscillatory term on the scale € related to v; can be
retrieved.

If, however, the period or even the phase of the oscillatory part is not exactly known, then
it can usually not be retrieved. Consider for instance

s
V¥ (5) := 0 ((1 + sﬁ)g—a)
with 0 < 8 < «, v; continuous, one periodic, and with vanishing average, and let ¢ be a test

function as above. Then )
S £
/0 ¢(s,6—a)v (s)ds = 0.

Since we do not know the precise period of the minimizers of I° (and moreover we cannot
expect precise periodicity if a is not constant) two-scale convergence does not suffice for our
purposes.

The organization of the paper is as follows. In section 2 we recall the notions of Young mea-
sures (associated to sequences of functions with values in a metric space) and I'-convergence,
We follow mainly [BL] and [Ba], the main new result concerns the convergence of functionals

5



defined on Young measures (Theorem 2.12). Section 3 is the core of the paper, we obtain the
I-limit of the functionals I° defined in (1.1) after suitable rescaling and extension to Young
measures (Theorem 3.4). As a corollary we obtain Theorem 1.2 above (see Corollary 3.13). The
proof of Theorem 3.4 is contained in section 3 up to a density result to be discussed in sections
4 and 5. More precisely, in these sections we show that every translation invariant measure
on the space K of patterns can be approximated by a sequence of invariant measures, each of
them being supported on the class of all translations of one-periodic function (see Theorems
4.4 and 4.15, and Corollary 5.11).

Acknowledgements: In the preparation of this work we benefitted from many very helpful
suggestions, and we would like to thank in particular Bernd Kirchheim for sharing his knowledge
in measure theory with us, and Luc Tartar for his encouragement and inspiration. Of course
responsability for the final outcome rests solely with the authors. G.A. would like to thank
people at the Max Planck Institute in Leipzig for making his stay there such a pleasent and
productive one.

2. Young Measures which take values in a metric space

Young measures are maps from a measure space ) to probability measures on another
space K. They arise naturally as limits of (usually rapidly oscillating) sequences of maps from €2
to K, and provide a good framework for existence of minimizers and optimal controls. Since the
pioneering work of L.C. Young [Yo1-2] there has been a large number of important contributions
to this area, often in settings that are much more general than the one discussed below. We
only mention here the fundamental papers of Berliocchi and Lasry [BL] and Balder [Bal], the
recent reviews of Valadier [Val-2] and the book by Roubicek [Ro]. A closely related but slightly
different approach was pursued by Sychev [Sy], who emphasizes the view of Young measures as
(strongly) measurable maps into a suitable metric space and the use of selection theorems rather
than the L'-L> duality. The theory of Young measures gained important momentum from
the connections with partial differential equations and the theory of compensated compactness
discovered by Tartar ([Tal-2], [DP], [MT]), and with fine phase mixtures that arise in phase
transitions modelled by nonconvex variational problems ([BJ], [CK], [KP1-2], [Sv], [Pe], [Kr]).

Our appraoch is inspired by [Ba] (see also the comments in [BL], p. 180). The main new
result concerns the convergence of functions defined on Young measures (see Theorem 2.12(iv)).
Our point of view is the following: one can obtain precise information about the asymptotics
of minimizers for a sequence of problems (such as the singularly perturbed problems studied in
[Mu]) that involve maps from 2 to K by studying a limit problem defined on Young measures.

To proceed we first fix the notation. Throughout this paper, a measure on a topological
space X is a o-additive function on the o-algebra of Borel sets. Unless stated differently,
measurability always means Borel measurability.

In the rest of this section 2 is a locally compact separable and metrizable space, endowed
with a finite measure A (however, most of the results can be extended with some care to o-finite
measures). We often suppress explicit reference to A. The case of an open set Q C R" equipped
with the Lebesgue measure suffices for the applications we have in mind.

We also consider a compact metric space (K, d), the class Meas(f2, K) of all measurable
maps from ) to K, the Banach space C'(K) of all continuous real functions on K, and the
space #(K) of finite real Borel measures on K; Z(K) is identified with the dual of C(K) by
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the duality pairing (u, g) := [, gdp for p € AM(K), g € C(K), and is always endowed with
the corresponding weak* topology. For every z € K, d, is the Dirac mass at z; &(K) is the
set of all probability measure on K (that is, positive measures with mass equal to 1).

As far as possible we shall conform to the following notation: the letter s denotes a point
in Q, and z a point in K, p is a measure in #(K), k is a positive integer, g, h, and f are real
functions on K, on 2, and on 2 x K, respectively; ¢ is a map from Q to C(K) and v a map
from Q to #(K); we often use the notation fs and v, to denote the function f(s,-) and the
measure v(s) respectively.

By L! (Q, C(K)) we denote the Banach space of all measurable maps ¢ : @ — C(K) such
that ||¢[l1 := [, |6(s)|c(k) ds is finite. The space Lgy (€, .#(K)) is the Banach space of all
weak* measurable maps v : Q — #(K) which are A-essentially bounded, endowed with the
obvious norm. More precisely, the elements of L* (Q, C(K)) and L (Q, //l(K)) are equivalence
classes of maps which agree a.e.; we usually do not distinguish a map and its equivalence class.

Remarks. Since C(K) is a separable Banach space, and {2 is endowed with a o-finite measure
A, then the Banach space L' (2, C(K)) is separable, while LS (€2, .#(K)) is never separable
unless A is purely atomic and K is a finite set.

By definition, a map v : Q — #(K) is weak® measurable if the pre-image of every set in
the Borel g-algebra generated by the weak* topology of .#(K) is a Borel subset of 2. Therefore
the map v is weak* measurable if and only if the function s — (v, g) is measurable for every g
in (a dense subset of) C(K). Since .#(K) is not separable, there are many weak™ measurable
maps that are not strongly measurable; a typical example is the map wich takes every s in an
interval I into 05 € .#(I). Indeed the o-algebra generated by the weak* topology and the one
generated by strong topology do not agree (the strong topology itself has cardinality strictly
larger than the o-algebra generated by the weak™ topology).

The space LY (Q, #(K)) is isometrically isomorphic to the dual of L'(Q,C(K)) via the
duality pairing (see [Ed], section 8.18.1)

<V7¢>L°°7L1 = /Q(V87¢S>(///,C ds B

where v € L (Q, #(K)) and ¢ € L* (2, C(K)). In the following we shall refer to the weak*
topology of LS (Q, ///(K)) as the topology induced by this duality pairing. Since L* (Q, C(K))
is a separable Banach space, every closed ball in L (Q,///(K )) endowed with the weak*
topology is compact and metrizable.

Remark 2.1. Given g € C(K) and h € L'(Q), the map h ® g which takes every s € Q in
h(s) - g € C(K) belongs to L' (€, C(K)), and the class of all h ® g with g and h ranging in
dense subsets of C(K) and L*(£2), respectively, spans a dense subspace of L' (Q2, C(K)). Hence
a bounded sequence (v*) in L3y (Q, #(K)) weak* converges to v if and only if

/(Vf,g)h(s) ds — / (vs, g) h(s)ds (2.1)
Q Q

for every g, h in dense subsets of C(K) and L'(2), respectively. In particular this condition is
immediately verified when v¥ —>v for almost every s € ().

Furthermore, on every bounded subset of L (Q, #(K)) the weak* topology is induced
by the following norm:

®(v) := Z 22.%%/9@5,%) hj(s)ds , (2.2)
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where the functions g;, with i = 1,2,..., are dense in C(K), the functions h;, with j = 1,2,.. .,
are bounded and dense in L*(Q2), and «;; := [|gilloo - [|hj||oo. In fact one easily checks that
®(v* — v) tends to 0 if and only if (2.1) holds with g and h replaced by g; and h; for all i, j.

Definition 2.2. (Young measures)

A K-valued Young measure on 2 is a map v € LS (Q, //l(K)) such that vy is a probability
measure for a.e. s € Q. The set of all Young measures is denoted by YM (Q, K); it is always
endowed with the weak* topology of LS° (Q, ///(K)), and hence metrized by the norm ® in (2.2).

The elementary Young measure associated to a measurable map u : Q@ — K is the map J,
given by

0u(8) :=Oy(s) for s €.

The set of all elementary Young measures is denoted by EYM (Q, K).
We say that a sequence of measurable maps u* : 0 — K generates the Young measure
v, if the corresponding elementary Young measures §, converge to v in the weak™* topology of

Ly (Q, #(K)).

Remarks. The map d,, is weak* measurable if and only if u is measurable, and thus EYM (Q, K)
is exactly the set of all v € L°(Q, #(K)) such that v, is a Dirac mass for a.e. s € Q.

Young measures are often defined as the weak* closure of the class of elementary Young
measures in L (Q, #(K)). By Theorem 2.3(iii) below, this definition turns out to be equiva-
lent to ours when the measure A is non-atomic. In [BL] and [Bal] Young measures are endowed
with the so-called narrow topology, which in the particular case we consider agrees with the
weak* topology of L5 (2, #(K)).

The following theorem characterizes YM (€2, K') as the closure of EYM (€2, K).

Theorem 2.3. Assume that the measure X\ is non-atomic. Then

(i) YM (2, K) is a weak* compact, convex and metrizable set in L3 (0, #(K));
(ii) EYM (Q, K) is the set of all extreme points of YM (Q, K);
(iii) EYM (Q, K) is weak* dense in YM (2, K).

Proof. These three statements are given in [BL] as Proposition 1, §I1.2, p. 144, Proposition 3,
8I1.2, p. 146, Proposition 4, §I1.2, p. 148, respectively. O

Remarks. Statement (i) holds when A is not non-atomic too. Statements (i) and (iii) show
that from every sequence of measurable maps we can extract a subsequence which generates a
Young measure, and conversely all Young measures are generated by sequences of measurable
maps.

When the measure A has atoms (namely, points with positive measure) it can be de-
composed in a unique way as the sum of a non-atomic measure A\, and and a purely atomic
measure A\, (i.e., a countable linear combination of Dirac masses), and statements (ii) and (iii)
of Theorem 2.3 should be modified as follows: the extreme points of YM (Q, K) are the Young
measures v such that v, is a Dirac mass for A, a.e. s, and the weak* closure of EYM ({2, K)
is the set of all v € YM (2, K) such that v, is a Dirac mass for A, a.e. s. The proof of this
generalization is left to the interested reader.

Theorem 2.4. (Fundamental theorem of Young measures)
For every sequence of measurable maps u* : Q — K there erists a subsequence (not
relabelled) which generates a Young measure v. Moreover v has the following properties.

(i) If f : @ x K — R is measurable, continuous with respect to the second wvariable, and
satisfies | f(s,z)| < h(s) for some h € L'(Q2), then

/ f(s,uf(s)) ds — / (vs, fs)ds as k — +o0; (2.3)
Q Q
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(ii) The maps u* converge in measure to some u : Q@ — K if and only if v is the elementary
Young measure associated to u.

(iii) Assume that K is a subset of a (separable) Banach space E, let Id denote the identity map
on E, and define u: Q) — E by

u(s) 3:/KIdst . (2.4)

Then u(s) is well-defined and belongs to the convex hull of K for a.e. s, and the maps u*
weak* converge to u in L (Q, E), that is, the functions s — (A, u*(s)) weak* converge to
s (A u(s)) in L*(Q) for every A € E*.

Regarding statement (iv), it is necessary to embed K in a linear structure in order to define
the average (or the expectation) u(s). Notice moreover that the integral (2.4) is well-defined
(e.g., as a Riemann integral) because K is compact and metrizable and Id is a continuous map
on K. Moreover u is measurable because one has (A, u(s)) = (vs, A|k), and A|g belongs to
C(K) for every A € E*.

Proof. The existence of a subsequence of (u*) which generates a Young measure v follows from
the compactness of YM (2, K) (Theorem 2.3(i)).

To prove (ii), notice that the map s — f; belongs to L'(Q,C(K)) (cf. [BL], Remark 5,
§1.1, p. 135), and then (2.3) follows immediately from the definition of weak* convergence in
L (9, 4(K)).

We assume now that the maps u* generate the Young measure d,,, and we apply statement
(i) with f(s,z) := d(z,u(s)). Then

/ d(u*(s),u(s)) ds — / d(u(s),u(s)) ds =0,
Q Q

and we deduce that u* converge to u in measure.

Conversely, assume that the maps u* converge to u in measure. Then the integrals
Jd(u*(s),u(s)) ds converge to 0 by the Lebesgue dominated convergence theorem, and by
(2.3) we obtain

/<l/5,f5> ds=0. (2.5)
Q

Since f is non-negative, (2.5) implies that for a.e. s € Q the measure v, is supported on the
set of all z € K such that f(x) = 0, that is, on the point u(s). Thus vy = d,(,), and statement
(ii) is proved.

Finally (iii) follows by applying (i) with f(s,z) := h(s) (A,z) for h € L*(Q), A€ E*. O

Before discussing functionals on YM (Q, K) we add some elementary remarks which will
be useful in the following.

Remark 2.5. If the maps u* generate the Young measure v on , then they generate the same
Young measure on every Borel subset of 2, that is, §,» weak* converges to v in L*® (A, ///(K))
for every A C ). We deduce the following locality property of Young measures: if two sequences
(uf) and (u%) generate the Young measures v; and vy, respectively, and u¥ and u} agree on a
Borel set A C Q for £ sufficiently large, then 14 and v, agree a.e. on A.

Remark 2.6. We say that the sequences (u¥) and (u%) are asymptotically equivalent when the

functions s — d(uf(s),uf(s)) converge in measure to 0 as k — +o0o. One easily checks, using
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the convergence criterion in Remark 2.1, that asymptotically equivalent sequences generate the
same Young measure.

Lemma 2.7. Let Q C R" be endowed with the Lebesque measure. Consider a sequence of
maps u*, defined on a given neighbourhood of 1, which generate a Young measure v and a
sequence of vectors 7, € R™ such that 7, — 0. Then the translated maps u*(- — 1) also
generate the Young measure v.

Proof. Take g € C(K) and h € L*(), extended to 0 on R" \ 2. Then

/h(s)g(u 5 —Tg) ds—/hs-i—rk)g( ()) =
:/(h(s+rk) ~ h(s)) ( ds+/h ) ds . (2.6)
Now the second integral in line (2.6) converges to f h(s)(us, ) ds by assumption, while the

modulus of the first one is controlled by Hh( +7E) — || | || and since the first term
tends to 0 for every h € L*(R"), we obtain

/h(s) (u*(s — 1)) ds—>/ (vs,9)d

By Remark 2.1 this suffices to prove the assertion. O

In the following we introduce integral functionals on the class of measurable maps
Meas(2, K), and we show how to extend them to all Young measures. Then we discuss some
semicontinuity properties of these extensions, and their behaviour with respect to relaxation
and I-convergence (Theorem 2.12). In order to do this, we briefly recall the definitions of
relaxation and I'-convergence (we refer to [DM], chapters 3-8, for more general definitions and
further details).

