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Abstract

It is shown that, with the exception of very particular cases, any tubular liquid
bridge configuration joining parallel plates in the absence of gravity must change dis-
continuously with tilting of the plates, thereby proving a conjecture of Concus and
Finn [Phys. Fluids 10 (1998) 39-43]. Thus the stability criteria that have appeared
previously in the literature, which take no account of such tilting, are to some extent
misleading. Conceivable configurations of the liquid mass following a plate tilting are
characterized, and conditions are presented under which stable drops in wedges, with
disk-type or tubular free bounding surfaces, can be expected. As a corollary of the
study, a new existence theorem for H-graphs over a square with discontinuous data is
obtained. The resulting surfaces can be interpreted as generalizations of the Scherk
minimal surface in two senses: (a) the requirement of zero mean curvature is weakened
to constant mean curvature, and (b) the boundary data of the Scherk surface, which al-
ternate between the constants +o0o and —oo on adjacent sides of a square, are replaced
by capillary data alternating between two constant values, restricted by a geometrical
criterion.
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1 Introduction

There is a considerable literature on stability of liquid drops that form bridges between
parallel plates in the absence of gravity. Earlier literature focused on drops whose bound-

ing surfaces were constrained to pass through prescribed circular rings on the plates; more



recently papers have appeared concerning drops whose positions on the plates are not pre-
scribed but whose configurations are determined by the natural boundary conditions of
prescribed contact angles vy, v, with the respective plates, arising from the underlying vari-
ational problem of minimizing mechanical (free surface plus wetting) energy. We mention
the papers [1, 4, 14, 22, 32, 33|, [35]-[38], [43]-[45] of which the sharpest (and in some ways
definitive) results appear in [44]. In all cases, the drop surface is known to be rotationally
symmetric and to have a constant mean curvature.

A consequence of the results in these references is that for any v, and v, in [0, 7] and
sufficiently large V', there is a stable drop of volume V' forming a tubular bridge that meets
the plates in angles v, 72; this bridge is determined uniquely up to rigid translation parallel
to the plates [44].

In all of the literature just mentioned, the stability criteria are determined relative to
perturbations of the fluid surfaces, for fixed and rigid plates. The effect of plate tilt on
stability is first addressed in [24]; a more extensive discussion appears in [9]. Our intention
in the present work is to show that if the plates are allowed to tilt, even infinitesimally,
then with the exception of very particular cases, the fluid behavior as predicted by the
idealized equations will differ dramatically from what is envisaged in current literature. The
exceptional cases are exactly those for which the configuration is spherical, so that the
tube appears as a spherical belt. We shall show that in all other cases, the dependence
of the configuration on plate tilting is necessarily discontinuous. Since among all bridge
configurations for given v, 72, joining given parallel plates with varying volume, there is
exactly one value V' = V; that yields a spherical bridge, we will find that the cases of

stability relative to plate tilting are indeed rare.



2 Discontinuous dependence

By a tubular liquid bridge joining planes 111, 115, we will understand an embedded surface &
that is topologically a portion of a cylinder, bounded by two simple closed curves (contact
lines) ¥; and X, that lie on the respective planes. We assume the closure of S to be of
class C', and we suppose that ¥; NIl = 9 NII; = . We note that these definitions do
not preclude surfaces that cross through the planes, although such surfaces would not be

physically possible.

Figure 1: Tubular liquid bridge

We consider such a surface S having constant mean curvature H in a configuration for
which II; and II; intersect in an angle 2c;, 0 < 2a < 7, as indicated in Figure 1. We suppose
additionally that & meets II;,Il; in the respective constant contact angles 7,7, measured
interior to the tube enclosed by & and that 0 < v, v, < w. We denote by €2y, 25 the portions
of the planes II;, Iy enclosed by ¥, X9, respectively.
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In the absence of an exterior gravity field, the position vector x on S satisfies
(1) Ax =2HN

where A denotes the invariant Laplacian on &, and N is the unit exterior normal to S.
This normalization determines the sign of H, as positive if the curvature vector is directed

exterior to the bridge, otherwise non-positive. Integrating Ax over S we obtain

ox
2 QH/Ndw:j[—ds:jl{nds
() S » On »

where ¥ = }; U Xy, and n is the unit conormal to § on ¥. We find for each plane II;,
J=12,

(3) n; = (n; - N;)N; + (n; - v;)v; = Njsiny; + v; cos v,

where IN; is the unit normal to €2; exterior to the volume enclosed by S, €, and Q,, v; is
the exterior unit normal to 3; in IT;, and n; is the unit conormal to S on ¥; (see Figure 1).

