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Abstract

When a hypersurface ��t� evolves with normal velocity equal to its mean

curvature plus a forcing term g�x� t�� the generalized �viscosity� solution may

be �fattened� at some moment when ��t� is singular� This phenomenon cor�

responds to nonuniqueness of codimension�one solutions� A speci�c type of

geometric singularity occurs if ��t� includes two smooth pieces� at the moment

t 	 
 when the two pieces touch each other� If each piece is strictly convex

at that moment and at that point� then we show that fattening occurs at the

rate t���� That is� for small positive time� the generalized solution contains a

ball of IRn of radius ct���� but its complement meets a ball of a larger radius

��t
���� In this sense� the sharp rate of fattening of the generalized solution is

characterized� We assume that the smooth evolution of the two pieces of ��t��

considered separately� do not cross each other for small positive time�

� Introduction

Consider the problem of a hypersurface ��t� in IRn which �ows in time with normal

velocity given by its mean curvature plus� perhaps� a continuous forcing term g�x� t��

�



When singularities develop in this problem� the smooth solutions may cease to exist

and the weak solutions may become nonunique� This has been observed in a number

of recent papers� see �BSS	 and �BP	� A weak solution as de
ned by Brakke �B	� in

particular� is not unique �see �I	�� However� uniqueness holds for the generalized

solution de
ned as follows� A real�valued function u on IRn � �t�� T 	 is constructed

so that at the initial time t�� u��� t�� is positive on one side of the oriented initial

hypersurface ��t�� and negative on the other side� u�x� t� is then required to be

continuous and to satisfy the degenerate parabolic partial di�erential equation

�u

�t
 jruj

�
div

ru
jruj � g�x� t�

�
������

in the viscosity sense� with the the initial condition u�x� t��� The signi
cance of this

equation is as follows �see �ES	�� if all level hypersurfaces of u�x� t� were smooth�

then each of the level sets f�x� t� � u�x� t�  �g� for various real values of �� would

evolve with normal velocity equal to its mean curvature plus g�x� t�� The level set

for �  � is a closed subset of IRn which evolves uniquely in time� and does not

depend on the choice of the initial function u�x� t��� This solution is known as the

generalized solution to the problem since it need not be smooth� need not have

Hausdor� codimension one� and may even have a nonempty interior as a subset

of IRn� The phenomenon of an initially smooth hypersurface which later develops

a nonempty interior is known as fattening or ballooning� This phenomenon occurs

precisely when Brakke�s weak solution is nonunique �I	�

In ����� Belletini and Paolini �BP	 worked out some interesting examples of

fattening in IR� which involved two circles meeting externally at a certain time

t  �� In ����� Koo �K	 extended the results of �BP	 and showed that their examples

were manifestations of a general principle� valid for hypersurfaces in IRn evolving by

mean curvature plus a forcing term� which guaranteed that the generalized solution

begins to have positive Lebesgue measure as soon as two components ���t� of an

immersed solution touch from the outside at time t  �� without crossing each other

immediately before or after the critical time t  ��

An examination of the proof in �K	 shows that the size of the fat level set grows

at least as fast as
p
t� i�e�� at the rate suggested by parabolic scaling� In the present

paper� we shall show that in fact� the lower bound c
p
t on growth of the fat level

set may be replaced by the much faster growth ct��� �Theorem ��� below�� This

improves the estimate of �K	� Moreover� this estimate is sharp� In fact� with the

additional assumption of strict convexity at the touching point� Theorem ��� below

shows that the region outside ���t� and outside the fat level set is at a distance at

most �� t
��� from the touching point� for a larger constant ���

�



More precisely� combining Theorems ��� and ��� below� we have the

Theorem ��� Let ���t�� jtj � T� be two smooth� oriented hypersurfaces of IRn

which move with normal velocity V  H � g�x� t� for some continuous forcing term

g � IRn� IR �� ������ Suppose ���t� and ���t� are disjoint for t � � but that they

meet at one point x� at time t  �� at which each is strictly convex� Then there are

c� �� and � � � so that for all � � t � �� the region outside ���t� and outside the

generalized solution ��t� includes some points at distance ��t
��� from x� but does

not intersect the ball Bct����x���

It should be observed that fattening of a speci
c level set cannot happen in

most circumstances� More precisely� if ���t� is a disjoint one�parameter family of

generalized solutions evolving according to the same function of curvature� then fat�

tening does not occur for almost all �� In fact� at any time t� the set of real numbers

f� j u��� t������ has positive measureg has measure zero in IR� by the additivity of

Lebesgue measure� This observation is consistent with Koo�s principle� since Koo�s

result only applies to the 
rst time fattening occurs� and requires touching to occur

from the outside� Assuming the family ���t� is real�analytic� as might follow from

parabolicity� the set of � to which Koo�s principle applies is discrete�

The intuition behind the distinction between �K	 and the present paper may be

understood in the following way� Koo�s proof relies on comparison with a self�similar

solution of the degenerate parabolic partial di�erential equation

�v

�t
 jrvj

�
div

rv
jrvj

�
������

and the parabolic scaling x � pt follows from parabolic self�similarity� However� the

spatial aspect of self�similarity is homothetic scaling� Homothetic scaling is adapted

to manifold�like geometries� such as Euclidean space� and more generally to cone�like

geometries� In the problem considered by �BSS	� �BP	 and �K	� however� the region

exterior to ����� is not a cone but a sort of cusp� The region rescales in a small

neighborhood of the touching point to small neighborhoods of a hyperplane� In

particular� the homothetic scaling of �K	 occurs independently of this cusp geometry

and in a certain sense replaces it by a cone� This replacement of the region given

in the problem by a larger and very di�erent region might lead one to suspect that

the c
p
t estimate cannot be sharp� Thus� as Theorem ��� shows� for the analysis of

behavior inside a cusp� self�similar solutions are not enough�

We conjecture that if the strict convexity of ����� in Theorem ��� is replaced

by contact of order m� then the generalized solution ��t� grows like ct
�

m�� �

An interface which moves by mean curvature plus a forcing term is a simple� al�

though perhaps suggestive� model for solidi
cation of isotropic materials� It would

�



be of interest to understand the phenomena discussed in the present paper� and

analogous phenomena� in the context of a more realistic system of equations in�

corporating temperature as a dependent variable along with one or more order

parameters of the material� Anisotropic materials would also be of interest�

We would like to acknowledge valuable discussions with Perry Leo� Walter Littman�

Stephan Luckhaus and Juan Vel�asquez� This work was supported by the Max�Planck

Institute for Mathematics in the Sciences� Leipzig�

� Level�set formulation of hypersurface �ow

In this section� the forcing term g�x� t� will depend on t alone� When applied to our

main results� g�x� t� will be estimated above or below by a function g�t��

For a function r of one space variable y and of time� we write r��y� t�  �r
�y �y� t��

For x � IRn� we will use the potentially confusing notation x  �x�� x
�� � IR�IRn���

We trust that� in context� the reader will be able to distinguish this use of the

notation x�  �x�� � � � � xn� for a point x  �x�� � � � � xn� � IRn from the notation for

the space derivative r��y� t� of a function r�y� t� of two variables�

Proposition ��� Let fra�y� t�g be a one�parameter family of viscosity subsolutions

to

�ra
�t


r
��

a

� � �r�a��
� n� �

ra
� g�t�

p
� � �r�a�������

satisfying �
�ara�y� t� � �� Choose a continuous� locally monotone function � � IR�

IR� and let a function v be de�ned on IRn by

v�x�� x
�� t� � ��a�

whenever jx�j  r  ra�y� t�  ra�x�� t�� If ��a� and ra�y� t� are locally monotone in

the same sense as functions of a� then v is a viscosity supersolution of

�v

�t
 jrvj

�
div

rv
jrvj � g�t�

�
������

if the monotonicity of ��a� and ra�y� t� is in the opposite sense as a function of a�

then v is a subsolution� If� instead� each ra is a viscosity supersolution to equation

������ then the same conclusions hold after one of the relevant senses of monotonicity

is reversed�

Proof� Write �a�t� for the hypersurface obtained by rotating the graph r  ra�y� t�

about the x��axis� that is �a�t�  f�x�� x�� j jx�j  ra�x�� t�g� Then �a�t� has mean

�



curvature in the direction of increasing r given by

H 
r
��

a

�� � �r�a��	���
� n� �

ra
p

� � �r�a��

in the viscosity sense� and normal velocity

V 
�ra
�tp

� � �r�a��
�

Thus� the hypothesis that ra is a subsolution of ����� implies that V � H � g�t�� in

the viscosity sense�

Observe that v is nondecreasing �resp� nonincreasing� in the direction of increas�

ing r  jx�j� if ��a� and ra�y� t� have the same �resp� opposite� sense of monotonicity�

as functions of a� Namely� for any unit vector 	  x�

jx�j � Sn��� we have

v�y� ra�y� t�	� t�  ��a��

But �
�ara�y� t� � �� and the composition of two monotone functions of one real

variable is monotone in the sense consistent with the chain rule�

Consider 
rst the case ��a� 	 a and �
�ara�y� t� � �� the case when �

�ara�y� t� is

negative is similar� Note that �v
�r exists and is positive in this case�

In order to verify that v is a viscosity supersolution to equation ������ let 
 be

a C� test function� with 
�x�� t��  v�x�� t�� for an arbitrary point �x�� t��� and

with 
 � v in a neighborhood of �x�� t��� Then r
�x�� t�� is a subdi�erential for v

at �x�� t��� so
��
�r �x�� t�� 

�v
�r �x�� t�� � �� Let e�a�t� be the ��a��level hypersurface

of 
� A straightforward application of the chain rule shows that e�a�t� has normal

velocity �in the direction of increasing r�

eV  �
��
�t

jr
j
and mean curvature �in the direction of increasing r�

eH  �div r
jr
j �

Write a�  ��a��  v�x�� t��  
�x�� t��� We have x� � �a��t�� 
 e�a��t��� For
�x� t� near �x�� t��� since 
 � v� we see that the smooth hypersurface e�a�t� lies above
�a�t�� where �above� means in the direction of increasing r� Since �a�t� is a viscosity

subsolution of V  H � g�t�� treated as a PDE for r  jx�j as a function of t and

the remaining x variables� e�a��t�� satis
es eV � eH � g�t� at x  x�� Equivalently� at

�x�� t���
�


�t
� jr
j

�
div

r

jr
j � g�t�

�
�

�



This shows that v is a viscosity supersolution of the equation ����� in this case�

The general case� with a continuous and monotone function �� follows from the

case ��a� 	 a since ����� is a geometric PDE �compare Theorem ���� p� ��� of

�CGG	�� Q�E�D�

Remark � As may be seen from the proof above� the hypothesis on the family

�a�t� is that the family is a transversely C� foliation and that each leaf is a viscosity

subsolution �resp� supersolution� of V  H�g�t�� It is convenient� but not necessary�

to assume that the hypersurfaces �a�t� are obtained by rotation about an axis�

� Lower bound on growth of the level set

In this section� we will demonstrate a lower bound for the size of the fattened level

set at time t� of the form� if jxj � ct���� � � t � � and x lies outside ���t� and

outside ���t�� then u�x� t�  � �Theorem ����� Note that Lemmas ��� and ��� and

Proposition ��� do not require ���t� to evolve by a geometric �ow� but only to be

smooth�

Throughout this section� a positive number � will be required repeatedly to be

small enough� and will still be denoted � by abuse of notation�

Lemma ��� Let ���t� be two smooth� oriented hypersurfaces of IRn which evolve

smoothly in time t � ��T� T �� Suppose that ���t�
���t�  � for t � �� that �����

and ����� meet externally at the origin O of IRn �and possibly elsewhere�� and that

the coordinate hyperplane x�  � is the common tangent hyperplane to ����� and

����� at the origin� Then there are positive numbers b� � and �� and a real number

B� such that for all �� � t � �� the graphs

x�  bjx�j�  bt� �Bt� jx�j � �

lie inside or on ���t�� respectively�

Proof� Choose � and � small enough that ���t� 
 fjx�j � �g is a graph over the

hyperplane x�  � for all �� � t � �� Write ���t� locally as x�  ���x�� t� for

some smooth function �� on Bn��
� �O�� ���� ���

Let B be the common velocity of ���t� at t  �� x  O in the positive x��

direction� and let �b be an upper bound on second directional derivatives of �� in

the �x�� t� variables on Bn��
� �O������ ��� Then the only nonvanishing 
rst derivative

of �� at �O� �� is ���
�t �O� ��  B� It follows from Taylor�s theorem that�����x�� t��Bt