Definition 2.8. (Relaxation)

Let X be a metric space and let F : X — [0,+00]. The relaxation F of F on X is
the lower semicontinuous envelope of F, that is, the supremum of all lower semicontinuous
functions which lie below F. Alternatively F is characterized by the following formula:

F(z) = inf { likrgior.}f F(z*) : b 52} . (2.7)

Definition 2.9. (I-convergence and continuous convergence)
Let X be a metric space. A sequence of functions F° : X — [0,400] are equicoercive on
X if every sequence () such that F<(x¢) is bounded is pre-compact in X.
We say that the functions F° T-converge to F on X, and we write F° L% F, if the
following properties are fulfilled:
Lower bound inequality: Vo € X, V(2°) C X s.t. 2° — z, liminf F*(2°) > F(z);
Upper bound inequality: Vo € X, 3(2°) C X s.t. 2° = 2 and limsup F*(z°) < F(z).
The functions F© converge continuously to F' on X if F¢(x°) — F(z) whenever z° — x.

Here and in the following we use the term “sequence” also to denote families (of points
of X) labelled by the continuous parameter ¢, which tends to 0. A subsequence of (z) is any
sequence (z°*) such that ¢, = 0 as n — +o0, and we say that (z°) is pre-compact in X if
every subsequence admits a sub-subsequence which converges in X. To simplify the notation
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we often omit to relabel subsequences, and we say “a countable sequence (z°)” to mean a
sequence defined only for countably many € = ¢,, such that €,, — 0.

Remark 2.10. Given a lower semicontinuous function F' : X — [0,+0c], we say that a set &
is F-dense in X if for every z € X with F(z) < +oo there exists a sequence of points z* € 2
such that ¥ — 2 and F(z*) — F(x). A simple diagonal argument shows that the upper
bound inequality in Definition 2.9 is verified provided that for every z in some F-dense set 2
and every d > 0 we can find a sequence (z°) such that

limsupd(z®,z) < and limsup F*(2°) < F(z)+J . (2.8)

e—0 e—0

Proposition 2.11. (see [DM], chapters 6 and 7)

(i) Every I'-limit F is lower semicontinuous on X ;

) the constant sequence F° := F T-converge on X to the relazation F of F;
) Fe Iy F if and only if F 15 F;
iv) if £ -5 F and G° — G continuously, then (F° + G°) -5 (F + G);

) assume that the functions F° are equicoercive on X and F° 15 F, and that X is con-
tinuously embedded in X': if we extend F° and F to +oo on X'\ X, then F* 15 F on
X';

(vi) if the points T minimize F¢ for every e, then every cluster point of the sequence (T°)
minimizes F'.

We next consider integral functionals on measurable maps from €2 to K and their extension
to Young measures. An integrand on Q x K is a measurable function f : Q x K — [0, 4+00].
Each integrand f defines a functional on Meas(2, K) via

wrs [ futs)) ds

This functional can be viewed as a functional on elementary Young measures, and it can be
extended to YM (2, K) in two natural ways: by 400 or by linearity. Set

Jo F(s,u(s)) ds if v € EYM(Q,K) and v = §,,,
Fi(v) = (2.9)
+0o0 elesewhere in YM (Q, K),

and
Fr(v) = /(I/s, fs)ds for every v € YM (Q, K). (2.10)
Q

Clearly for every elementary Young measure 9, we have

Fy8) = F1(8.) = [ f(s.u(s) ds (2.11)

Theorem 2.12 below shows that the relaxation or the I'-convergence of functionals of the first
type always lead to functionals of the second type. We recall that the set YM (Q, K) is always
endowed with the weak* topology of L$° (Q, MK )), which makes it compact and metrizable.

Theorem 2.12. If the measure X is non-atomic the following statements hold.
(i) If the integrand f satisfies f(s,x) < h(s) for some h € L*(Q) and f is continuous on K
for a.e. s € Q, then Fy is continuous and finite on YM (Q, K).
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(ii) If fs is lower semicontinuous on K for a.e. s € () then Fy is lower semicontinuous on
YM (@, K).

(iii) The relazation of Fy and Fy on YM (Q, K) is the functional F where f is any integrand
such that fs agrees with the relazation of fs on K for a.e. s € Q

(iv) Assume that the integrands f¢ satisfy fc - fs on K for a.e. s € Q, and that the envelope
functions Ef® defined by

Ef¢(s) := inf f*(s,x) forseQ, (2.12)

zeK

are equi-integrable on Q. Then Fe -5 Fy and Fp- - Fy on YM (Q, K).

Remarks. Concerning statement (iii), we remark that such an integrand f exists in view of
Lemma 2.14 below (this is a subtle point: the map (s, z) — f,(x) may be not Borel measurable
on I x K).

In statement (iv), we notice that the assumption f: - f, for almost every s €  is quite
strong, and far from necessary. Indeed the I'-convergence of the functionals may occur even with
a more complicate asymptotic behaviour of the integrands (e.g., some kind of homogeneization),
but the analysis of such situations is beyond the purposes of this paper.

If the functions Ef¢ in (2.12) are not equi-integrable on 2, some concentration effect
occurs, and the TI'-convergence results may not hold. In particular, if [|[Ef¢||; — +oo then
Fy- and Fy- I'-converge to the constant functional +oco. On the other hand, if there exist
sets B¢ C Q such that |Bf| — 0, the restrictions of Ef¢ to the complements of B¢ are equi-
integrable on (2, and || - Ef¢ds converge to some constant ¢, then both Fye and Fy- I'-converge
to Fy + ¢ (this generalization of statement (iv) can be proved by suitably modifying the proof
below). However, both Fy- and Fy- verify the lower bound inequality without any assumption
on Efe.

Finally we notice that the functions Ef¢ are A\-measurable (see for instance [CV], Lemma
I11.39) and therefore they agree a.e. with Borel functions.

Proof of statements (i) and (ii) of Theorem 2.12.

Regarding (i), one can easily verify that the map s — f, belongs to L' (€2, C(K)) (cf. [BL],
Remark 5, §1.1, p. 135). Hence F; belongs to the pre-dual of LS (€2, .#(K)), and is therefore
weak™® continuous on YM (2, K).

Assertion (ii) is contained in [BL], Proposition 3, §II.1, p. 152, and Theorem 2, §I.3, p.
138. Alternatively one can use (i) and the approximation from below established in Lemmas
2.13 and 2.14 below. O

To prove assertions (iii) and (iv) of Theorem 2.12 we need two lemmas on approximation
by continuous integrands and a density result for Young measures v with finite energy F(v).

Lemma 2.13. Consider an integrand f and for every integer k set

Fx,s) = kA 1Ir€1fK [f(z')+k-d(z,2")] forseQ,zeK (2.13)

(here a A b denotes, as usual, the minimum of a and b). Then
(i) for every s, f¥ is k-Lipschitz on K and 0 < fF < k;
(ii) for every s, f¥ increases to the relazation of fs as k /* +oo;
(iii) there ewists a negligible set N C Q such that each f* is measurable on (2\ N) x K.

Proof. Statements (i) and (ii) follow by straightforward computations. Statement (iii) is slightly
more subtle, and indeed f¥ may be not Borel measurable on Q x K. Let k be fixed. For every
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Borel function g on Q x K the map s — inf {g(s,z) : € K} is A-measurable (cf. [CV],
Lemma I11.39) and thus it agrees a.e. in Q with a Borel function. Hence for every z € K we
can find a negligible Borel set N* C Q such that the map s — f¥(s,z) is Borel measurable on
Q\ N¥ (cf. (2.13)). Now we take N¥ as the union of all N* as z ranges in a countable dense
subset 2 of K, thus N* is a negligible Borel set, f* is Borel measurable in (Q \ N*) x 2, and
then also on (2 \ N¥) x K because f* is continuous in the second variable and 2 is dense in
K. Finally we take N := U, N*. O

Lemma 2.14. Consider an integrand f and let f, be the relaxzation of fs for every s € Q.
Then there exists a negligible measurable set N C ) such that f is measurable on (A\ N) x K.
In particular there exists an integrand f such that fs is the relazation of fs for a.e. s € .

Proof. Take N as in statement (iii) of Lemma 2.13: all the functions f* are measurable on
(2 \ N) x K, and then the same holds for f by statement (ii) of Lemma 2.13. O

Proposition 2.15. ([BL], Proposition 1, §I1.2, p. 144)
Assume that X is non-atomic. Consider an integrand f such that fs is lower semicontin-
uwous on K for a.e. s € Q, and the set

My :={veYM(Q,K): Ff(v) <1} . (2.14)

Then EYM (Q, K) N My is dense in My.

Theorem 2.16. Take f as in Proposition 2.15. Then EYM (Q, K) is F¢-dense in YM (2, K),
that is, for every v € YM (Q, K) such that Fy(v) < +oo there exist a sequence of elementary
Young measures vk such that v* =~v and Fy(v*) — Fp(v).

Proof. We may assume without loss of generality that Fy(v) = 1. Then v € My and by
Proposition 2.15 we can find a sequence of elementary Young measures (v¥) C M ¢ which
converge to v. Then Fy(v¥) < Fy(v) for every k, and since F} is lower semicontinuous, we
deduce that Fy(v*) converge to Fy(v). O

Proof of statements (iii) and (iv) of Theorem 2.12.

Statement (iii) of Theorem 2.12 follows from statement (iv) and Proposition 2.11(ii).

To prove statement (iv), it suffices to prove the lower bound inequality for the functionals
F¢<, and then the upper bound inequality for the functionals Fye (recall that Fye < Fye).

For the lower bound inequality, we begin with a simple remark: if ¢ L+ g on K, then
for every continuous function g’ such that g > ¢’ on K there holds g* > ¢’ on K for every ¢
sufficiently small (this can be easily proved by contradiction).

We fix now an integer k and we take f* as in (2.13) (we set it equal to 0 in the set N given
in Lemma 2.13(iii) to make it Borel measurable). Since fs; > f¥ on K (see Lemma 2.13(ii)),
there holds f; > f¥ — 2 h(s), and since f¥ is continuous on K (Lemma 2.13(i)), by the previous
remark for e sufficiently small there holds

C> -1 (2.15)

Consider a maps v which converge to v in YM (2, K). Then (2.15) yields

liminf Fy- (v°) = lim inf/ Ve, fo)ds
Q

)
e—0 e—0 s

e—0

> nminf/(yg,fj —1)ds = /(ys,fj)ds —IXQ), (2.16)
Q Q
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where the last equality follows by statement (i) of Theorem 2.12. Now we pass to the limit in
(2.16) as k — +o0, and by Lemma 2.13(ii) and the monotone convergence theorem we deduce

lignjélfFfa(VE) > / lim (v, f¥) ds = /Q(V.s;fs>ds =F(v) .

[¢) k—o0

We consider now the upper bound inequality. Since EYM (©, K) is Fy-dense in YM (@, K)
(Theorem 2.16) and each Fy- is finite only on EYM (2, K), by Remark 2.10 it suffices to
show that every elementary Young measure can be approximated in energy by a sequence
of elementary Young measures; more precisely, for every u € Meas({2, K) we will exhibit a
sequence of maps u® which converge to u a.e. in () and satisfy

lim/QfE(s,uE(s)) ds = /Qf(s,u(s)) ds . (2.17)

e—0
Since f¢ L5 f5 for a.e. s € Q, for every € > 0 and a.e. s € Q we can choose z5 € K so that

lim 25 = u(s) and lii% fo(s,25) = f(s,u(s)) . (2.18)

e—0

By (2.12), for every € > 0 and a.e. s €  we can also choose y¢ so that
Fo(5,45) <Ef(s) +1. (2.19)
We define the approximating maps u® : Q@ — K by

x5 if fo(s,25) < f(s,u(s)) +1,
u®(s) := (2.20)
ys otherwise.

From (2.18) we deduce that for a.e. s € Q there holds u®(s) = 2§ for € small enough, and thus
u®(s) = u(s) and f°(s,u(s)) = f(s,u(s)). We claim that the functions s — f(s,u(s)) are
equi-integrable, henceforth (2.17) follows from Lebesgue’s dominated convergence theorem. To
prove the claim, notice that by (2.20) and (2.19)

fe(s,u°(s)) <Ef(s) + f(s,u(s)) +1,

and that the functions Ef¢ are equi-integrable by assumption, while f (s, u(s)) is summable.

To complete the proof of the upper bound inequality, we have to show that for every fixed
€ > 0 the maps s — y$ and s — ¢ can be chosen Borel measurable.

In the first case, we modify Ef® in a negligible set in order to make it Borel measurable
(cf. the remarks after Theorem 2.12); hence the set of all (s,y) € Q x K which satisfy
fe(s,y) < Ef¢(s) + 1 is Borel measurable and the projection on {2 is equal to 2, and we can
apply the Von Neumann-Aumann measurable selection theorem (see [CV], Theorem III.22) to
find a A-measurable selection s — y¢ (which henceforth fulfills (2.19)); finally we modify such
a map in a negligible set to make it Borel measurable.

In the second case we need to refine the previous argument. First we set

h(s) := inf [|f6(s,:c) — f(s,u(s))| -+ d(x,u(s))] ;

zeK
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the function h® is A-measurable (see [CV], Lemma II1.39), and thus we can modify it in a
negligible set to make it Borel measurable. Hence the set of all (s,z) € Q x K which satisfy

|£5(s,2) = f(s,u(s))] + d(, u(s)) < h*(s) +¢ (2.21)

is Borel measurable and the projection on € is equal to 2, and we procced as before to find
a Borel measurable selection map s — ¢ which satisfies (2.21) for a.e. s € . One readily
checks that h®(s) — 0 for a.e. s € , and thus (2.18) holds. O

3. Application to a two-scale problem

In this section we apply the notion of Young measure developped in section 2 to the
two-scale problem presented in the introduction.

We first introduce some additional notation. As in section 2, measurability always means
Borel measurability; for sequences we follow the convention introduced after Definition 2.9.