We have

(4) ]i vy ds /Q V(1)dw = 0.

J J

Also, denoting the bridge interior by Z, we have

S SUQ U

T
= —[ [N — [Q22 Ny

by the divergence theorem. From (2), (3), and (5) we obtain
(6) (|21| sin’yl + 2H|Ql|) N1 + (|21| Sin’}/Q + 2H|QQ|) Ng = 0.

Since N7 and Ny are independent, we are led to
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Theorem 2.1 A tubular bridge can exist in a wedge only if
(7) |Z1|siny + 2H[ | = 0, |2 siny, + 2H || = 0.

In these relations, the sign of H is determined by our convention that N is directed
exterior to §. Thus (for example) H would be negative for a convex surface. The theorem

yields immediately
Corollary 2.1 There is no tubular bridge in a wedge, for which H > 0.

Corollary 2.2 There is no tubular bridge in a wedge, for which H # 0 and with contact

angles 0 or m on the bounding walls.
If the planes are parallel, then the identical proof yields

Corollary 2.3 If a tubular bridge meets parallel planes in simple curves X1, X9 and makes

constant angles vy, o with the planes, then
(8) |X1]sinyy + 2H || = |Zof sinyg + 2H ||

Suppose now that the two planes Il;, I, are initially parallel. Then any tubular liquid
bridge of constant mean curvature that meets Il; and Iy with constant contact angle on each
plane is rotationally symmetric and intersects any intermediate parallel plane 11 transversally
in a circle. This follows from a procedure due to Wente [39], who adapted the Aleksandrov
reflection method to the case of drops on a single planar surface. The procedure applies in
the identical way to the case of two parallel planar surfaces considered here.

Let us denote by r the radius of the circle in the plane IT and by ¥ the angle between I1
and S along that circle. Applying Corollary 2.3 with I in place of II, we obtain sin W+ Hr =
constant (independent of IT). But if (7) holds on either plate then the constant vanishes,
and we conclude that the bridge is spherical. We have proved the following result, originally

conjectured by Concus and Finn [9]:



Theorem 2.2 Suppose that a tubular bridge between two parallel plates is initially not a
sphere. Then the configuration changes discontinuously on infinitesimal tilting of one of the
plates, in the sense that either no tubular bridge exists for the tilt, or else that at least one

of the quantities ¥;, Q0;, H must change discontinuously.

In this result, the former eventuality is not empty. McCuan [25] proved that if the data
v1,7Y2 do not admit a spherical surface as a tubular bridge in a wedge of opening 2«, then

no embedded tubular bridge exists. But a necessary condition for a spherical bridge is
(9) Y1+ Y2 — 200 > .

Thus, if the resultant data after tilting do not satisfy (9), then the tilt leads either to disap-
pearance of the configuration (perhaps by flow along the edge) or else to a change of topological
type for the surface. We take up this matter further in the following section.

We note that the hypothesis of embeddedness is essential; an extension of Wente’s con-
struction in [40] provides examples of immersed bridges between the planes of a wedge.
Clearly, the assumption of constant contact angle is essential. Assuming that any equilib-
rium satisfies a constant contact angle condition, however, the proof shows that no nearby

equilibrium exists for a certain range of constants.