�� � bjx�j� � bt�

�



for �x�� t� � Bn��
� �O�� ���� ��� Q�E�D�

As in Koo�s paper �K	� we shall construct a family of hypersurfaces of revolution

which expand by mean curvature� In �K	� this family was self�similar� and was

constructed in �ACI	 via the solution of an ordinary di�erential equation� In this

paper� we will need to solve directly a parabolic partial di�erential equation in

one space variable� This will be done in the following proposition� by constructing

sub� and supersolutions satisfying the given boundary conditions and by deriving

an a�priori gradient bound� with reference to well�known existence and regularity

results�

Choose a positive constant a� and de
ne two positive increasing functions of

t � � by ��t� � �t�a���� and �t� � �a
�
��t�� � t�

�
� Note that � � d�

dt �
d�
dt for all

� � t � t��a�� for some t��a� � ��

Proposition ��� Let ���t� and the numbers b� B� and � be as in the statement

of Lemma ���� Then for each a � b� there is � � � and a subsolution r  ra�y� t� of

the initial�boundary value problem

�r

�t


r
��

� � �r���
� n� �

r
� jy �Btj � �t�p

�
� � � t � �������

r

�
Bt �t�p

�
� t

�
 ��t�� �t�p

�
� � � t � �� and�����

r�y� t�� � uniformly for jy �Btj � �t�p
�

as t� ��������

ra is smooth on the closure of its domain� except at ��� ��� where it is continuous�

The hypersurfaces of revolution jx�j  ra�x�� t� in IRn generated by the graphs of

the solutions ra de�ne a foliation by hypersurfaces �a�t� moving by mean curvature�

The boundary of �a�t� has two components� one inside or on ���t� and the other

inside or on ���t�� Moreover� the distance ra�y� t� from any point of �a�t� to the

x��axis satis�es the uniform estimate

ra�y� t�  �t�a���� �O�t���������

as t� ���

Proof� We shall 
rst construct a subsolution �r�y� t� and a supersolution  r�y� t�

to ����� on the moving domain jy �Btj � �t��
p
�� both satisfying the boundary

conditions ������ We shall construct the graph of �r��� t� as the lower quarter�circle of

�



increasing radius �t� and center �y� r�  �Bt� ��t�� �  r��� t� will describe the chord

joining its endpoints�

For convenience� we may introduce the system of moving coordinates �x� t��

where x � y �Bt� Then equation ����� is equivalent to

�r

�t
 Br� �

r
��

� � �r���
� n� �

r
� jxj � �t�p

�
� � � t � �������

since r�  �r
�y  �r

�x �

Let � � � be as in the conclusion of Lemma ���� By abuse of notation� we

shall replace � by smaller positive values as needed� which will still be called �� In

particular� we may assume that � � t��a�� Further� since the leading term of �t� is

�a���t���  �a��� we may choose � small enough that

�� �a�

�a��
� �at� jBj � �


� n� �

� � 
��H��

for all � � t � �� Hypothesis �H�� and the computation
d�

dt


�

�a��
imply that

d�

dt
� d

dt
� jBj � �


� n� �

� � 
������

This last inequality shows that the moving quarter�circle

�r�x� t� � ��t��
p
�t�� � x�� jxj � �t�p

�
������

satis
es

��r

�t
� �r

��

� � ��r���
� n� �

�r
����!�

since
p

� � ��r��� � � and �r � ��t���t�� That is� �r�x� t� is a subsolution of equation

����� on the domain
n
�x� t� j � � t � �� jxj � ��t�p

�

o
�

Let us now require � to be small enough that

��t�
p
� � ��t��H��

for all � � t � �� Then we may also construct a supersolution  r�x� t�   r�t� of �����

on the interval jxj � ��t�p
�
� satisfying the same boundary conditions ����� as ra�x� t��

by de
ning

 r�x� t� � ��t�� �t�p
�

for all x in the interval
h
���t�p

�
� ��t�p

�

i
� In fact� since  r��  �� we only need to show

that ��r
�t � �� But d�

dt  �
�a��

� while d�
dt  �a

�
� ��
�t � t

�
� so  r is nondecreasing if and

only if

�
p
�a�� � �

p
�a���t � ��

!



which is a consequence of �H��� since the left�hand side is � �
p
��t��

We shall need one last hypothesis regarding � � for a given � � � � ����� we will

assume that

�n� ��
��

���� � ��
c� � �� � c���jBj

p
�
� ���H��

for all � � t � �� Here we de
ne c� � tan������ � �� � �� Note that hypothesis

�H�� is the special case of �H�� with �  �� Also� note that hypothesis �H�� implies

�H�� for su"ciently small � � ��

We shall return to the proof of Proposition ��� after establishing the following

existence statement for a modi
ed equation�

Lemma ��� Assume that hypotheses �H��� �H�� and �H�� hold� Fix � � � such

that �H�� is valid� Choose � � �� p� � c� and � � z� � ���� � ���� Then there is

a solution r�x� t� to the initial�boundary value problem

�r

�t
 A���r��r�� �A�r� r��� � � t � �� jxj � �t�p

�
�����

with boundary conditions

r

�
�t�p

�
� t

�
  r�t�� � � t � �������

and initial condition

r�x� ��   r���� jxj � ���p
�
�������

Here� the coe�cients of the modi�ed equation ����� are de�ned by

A���p� � �� � p����� p � c� � A���p� � �� � p���
��� p � p��

and smooth for c� � p � p�� and by

A�z� p� � � n� �

z � z� �Bp�

Moreover� r�x� t� satis�es the a�priori gradient bound

jr��x� t�j � c��������

and the upper and lower bounds

�r�x� t� � r�x� t� �  r�x� t�������

on its domain�

�



Remark � Note that if the estimates ������ and ������ hold� then the modi�ed

equation ����� is equivalent to ������ Namely� since � � t��a�� the minimum value

of �r�x� t� for � � t � � is �r��� ��  ���� � ����

Proof� The modi
ed equation ����� is uniformly parabolic� and the existence the�

ory for such equations� in a domain such as � � t � �� jxj � �t��
p
� is well known

��F	� �LSU	� �L	�� Speci
cally� the existence of a unique solution� for which r�� and
�r
�t are locally H#older continuous in the interior follows from Theorem ����� of �L	�

The H#older continuity of r� at boundary points x  �t��p� may be seen from

Theorem ���� of �L	� Smoothness of r�x� t� near the initial line t  � follows from a

standard re�ection technique and Theorem ����� of �L	�

It remains to prove the estimates ������ and ������� For this purpose� consider

the weaker inequalities

jr��x� t�j � c� �������

and

z� � r�x� t��������

Observe that the estimates ������ and ������ will be valid for r�x� t� on a short time

interval � � t � t�� Namely� the initial condition ������ implies r�  � at the initial

line t  �� hence ������ holds on a one�sided neighborhood� Since r��  � on the

initial line� and since  r is a strict supersolution� we have �r
�t �

��r
�t on the initial line

and hence r �  r for a short time after �� This shows that ������ holds for a short

time after �� Let t� � ��� �	 be the largest number so that ������ and ������ are valid

for � � t � t�� and let t� � �t�� �	 be the largest number so that ������ and ������

are valid for � � t � t�� We need to show that t�  �� we shall show that otherwise�

t� must be both greater than and equal to t��

Since z� � ��t� � �t� � �r�x� t� and j�r��x� t�j � � � c� for � � t � t�� �r is

also a subsolution of the modi
ed equation ������ Therefore� by the comparison

principle� r�x� t� � �r�x� t� � ��t�� �t� for all � � t � t�� jxj � �t��
p
�� Similarly�

r�x� t� �  r�t�� That is� inequality ������ holds for all � � t � t��

The gradient bound ������ requires more work� Let ��x� t� � ������ ���� be

de
ned by tan ��x� t� � r��x� t�� Then � satis
es the equation

sec� �

�
��

�t
�B��

�
� ��� 

n� �

r�
tan ��������

wherever ������ and ������ are satis
ed� in particular for � � t � t�� �When

r � z� or when jr�j � c�� the equation is more complicated� and will not be

��



needed�� As we have seen� r� and therefore � are H#older continuous up to the

boundary x  �t��p�� It may be seen from inequality ������ that at the bound�

ary� jr���t��p�� t�j � �� that is� j���t��p�� t�j � ����

We introduce a corrector function

��x� t� �
�

��t��

�
�t��

�
� x�

�
�

Then � � ��x� t� � ��� on the domain of r�x� t�� while ���t��p�� t�  �� We shall

show that Q�x� t� � j��x� t�j � ��x� t� satis
es a maximum principle� from which it

will follow that j�j � �� ��� � ������ since j�j � ��� and �  � on the boundary

jxj  �t��
p
�� while �  � and � � � � ��� on the initial line t  �� jxj � �t��

p
��

In particular� it will follow that ������ holds for � � t � t��

Consider the 
rst time when Q  j�j � � reaches the value ���� �� which could

only happen at an interior point� Then we have j�j � ����� � � there� We may

therefore compute that� at that point�

��

��

�
sec� �

�
��

�t
�B��

�
� ���

�
 sec� �

�
x�



d

dt
�Bx

�
� �

� ��� � c���jBj� �

� �n� ��
��

���� � ��
c�

according to hypothesis �H��� Meanwhile� we have seen that r�x� t� � ��t� �
�t�� which implies that the right�hand side of ������ is in absolute value at most
n� �

�� � ��
c�� Therefore there can be no interior point where a local 
rst maximum

value ����� occurs for Q  ���� This shows that j�j � ���������� and hence

jr�j � c�� therefore the gradient estimate ������ is valid on � � t � t�� jxj � �t��
p
��

But the same argument holds for all smaller values of � � �� this implies that� in

fact� inequality ������ holds for � � t � t��

We have just shown that in fact� t�  t�� Now if t� � �� since t� is de
ned by the

inequalities ������ and ������� then by continuity the weaker inequalities ������ and

������ �with our original� 
xed� � � �� would continue to hold for a short time after

t�� that is to say t� � t�� We conclude that t�  �� which means that the estimates

������ and ������ hold for all � � t � �� jxj � �t��
p
�� Q�E�D�

Proof of Proposition ���� cont� Write r����x� t� for the solution r�x� t� of the

modi
ed equation ����� satisfying initial conditions ������ on the line t  �� as

given in the conclusion of Lemma ���� Then r��� is also a solution of equation ������

because of the estimates ������ and ������� For � � �� � ��� inequality ������ implies

that r�����x� ��� �  r����� which are the initial data for r����� meanwhile� r���� and

��



r���� share the same boundary data� Therefore� by the strong maximum principle�

r���� � r���� on the domain of r����� That is� the solutions r����x� t� are increasing

as a function of �� As �� �� we therefore have pointwise monotone convergence of

r��� to some function r��� on the domain � � t � �� jxj � �t��
p
�� The convergence

is smooth� implying that r��� satis
es the gradient bound ������� except at ��� ���

Similarly� r��� satis
es the inequality ������� and it follows that r��� is continuous at

��� ��� since both �r and  r converge to zero there�

We now write ra�x� t� in place of r����x� t�� and r
���
a �x� t� in place of r����x� t��

where a � b is the parameter which was used to de
ne ��t� and �t��

Returning to the original �y� t� coordinates� the foliation property of the family

ra�y� t� of solutions to equation ����� may be seen by showing that q�y� t� �
�ra
�a

�y� t�

is negative everywhere in its domain � � t � �� jy�Btj � �t��
p
�� In fact� q satis
es

the homogeneous� uniformly parabolic partial di�erential equation

�q

�t


q��

� � �r���
� �r�r��q�

�� � �r���	�
�
n� �

r�
q������

on its domain� Its boundary values are given by  q�t� � ��r
�a�t�  ���p� � �a�� �

�at����a
p
� � �� as follows from the de
nitions of ��t� and �t�� But  q�t� are

also the initial and boundary data for q����y� t� �
�r

���
a

�a
�y� t�� which also satis
es

������� It follows from the maximum principle that q����y� t� � � for all � � t �
�� jy � Btj � �t��

p
�� Therefore q�y� t� � �� moreover by the strong maximum

principle q�y� t� � � for t � �� since it has negative boundary values  q�t��

Finally� at boundary points of the surface of revolution �a�t� generated by the

graph of ra�y� t�� we have x�  Bt ��t�p
�
and jx�j  ��t�� ��t�p

�
� ��t�� Since a � b� it

follows that �x� �Bt� � b�jx�j� � t�� and thus from Lemma ��� that these points

lie inside or on ���t�� respectively� Q�E�D�

We are now ready to construct a solution v of the homogeneous equation ����!�

below� whose level sets will be formed by the family� just established� of hypersur�

faces �a�t� moving by mean curvature�

In the remainder of this paper� we shall write $�t� for the open set in IRn lying

outside of ���t� and of ���t��

Lemma ��� Let ���t� and b � � be as in Lemma ���� Let � � � and the foliation

f�a�t� j a � b� � � t � �g be as in Proposition ��	� Choose K � � and a� � a� � b�

Then there is a smooth real�valued function v�x� t�� de�ned for x � $�t� and t � ��� ��

satisfying

�v

�t
 jrvj div

� rv
jrvj

�
�����!�

��



such that v � �
 v�x� t�  K unless x � �a�t� for some a � �b� a��
 and so that

v�x� t�  � for all x � �a��t��

Proof� According to Proposition ���� each hypersurface of revolution �a�t� moves

by mean curvature and has two boundary components� one inside or on ���t� and

the other inside or on ���t�� Choose a smooth� locally monotone function � � IR�
���K	 such that ��a�  K for all a � b and all a � a�� and such that ��a�  � for all

a in a neighborhood of a�� De
ne v�x� t� � ��a� if x � �a�t� for some a � �b� a��� and

otherwise v�x� t� � K� Then v vanishes identically on the evolving hypersurface

�a��t�� Moreover� according to Proposition ���� v satis
es the partial di�erential

equation ����!� on the set 	
�	t	


$�t�� ftg � IRn � IR�

Q�E�D�

Theorem ��� Let ���t� be two smooth� oriented hypersurfaces in IRn which evolve

according to

V  H � g�x� t�������

for some nonnegative continuous forcing term g�x� t�� Suppose that ���t�
���t� 
� for t � �� �T � t � T � and that there is a point x� � ����� 
 ������ Let

u��� t������ be the generalized solution to ������ with initial condition u����T ������ 
����T � � ����T �� That is� u�x� t� satis�es the equation

�u

�t
 jruj

�
div

� ru
jruj

�
� g�x� t�

�
������

and u�x��T � vanishes i� x � ����T �� Then there exists � � � such that for all

� � t � �� the generalized solution u��� t������ has nonempty interior� Moreover�

there is c � � so that for all � � t � �� u�x� t� vanishes whenever

x � $�t� 
Bct����x���������

Remark � It was shown by Koo �K	 that under the hypotheses of Theorem ����

fattening of the zero level set occurs immediately after contact� An examination of

Koo�s proof� for example� formula ������ of �K	� shows that the size of the level set

after time t is at least const� t���� Thus� the main interest in Theorem ��� is the

more rapid rate of growth �������

��



Remark � It follows from Theorem ��� below that the exponent �
� is sharp� How�

ever� the upper bound �� t
��� of that theorem appears to have a constant �� which

is much larger than the best constant� We expect that the sharp constant might

be ��  b����� where �b is an lower bound for the inward principal curvatures of

������ �We do not expect the convexity hypothesis of Theorem ��� to be necessary��

Any constant c � b����� where �b is an upper bound for the principal curvatures of

������ is valid for Theorem ����

Proof� As in �K	� our proof will be based on the function v�x� t� given in Lemma

���� whose level sets are generalized solutions for �ow by mean curvature� Since

we have assumed g�x� t� � �� v is a supersolution of ������� Assume for simplicity

x�  O � IRn� Since the PDE ������ is geometric� we may assume without loss of

generality that u is uniformly bounded� ju�x� t�j � K for all x � IRn� t � ��T� T ��
In fact� the conclusion refers only to the zero level set of u� which is unchanged

if u�x� t� is replaced by the bounded function tanhu�x� t�� For similar reasons� we

may assume u�x� �� � � on $��� and u�x� �� � � for x inside ������ This function

remains a viscosity solution of ������� see Theorem ��� of �CGG	� Let � � � be as in

the conclusion of Lemma ���� Write $ for the open set f�x� t� j x � $�t�� � � t � �g
in IRn � IR� Then v is continuous on %$ except at time t  �� when t  �� we

have v�x� ��  K for x � O and the lower semi�continuous envelope v��O� ��  ��

In particular� v��x� �� � u�x� �� on $���� Further� u�x� t�  � for all x � �$�t��

so v� � u on the parabolic boundary f�x� t� � �$ j � � t � �g� It follows from

the comparison principle that v � u everywhere on $ �see �GGIS	� p� ����� In

particular� u�x� t�  � for all x � �a��t�� � � t � ��

Let D�t� be the bounded open set in IRn whose boundary consists of portions

of ���t�� ���t� and the surface of revolution �a��t�� for each � � t � �� Write

D  f�x� t� j x � D�t�� � � t � �g� Then u vanishes identically on the parabolic

boundary f�x� t� � �D j � � t � �g� Applying the comparison principle on D� we

see that u 	 � on D� Finally� estimate ����� implies that D�t� contains all x � $�t�

with jxj � �t�a��
��� �O�t����� and conclusion ������ follows� Q�E�D�

� Upper bound on growth of the level set

In this section� we will demonstrate an upper bound for the size of the fattened

level set at time t� of the form� if jx�j � ��t
��� then u��� x�� t� � �� �Theorem ���

below�� We would like to point out some di�erences between this section and section

� above� in addition to the obvious change in direction of the inequality we wish to

prove� In section �� it was necessary to 
nd both a subsolution and a supersolution�

��



as barriers� these were required to have their boundaries inside ���t�� in order

to sweep out the region $�t� outside� In this section� a two�parameter family of

supersolutions �only� will be needed� However� the supersolution must lie entirely

outside ���t�� in such a way that every nonzero point of the intersection of $�t� with

the hyperplane x�  � is in one of the supersolutions of the two�parameter family�

For this purpose� the simple geometric constructions �quarter�circle and horizontal

line segment� which were su"cient for section � must be replaced by the well�known

Grim Reaper� extended by two of its tangent lines� Extending the Grim Reaper by

its tangent lines serves to overcome the e�ects of the forcing term�

Note that Lemmas ������� do not require ���t� to evolve by a geometric �ow�

but only to be smooth�

Throughout this section� as in Section � above� a positive number � will be

required repeatedly to be small enough� and will still be denoted � by abuse of

notation� By further abuse of notation� the proof of Theorem ��� requires � to be

smaller than the last version of the number � of this section� and also smaller than

the last version of the number � of section �� For x � IRn� we write x  �x�� x
�� �

IR� IRn��� We also assume that g�x� t� is a continuous function de
ned on IRn� IR

throughout this section�

We shall use methods analogous to the proof of Lemma ��� to show

Lemma ��� Let ���t� be two smooth� oriented hypersurfaces of IRn which evolve

smoothly in time t � ��T� T �� Suppose that ���t� 
 ���t�  � for t � �� that

����� and ����� meet externally at the origin O of IRn �and possibly elsewhere��

and that the coordinate hyperplane x�  � is the common tangent hyperplane to

����� and ����� at the origin� Moreover� assume that ���t� are strictly convex at

x  O� t  �� Then there are positive numbers b� b�� � and �� and a real number

B� such that for all �� � t � �� the graphs

x�  bjx�j� � b�t� �Bt� jx�j � �

lie outside or on ���t�� respectively�

Proof� Choose � and � small enough that ���t� 
 fjx�j � �g is strictly convex�

and is a graph over the hyperplane x�  � for all �� � t � �� Write ���t� locally

as x�  ���x�� t� for some smooth function �� on Bn��
� �O�� ���� ���

Let B be the common velocity of ���t� at t  �� x  O in the positive x��

direction� let �b be a positive lower bound on second directional derivatives in the

x��variables� and let ��b be an upper bound on the absolute value of its second

directional derivatives in the �x�� t��variables on Bn��
� �O� � ���� ��� Then the only

��



nonvanishing 
rst derivative of �� at �O� �� is ���
�t �O� ��  B� It follows from

Taylor�s theorem that �����x�� t��Bt
�� � bjx�j� � b�t�

for �x�� t� � Bn��
� �O� � ���� ��� Here we may choose b� � �b� ��b��b� The computa�

tion is based on Schwartz� inequality with appropriate weights� with respect to the

positive semi�de
nite matrix �D��� � ��bI� Q�E�D�

We are now ready to construct the two�parameter family of supersolutions �a�k�t�

which comprise the main tool for the results of this section�

Lemma ��� Let ���t� and the numbers b� B� �� and � be as in the statement of

Lemma ���� Let us also de�ne a continuous function

gmax�t�  max f��maxfg�x� t� j jxj � �gg �

Then for each a � ���minf����b���� �g�� there is a positive continuous viscosity

supersolution r  ha�y� t� of the equation

�ha
�t


h
��

a

� � �h�a��
� n� �

ha
� gmax�t�

p
� � �h�a��� y � IR� � � t � ������

with initial condition

ha�y� �� 


��a log sec
y
a � a log sec ya

a �
q

ya
b if jyj � ya�

�jyj � ya� tan
ya
a �

q
ya
b if jyj � ya

where ya is de�ned in ����� below� For each a � �� the hypersurfaces of revolution

jx�j  ha�x�� t� � k in IRn generated by the graph of ha � k� with k � �� de�nes a

foliation by hypersurfaces �a�k�t� moving by the normal velocity V � H � gmax�t��

Moreover�

�a�k�t� 
���t�  � for jx�j � �� k � �� and � � t � �������

Proof� We shall 
rst prove �a�k�t�
���t�  �� The case ���t� is equivalent� after
changing the sign of B�

Let f�y� t� be de
ned for y � �� � � t � � by �

r  f�y� t�  ft�y� �
p

�y � b�t���b�B�t� where B�  max f�B�b� �g �

According to Lemma ���� the hypersurface of revolution jx�j  f�x�� t� in IRn gen�

erated by the graph of f�x�� t�� for f�x�� t� � �� � � t � �� lies outside or on ���t��

Also for any a � �� de
ne G � IR� ����� by

y  G�y� � a log sec
y

a
�

��



which is known as the Grim Reaper� and denote by ya the unique value in ��� a����

satisfying

f ���ya�  G��ya� �� �

�
p
bya

 tan
ya
a
������

Then de
ne a continuously di�erentiable� positive function ha � IR� ������ �����

for each a � � by extending the Grim Reaper linearly� and moving upward with

�large� constant velocity�

ha�y� t� 


��a log sec
y
a � a log sec ya

a �
q

ya
b � C t

a if jyj � ya�

�jyj � ya� tan
ya
a �

q
ya
b � C t

a if jyj � ya
�����

where C is de
ned in ����� and ������ below� Write ya � a���� � �� for some

� � � � ���� Then we have

�

�
� � sin �  � cos �

r
b � a

��
�
� �

�
� �

r
b � a

��
�
� �

�
where the second equality follows from ������ It follows that

� � � �
r
b � a�

�

�
� � for a �

�

��b
�

Consequently

�

sin �


�

�
p
a cos �

p
b����� ��

� �

�
p
a cos �

p
b����� ��

for a �
�

��b
������

Thus by choosing C satisfying

C � � � g�


�

��cos ��
p
b���� � ��

�
������

where g� is chosen as an upper bound of gmax�t� for � � t � �� one has

� � g�
a

sin �
� C for a � min

�
�

��b
� �

�
�

Then for jyj � ya and a � minf����b���� �g

h
��

a

� � �h�a��
� gmax�t�

p
� � �h�a�� 

�

a
� gmax�t� sec

y

a

� �

a
� g� sec

ya
a


�

a
� g�

�

sin �


�

a

�
� � g�

a

sin �

�
� C

a

�ha
�t

�

On the other hand� for jyj � ya�

g�
p

� � �h�a��  g�

r
� � tan�

ya
a

 g� sec
ya
a

 g�
�

sin �
� C

a


�ha
�t

�

��



Therefore� since h
��

a  �� ha is a viscosity supersolution of ����� for jyj � ya� as well

as for jyj � ya� Note that ha is continuously di�erentiable�

We claim that any C� function h�y� t� which is a smooth supersolution except

along a smooth curve �the line y  ya in our case� and C� up to the curve from

either side� is a viscosity supersolution� To see this� let �y�� t�� be a point of the

curve� and suppose a smooth test function 
�y�� t��  h�y�� t�� and 
 � h in a

neighborhood� We need to show that 
 is a supersolution at �y�� t��� But the 
rst

partial derivatives of 
 at �y�� t�� agree with those of h� Moreover by the one�sided

second�derivative test� the second directional derivatives of 
 at �y�� t�� are less than

or equal to those of h� where the second derivatives of h are computed on either side

of the curve� It follows that 
 is a supersolution of the PDE at �y�� t��� and hence

that h is a viscosity supersolution�

To prove ������ let us 
rst denote by yt the value at which the function ha�y� t��
f�y� t� attains its minimum as a function of y for each time t � ��� ��� Then yt

satis
es

�

�y
ha�yt� t� 

�

�y
f�yt� t��� tan

yt
a


�

�b
p

�y � b�t���b�B�t
������

Further� yt decreases as t increases since tan�y�a� is monotonically increasing in y

and
�
�b
p

�y � b�t���b�B�t
���

is monotonically decreasing in time t� Thus we have

yt � ya for t � ��� ������!�

Then one has

�����
�

�t

�
min
y
fha�y� t�� f�y� t�g

�


�

�t
�ha�yt� t�� f�yt� t�	 �

�

�y
ha�yt� t�� �

�y
f�yt� t�

�
� �yt
�t

�
C

a
� b�t�b�B���p

�y � b�t���b�B�t


C

a
� �b

�
b�t
b

�
B�

�

�
tan

yt
a
�

where the last equality follows from ������ Now by choosing C satisfying

C

�b�b���b �B����
�

�

��cos ��
p
b���� � ��

�������

one has for a � minf����b���� �g
C

�b�b���b �B����
� a

�

sin �
� a tan

ya
a
� a tan

yt
a

������

�!