Throughout this section (2 is a bounded open interval endowed with Lebesgue measure,
the letter s denotes the (slow) variable in 2 and v is a real function on , periodically extended
out of Q; The letter z denotes functions of the (fast) variable ¢t € R; the space of patterns K is
the set of all measurable functions z : R — [—00, +00] modulo equivalence almost everywhere,
and G is the group of functional translations on K. We represent G by R: for every 7 € R
and every function z € K, T;z is the translated function z(¢ — 7). Thus a function z in K is
h-periodic if Thz = x.

By identifying the extended real line [—oo, +00] with the closed interval [—1, 1] via the
function z — £ arctan(z), we can identify K with the closed unit ball of L*(R) and endow
it with the weak* topology. Thus K is compact and metrizable (a distance is given in (5.1)
taking n = 1) and G acts continuously on K (cf. Proposition 5.3). If the functions z* converge
to some = pointwise a.e., or even in measure, then they converge to = also in the topology
of K in particular the Fréchet space L¥ (R) embeds continuously in K for 1 < p < co. See
section 5 For more details and precise statements.

For every measure 4 on K and every 7 € R, T#p is the push-forward of the measure
according to the map T : K — K, that is, T# u(B) := p(T 1 B) for every measurable B C K.
We say that a probability measure p on K is invariant if it is invariant under the action of the
group G, namely if u(7;B) = p(B) for every B C K and every 7 € R; AK) is the class of all
invariant probability measures on K. The orbit of € K is the set &(z) of all translations of
z; this set is compact in K whenever x is periodic. In this case €, is the measure given by

h
(carg) = f o(T,2) dr (3.1)

for every positive Borel function g on K (here h is the period of z); €, is the unique invari-
ant probability measure supported on ¢(z), and we call it the elementary invariant measure
associated to x (see section 4, and in particular Lemma 4.10).

For every bounded open interval I, we denote by H?3,.(I) (vesp., WkF(I)) the Sobolev
space of all real functions on I, extended to R by periodicity, which belong to HZ .(R) (resp.,
to Wllf)’cp(]Ri)), and by #(I) the class of all functions € K which are continuous and piecewise
affine on the interval I with slope £1 only (sawtooth functions); S# is the set of all points in

where z is not differentiable, and thus the points in S NI are “corners” of z; Her(I) is the
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class of all real functions on I extended to R by periodicity and of class . on every bounded
interval. The space .(I) can be characterized as the class of all functions z € K which are
continuous on I and whose distributional derivative & is a BV function on I and takes values
+1 only; if S NI consists of the points t; < ty < ... < ty, then £3 = > (—1)?26;,, and in
particular the total variation of the measure & on [ is twice the number of points of Sz N I; in
short. ||Z|| = 2#(SzNI).

For every function v and every s € Q the e-blowup of v at s is defined by

Rew(t) := e~ 2 u(s +e'/3t) forteR. (3.2)

The e-blowup of v is the map R°v which takes every s € Q into Rév € K.

As we explained in the introduction, our goal is to identify the Young measures v €
YM (92, K') generated as € — 0 by e-blowups of minimizers v° of the functionals

IF(v) == / 2 + W(0) + av®ds (3.3)
Q
where v € H2,.(), a € L'() is strictly positive a.e., and W is a continuous non-negative

function on R which vanishes at £1 only and has growth at least linear at infinity. This goal
is achieved in several steps:

Step 1. Identify the class of all Young measures v € YM (2, K) which are generated by
sequences of e-blowups of functions v° (Proposition 3.1 and Remark 3.2).

Step 2. Write the rescaled functionals e=2/31% (v) as [, f¢(RSv) ds for suitable functionals f2
on K (cf. (3.6) and (3.7)).

Step 3. Identify the I-limit f; of f¢ as e — 0 for a.e. s €  (Proposition 3.3).

Step 4. Prove that the I-limit of the rescaled functionals e~2/3I¢, viewed as functionals of
the elementary Young measures associated with e-blowups of functions, is given by
F(v) := (s, fs) ds for all Young measures v described in Step 1 (Theorem 3.4).

Step 5. Let v be a Young measure generated by e-blowups of minimizers v* of I¢, and use
Step 4 to show that v minimizes F' (Corollary 3.11); use this fact to identify v
(Theorem 3.12 and Corollary 3.13).

Step 1. Admissible Young measures
The first step of our program consists in understanding which v € YM (Q, K) are generated
by the e-blowups R°v® of sequences (v°). We have the following result:

Proposition 3.1. Let v € YM (Q, K) be a Young measure generated by the e-blowups R°v®
of a countable sequence (v¢) C H?(Q2). Then vy is an invariant measure on K of a.e. s € Q.

Proof. Set u® := R°v® for every € > 0 and fix 7 € R. By (3.2) we have
T, (uf(s)) = uf(s —e'/?1) . (3.4)

Since the functions u® generate the Young measure v, the functions 7, u® generate the Young
measure T#v; on the other hand Lemma 2.7 shows that the functions u(- + £'/37) generate
the same Young measure as the functions u¢, and thus identity (3.4) yields T#v = v. Therefore
we can find a negligible set N, C R such that

TT#VS = v, for every s € R\ N-.
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Let now N be the union of N, over all rational 7. Then N is negligible, and for every
s € Q\ N there holds T#v; = v, for every rational 7, and by approximation also for every
real 7 (the map 7 — T7#p is weak* continuous for every u € Z(K)). Hence v; is an invariant
measure. |

Remark 3.2. The converse of Proposition 3.1 is also true: for every v € YM (Q, K) such that
vs € HK) for a.e. s € Q we can find a sequence (v°) such that R*v® generate v. The proof of
this fact is more difficult, and is essentially included in the proof of Theorem 3.4 below.

Step 2. Rewriting I¢(v) in term of R%v

We extend a by periodicity out of  and set aZ(t) := a(s + £'/3t) for every s and t. We
fix a function v € H2, () and set x5 := R5v for every s € Q. Thus

per
zo(t) = e Pu(s + 3t d,(t) = 0(s +e3t),  Ey(t) = ePu(s + /7).

Hence
i35 4 e BW(0) + e Paw? = ¥35% 4+ e 2PW (i) + aSa? (3.5)

s§s )

where all functions at the left-hand side are computed at s +&!/3t, and those at the right-hand
side are computed at t.
Now we fix r > 0 and for every z of class H? on (—r,r) we set

£o(2) = ][ 232 4 2W (3) + aSa? dt | (3.6)

Taking the average of the right-hand side of (3.5) over all ¢ € (—r,r) and then integrating over
all s € Q we get [, f&(x,)ds. On the other hand, if we integrate the left-hand side of (3.5)
over all s € Q we get ¢~ 2/3I*(v) for every ¢, and nothing changes if we take the average over
all t € (—r,r). Therefore

e 2B (v) = /Q fi(zy)ds . (3.7)

Step 3. Asymptotic behaviour of f:

We fix now s €  and consider the I'-limit on K of the functionals f defined in (3.6).

Proposition 3.3. Let s be a point in Q such that the function a is L'-approzimately contin-
uwous at s. Then the functionals f;, extended to +o0o on all functions x € K which are not of
class H? on (—r,7), I'-converge on K to

T

Ao . 2 ; —r.r
| arpsE0 ) +a@f st ifre () .

+00 otherwise,

where Ag 1= 2f_11 vVW.

Proof. This proposition is an immediate consequence of the following theorem by L. Modica
and S. Mortola (see [MM1-2], [Mo]): for every bounded open set 2 C R™ the functionals given
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by [oelVy|? +2W(y) for all y € H'(Q), such that |y| < 1 - and extended to +oo elsewhere
— are equicoercive on L'(f2) and I-converge to the functional given by Ay ||Dy|| when y is a
function of bounded variation on 2 which takes only the values +1 a.e., and +oc otherwise.
We immediately deduce that the functionals

][ 82/3£.I,=2+6_2/3W(.i')

—-r

I'-converge on on W't (—r,r) to the functional given by 22#(Sz N (—r,7)), if 2 € S (-r,7),
and by +oo otherwise.

The assumption that a is L'-approximately continuous at s implies that the rescaled
functions aS(t) := a(s + €'/%t) converge in L} (R) to the constant value a(s). Thus the
functionals f" aSz? converge to a(s)f  x? continuously on Wh!(—,r,7).

Hence the functionals f¢ are equicoercive on W11(—r,r) and I'-converge to fs. Now it
suffices to apply Proposition 2.11(v), taking into account that W1:!(—r,r) embeds continuosly
in K. O

Step 4. The main I'-convergence result

Using identity (3.7), we can view the rescaled functionals e=2/3I¢(v) as functionals on
YM (Q, K). More precisely we set

Jo(vs, f5)ds if v is the elementary Young measure
Fe(v) = associated to R*v for some v € HZ,.(Q), (3.9)

+o00 otherwise.

Hence F*(v) is finite if and only if v is the elementary Young measure associated with the
e-blowup R°v of some v € H?(2), and (cf. (3.7))

Fe(v) =e 2315 (v) . (3.10)

Propositions 3.1 and 3.3 clearly suggest the I'-limit of F*°, and indeed we have:
Theorem 3.4. The functionals F< in (3.9) I'-converge on YM (2, K) to

F(v):=

Jolvs, foyds if vg € AK) for a.e. s € Q,
{ (3.11)

+o0 otherwise.

Remark. If = belongs to Her(0, k), and €, is the associated elementary invariant measure, a
simple computation yields (cf. (5.8))

h
(€x, fs) = %#(Sx' N[0,h)) + a(s)]{] zdt . (3.12)

Hence the value of {(u, fs) does not depend on the the constant r which appears in (3.6) and
(3.8) when p is an elementary invariant measure, and the same conclusion holds for every
invariant measure by Corollary 5.11. Therefore also F' does not depend on .
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Proof of theorem 3.4

In view of future applications we will try to present a proof of Theorem 3.4 as much
independent as possible of the particular example we have considered so far. In fact, one could
be tempted to view Theorem 3.4 as a particular case of the following general result: if the
functionals F*© are defined as in (3.9) for some integrands f: which I'-converge on K to fs,
then they I'-converge on YM (Q, K) to the functional F' defined as in (3.11). Unfortunately no
such abstract result holds: the convergence of the integrands alone is not sufficient to guarantee
the convergence of the functionals.

However, the proof of Theorem 3.4 below can be adapted to a large class of problems with
few straightforward modifications, and in order to make its structure clear we have gathered
in the paragraph below the relevant properties of f and fs;. Indeed the whole proof will be
derived by these properties, with the only exception of estimates (3.30 — 32), where we use
more specific arguments based on the definition of f;.

In the following, B(s, p) denotes the open ball of center s and radius p, that is, the open
interval (s — p,s + p).

3.5. Essential ingredients of the proof

(a) Pointwise convergence of the integrands: for a.e. s € Q, f¢ - f; on K.

This condition is verified in Proposition 3.3, and is one of the basis upon which we propose
Theorem 3.4, the other being Proposition 3.1).

(b) Existence of a “nice” dense subset of S(K): for a.e. s € Q, every invariant measure
u € AK) can be approzimated in the weak* topology of P(K) with elementary invariant
measures €; associated with functions x € Her(0,h) for some h > 0, so that (eg, fs)
approzimates (u, fs).

Both sections 4 and 5 are devoted to the approximation of invariant measures by elemen-
tary invariant measures, and in Corollary 5.11 we prove that condition (b) is verified by every

fs of the form (3.8).

(¢) Uniformity in s of fs: there exists a negigible set N C Q such that, for every h > 0
and & € Her(0, h), the function s — (e, fs) is L' -approzimately upper semicontinuous at
every point of @\ N.

More precisely, formula (3.12) shows that s — (e, fs) is L'-approximately continuous at
every point where a is L'-approximately continuous. We expect that condition (c) is easily
verified by any “reasonable” integrand.

(d) Uniformity in s of the I'-convergence of f5: for every h > 0, © € Her(0,h), and a.e. 5 €
there exist functions 2 € Hf,er(O, h) which converge to x in K and satisfy

limsup][ fe(Tra®)drds < ]Z fs(Trx)drds +n(p) , (3.13)
e—0
- T€E[0,h] T€[0,h]

sEB(5,p) s€B(5,p)

where the error 1n(p) tends to 0 as p — 0. Moreover one can assume |&°| < 1.
Proposition 3.6. The integrands f¢ defined in (3.6) satisfy condition (d) above.

Proof. We prove a stronger assertion: for every s € Q and p > 0, the functional given by
the average at the left-hand side of (3.13) for all 1-Lipschitz functions z in H2, (0,h), and

per
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extended to +oo elsewhere, I'-converges on Wpl;(o, h) to the functional eqaul to the average
at the right-hand side of (3.13) for z € £ (0, k), and to +oo elsewhere.

Hence, for every x € (0, h) we could find 1-Lipschitz functions ¢ which converge to
in W1(0,h), and thus in K, and satisfy (3.13) with 5(p) = 0.

To prove the claim, we first notice that for every = € H7,.(0, h) the average at the left-hand
side of (3.13) can be written as

]{Jh [€2/332 + 723w (3)] + ][ []l as (TTac)Q] drds (3.14)

-Tr
T€[0,h]
s€B(5,p)

and for every function & € #e:(0, h) the integral at the right-hand side of (3.13) can be written

as
r

A
= #(Sen(0,h) + ][ [a(s)][ (Trw)Q] dr ds . (3.15)
T€[0,h] -
s€B(5,p)
Now we proceed as in the proof of Proposition 3.3: the first integral in (3.14) I'-converge on
W4 (0, ) to the firstintegral in (3.15), while the second integral in (3.14) converge continuously

on WLL(0,h) to the second integral in (3.15) for every 3, p.

per

]

Remark. Given positive functions f{ on a metric space X which I'-converge to f, for every
parameter s, it may be not true that the average of the functions f (with respect to a fixed
probability distribution on the space of parameters s) I-converge to the average of f;. In
particular, condition (a) above does not immediately imply condition (d). In fact, condition
(a) implies that for every z € K, 7 € R, and a.e. s € () there exists a sequence (z°), depending
on z, s and 7, such that 2 — z in K and f5(T,2°) — fs(T-x), while in (d) we essentially
require that such a sequence can be chosen independent of 7 € [0, h] and of s in a neighbourhood
of a given s.

We now start with the proof of Theorem 3.4.
We begin with the lower bound inequality. In view of Proposition 3.1 and the definitions
of F¢ and F, it suffices to show that

liminf/gz(yj,fsE)ds Z/Q<Vs:fs>ds (3.16)

e—0

where v° are the elementary Young measures associated with the e-blowup R*v° of a countable
sequence of functions v®, and v is the limit of °. Since f¢ -5 f; on K for a.e. s € Q (condition
(a) of §3.5), then (3.16) follows from Theorem 2.12(iv). We remark that since we only use the
lower bound part of the convergence result stated in Theorem 2.12; as remarked after that
theorem we do no need to verify the equi-integrability of the envelope functions in (2.12).