3 Observations

We consider the question, as to what happens physically to a tubular liquid bridge of pre-
scribed volume between parallel plates, making prescribed contact angles with the plates,
when one or both of the plates is tilted. If one permits change of topological type, then a
non countable infinity of choices is available, in which parts of the volume go into spherical
drops having no contact with the plates, other parts go into drops contacting only one of
the plates, and still other parts may go into drops in the wedge, wetting a segment of the

intersection line L. In what follows, we will restrict attention to connected liquid masses, in



a wedge of given opening 0 < 2a¢ < 7. We then find, by the same argument used by Wente in
[39], that there are no “holes” (air bubbles) contained within the masses; that is, the planar
contact regions {2; and {25 are simply connected and the second homology group of the fluid
mass vanishes. In all cases in which 0 < 1,y < 7, a spherical cap contacting only one of
the II; (the other plane being contacted in a vacuous sense) is a conceivable configuration for
any volume, and provides a local energy minimum. We show below in Sec. 4 however that
the drop in the wedge (which we denote by edge blob) and the tubular bridge are mutually
exclusive events, and we will indicate how continuous change of boundary data can lead from
a tubular bridge to an edge blob, and then either to disappearance along the edge to infinity
or to a drop contacting only one plate.

We return first to the question of what happens with initial tilt. In particular cases, there

is an immediate answer as to presumed behavior:

Theorem 3.1 If the initial configuration is spherical, then continuous change to a new

spherical configuration is always possible.

Proof: Following (small) tilting of the plates, we translate the initial sphere in a direction
orthogonal to one of the plates until the desired contact angle with that plate is restored,
then slide it along that plate until it makes the prescribed contact angle with the other plate.
Following those motions, the prescribed volume can be restored without changing contact
angles, by a dilation relative to a point on the intersection line of the plates. Since each of
these motions can be made to be vanishingly small with the amount of tilt, the resultant of
the three of them has the same property. O

The situation just described is exceptional, in the sense that for a bridge between given
parallel plates with given contact angles there is exactly one volume for which the liquid will
assume a spherical shape; since stable drops of arbitrarily large volume can be found for any

contact angles, we see that the case covered by Theorem 3.1 is a rare event among the set of



possible physical bridges. In all other cases, the change with tilting must be discontinuous.

We find the following behavior:

Theorem 3.2 Suppose that for an initial non-spherical bridge configuration between parallel
plates, there holds v, + o > w. Then a jump to a spherical tubular configuration between the
plates is possible. If initially v, + v2 < m then no tubular bridge can result from sufficiently
small tilting. In neither case can infinitesimal tilting lead to an edge blob (finite or infinite)
which admits a local representation near the intersection with L as a graph over a plane

orthogonal to L.

Proof: In the first case, (9) holds for « small enough, so that a spherical bridge exists. In
the latter case, (9) fails for a small enough, thus excluding a spherical bridge. By McCuan’s
theorem [25] if there is no spherical bridge then there is no tubular bridge. In both cases,

an edge blob with representation as indicated would contradict Theorem 3 of [8]. O

Thus, in either of the two eventualities contemplated in the theorem, it cannot be ex-
pected that an edge blob will appear immediately on tilting, as the result of discontinuous
change. In the first case however, if a spherical bridge is obtained after an infinitesimal tilt
and the opening angle 2« is increased until v; + 72 < 7 4 2« then the bridge should trans-
form smoothly to an edge blob in the wedge with spherical surface interface; see Theorem 4.1
below and the continuing discussion in the Case 1~ further down.

The exclusion of an edge blob in this result holds without growth hypotheses in the
representation. The result suggests strongly that in the latter case an infinitesimal tilt will
lead to disappearance of the fluid along the edge to infinity. This view is further supported

by the considerations that follow.

4 Configurations

We seek to determine what configurations can occur in a wedge of given opening 2q;, in terms

of boundary data. We take as starting point the result of [8], that a necessary condition for
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tangent plane to S continuous to the vertex is that the data ~;, 7, lie in the closed rectangle
R:
T—2a <7 +7% <71+ 2

(10)
20— <y — <2a+T7

inscribed in the square @, : 0 < 7,72 < 7 of permissible data, or equivalently that the

cosines By = cos~y;, By = cos 7, lie in the closed ellipse &£:
(11) B} + B + 2B B, cos 2a < sin” 2«

inscribed in the square Qp : —1 < By, By < 1 of admissible data (Figure 2). We note that
the boundaries of these inscribed regions correspond to vertical tangent planes at the vertex
(relative to a coordinate system in which L is vertical), and that interior to the regions the

tangent planes are not vertical.

72!