where the 
rst inequality is from ����� and the third inequality follows from ���!��

Then by ����� and ������� one 
nds� whenever f�y� t� � � and � � t � �� that

�

�t

�
min
y
fha�y� t�� f�y� t�g

�
� �� min

y
fha�y� t��f�y� t�g � ha�ya� ���f�ya� ��  ��

which implies ������

Q�E�D�

Having constructed the hypersurfaces �a�k�t� which are supersolutions of V �
H�gmax�t�� we may now de
ne a family of subsolutions va of equation ������ whose

level sets are given by �a�k�t� for various values of k � ��

Recall that� for given hypersurfaces ���t�� we write $�t� for the open set in IRn

lying outside of both ���t� and of ���t��

Lemma ��� Let ���t�� b� and � � � be as in the statement of Lemma ���� Let u�

be a continuous function� which is positive on $��� � IRn� and is equal to � on ������
Let u be the corresponding viscosity solution of ������ below with initial condition u��

Fix a � ���minf �
��b

� �� �
�b
� g� and let the foliation f�a�k�t� j k � �� � � t � �g be as

in Lemma ��	� Then there is a positive number �� � � and a continuous real�valued

function va�x� t� de�ned for

�x� t� �
	

��t		


�Bn
� 
 $�t�	� ftg � IRn � IR�

where Bn
� � fx � IRn j jxj � �g� which is a viscosity subsolution of

�v

�t
 jrvj

�
div

rv
jrvj � g�x� t�

�
�������

such that for all �x� t� � S��t		
 �B� 
$�t�	� ftg
��������������

� � va�x� t� � u�x� t��

va
�
��
�
Ct
a �

p
�a
�b

�
 e� t
�
� � �  e � IRn��� j ej  �� where C is as in ������

va is nondecreasing in the r  jx�j direction�
va 	 const on each �a�k�t��

Proof� For a 
xed value a � �� we 
rst de
ne a set Sa� by

Sa�  fx � $��� j jxj  � and jx�j � ha�x�� ��g�

�See ����� for the de
nition of ha�� By the continuity of u and the fact that u� is

positive on $���� we can 
nd �� � � such that

�� � � of Lemma ��� and ma � min
x�Sa

�

��t	
�
u�x� t� � ��������

��



We shall show next that ma is nonincreasing as a function of a� from which it

follows that �� can be chosen independently of a�

We 
rst claim that �ya� ha�ya� ��� is inside the circle of radius �� or equivalently�

that

y�a � ha�ya� ��
�  y�a �

�r
ya
b

��

� ���������

Since � � ya �
�a
� � it is enough to show that��a

�

��
�
�a

�b
� ���

But the second term of the left�hand side is less than �
��

�� since a � ��b
� � multiplying

this last inequality for a with the hypothesis a � �
��b makes the 
rst term of the

left�hand side less than ��

���
� and the claim follows�

We next observe that ya is increasing as a function of a� this follows from the

fact that y  ya solves ����
p
by�  tan�y�a� �see equation ������� where ����

p
by�

is a decreasing function of y� while tan y�a is increasing in y and decreasing in a�

Finally� given � � a � a� � min
n

�
��b

� �� �
�b
�

o
� we have

ha�ya� � �� � f��ya�� 

r
ya�

b
 ha��ya� � ���

where the 
rst inequality holds since the straight�line part of ha��� �� is tangent to

the concave function f� at ya� which is less than ya� � Moreover�

tan
ya
a


�

�
p
bya

�
�

�
p
bya�

 tan
ya�

a�
�

that is� the slope of the straight�line part of ha��� �� is greater than the slope of

the straight�line part of ha���� ��� Hence� we conclude that� for y � ya� � ha�y� �� �

ha��y� ��� Then� by this conclusion and the fact that the graph of ha��� �� crosses

the circle of radius � on the straight�line part� which follows from ������ above� we

conclude that S�a is larger than S�a� as sets� It now follows that ma � ma� � and in

particular that �� can be chosen independently of a�

For any given a � � and x � Bn
� 
$���� if jx�j � ha�x�� ��� de
ne k�x� to be the

unique value such that x � �a�k�x����� by Lemma ���� Then de
ne

va�x� ��  min

�
ma� min

k�k�x�
min

z�
a�k����Bn
�

u��z�

�
if jx�j � ha�x�� ���

va�x� ��  � if jx�j � ha�x�� ���

Finally� de
ne

��



va�x� t�  va�x�� x
�� t� 


��va�x�� x� � C
a t

x�

jx�j � �� if jx�j � ha�x�� t��

� if jx�j � ha�x�� t��
������

It follows directly from the construction that va 	 const on each �a�k�t�� and

va�x� t�  ��k� for some nondecreasing function � whenever �x� t� � �a�k�t�� and

va�x� t�  � otherwise� which means that va is nondecreasing in the r direction�

Therefore va is a viscosity subsolution of

�v

�t
 jrvj

�
div

rv
jrvj � gmax�t�

�
by Proposition ��� and Lemma ���� where gmax�t� is as in the statement of Lemma