While the proof of the lower bound inequality follows from an quite general and relatively
simple convergence result for functionals on Young measures, the proof of the upper bound
inequality is definitely more delicate. The first step is to find a set 2 of Young measures with
relatively simple structure which is F-dense in YM (€2, K) (cf. Remark 2.10).

Definition 3.7. Let 2 be the class of all Young measures v € YM (2, K) which satisfy the
following condition: there exist countably many disjoint intervals which cover almost all of
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Q, and on every such interval v agrees a.e. with an elementary invariant measure €,, with
x € Her(0,h) and h > 0 (depending on the interval).

Lemma 3.8. The set 2 is F-dense in YM (Q, K), that is, for every v € YM (2, K) such that
F(v) is finite there exist v* € 9 such that v* — v in YM (Q, K), and limsup F(v*) < F(v).

Proof. We first recall that there exists a norm ¢ on the space of all measures .#(K) which in-
duces the weak* topology on every bounded subset, and in particular on &(K) (cf. Proposition
4.8).

Take v € YM (Q, K) such that [(vs, fs)ds is finite, and fix n > 0. By condition (b) of
§3.5, for a.e. 5 € Q we can find h(5) > 0 and z5 € Her (0, h(5)) so that

¢(€zs —vs) < and (€ass f5) < {vs, f5) +1 - (3.17)
For a.e. 5 € Q) we can also take p(5) > 0 such that, for every p < p(5) there holds
][ d(vs —vs)ds <n and (vs f5) < ][ (Vs, fs)ds + 1 , (3.18)
B(5,p)
and (cf. condition (c) of §3.5)
et ds < (e fd 4. (319
B(5,p)
Putting together (3.17 — 19) we get
][ ¢y, —vs)ds <21y and ][ (€xs, fs)ds < ]Z (vs, fs)ds + 31 . (3.20)
B(5.p) B(5,p) B(3:p)

Using Besicovitch covering theorem (see [EG], chapter 2) we cover almost all of Q by countably
many disjoint intervals B; = B(5;, p;) with p; < p(5;). For every i we set z; := z5,, fi := fs,,
and finally we define 1" € 2 by

vl :=¢,, if s € B; for some i.

s

Then v belongs to 2, and (3.20) yields

vl —vg)d z; — Vs)d i| = 2n|Q| , .
/Qoxs )ss;/&wez )ds < Y20 = 2l (3.21)

and

/ Wi, fs) ds_Z/ (€xss fs) ds<2[/ (vs, fs) ds + 3n|B; |]
:/Q(Vs,fs)ds+3n|ﬂ| . (3.22)

Inequality (3.21) shows that ¢(vs — V) converge in measure to 0 as n — 0, and then pointwise
a.e. provided that we pass to a suitable subsequence. Hence v? weak* converge to v, for
a.e. s € Q, and v" converge to v in YM (2, K) (cf. Remark 2.1). Inequality (3.22) yields
limsup F'(v") < F(v), and the proof is complete. O
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According to Remark 2.10, to prove the upper bound inequality for the functionals F*
— thus completing the proof of Theorem 3.4 — it suffices to show that every v € 2 can be
approximated (in energy) by e-blowups of functions on 2. We first construct the approximating
sequence for constant Young measure v, and then we show how to localize such a construction
to adapt to a general Young measure in 2.

Let be given a bounded interval I, a function x € £ (0, h) with A > 0, and a sequence
of functions z¢ € HZ,,(0,h) which converge to z in K and satisfy

per
lim sup ][ fi(Traf)drds < ][ (€x, fs)ds + 1 . (3.23)
=0 T€[0,h] sel
sel

For every ¢ > 0 we choose 7° € [0, h] and we set

v¥(s) = e'/327 (e /35 — 7°) for every s € R. (3.24)

Lemma 3.9. The functions v° in (3.24) belong to H3,.(0, he'’?), and the e-blowups Rv®
generate on I the constant Young measure €,. Moreover the numbers 7° in (3.24) can be
chosen so that

lim sup][ fE(R°v) ds < ][(ew, fs)yds+mn . (3.25)
I I

e—0

Proof. Let v be a Young measure on I generated by a subsequence of R°v°. For every s € R
we have (cf. (3.2))
Ri £ = 1—‘(.,.5_571/35).27E . (326)

Since z¢ tends to z in K, Rv® tends to the orbit €(z) for every s € , and then 7, is
supported on &(z) for a.e. s. Thus vs; = €, because 7s is invariant (Proposition 3.1), and the
only invariant probability measure supported on &(x) is €.

Let us consider the second part of the assertion. By identity (3.26) we get

/fSE(REUE) ds = /fg(T(T576—1/35)$E) ds
I I

Now we choose 7¢ so that the integral at the right-hand side is not larger than the average of
J1 £ (T —c=1/35)2°) ds over all 7 € [0, h], and taking into account that z° is h-periodic we get

/Ifg(R%E) ds<][ /fs (r—e-1/352°) ds dT—][ /fs (T.) ds

Finally we pass to the limit as ¢ — 0 and apply inequality (3.23). O

We have thus shown that the e-blowups of the functions v¢ defined in (3.24) converge in
energy to the constant Young measure vs = €, provided that the functions x° fulfill (3.23).
Using condition (d) in §3.5 we can show that such approximating sequence exist “locally” for
every v € 9.

Lemma 3.10. Let be given v € 2 and n > 0. Then there exist finitely many intervals I;
with pairwise disjoint closures which cover  up to an exceptional set with measure less than
1, such that the following statements hold for every i:

(i) there exist h; > 0 and x; € Her(0, h;) such that vs = €, for a.e. s € I;;
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(ii) for every e > 0 there exist 1-Lipschitz function x5 € ngr(O,hz-) which converge to x; in

K and satisfy (3.23) (with I, h,z,z° replaced by I;, h;, z;, x5 ).
Proof. Using the fact that v belongs to 2 and the uniformity assumption (d) in §3.5, for
almost every point § € Q0 we can find an interval of the form I = B(5,p) C Q with arbitrary
small p, and a function z € He,(0,h) for some h > 0, so that v, = ¢, for a.e. s € I, and
there exist functions z° € HJ,,(0,h) which converge to 2 in K and satisfy inequality (3.13)
or, equivalently, (3.23) (notice that the right-hand sides of (3.13) and (3.23) agree because
I = B(5,p) and (e, fs) is the average of fs(T-x) over all T € [0, h]).

We apply now Besicovitch covering theorem to find finitely many intervals of the type
above whose closures are pairwise disjoint and cover ) up to an exceptional set with measure
less than 7. |

We can now complete the proof of the upper bound inequality.
Since Z is F-dense in YM (2, K), by Remark 2.10 it suffices to construct, for every § > 0
and v € 2, functions v* € H2, (Q) so that the elementary Young measures v° associated with

the e-blowups R°v® satisfy (cf. (2.8))

limsup ®(v°* —v) < and lim sup/ fs(RSv%) ds < / (vs, fs)ds+ 6, (3.27)
Q Q

e—0 e—0
where ® is the norm which metrizes YM (Q, K) defined in (2.2).

We fix v € 2,6 > 0 and n > 0 (which will be later chosen in order to get (3.27)). We take
I, z;, h; and 25 as in Lemma 3.10, and define v§ as in (3.24), namely

vi(s) = e'/Pas (e /35 — 7%)  for every s € R,

where 77 are chosen as in Lemma 3.9. We denote the intervals I; by (a;,b;), ordered so that
a; < b; < aj4+1 < b1, and set
v (s) :=v5(s) if s € (a; + re'/3,b; — ret/?) for some i. (3.28)

It remains to extend the function v out of the union of the intervals (a; + re'/?,b; — re'/?).

Take a positive number M (larger than 1 and r) such that |z;(t)| + 1 < M for every i
and every t € R. Since the functions z§ converge to z; in K and are 1-Lipschitz, then they
also converge uniformly; in particular, for e sufficiently small, |25 (t)| < M for every i, ¢, and
thus |v°(s)| < Me'/? for every s where it is defined. Notice that M depends on the choice of
z;, and ultimately on 7; therefore the dependence on M cannot be neglected in the estimates
below.

For ¢ sufficiently small, we extend v° to the interval [b; — re'/3 a;; 1 + re'/?] as shown in
the figure below:

MeWBo o T ve out of J
extension of v¢ on JI
eBo N
Ld
~M£1/3 ~& ~ 61/3 ~Mgl/3
bi-rels3 a1 trets

Fig.3. Construction of v* in J := [b; — r€1/3, ai+1 + r€1/3]
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More precisely, v° takes alternately the values +1 and —1 in a sequence of intervals with
length of order '/% (except the first and the last one, which have length of order Me'/?); two
consecutive intervals are saparated by a transition layer (marked in grey in the figure above)
with length of order ¢ where #° is of order e '. The value of v* is of order £!/? in each interval
except the first and the last one where it is of order Me!/3,

Let us prove the first inequality in (3.27).

Let 7 be a Young measure generated by any subsequence (not relabelled) of the e-blowups
R°v°. Since v® and v$ agree on (a;+re'/? b; —rel/?) (cf. (3.28)), given a point s € I; = (a;.b;),
the e-blowups Riv. and Rivf agree on the larger and larger intervals

(= (s—a)e P +r (bi—s)e?=r),

and therefore their distance in K vanishes as ¢ — 0 (Proposition 5.1).

Hence R°v, and R*v{ generate on I; the same Young measure (see Remark 2.6), that is,
Vs = €, for a.e. s € I; (see Lemma 3.9). On the other hand ¢,, = v, for a.e. s € I; by
construction (cf. Lemma 3.10), and then v and 7 agree on the union of the intervals I;; taking
into account that the complement in €2 of this union has measure lower than 7, by the definition
of @ in (2.2) we get ®(7 — v) <. This gives the first inequality in (3.27), provided we choose
7 smaller than §.

Let us consider now the second inequality in (3.27). For simplicity we assume that the
function «a in the definition of the energy I° is bounded. The proof in the general case requires
some additional care when dealing with the estimates (3.29 — 32) below.

If s belongs to the interval (a; 4+ 2re'/?,b; — 2re'/?) for some i, the function RSv® agrees
with REv; on the interval (—r,7), and then (cf. (3.28), (3.6))

FE(Rv%) = £3 (RGw5) - (3.29)
If s belongs to (b; + Me'/? a;y1 — Me'/?), RSv® agrees on (—r,r) with the e-blowup of the
extension described in figure 2, and then it is of order 1, while its derivative is always +1 or —1

apart a number — not exceeding 2r + 1 — of transition layers with size €2/3, where the second
derivative is of order e72/3. A direct computation gives the estimate

fi(Riv%) = 0(1) . (3.30)

If 5 belongs to (a; — Me'/? a;) or (b, b; + Me'/?), then agrees on (—r,7) with the e-blowup of
the extension described in figure 2, but it is now of order M, and reasoning as before we get

FE(Rw) = O(M2) . (3.31)

Finally, if s belongs to (a;, a; + 2re'/?) or (b; — 2re'/?,b;), then REv® agrees with the e-blowup

of v§ on part of the interval (—r,7) and with the e-blowup of the extension described in Fig.
3 elsewhere. By coupling estimates (3.29) and (3.30), we get

f2(RS®) < f5 (Rvf) + O(M?) . (3.32)

Now we put together (3.29 — 32), and since the measure of the complement of the union of all
I; is less than 7, we obtain

/ fR)ds < Y / F2(REvE) ds + O(1) -+ O(M?) - £1/2
Q i I;
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Passing to the limit as € — 0, and recalling inequality (3.25), we get

limsup/fE REv® ds<2[/ (€x;y fs) ds+n|I|] +0(1)n /Q(I/s,fs>d8+0(1)77

e—0

which gives the second inequality in (3.27) provided that we choose i small enough. |

Step 5. Minimizers of F

An immediate consequence of Theorem 3.4 is the following;:

Corollary 3.11. For everye > 0, let v° be a minimizer of I on H2, (), and let v be a Young

per
measure in YM (2, K) generated by a subsequence of the e-blowups R°v®. Then v minimizes

the functional F in (3.11), which means that for a.e. s € Q the measure vs minimizes {u, fs)
among all invariant probability measures p on K.

Proof. Apply Proposition 2.11(vi) and Theorem 3.4, taking into account (3.9), (3.11), and
(3.10). O

Now we want to show that every Young measure generated by the e-blowups of the min-
imizers of I is uniquely determined by the minimality property established in the previous
corollary. For every h > 0, let y; be the h-periodic function on R given by

yn(t) = [t| — h/a for t € (—h/2,h/2] (3.33)

(cf. Fig. 2 in section 1). We have the following.

Theorem 3.12. Fiz s € Q and let fs be given in (3.8). If p minimizes (u, fs) among all
p € AK), then [i is the elementary invariant measure associated with the function yp,(s) where

h(s) := Lo(a(s))~"/? | (3.34)

and Ly := (4849)'/% = (96 [* VIW)'/3.,

Taking Corollary 3.11 into account, we immediately deduce the following, which concludes
our analysis of the asymptotic behaviour of the minimizers of <.

Corollary 3.13. For every ¢ > 0, let v° be a minimizer of I° on H2..(2). Then the -

per
blowups R°v® generate a unique Young measure v € YM (Q, K), and, for a.e. s € Q, vy is the

elementary invariant measure associated with the sawtooth function yps)-

Proof of Theorem 3.12
Throughout this subsection s € (2 is fixed, and for simplicity we write h, 7 instead of h(s),
Yn(s)- We begin with a computation which determines the optimal periodic function .
Lemma 3.14. The measure e minimizes (i, fs) among all invariant measures .

Proof. Fix © € Ae(0,h) with A > 0. Up to a suitable translation, we may assume that
Sz N[0, h] consists of the points tg =0 <t <ty <...<t, =handn= #(Sﬁv N [O,h)) is an
even number. For every i = 1,...,n, let I; be the interval (¢;_1,t;), h; := |I;| = t; — t;—1, and
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p; be the average of z on I;. Thus, recalling (3.12) and taking into account that & is constant
+1 on each I;, we get

(€x, fs) = %n%—a(s)]{)hﬁdt = Z%[AO + a(s) /I mgdt}

i ;

&= hiT4 hi/2

= Z - |:h_i + a(s)][hi/z(t +pz')2dt]
h

P h; 12
We rewrite the last identity as
n
(e fi) = 0 2 glhi,p) (3.35)
i=1
where we have set
g(h,p) := % %hg +a(s)p? . (3.36)

A simple computation shows that (h/2,0) is the unique minimum point of g. Furthermore, for
xz =g we have n = 2, hy = ho = h/2, p1 = p» =0, and (3.35) becomes

(€5, fs) = g(h/2,0) = ming . (3.37)
Hence, (3.35), (3.37), and the fact that > h;/h =1, yield

n

h; .

<6z7fs> = Z #g(hiapi) > ming = <67§7fs> .
i=1

We have thus proved that ey minimizes (i, fs) among all elementary invariant measures p. We

conclude by a density argument based on Corollary 5.11. |

A careful examination of the previous proof leads to the conclusion that no other elemen-
tary invariant measure minimizes (u, fs) among all p € #(K). However, proving Theorem 3.12
means showing that no other invariant measure minimizes (u, fs), and this requires a more
refined argument.

Since we know that every invariant measure can be approximated by elementary invariant
measures, we first look for general criteria which ensure that a sequence of elementary invariant
measures converge to a given elementary invariant measure.

Lemma 3.15. Let be given & € Fer(0,h) with h > 0, and, for k =1,2,..., ¥ € Fer(0, h¥)
with h* > 0. Then the elementary invariant measures e, weak* converge to ez if (and only
if) the probability that 7 € (0, h*) satisfies d(TTack, 6’(:3)) > ¢ vanishes as k — 400 for every
€ > 0 (here d is the distance in K and O(%) is the orbit of Z).

Proof. Let p be an invariant measure on K. Since €z is the only invariant measure supported
on the orbit of Z, y = €z if (and only if) p is supported on the compact set €(Z), that is to
say, (A:) = 0 for every € > 0, where A, is the open set of all z € K such that d(m, ﬁ(ic)) > €.

Now, if p is the limit of (a subsequence of) the measures €., which in turn are the averages
of the Dirac masses centered at T,z* over all 7 € (0, h*) (see (4.6)), then

u(Ae) <liminfegr(A4:) < liminfi|{7 € (0,n*) : Tra* € A} .
k—o0 k—oo hk
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Since the last term in the previous line vanishes by assumption, it follows that u = €z, and the
assertion is proved (the converse is immediate). O

The criterion in the previous lemma can be consistently improved when Z has the special
form described in (3.33). For every k, we define n* I¥ h¥ p% as in the proof of lemma 3.14,
replacing x and h by x* and h*, and consider the probability measures on (0,+00) x R given

by

hk
A= Okt - (3.38)
i
Lemma 3.16. Let be given h > 0 such that
1
Jim | (1 + E) d\*(h,p) = 0 (3.39)

for every closed set C C (0,400) x R which does not contain the point (h/2,0). Then e,
weak* converge to ez with T := yj,.
Proof. In view of Lemma 3.15, it suffices to show that for every € > 0 the probability that
7 € (0, h¥) satisfies d(T,z*, 0(&)) > e vanishes as k — +o0.

Let € > 0 be fixed. We can assume with no loss in generality that h* — 400 as k — 400
(if = is h-periodic then it is also nh-periodic for every positive integer n). We also use the fact
that, since the distance on K is the one in (5.1) for n = 1, by Proposition 5.1 and Remark 5.2
there exists m > 0 such that

d(w1,22) < /24 ||w1 — @2l poo(—mym)  for 1,22 € K. (3.40)

The proof is now divided in two steps.

Step 1. Consider 6 > 0 and T € (0, h*) such that

(a) 7 belongs to (m, h* —m);

(b) for every index i such that I¥ and (1 —m, T +m) intersect, there holds |h¥ — h/2| < §;
(c) there ewxists an index j such that If and (T —m, T+ m) intersect, and |p§| <4.

Then, for a suitable choice of the parameter ¢ (not depending on T and k), there holds
d(T_,a*, 0(z)) <e . (3.41)

More precisely, in case that z* has slope —1 in Ij’?, we prove that z* is close to Ty, % (the
case when z* has slope +1 in I;c can be treated in a similar way). We set Z := T}, %, and notice

that z*(t;) = pf - h§/2 and Z(t;) = #(0) = —h/4; by assumptions (b) and (c) we infer
3 _ x 1 . 5
[2#(15) — 2(t)| < 9] + g1nk — B2 < 25 (3.42)

We label the points of SZ as #;, so that #;_; < t; for every i and ¢; = t; (¢; belongs to Sz
because 0 belongs to S%), and we let I; denote the interval (¢;_1,%;).

=1 T+m

Fig.4. The functions z* and z := T}, in (1 — m, T + m)
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Thus z* and Z have the same derivative in I; N I¥ for every i (cf. Fig. 4); since tj =t; by
construction, assumption (b) implies that the measure of I; \ IF is less than § when i = j,j +1,
less than 20 when i = j — 1,5 + 2, less than 36 when i = j — 2,5 + 3, and so on.

Taking into account that the total number of indeces i such that I; and (1 — m, T + m)
intersect does not exceed N := 1+ 4m/h, we obtain that |I; \ I¥| < N§ for all such 4, and then
the derivatives of 2* and Z agree in (7 —m, T + m) minus a set with measure less than N24.
Using (3.42) we deduce that for every t € (1 — m, 7 +m)

|2* (1) — 2(t)] < |a*(t;) — z(¢;)] +/‘ &k —z| <2(14+ N?)6 .

J

Therefore, if we choose § so that 2(1 + N?) 4§ < £/2, by (3.40) we get
d(T_ra" Ty, %) = d(T—_2",T_;z) <e/2+||a" — Z|| oo (r—m,r4m) <€

which implies (3.41).

Step 2. The probability that 7 € (0,h*) does not satisfy either assumption (a) or (b) or (c)
above vanishes as k — +oo.

The probability that (a) fails amounts to 2m/h*, which vanishes as k — +oo because
h¥ — +o0.

The points 7 € (m, h* —m) which do not satisfy (b) belong to the union of all interval
(t¥ | — m,t* + m) over all indeces i such that |h¥ — h/2| > §; therefore they occur with
probability not exceeding

k
oo /C (14 2) X' (h,p)

i such that
|hk—h/2|>6

where the measures A* are defined in (3.38) and C is the set of all (h, p) such that |h—h/2| > 4.
The integral at the right-hand side vanishes as k — 4+o0c by assumption (3.39).

The points 7 € (0,h*) which do not satisfy (c) belong to the union of the intervals
(ti—1 — m,t; +m) over all indeces i such that |p¥| > d; therefore they occur with probability

not exceeding
> i :/ d\¥ (h, p)
hk o ) )

i such that
Ip} >4
where C' is the set of all (h,p) such that |p| > J, and again the integral at the right-hand side
vanishes as k — +oo by (3.39). O

We can now conclude the proof of Theorem 3.12.

Let & minimize (u, fs) among all p € #(K). By Lemma 3.14 and equality (3.37) we
deduce that (g, fs) = (€5, fs) = ming, with g given in (3.36). By applying Corollary 5.11 we
find elementary invariant measures €,x, with z* € Fe.(0, h¥) for some h* > 0, which converge
weakly* to g and satisfy

(ewkafs> - (ﬂafs) =ming . (343)

Hence, to prove the assertion of Theorem 3.12, namely that g = €z, it suffices to show that
assumption (3.39) of Lemma 3.16 is verified when h is equal to h.
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Possibly passing to a subsequence, we may assume that the measures \* weak* converge
on [0, +00] x [—00, +00] to a probability measure A. Since g, extended to +oco at the boundary
of (0,400) x R, is a positive lower semicontinuous function, (3.35) and (3.43) yield

ming < (A, g) < liminf(\*, g) = lim (e , fs) = ming .
k—o00 k—o00

Hence (A, g) = min g, which implies that A is supported on the set of all minimum points of g,
that is, A is the Dirac mass centered at (h/2,0).

Moreover (A\*, g) — (), g), which implies that the measures g- A\F converge weakly* and in
variation to g - A, which is supported at the point (h/2,0). Therefore, for every closed set C
which does not contain (h/2,0) there holds

lim [ gd\*=0.

k—o0 C

This implies (3.39) because, up to a suitable multiplicative constant, the function g is larger
than the function 1+ 1/h.

4. Approximation of invariant measures on abstract spaces

In this section we will focus on the approximation properties of probability measures
on a compact metric space K which are invariant under the action of a certain group G of
transformations of K. In the applications we have in mind K is a space of functions on R"
and G is the group of translations (cf. section 3); this specific case is discussed in detail in
Section 5. Since the case of a non-commutative group G presents some additional difficulties
which would make the exposition of the results more technical, we restrict our attention to the
commutative case; the non-commutative case is briefly discussed at the end of this section.

We first fix some notation. Throughout this section (K, d) is a compact metric space,
A K) is the Banach space of finite real Borel measures on K and #(K) is the subset of all
probability measures; we usually denote by the letter z a point of K, and by the letter u a
measure on K. If K' is a locally compact topological space, u is a measure on K, and f is a
Borel map from K to K', then the push-forward of p on K' via f is the measure f#u given
by (f#u)(B) := p(f~1(B)) for every Borel set B C K'.

It is also given a topological group G which is first countable and locally compact, and
acts on K via the continuous left action (T, xz) — T'x; every element of G is regarded as an
homeomorphism of K onto itself, and is usually denoted by the capital letter 7. Given a map
g and a measure ju defined on K, g7 and T#p denote the composed function g o T and the
push-forward of p according to T, respectively. Notice that T#6, = 67, for every x € K, and
S 9d(T#p) =[5 gT dp for every p, g. A measure p on K is called invariant if it is invariant
under the action of G, that is, if T#u = p for every T € G; H(K) denotes the class of all
invariant probability measures on K.

If H is a subgroup of G, G/H is the left quotient of G, and [T'] is the equivalence class in
G/H which contains T'. If H is closed then G/H is a Hausdorff locally compact space; if in
addition G/H is compact we say that H is co-compact. The orbit of a point z € K is the set
O(x) :== {T(z) : T € G} (notice that G is not assumed to act transitively on K). The point z
has a period T if Tx = x; the set of all periods of z is denoted by P(z). Thus P(z) is always
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a closed subgroup of G, and P(z) = P(z') whenever z and z’ belong to the same orbit. We
distinguish some cases:

e when P(z) is not co-compact we say that x is non-periodic;

e when P(x) is co-compact we say that x is periodic;

e when P(z) includes a co-compact subgroup H we say that x is H -periodic;

Notice that the map [T] +— Tz is continuous and one-to-one from G/P(x) to O(z). If
P(z) is co-compact, then €(z) is compact and homeomorphic to G/P(z).

We assume now that G is commutative. Thus the quotient G/P(xz) is also a group, and if
in addition z is periodic, G/P(z) is a compact group which acts continuously and transitively
on the orbit of . Therefore there exists a unique probability measure €,, called the elementary
invariant measure associated to x, which is supported on €(x) and is invariant under the action
of G/P(z) (see for instance [Ru], Theorem 5.14, or [Fe], section 2.7; cf. also Lemma 4.10 below,
and the remarks on the non-commutative case at the end of this section). It may be easily
verified that €, is also invariant under the action of G, and that €, = €, when x and z’ belong
to the same orbit.

The elementary invariant measures are the simplest invariant probability measures we can
construct on K, and within the class of invariant probability measures, they play a role similar
to Dirac masses within the class of all probability measures (cf. Remark 4.7). So the following
question naturally arises.

Problem: Under which hypothesis is it possible to approzimate (in the weak* topology of
AM(K)) every invariant probability measure by conver combinations of elementary invariant
measures?

When @ is a compact group, such an approximation is easily obtained by exploiting the
existence of a finite Haar measure on G (see Remark 4.6). When G is not compact we can
obtain this approximation under some additional hypothesis on G and K, to state which we
need some more definitions.

Let H be a co-compact subgroup of G and let 7 : G — G/H be the canonical projection
of G onto G/H. Since we assumed that G is commutative, G/H is a compact group and
then there exists a unique (left) Haar probability measure ® on G/H, that is, a probability
measure which is invariant under the left action of G/H on itself (see [Ru], Theorem 5.14, or
[Fe], section 2.7).

Definition 4.1. Let H be a co-compact subgroup of G, and let @, denote the unique Haar
probability measure on G/H. We say that a Borel set A C G is a representation of the quotient
G/H if A is pre-compact in G and 7 is one-to-one from A to G/H. We denote by ®4 the
push-forward of the measure ®g 5 onto A according to the inverse of m restricted to A.

Notice that such an inverse is a Borel measurable map, and then ® 4 is well-defined; in
fact 7#® 4 = O /- In the following G/H and A are always endowed with the measures ®¢ /g
and ® 4 given above. When no confusion may arise, we omit write explicitely the measure ® 4
(resp. ®¢/p) in integrals on A (resp. on G/H).

The existence of a representation is guaranteed by the following result.

Proposition 4.2. A representation A of G/H exists for every co-compact subgroup H .

Proof. Since the topology of G is first countable, it can be metrized by a distance dg which
satisfies dg(T1,T) = da(STy, ST») for every T1,T5,S € G (cf. [Ke], chapter 6, exercise O, or
[Bi]). Thus G/H can be metrized by the quotient distance

dG/H([Tl]; [T2]) ;= inf {dG(STl,T2) . S S H} for [Tl], [Tz] S G/H
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The first step is to construct a compact set K C G such that 7(K) = G/H.

Since G/H is compact, then it is totally bounded with respect to the quotient distance,
and for every integer k¥ > 0 we can find finitely many points y¥ in G/H (the total number
of which depends on k) so that the balls with radius 2~ (k+2) centered at these points cover
G/H. We choose a representant TF in every equivalence class y* by the following inductive

procedure: if k = 0, we just take T in 7= (y9); if k& > 0, for every y¥ there exists y*~* such

j
that de/y(yf,y5~") < 27" and by the definition of dg,; we can choose T} in 7 *(yf)

2
such that dg (T}, T}") < 27%. According to this procedure, for every TF and every integer

h < k, there exists T;’ such that
da(TF, TP <27k 27k 4 427D < 9=h

Let K be the closure of the collection of T} for all k, i. Thus K is closed and totally bounded
(because for every h > 0 it is covered by the closed balls with radius 2~ " centered at the points
T with h < h, which are finitely many), and therefore compact. hence m(K) is compact too,
and contains all points y¥, which are dense in G/H, that is, 7(K) = G/H.