���� Since g�x� t� � gmax�t� for all jxj � �� it follows that va is a viscosity subsolution

of ������� Moreover� by the construction of va�x� t��

� � va�x� t� � u�x� t� on ��Bn
� 
 $���	� f�g� �

�� 	
��t	
�

� �Bn
� 
 $�t�	� ftg

�� �
It follows from the comparison principle that � � va�x� t� � u�x� t� for all �x� t� �S
��t	
� �B

n
� 
 $�t�	 � ftg �see �GGIS	� p� ����� Moreover� since a � ��b

� by the

assumption on a� which implies
p

�a
�b � �� we can de
ne �� � � by

�� � min

�
a

C

�
��

r
�a

�b

�
� ��
�

������

where �� is de
ned in ������� Then

Ct

a
�

r
�a

�b
� � whenever � � t � ���������

Moreover� with the same function f� as in Lemma ����r
�a

�b
 f�

��
�
a
�
� f��ya�  ha�ya� �� � ha��� �������!�

It follows from ������� ����!�� and Lemma ��� that�
��

�
Ct

a
�

r
�a

�b

�
 e

�
� Bn

� 
$�t��������

and� thus� va
�
��
�
Ct
a �

p
�a
�b

�
 e� t
�
is well de
ned for any j ej  � and for � � t � ���

Then� since ���
p

�a
�b  e� �� � �a�k��� for some k � � by ����!� and Lemma ����

va���
p

�a
�b  e� �� � � by the de
nition of va and the fact that u� is positive on

$���� Further� since
���Cta �

p
�a
�b �  e

��  f��
�
�a� �

Ct
a � ha��� �� �

Ct
a  ha��� t��

va
�
��
�
Ct
a �

p
�a
�b

�
 e� t
�
 va���

p
�a
�b  e� �� � � for � � t � �� by ������� Q�E�D�

��



Remark � Lemmas ��� and ��� show if ���t� are part of the moving boundary

for a nonnegative solution of ������ with the boundary condition u  � on ���t��
disjoint except at t  �� ����� 
 �����  O� ����� strictly convex at O� then for

� � t � �� the generalized solution fu  �g includes a piece of $�t� of size � t����

We are 
nally ready to prove an upper bound jxj � �� t
��� on the size of the

level set after fattening� this upper bound only applies to points x  ��� x�� in the

hyperplane x�  �� Of course� one expects that the fattening may appear instan�

taneously at great distances along the hypersurfaces ���t�� t � �� therefore some

restriction similar to x�  � is necessary in general�

Theorem ��� Let ���t� be two smooth� oriented hypersurfaces in IRn which evolve

according to

V  H � g�x� t�������

for some continuous forcing term g�x� t�� Suppose that ���t�
���t�  � for t � ��

�T � t � T � and that there is a point x� � ����� 
 ������ Moreover� assume

that ���t� are strictly convex at x  x�� t  �� Let u��� t������ be the generalized

solution to ������ with initial condition u����T ������  ����T � � ����T �� That

is� u�x� t� satis�es the equation

�u

�t
 jruj

�
div

� ru
jruj

�
� g�x� t�

�
and u�x��T � vanishes i� x � ����T �� Then there exists � � � such that for all

� � t � �� the generalized solution u��� t������ has nonempty interior� Furthermore�

recall that $�t� denotes the open set in IRn lying outside of both ���t� and of ���t��
and de�ne Bn

� � fx � IRn j jx � x�j � �g� Also� let b be as in the statement

of Lemma ���� Then there is �� � � and � � � so that for all � � t � � and

Px � x� � ��� x�� � Bn
� 
 $�t�� if u�Px� t� vanishes� then necessarily

Px � B� t���
�x���

Furthermore� for j ej  � and � � t � ��

x� � ��� �� t
���  e� � Bn

� 
 $�t�� and thus u�x� � ��� �� t
��� e�� t� � ��������

Proof� Our proof will be based on the family of subsolutions va�x� t� given in

Lemma ���� Assume for simplicity x�  O � IRn� We may assume u�x� �� � � for

x � $��� and u�x� �� � � for x inside ������ see Theorem ��� of �CGG	�

��



Let us pick any a satisfying

� � a � min

�
�

��b
� ��

��b

�

�
��A��

ta � a���
p
�

C
p
!b

� ��  min

�
a

C

�
��

r
�a

�b

�
� ��
�

�A��

as in ������� that is� �� is de
ned in ������ and C is de
ned in ������ �See ������

below to understand the meaning of ta�� Let b be as in the statement of Lemma ���

and

fa��t� 
Ct

a
�

r
�a

�b
� �t��� �� � ���

Since

f �a��ta�  � at ta 
� a�
�C

����
�

we may compute

fa��ta� 
C

a
ta �

r
�a

�b
� �t���a 

p
a


��

�

r
�

�
����

�p
C

�

r
�

�b

�
�

Thus� we de
ne �� independent of a by

a����fa���ta�  ��

�

r
�

�
�
���
�

�p
C

�

r
�

�b
 �� �� �

�
���C

!b

����

�

Then since f
��

a��t� � ��

fa���ta�  � and fa���t� � � if t � ta and t � ��������

For this choice of ��� we have

ta 
�a��
�C

����
 a���

�
�

�C

��������C

!b

����

 a���
p
�

C
p
!b
�������

Note that r  ��t
��� is tangent to the straight line r  Ct

a �
p

�a
�b at t  ta� and

forms the envelope of this family of straight lines with parameter a� Then� by �A���

ta satis
es ta � �� for �� de
ned in ������� and we can apply Lemma ��� for this ta

whenever a satis
es �A����A��� or equivalently� as long as

� � ta � min

�
��� a

���
min

p
�

C
p
!b

�
� �

where amin � min
n

�
��b

� �� �
�b
�

o
� Furthermore� by the fact that va is nondecreasing

in the r direction� we obtain

u
�
�� x�� ta

� � va��� x
�� ta� � va

�
��

�
Cta
a

�

r
�a

�b

�
x�

jx�j � ta
�
� �

��



whenever ��� x�� � Bn
�
$�ta�� � � ta � � and jx�j � ��Ctaa �

p
�a
�b

��  ��t
���
a �the last

equality follows from �������� By replacing ta by t� we conclude that u ��� x�� t� � �

whenever ��� x�� � Bn
� 
$�t�� � � t � �� and jx�j � ��t

���� Therefore� for � � t � �

and ��� x�� � Bn
� 
 $�t��

u��� x�� t�  � may only occur if jx�j � ��t
����

Finally� ������ follows from ������ and ������� Q�E�D�

Remark � Although Theorem ��� deals with two disjoint pieces of hypersurface

���t� evolving by V  H � g�x� t�� the reader may note that this includes the case

of a connected hypersurface ��t� which touches itself at some time t  � and then

pulls away� In this situation� ���t� may be chosen as appropriate neighborhoods of

the contact point�
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