Finally we consider the multifunction which takes every y € G/H into the non-empty
closed set 77! (y) N K. Since the graph of this multifunction is closed in (G/H) x K, by
Theorem II1.6 in [CV], we can find a Borel selection, namely, a Borel map o : G/H — K such
that 7(o(y)) =y for every y € G/H. We conclude by taking A equal to the image of o (which
is Borel measurable because G/H is compact and o is one-to-one, cf. [Fe], §2.2.10). O

Definition 4.3. A set X C K is called uniformly approximable if for every ¢ > 0 there exists
a co-compact subgroup H and a representation A of G/H such that for every point x € X we
may find an H-periodic point T € K which satisfies

/ d(Tz,TZ)d®4(T) < . (4.1)
A

Roughly speaking this definition means that we can approximate every point z € X by
a periodic point Z so that not only Z is close to z, but also T'Z is close to Tx for “most” T.
Moreover we ask that this approximation is in some sense uniform in z. Using the compactness
of K it may be proved that the notion of uniform approximability depends only on the topology
of K (and on the action of G) but not on the specific choice of the distance d.

We can now state the main result of this section.

Theorem 4.4. If K is uniformly approzimable in the sense of Definition 4.3, then every
invariant probability measure p on K can be approzimated (in the weak* topology of #(K))
by a sequence (ug) of convex combinations of elementary invariant measures. More precisely,
each py can be taken the form ), o€z, where all points z; are H-periodic for some co-compact
group H (which depends only on k).

Comments and remarks on Theorem 4.4

We do not know if the uniform approximability assumption in Theorem 4.4 is necessary
or not. In particular we do not know if it suffices to assume that periodic points are dense in
K (which would already give a large class of elementary invariant measures).

Remark 4.5. When G is the additive group R™ and H is a subgroup of the form (aZ)™ with a >
0, a representation of G/H is given by the cube A := (0,a)" endowed with Lebesgue measure
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%, suitably renormalized. In particular K is uniformly approximable when the following
condition holds: for every € > 0 there exists a > 0 such that for every € K we may find an
(aZ)™-periodic point Z which satisfies

][ ATz, T7) dL,(T) < ¢ .

Te(0,a)™

Remark 4.6. If G is compact it is always possible to approximate an invariant probability
measure by convex combinations of elementary invariant measures. A simple direct proof of
this fact can be obtained by considering a (left) Haar probability measure ® on G. To every
u € P(K) we can associate an invariant probability measure Py by taking the average of all
T# with respect to the measure ®, that is

(Pi,g) == /G (T# 4, g) d(T) = (4i; [, gT dB(T)) Vg € C(K). (42)

Thus P is a projection of Z(K) onto #(K) that is continuous with respect to the weak*
topology, and takes every Dirac mass d, into the elementary invariant measure €, (recall that
every point of K is periodic because G is compact). Let now p be an invariant measure on K|
and let pg be convex combinations of Dirac masses which converge to u. Then the measures
Py, are convex combinations of elementary invariant measures, and converge to Py = p.

Remark 4.7. The set S(K) of all invariant probability measures on K is weakly* compact
and convex, thus it is natural to look for its extreme points: indeed every point in a compact
convex subset C of a separable locally convex space (in our case, .#(K) endowed with the
weak™® topology) can be approximated by convex combinations of extreme points of C' by the
Krein-Millman theorem (cf. [Ru], Theorem 3.21).

It may be proved that p is an extreme point of #(K) if and only if every Borel set invariant
under the action of G has either full measure or zero measure (see [Mal], chapter II, Proposition
2.5, when @ is the group generated by one transformation). Clearly every elementary invariant
measure €, is an extreme point of #(K), but in general the converse is not true, even if periodic
points are dense in K (consider for instance the product K := (R/Z) x (N U {oc}) and the
group G generated by the transformation T'(z, k) := (z + ag, k) where all a;, with finite &k are
rational numbers and converge to a, irrational).

The situation simplifies when G is compact. In this case the quotient K/G is a compact
metrizable space, and for every u € .#(K) we may define the push forward 7#u € .#(K/G),
where 7 is the canonical projection of K into K/G. Then n# is a weak* continuous operator
which maps #(K) into P(K/G) bijectively, and takes elementary invariant measures into
Dirac masses. Hence the extreme points of #(K) are the elementary invariant measures only.
If G is not compact, K/G may be neither metric nor even Hausdorff, that is, the quotient
topology may not separate points (cf. the remark after Proposition 5.3).

Proof of Theorem 4.4

It is convenient to introduce the following norm on #(K): we take a sequence (gj) of
Lipschitz functions which is dense in C(K), we let ay := ||gk||co + Lip(gx), and set

IEDY M : (4.3)



It can be easily shown (cf. Proposition 4.8 below) that ¢ induces the weak™ topology on every
bounded subset of .Z(K). For the rest of this section we only consider measure in the class
of probability measures #(K), which is always endowed with the weak* topology of .Z(K).
Therefore, in the following the notions “approximation” or “distance” always refer to ¢.

Proposition 4.8. The function ¢ given in (4.3) has the following properties:
(i) ¢ is a norm on A(K), and ¢(u) < ||u|| for every u;

(ii) ¢ induces on every bounded subset of M(K) the weak* topology;

(iii) for every x,y € K one has ¢ (8, —6,) < d(z,y).

Proof. The function ¢ is clearly a norm, and for every pu € ./

(
¢<u>=2|§1§’; Z||u||2k||gk||oo ZZL ll
1

Regarding statement (ii), it may be easily verified that ¢(u® —pu) — 0 if and only if (u?, g )
converge to (u, g) for every k. Since the functions gy are dense in C(K), and the sequence
(u?) is bounded, this implies weak* convergence.

We finally prove (iii):

K) there holds

b6, — 5,) Zm — 0| g Line) day) g @) g o

QkOAL 1 QkOAk 1 2k

The idea of the proof of Theorem 4.4 is roughly the following. We first define the notion of
average for a family of measures, and show that for an H-periodic point z the average of §7, over
all T in a representation A of the quotient G/H is the elementary invariant measure €,. Then
we notice that the operator P which associates to every u € Z(K) the average of the translated
measures T# . over all T' € A is continuous. Finally we approximate an invariant probability
measure p by convex combinations uy of Dirac masses at H-periodic points, and then apply the
averaging operator P: the measures Puy are then convex combination of elementary invariant
measures, and approximate P, which agrees with u because p is invariant.

Definition 4.9. Let B be a bounded Borel set of a locally compact space and let \ be a
probability measure supported on B. Let {u; : t € B} be a family of measures in P(K)
parametrized by t € B and assume that this parametrization is measurable, that is, t — (¢, g)
is a Borel real function for every g € C(K). The average of the measures u; over all t € B
(weigthed by ) is the measure y € P(K) defined by

(.g) == /B (urg) A1) Vg € C(K), (4.4)

and is denoted by [ pu; dA(t)

The previous definition is well-posed because the right-hand side of (4.4) is a well-defined
bounded linear functional on C(kK). Notice moreover that the class F of all bounded function
g : K — R such that the map ¢ — (u¢, g) is Borel measurable contains C'(K) by definition, and
is closed with respect to pointwise convergence; thus F contains all bounded Borel functions,
and identity (4.4) can be extended to every bounded Borel function g : K — R.

Fix now p € P(K) and consider the push-forward measures T#u with T € G. The
identity (T#u,g) = (u,gT) immediately shows that the parametrization T ~ (T#u,g) is
measurable in T', and for every probability measure ® on G and every g € C(K) one has

(JT#0 d%(1): ) = [ (o.gT)dB(T) = () (4.5)
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where §(z) := [, g(Tz) d®(T) for every z € K.

Lemma 4.10. Let H be a co-compact subgroup of G, and let A be a representation of G/H.
Then the elementary invariant measure €, associated with an H-periodic point x is given by

ez:/T#(sz dT:/éTz dT . (4.6)
A A

Proof. Obviously the two integrals in (4.6) define the same probability measure p on K, which
is supported on €(x), and since ¢, is the only invariant measure supported on ¢(z), it suffices
to verify that p is invariant. To this end we recall that [T'] — [Tz := Tz is a well-defined
continuous map from G/H to &(x), and that the push-forward of the canonical measure on 4
by the canonical projection of G onto G/His (by definition) the Haar probability measure on
G/H (see Definition 4.1). Hence for every function g € C(K) and every S € G we have

(51, 9) = (1, 98) = ([,012 AT ; gS) z/g(STﬂc) T =
TecA

- / g([S[T)z) d[T] = / 9([Tz) d[T7] .

[TleG/H [TeG/H

This shows that for every g € C'(K) the value of (S#p, g) is independent of S, and thus p is
invariant. .

Lemma 4.11. Let ® be a probability measure on G. Then every p € P(K) can be approwi-
mated by convex combination uy of Dirac masses so that

lim ¢(fG T#ud®(T) — [, T# d<I>(T)) =0. (4.7)

Proof. For every p € 2(K), let Pu be the average of T#u over all T € G weigthed by the
measure ®, that is, Py := [, T#pd®(T). Thus P is a continuous operator from Z(K) into
P(K) (use for instance identity (4.5)). Now we take any sequence of convex combinations py,

of Dirac masses which converge to p; thus Puy, converge to Pu, and by Proposition 4.8(ii) we
get ¢(Ppy, — Pp) — 0, which is (4.7). O

Lemma 4.12. Assume that K is uniformly approzimable, consider ¢ > 0 and a co-compact
subgroup H as in Definition 4.3, and let A be a representation of G/H. Then for every
w € P(K) we may find a convex combination of elementary invariant measures i = Y o€z,
so that all T; are H-periodic and

¢(fAT#pdT —p) <92 (4.8)
Proof. By applying Lemma 4.11 with & replaced by ® 4 we may find a convex combination of

Dirac masses fi = ), 0; 0,, so that

¢(fAT#pdT —fAT#;)dT) <e. (4.9)
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Now we exploit the fact that the subgroup H was chosen according to Definition 4.3, and we
approximate every z; with an H-periodic point Z; so that (4.1) holds. Therefore, recalling
statement (iii) of Proposition 4.8, we obtain

¢(fA T#6,,dT — [, T#65, dT) < / ¢(T#6,, — T#6z,) dT
A
A

By Lemma 4.10 the average of the measures T#6;, over all T € A is the elementary invariant
measure €z, (recall that Z; is H-periodic). Hence we set

o= E O;€z; »
i

and by (4.10) we get
¢(fA T#pdT — ,a) < Zam(fA T#6,,dT — [, T#6s, dT) <N oe=c.  (411)

Inequalities (4.9) and (4.11) yield (4.8). O

We can now prove Theorem 4.4. Let p be an invariant probability measure and fix £ > 0.
Apply Lemma 4.12 to find a convex combination i of elementary invariant measures such that
(4.8) holds. Since pu = T#p for every T € G, (4.8) becomes

Pp— ) < 2.

Approximation in energy

In the applications we have in mind, K is a function space endowed with some “natural”
lower semicontinuous functional f : K — [0,4o0c]. In this situation we may need to ap-
proximate an invariant probability measure u on K by convex combinations uy of elementary
invariant measures which verify the additional constraint

T G, f) = (g, f) - (4.12)

In the following we modify Definition 4.3 and Theorem 4.4 in order to incorporate such con-
straint.

Remark 4.13. Notice that the map p — (u, f) is well-defined and weak* lower semicontinuous
on Z(K) because f is non-negative and lower semicontinuous. Therefore (4.12) holds whenever

lim sup{ur, ) < {(u, f).

Definition 4.14. A set X C K is called f-uniformly approximable if for every € > 0 there
exists a co-compact subgroup H and a representation A of G/H such that for every point © € X
we may find an H-periodic point T € K which satisfies
/ d(Tz, T)dT < = . (4.13)
A
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and

/ F(T7)dT < / F(Te)dT +e . (4.14)
A A

Theorem 4.15. If K is f-uniformly approximable, then every invariant probability measure

w on K can be approzimated by convex combinations uy of elementary invariant measures so
that (4.12) holds.

The proof of this theorem is obtained by adapting the proof of Theorem 4.4. To this end
we have to modify Lemmas 4.11 and 4.12.

Lemma 4.16. Let ® be a probability measure on G. Then every p € &(K) can be approzi-
mated by convex combinations uy, of Dirac masses which satisfy (4.7) and

(Jo T#pe d®(T); f) < ([ T#pd®(T); f)  for every k. (4.15)

Proof. For every p € 2(K) we consider Py = [, T#pd®(T) as in the proof of Lemma 4.11.
Then we claim that every p € #(K) may be approximated by a sequence (ug) of convex
combinations of Dirac masses so that (4.15) holds, that is, (Pug, f) < (Pu, f) for every k.
Once this claim is proved, the rest of the proof of Lemma 4.16 follows that of Lemma 4.11.
Fix now p € #(K) and set a := (Pp, f). With no loss of generality we may assume that
a is finite, and then set
C:={ e PK): (P\f)<a}. (4.16)

By (4.5) we have that (P, f) = (), f) where f(z) := [ f(T'z)d®(T) for every = € K, and
since f is lower semicontinuous and positive, the set C is convex and weak* compact. Moreover
the extreme points of C' are convex combinations of two Dirac masses (see [BL], Proposition 2,
§I1.2, p. 145). Since p belongs to C, we can apply the Krein-Milman theorem to approximate
w with convex combinations uy, of extreme points of C, and thus (4.15) follows from (4.16). O

Lemma 4.17. Assume that K is f-uniformly approzimable, consider ¢ > 0 and a co-compact
subgroup H as in Definition 4.14, and let A be a representation of G/H. Then for every
€ P(K) we may find a convex combination of elementary invariant measures i = ), 0;€z,
so that each Z; is H-periodic, (4.8) holds and

( fy < ([, T#pdT; f) +¢ . (4.17)

Proof. We proceed as in the proof of Lemma 4.12: we apply Lemma 4.16 to find a convex
combination of Dirac masses fi = ), 0; 0, so that (4.9) holds and

<fA T#ﬂdT;f> < <fA T#,udT;f> . (4.18)

Now we can exploit the choice of H and approximate every x; with an H-periodic point Z; so
that (4.13) and (4.14) hold. We define i := ) o€, and hence (4.8) follows as in the proof of
Lemma 4.12. On the other hand by identity (4.6) and inequality (4.14) we get

@)= o [ $Ta)ar <o, [ fTn)ar 4o = ([, THdTig) e
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which together with inequality (4.18) implies (4.17). O

We can now prove Theorem 4.15. As in the proof of Theorem 4.4 we fix a real number
¢ > 0 and an invariant probability measure p on K such that (u, f) is finite. Then we apply
Lemma 4.17 to get a convex combinations of elementary invariant measures g so that both
(4.8) and (4.17) hold. Since p is invariant (4.8) and (4.17) become respectively

¢(H_ﬂ)§25 and (ﬂvf)g(:u:f>+6

By Remark 4.13 this concludes the proof of Theorem 4.15.

Eaxtension to the non-commutative case

Theorems 4.4 and 4.15 hold also when the group G is a non-commutative. In this case,
however, some of the previous definitions need to be modified. We first remark that if = is a
periodic point but P(x) is not a normal subgroup, then the quotient G/P(z) is not a group.
Therefore our construction of the elementary invariant measure €, fails, and in fact the orbit
of z, although compact, may support no invariant probability measure.

Consider for instance the following example: K is the projective line R U {co} and G
the group of all projective transformations of K, that is, transformations of the form z —
(ax+b)/(cx+d) with ad—bc # 0. Then the orbit of any point z is K, G/P(z) is homeomorphic
to K and then P(z) is co-compact, but K supports no invariant measures (since translations
x — x + b are projective transformations, any invariant measure should be supported at oo,
but on this is also impossible, because G acts transitively on K).

The previous example motivates the following definition: we say that a co-compact sub-
group H of G is a W-subgroup if there exists a probability measure on G/H which is invariant
under the left action of G.

This probability measure is unique (see [Fe], Theorem 2.7.11(2)), and is denoted by ®¢ /.
A co-compact subgroup H is a W-subgroup if and only if it satisfies the so-called Weil’s
condition, namely that the modular functions of G and H agree on H; in particular Weil’s
condition is verified when H is normal, or when G is compact (see [Fe], Theorem 2.7.11 and
§2.7.12, or [HR], section 15). Notice that if H is a W-subgroup, then also every co-compact
subgroup H' which includes H is a W-subgroup. When z is a periodic point, the map [T] — Tz
is a homeomorphism of G/H to &(x), and then &(x) supports an invariant probability measure
if and only if P(z) is a W-subgroup.

Therefore the following modifications should be introduced to adapt the results of this
section to the non-commutative case: the elementary invariant measures can be defined only
for periodic points x such that P(x) is a W-subgroup, and in Definitions 4.1, 4.3, 4.14, and
Proposition 4.2, it must be required that H is a W-subgroup.

5. Approximation of invariant measures on function spaces

In this section we present in detail the case where K is a space of functions on R”, and
show that the assamptions of Theorem 4.4 are verified. Then we restrict our attention to the
particular situation considered in section 3, we show that the assumptions of Theorem 4.15 are
satisfied, and obtain the approximation in energy used in the proof of Theorems 3.4 and 3.12.
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We conform to the notation of section 4, with the only difference that K is now the set of
all Borel functions z : R" — [—00, +00] modulo equivalence almost everywhere, and G is the
group of functional translations, and is represented by R": for every 7 € R" and every = € K,
T,z is the translated function z(t — 7).

By identifying the extended real line [—oo,+00] with the closed interval [—1,1] via the
function = — 2 arctan(z), we can identify K with the closed unit ball of L>(R") and endow it
with the weak* topology of L>(R™). Thus K is compact and metrizable. In particular we can
cousider the following distance: let (yx) be a sequence of bounded functions which are dense in
L'(R™), and such that each y; has support included in the cube (—k, k)"; for every =1, 15 € K

set
o0

1 2 2
d(xy,22) == Z o ‘ / Yk (; arctanx; — - arctanmg) d.%,
k=1

, (5.1)

where a. := [[yklls + [[Ylloo-

It follows immediately from (5.1) that when the functions z; converge to z locally in
measure, then they converge to x also in the distance d. Hence L{, (R") embeds continuously
in K for 1 < p < co. Moreover, (5.1) yields, for every p € [1, 0],

oo

> lellaller — 2]
d(r,72) < —/ il 21 — ] < ‘ Loy —mly . (52)
,;2'“0% R" ,;2k(||yk||l+”yk”00) :

(The first inequality follows from the fact that %arctan is 1-Lipschitz, the second one is
Holder’s, and the last one follows from the interpolation ||yxll, < llykll1 + [|Yk|loo)-

Remark. Embedding into K may be no longer continuous if we consider weaker forms of
convergence: if the functions z; : R" — {a, b} weak* converge to the constant function §(a+b)
in L>(R"), then they converge on K to the constant function tan ((arctana + arctanb)).

The main feature of the distance d is the following locality property, which in fact is shared
by every distance which metrizes K.

Proposition 5.1. For every € > 0 there exists m > 0 such that the following implication
holds for x1,xzs € K:

(k1 Am)V-—m=(z2Am)V —m a.e in(—m,m)" = d(zi,z2) <€ . (5.3)
(Here a Ab and a V b denote respectively the infimum and the maximum of a and b.)

Proof. Fix a positive real number m and take 1,22 such that the hypothesis of (5.3) holds.
Then | arctanxq (t) — arctan :cg(t)| < 7/2 — arctanm for a.e. t € (—m,m)", and since sptyy C
(—k, k)™, for k < m we have

‘ / yr (arctanzy — arctanz,) d.%,| < |lykll1 (7/2 — arctanm) < 7/2 — arctanm .

Hence
"\ 7/2 — arctanm = wllyells 7 1
d(xl’x2)§2T+ Z oF _§—arctanm+2—m.
k=1 k=m+1
To finish the proof it suffices to choose m large enough. O

Remark 5.2. Given z1,20 € K, let x be the function which agrees with z; in the cube
(=m,m)", and with z, elsewhere. Hence d(z1,z2) < d(z1,z) + d(x,z2), and if we estimate
d(zy,z) by (5.3), and d(z,z2) by (5.2), we obtain the following useful inequality:

d(wy,22) < e+ |21 — 22||Le((—m,my») for z1,72 € K, (5.4)
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where m and ¢ are taken as in Proposition 5.1, and p is any number in [1, +o0].

Proposition 5.3. The group of functional translations G acts continuously on K, and K
is uniformly approximable. Hence Theorem /.4 applies, and thus every invariant probability
measure on K can be approximated by convex combinations of elementary invariant measures.

Proof. We prove that G acts continuously on K by showing that the group of translations act
(sequentially) continuously on L*°(R") endowed with the weak* topology. Consider 7, — 7 in
R", z =z in L*°(R"), and y € L*(R"). Then T",,y — T,y in L}(R") and thus

<TTkxk - Tch:y> = ('rk:T—Tky> - (%T—TZD — 0.

Since this holds for every y € L*(R") we deduce that T, z, =T,z in L>°(R").

Let us show that K is uniformly approximable. Fix £ > 0 and take m so that implication
(5.3) holds, and then choose a so that ac > m. For every z € K, let Z be the function on R"
which agrees with  on the cube (0,a)™ and is extended periodically to the whole of R™. Then
Z is (aZ")-periodic, and Z(t — 7) = z(t — 7) whenever ¢t € (—m,m)" and 7 € (m,a — m)™.
Hence (5.3) yields d(T;z,T;z) < € for every 7 € (m,a —m)™; on the other hand the distance
d is never larger than one, and recalling that ae > m we obtain

ea™ + 2nma™ !

d(T;z,Trx) d L, (1) <

(0,a)™

< (1+2n)e . O
an

Remark. Notice that there exist points z € K whose orbit is dense in K. In other words ()
is an element of the quotient space K /G which is dense in K/G, and then the topology of K /G
is not Hausdorff, and not even Tj. To construct such a function z, we take a sequence (xy)
which is dense in K, and for every k we choose the positive real number my, corresponding to
e = 1/k in Proposition 5.1; then we take pairwise disjoint open cubes Cy = —7 + (—my, my)"
and we choose as x any function which agrees with T_;, z; on each cube Cy. Hence T;, z = x,
in (—my, my)™ for every k, and (5.3) yields d(T%, z,zy) < 1/k for every k. Hence the orbit of
z is dense in K.

A similar argument can be used to prove that every convex combination of elementary
invariant measures can be approximated by elementary invariant measures. Together with
Proposition 5.3, this would yield that every invariant probability measure on K is in fact the
limit of a sequence of elementary invariant measures. In Lemma 5.10 we prove this fact, and
something more, for n = 1.

A one-dimensional example

We apply now Theorem 4.15 to the choice of K and f considered in section 3. Thus G
and K are given as before with n = 1, and in particular G is represented by R. Every proper
co-compact subgroup of R is of the form hZ for some h > 0, and a representation is given by
the interval (0, h), endowed with Lebesgue measure, suitably renormalized.

For the rest of this section the letter i will be mainly used to denote periods of elements of
X. The spaces (1) and Aer(0, h) are defined at the beginning of section 3, while Her 0(0, h)
denotes the space of all ¢ € £, (0,h) such that z(0) = x(h) = 0; 7 is a fixed positive real
number and we set (cf. (3.8))

r

1 ) .
g#(S’mﬁ (=r,7)) +]{rx t)dt ifxe S (-rr), (5.5)

+o00 otherwise.

f(@) =
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Proposition 5.4. The function f is lower semicontinuous on K.

Proof. Let (z) be a sequence such that z; — z in K and the values f(xj) are uniformly
bounded. Then the functions z;, belong to #(—r,r) for every k, and in particular they are 1-
Lipschitz on (—r,r) and uniformly bounded in L?(—r,r). Hence they converge to = uniformly in
(—r,r). This implies that the distributional derivatives 4 converge to & weakly* in BV (—r,r),
hence z belongs to .7 (—r,r), and liminf f(zx) > f(x). O

Now we want to prove that K is f-uniformly approximable (recall Definition 4.14). To
this end we need some preliminary lemmas and definitions. In what follows, * denotes the
ususal convolution products, 1p is the characteristic function of the set B, and we set

1
p(t) := 2 Ly (t) forteR. (5.6)

Lemma 5.5. Let x € K satisfy foh f(Trx)dr < +oo. Then xz € S (I) for every I relatively
compact in (—r,h + 1) and

h 1 ,
]é f(TTx)dT:E[zS: p* Lio,n))(t +/R(p*1[07h})x dt (5.7)

(notice that the convolution product p * 1o ) vanishes out of (—r,h —r)). Moreover, if x is
h-periodic, then © € e (0,h) and

(e, f ][ F(Tra) %[#(S;‘nﬂ[o,h)) +/0hm2dt ] (5.8)

Proof. As fohf(Trm) dr < 400, then f(T,z) is finite for a.e. 7 € (0,h), which implies z €
S (1 —r,7+ ), and since every interval I relatively compact in (—r, h+ r) can be covered by
finitely many such intervals (7 — 7,7 + r), then x € #(I).

To obtain (5.7), we consider the measure A given by u(B) := #(BN Sz N (—r,h+7)) +
J #* dt, and thus we write f(T-z) as

F(Tyx) = / plt - 7) dp(t) -

Integration over 7 € (0, k) yields (5.7). The second part of the assertion follows from the fact
that on R modulo A there holds px 195 = px1 = 1. O

Definition 5.6. For every h > 2r and every x € K, the h-periodic function Ryz is defined
as follows (see Fig. 5):
e in the interval [0,7), Rrx(t) is equal to t A (—t +7);
e in the interval [r, h/2), Ryx(t) is equal to x(t) if |x(t)] <t—r, tot—r ifx(t) >t —r, and
to —(t—r) ifx(t) < —(t —r);
e in the interval [h/2,h — r), Rpa(t) is equal to x(t) if |[x(t)| < h—r—t, to h—r —1t if
z(t) >h—r—t, and to —(h—r —1t) if x(t) < =(h—71 —1);
e in the interval [h —r,h), Ryx(t) is equal to (t —h+r)V (=t + h).
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R,x in [0, h)

Fig.5. The function Rz

Lemma 5.7. Let h,z and Rpx as in Definition 5.6. Thus Rpx is h-periodic and Rpz(0) =
Rpz(h) =0 by construction. Moreover
(i) for everym >0 andt € (m+r,h—m —r), either x(t) = Rpx(t), or z(t) > Rpx(t) > m,
or z(t) < Rpx(t) < —mj; )
(il) if x € L(r,h —r) then Rpx € Her0(0,h) and St N (r,h — r) contains S(Rpz) N[0, h)
except at most six points.
Proof. Straightforward (see Fig. 5). O

Proposition 5.8. For every € > 0 there exists h > 0 such that for every x € K
h h h
][ d(T-x,T;Rpx)dr < 2¢ and ][ f(T-Ryx)dr §][ f(Trz)dr +¢€ . (5.9)
0 0 0

In particular, K is f-uniformly approzimable (see Definition 4.14).

Proof. Fix m > 0 such that implication (5.3) holds, and take h > 2(m + 7). Then statement
(i) of Lemma 5.7 and (5.3) imply that d(T-z, T Rpz) < € for every 7 € (m +r,h —m —r).
Hence, taking into account that d <1,

h
2
][ d(Trx,T;Rpx)dr <e+ w ,
0

and the first inequality in (5.9) is recovered by choosing h > M

Let us consider now the second inequality in (5.9). We can assume that the integral
fo f(Trx)dr is finite (otherwise there is nothing to prove). Therefore Rz € Hero(0, k), and
. #( (Rpx) N [0,h)) < #(Si N (r,h — 7)) + 6 (see Lemma 5.7(ii)),
e |Rpz| < |z| in (r,h —7) (see Lemma 5.7(i)),
e |Rpz| <r/2in (0,r) and (h — 7, h) (by construction).
Hence, by (5.8),

h 1 .\ 2
]€ f(TrRyz)dr = E[ S(Ryz) N[0, h)) + /0 (Ryx) dt}
1 h—r r2
<E[ #(Sé N (r,h— ))+6+/T :cdt+2]
and since p x 19 ) = 1 in (r,h — 1)
1 2 12 472
< E[ Z(P*l[o,h])(t)+/(p*l[OVh])ac dt + ]
tesSi R
and by (5.7),
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h 2
12+ 7
_][0 f(Trz)dr + T

The second inequality in (5.9) is thus recovered by choosing h > % |

Corollary 5.9. FEvery invariant probability measure p on K can be approzimated by a sequence
of convex combinations uy of elementary invariant measures so that (4.12) holds. Moreover,
if (i, f) is finite, each uy can be taken of the form pp =3 0i€z,, With Ty, € Her,0(0, hy) for
every i and a suitable hy > 0.

Proof. By Proposition 5.8 the space K is f-uniformly approximable, and then the first part of
Corollary 5.9 follows from Theorem 4.15. Furthermore Proposition 5.8 shows that for every
z € K the approximating point Z in Definition 4.14 can be taken equal to Rpz, and if we
examine the construction of the measure i described in the proof of Lemma 4.17 keeping this
fact in mind, we see that i can be taken of the form ) i€z, with Z; = Rpx;, and then Z; is
h-periodic and z;(0) = z;(h) = 0.

Thus the same holds for the approximating measures py, given in Theorem 4.15. Moreover
(i, f) < +o0 implies that (g, f) is finite (for k large enough). Hence (ez,,, f) is also finite for
every i, and Lemma 5.5(ii) yields Z;; € Her,0(0, hy)- O

We can refine the approximation result of Corollary 5.9 by showing that p can be directly
approximated by elementary invariant measures.

Lemma 5.10. Givene > 0, h > 0 and p = Eiv 0i€z; Such that x; € Hero(0,h) for every
i=1,...,N, we can find h > 0 and & € Fer0(0, h) such that

B(p—e) <2 and |(n,f) ~ (e, )] < | (5.10)

Proof. First of all, notice that all o; can be assumed rational (by a standard density argument).
We fix m > 0 such that implication (5.3) holds, and we write every o; as o; = p;/q with positive
integers ¢ and p;. Notice that ¢ can be taken arbitrarily large.

We set g0 := 0, ¢; := qi—1 + p; for i = 1,...,N (in particular gy = ¢), and we take
T € Her,0(0,gh) defined by

x(t) := x;(t) for every t € [gi_1h,q;h) andi=1,...,N. (5.11)

In other words z is equal to 7 in the first p; periods of length h, it is equal to z» in the
following p» periods, and so on for a total of ¢ periods (cf. Fig. 6 below).

I 5= 4/10

h h
0,=6/10 | %= -1 A -
A

4h 6h

Fig.6. Construction of xz for N =2, ¢ =10, p =4, p» =6
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Taking into account (4.6) we get

1 ek 1 [k 1 [uhk
= [ oradr . e=g [Coradr=— [T o
qh Jo h Jo Pl Jyin

Hence

N 1 qih
B — €x = (Zaiewi) — € :Z_h/ (5T,.zi _5T.,-'Jr) dr )
i q gi—1h

i=1

and by Proposition 4.8(iii)

N 1 qih
dp—e) <D o d(Tyx, Tra;) dr . (5.12)
=1

gi—1h

Thus we need to estimate the distance d(T;z, Trz;). From (5.11) we deduce that for every 7 €
(¢i—1h+m,g;h—m) and every i there holds ¢ = z; in (1 —m, 7+m), and then d(T,z,T;z;) < e
by (5.3). Hence inequality (5.12) becomes (recall that d < 1)

N
i€ 2mN 2mN
) — pL + — =

q qh 6+qh’

¢(M - ew) <
i=1
and the first inequality in (5.10) is recovered by choosing ¢ > ”;—EN.

Let us prove the second inequality in (5.10). From (5.11) we get Sz N (gi—1h,g:h) =
Si; N (gi—1h, q;h) for every i, and then #(S2N[0,qh)) < N+, #(S¢iN[gi—1h, q;h)). Hence
(5.8) yields

(€x: f) = qih[#(szt N[0,qh)) + /th z2(t) dt]

qih

N 1 . 1 2
7 + Zl: [q—h#(S’m N [gi—1h, q:h)) + an /ql-_lh i (1) dt]

IN

_ N Di . Di 4 2
— q_h+z [q—h#(S’xiﬁ[O,h)) + q_h/o ; () dt]

(3

N N
= q—h+;02<6z1,f>: q_h'}_(/%f) )

and the second inequality in (5.10) is recovered by choosing ¢ > L. O

Corollary 5.11. Every invariant probability measure p on K which satisfies (u, f) < +00 can
be approzimated by a sequence of elementary invariant measures (€g,,) so that xy € Her,0(0, hy)
for some hy, > 0 and

Jim (ea, . f) = (u, f) -

Proof. Apply Corollary 5.9 and Lemma 5.10. |

6. Overview of further applications

In this section we briefly sketch in different detail some extensions of our approach to
other variational problems with multiple scales. We begin with some variations of the one-
dimensional problem studied in section 3.
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Boundary conditions

The periodic boundary conditions imposed in the study of the functional I¢ (see (3.3))
can be replaced by other boundary conditions (Dirichlet, natural, ...) without changing the
limit problem. In other words, the I'-limit F' defined in (3.11) is independent of the boundary
conditions. This is not surprising since the limit functional contains no correlations between
values of the slow variable s.

Additional externally imposed scales

The only property of the lower order term [ av? in I¢ (cf. (3.3)) used in the proof is that
the rescaled functionals f_rr asx? converge continuously for a.e. s € Q as e — 0 (see Definition
2.9). More precisely we need that the integrals

”
]1 a(s + e/34) (25 () 2dt
-r
converge for any sequence z° which converges strongly in Wi (—, r r).

Thus the proof of Theorem 3.4. can be extended (with almost no modifications) to more
complex lower order terms. In particular we can consider highly oscillatory coefficients. For
example, we can take (cf. (3.3))

Ir .= / 292 + W(0) + a(e Ps)v?ds |
Q

where a is a bounded, strictly positive and periodic function with average a.

If 3 > i, ie., if the externally imposed scale e is shorter than the fast scale e'/3 used
in our blow-up procedure, then Theorem 3.4 holds true, provided that we replace a(s)fﬁr x?
with a f_rr 22 in (3.8). This requires no modifications in the proof, since the rescaled functions
as(t) = a(e Ps+e'/3Pt) converge weakly to the constant function @, and then the functionals
f". a5(t)a* converge continuously to af’ x2.

Ifg < % then this convergence no longer holds. We expect that minimizers of the e-problem
are locally well approximated by periodic sawtooth functions with period Lo(a(e?s))~/3!/3
and generate the homogeneous two-scale Young measure

Vs :][ewq dq for a.e. s € (0,1),

where z, is the sawtooth function with period h = Loa~'/3(q) defined in (3.33), and the
average is taken over a period of the function a.

The (rescaled) limiting energy is thus given by Ey(f a*/?(g)dg) (cf. (1.4)). In this case
the I-limit F' (if it exists) cannot have the simple form (3.11), in fact it cannot be affine on
the affine set defined by the condition vs € H(K) a.e. This follows from the fact that for the
homogeneous two-scale Young measure vy = €,, where x is an h-periodic sawtooth function,
one has (cf. (3.12))

F(v) = %#(S;i:m [0, R)) +a]€h 2 dt .

Hence if F' was affine the minimal energy would involve @'/ = (f a)'/? rather than the smaller
value f a'/3. In this case a more natural representation of the limit might be achievable by
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performing a (hierarchical) blow-up with two smale scales ¢” and €!/% and looking at the
corresponding Young measures and limit functionals. A detailed implementation of this idea
(and the verification of the statements above) is left to the courageous reader.

The case 8 = % is particularly interesting since in this case the externally imposed scale
and the internally created scale are of the same order and relative phases may play an important
role. Note that the formula for the (rescaled) limiting energy changes discontinously at § = %,
since it is given by Eo(f a)'/3 for 8> & (cf. (1.4)), and by Ey(f al/?) for 8 < i.

Nonlocal terms, H*/?-norm

A one-dimensional ansatz for a two-dimensional model of an austenite finely-twinned
martensite phase boundary leads to a functional which involves the homogeneous H'/2-norm
rather than the L?-norm (see [KM]):

Fv) = /95%2 I (@)ds + (ol - (6.1)

The minimization is taken over functions in v € H},,(Q) with zero average, and Q = (-1,1).

In the Fourier expansion v = " 9(k)e™**, the homogeneous H'/?-norm is given by

Wl =2 S e =2 3 Ly
e T a2

k=—00 k=—o0

and can be written as

[lv]|% s = / g(s — ') (v(s) —v(s))?ds'ds = h(s —s")0(s)0(s") ds'ds, (6.2)
" QxQ QxQ
where we have set
T 1

(Notice that the second identity in (6.2) holds for functions in W' only).

The scheme developed in section 3 applies to this functional, too, even though some
essential modifications are required. First one easily checks that the fast scale is now e'/2
rather than £!/% (see, e.g., [KM]). Second the functional is invariant under the addition of
constants and therefore it is more natural to look for the Young measures generated by the
blow-up of the derivative rather than the function itself (for the latter choice it is easy to
construct minimizing sequences whose Young measure on micropatterns is concentrated both
at the function that is identically +oo and at the function that is identically —oo). Let therefore
consider the blowup

R0 := o(s 4+ e*/%t) . (6.4)

The competitors for the limit problem will be the class of all Young measures v € YM (2, K)
generated by sequences R50°. As in section 3, these Young measures are characterized as those
v such that v is an invariant measure on K for a.e. s € Q (cf. Proposition 3.1).

The second step in the program developed in section 3 consists in rewriting I°(v) in terms
of the e-blowups. To avoid problems with integrals over unbounded domains we choose a
smooth positive function p on R such that [ p(t)dt = 1. For v € H3,(Q) we set

zy = e Y 2u(s + /7).
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Thus
iy =0(s+e/%) =R%0 and i, =e&/%i(s +eY/%t) .

Setting 5" := s +&/%t, s’ := s + /2 (t + T) we get

2% (s") + W (0(s") + /Q g(s" — ") (v(s") —w(s")?*ds' =
= 1/2

= ei2(t) + W (as(t)) + / eg(et?1) (s (t + 1) — x4(2))dr .

_e—1/2

Integrating in s € (2 and then taking the average over all t € R with respect to the weight p
we obtain

e (v) = /Q fo(Es) (6.5)

where

fo(z) = /R (61/2i2 + 5_1/2W(:i:))p(t)dt +/R g (T)(x(t +71) —x(t))’p(t)dtdr ,  (6.6)

xR

and

1/2 i 17| < g—1/2
B eg(et?r) if|r| <e ,
9o (1) == { ( ) 7l (6.7)

0 otherwise.
Note that f€ is invariant under addition of constants, and then only depends on z through z.

From (6.3) we have that g(7) ~ 1/2772, then the functions g*(7) converge to 1/2772, and
we claim that f¢ I'-converge on K to the functional f given by

f(@) = Ao Z p(t) —}—/R . #(m(t +7) —x(t)*p(t) dt dr (6.8)

teSe

for z € S10c(R), and 400 elsewhere (here we view f€ and f as functionals of & € K). To prove
the claim, we proceeds as for Proposition 3.3: the functionals

/ (/232 + e V2W (i))p (6.9)

are equicoercive and I'-converge on Wlicl (R) — and therefore also in K — to the sum at the
right-hand side of (6.8), while the double integrals at the right-hand side of (6.6) converge to
the double integral at the right-hand side of (6.8) for all sequences z° which converge to x
uniformly on R, and are uniformly Lipschitz. Unfortunately such a convergence is not implied
by convergence in Wlicl (R), and one has to be more careful: given functions &* — & such that
f2(i%) is bounded, we have i* — ¢ in L} (R), and, modulo addition of suitable constants,
¢ — zin I/Vﬁ)cl(]R) Then a careful application of Fatou’s lemma, and the fact that g and p are
positive functions, give the lower-bound inequality. To prove the upper-bound inequality for
x, it suffices to construct functions x. which converge uniformly to z, are uniformly Lipschitz,
and satisfy the upper-bound inequality for the functionals in (6.9).

Now we can proceed as in section 3, and prove a suitable version of Theorem 3.4. which
leads to the following equivalent of Corollary 3.11: Suppose that the functions v® minimize I°
and the e-blowups R°0° genmerate a Young measure v. Then, for a.e. s € Q, the measure v,
minimizes (u, f) among all invariant measures p € S(K).
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We have not been able to carry out the last step of our program, the characterization of the
minimizing measures u. We conjecture that minimality implies that the measure is supported
on the orbit of the derivative of a single periodic sawtooth function like in Fig. 2 of sectionl.

For every x € e (0, h) one has (cf. (3.12))

h oo
(e, f) = %#(Sa’:ﬁ[O,h))+][0 [/ L (z(t + 1) — z(t))%dr| dt .

oo 2mT?

It can be verified that the infimum of (e;, f) over all z € £, (0, h) and h > 0 is strictly positive,
and hence the minimum of (u, f) over all p € H(K) is also strictly positive. This shows in
particular that the minima of energies I¢ in (6.1) are exactly of order £'/2.

As a first step in the characterization of minimizing measures p, one should prove that
the infimum of (e;, f) over all x € (0, h) with h and 2n := #(Sz N[0, h)) fixed is given
by the sawtooth function yy/, (see (3.33)). Then one could determine the optimal one by
minimization over all h > 0. As discussed in section 3 this is, however, only the first step in
the proof of the conjecture stated above.

Concentration effects

A suitable modification of the Young measure on micropatterns which uses the energy
density rather than the Lebesgue measure as background measure can also capture certain
concentration effects that occur, for example, in the passage from diffuse interface models
to sharp interface models. The simplest possible example is the minimization of the one-
dimensional functional (already introduced in the proof of Proposition 3.3)

1
1
J? (v) :/0 ev? + EW(v)ds,

subject to periodic boundary conditions and volume constraint [v = 0. As e — 0 minimizers
v° converge to a piecewise constant function v with two equidistantly spaced jumps. The
corresponding energy density

1
ef = et + EW(’U)

converges (in the weak™ sense) to a measure pu = Agd, + Agdy, where a and b are the positions
of the jumps and Ay := 2f_11 V.

We consider now the e-blowups R5v®(t) := v°(s + &t), and define the associated measures
v® on () x K by

IS / (0s x Vi) e (s)ds ,
Q

where ¢ is the Dirac mass concentrated at Riv® for every s. Then the measures v converge,
up to a subsequence, to a limit measure v on 2 x K. Since the projection of each v. on Q
is the measure associated to the energy density e®, the projection of v is the limiting energy
measure u, and we can thus write v as

v = Aoda X pa + Aodp X p1p ,

where p, and pp care probability measures on K which capture the asymptotic behaviour of
minimizers v¢ near the jumps a and b resp. If we assume that the limit v of the minimizers v¢
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jumps from —1 to 1 at a, and denote by x the optimal profile for the transition between the
two minima of W, namely the solution of
R . _
28 =W'(z) , tilgoom(t) =1,

(which is unique up to translations), and by e = ©% + W (x) the associated energy density, then
one can prove that

1
ho= 1 /R or,.e(t)dt |

and a similar result holds for pup.
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