Figure 2: Rectangle and ellipse of data for smoothness

Points interior to the shaded regions of Figure 2 provide data for which solutions of (1)
with continuous tangent plane up to L actually exist, for any prescribed H > 0. Such

solutions can be obtained explicitly as the spherical surfaces S of portions of balls of radius



1/H cut off by the wedge. In fact, given «, By, By with (By, By) € £, we may determine 6

and £ > 0 from the relations

sin(a+6)  sin(a — 6y)
12 k= _ _
(12) B Sy

A sphere of arbitrary radius krg, whose center is positioned at (rqcos b, 79sinfly) in a co-
ordinate plane orthogonal to L whose positive x-axis bisects the wedge with origin at the
vertex, then provides a surface S with the requisite property. We note that the relation (11),
which is necessary for a spherical solution, implies k£ > 1.

The following result provides an extension of the theorem of H. Hopf, that every genus

zero immersion of a closed surface of constant mean curvature is a sphere.

Theorem 4.1 For data interior to € (or R), the spherical surfaces S determined by (12)
are the unique surfaces with local representation near L as a graph over a plane orthogonal

to L, that satisfy the contact angle conditions interior to the planes.

This result is proved in detail in [13], where somewhat weaker conditions are formulated.
The conditions do not require a globally embedded surface. In view of the particular interest
of the result in the present context, we outline here the proof.

By a theorem of Concus and Finn [6], the surface is bounded at L in a local representation
with L as vertical axis. By a theorem of Simon [31], § has continuous tangent plane to L,
and by results of Miersemann [27] and of Lieberman [23] the unit normal to S is Holder
continuous to L. Corresponding to the given data, the tangent plane at the vertex meets
the wedge plates in the tangent lines to the trace of S on the plates. These lines meet each
other in the angle 3 determined by

sin® 2o — (B? + B2 + 2B, B, cos 2)
(1-B7)(1 - Bj)

(13) sin? 23 =

which according to (11) is positive for all data interior to £.
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Figure 3: Edge blob and mapping of S to lens domain

The indicated trace is assumed smooth except at the vertices. We map S conformally
onto a lens domain in the (-plane as shown in Figure 3, keeping the angles at the vertices

unchanged. Composition of this mapping with the mapping

¢—1
¢+1

takes S to an infinite horizontal strip in the Z-plane, of height 2.

(14) Z =log

By hypothesis, S meets the plates in constant angles 7, y,. Since the plates are planar,
the intersection curve C'is a curvature line on the plates (i.e., every curve on a plane is a
curvature line). By a theorem of Joachimsthal [20], C'is also a curvature line on S. But the
image of C in the Z-plane consists of two coordinate lines. It follows that if [, m,n are the
coefficients of the second fundamental form in the Z-plane, then m = 0 on the boundary of
the strip.

By the local smoothness shown just above, in local Euclidean coordinates the position
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vector x has Holder continuous first derivatives up to each vertex V. Consequently the coef-
ficients of the associated Beltrami system for the mapping to the lens are Holder continuous,
and we conclude that x has Holder first derivatives up to the vertices in the lens plane.
Using results of Siegel [30], Gerhardt [17, 18], Ural’tseva [34] (see [10, p. 210, Note 5] and a
theorem of Azzam [2], we find that

(15) |D*x| = o(p™%),

in the { plane, p being distance from a vertex. Hence the coefficients L, M, N of the second
fundamental form in the ¢ plane are also o(p—2) at the vertices.
Since |d(/dZ| = O(p) at the vertices and since the Codazzi equations for a surface of

constant mean curvature imply that (L — M) — 2iM is analytic on the surface and that
(16) (L — N)—2iM]d¢* = [(I — n) — 2im] dZ?,

we obtain from (15) that (I — n) and m tend to zero at infinity in the strip. But m is
harmonic and vanishes on the boundary, and there follows m = 0. Hence (I —n) is constant,
and since it approaches zero at infinity, it vanishes identically. We conclude that § is totally
umbilic, and hence S is spherical, as was to be shown. O

We examine now what happens as the boundaries of £ (or of R) are approached from
within the domain, for a fluid mass of prescribed volume. (Note that, in contrast to the case
of parallel plates, volume in a wedge is an inessential parameter: any positive volume can
be obtained from any other positive volume by similarity, without affecting the data.) The
limiting tangent planes at the vertices are vertical and thus contain the intersection line L.
We denote by £;-*L the curves adjacent to Dj-t, and distinguish the possible configurations:

Case 17; Data on £ : This case is indicated in Figure 4, and from a formal point of
view presents no singularity. Here, (9) is replaced by 73 + 79 = 7 + 2a. A further motion
into the domain Dy yields data for which (9) holds, and corresponding tubular bridges with

spherical boundaries appear. The relation (12) then ceases to yield a blob contacting L.
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Figure 4: Limiting configuration; v; + v = 7 + 2«

Beyond that, it follows from Theorem 3 of [8] that no solution, spherical or not, can exist
even locally as a graph over a plane orthogonal to L. This result holds irrespective of growth
conditions as L is approached.

Case 17; Data on £]: The limiting configuration is a sphere of infinite radius that passes
through the vertex, as indicated in Figure 5. In order to preserve volume, the liquid has
spread out to infinity in the edge. If data are assigned from £ or from Dy, (12) will again
fail to yield a spherical solution surface meeting the planes in the prescribed angles, nor can
any edge blob exist that is locally a graph near L.

Case 2%; Data on £] or L,: A limiting spherical configuration exists, as indicated in
Figure 6, but does not cover a neighborhood of V; it is perhaps better interpreted as a
drop resting on a single plane, making the prescribed angle with that plane (this entails

a discontinuous change in the formally contemplated boundary condition). For data points
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2a

Figure 5: Limiting configuration; v, + 72 = 7 — 2«

interior to £F, the tangent plane at V' enters the wedge region; thus it is clear that no drop
of the stated (edge blob) form can exist, with unit normal continuous up to V. Further, data
from D yield formally according to the relations (12) a drop contacting one of the bounding
plates II; exterior to the wedge region (see Figure 7), and which therefore cannot be realized
physically. We can however regard the drop as a spherical cap lying entirely on one of the
planes, having no contact with the other plane, neglecting the portion that extends exterior
to the wedge. This drop appears geometrically as a continuous transition from the originally
contemplated drops meeting both planes.

The results just described are outlined in Figure 8, which envisages motions along the
two principal diagonals of the squares (), or () of admissible data. The surfaces illustrated
were computed by means of the Surface Evolver program of K. Brakke [3]. Although a more

exotic behavior has not been completely excluded by our discussion, the evidence seems
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Figure 6: Limiting configuration; v, — v = 7 — 2«

strong that the configurations described are those that will be encountered under ordinary
physical conditions. Note especially that for data in R near Dy, the drop nearly unwets one
of the plates, so that there is a continuous transition on leaving R into a spherical cap resting
on a single plate (although the formal solution of (12) becomes physically unrealistic). See,

however, the discussion in the next following section.

5 Discussion

As noted just above, for data in Dzi we have not completely excluded the occurrence in
wedges of non-spherical blobs, having discontinuous normal vector where the surface meets
the edge. In Theorem 4.1 above, we showed under some restrictions that for data in R

all such drops are spherical, and indeed spherical blobs can be found explicitly from (12)
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Figure 7: Data in D,

for such data. With DF data however, the indicated exotic behavior can actually occur
for capillary surfaces u(x,y) that wet an edge. Such surfaces were initially calculated by
Concus and Finn [9] in containers whose walls consist of portions of circular cylinders of
prescribed radius meeting in an edge; the existence of these surfaces was later proved by
Finn [12]. An example that fits more precisely into the present context is that of a vertical
cylinder having square base domain, with Dy data on the symmetry line 7, + v, = 7, and
with 71, 72 interchanged on adjacent walls. This model leads always to a minimal surface; it
was studied from a computational point of view by Mittelmann and Zhu [28]. We support
the calculations of those authors by showing that solutions actually exist in the cases they

consider. We shall present in fact a much more general result. We note first that for surfaces
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Center Point Near Dy

Near D; Near D5 Near Dy

Figure 8: Representative configurations for varying contact angle data.

that are graphs u(x,y) over a base domain €2, (1) can be given the scalar form

Vu
V1+[Vul?

while for contact angles constant on generators of the cylindrical boundary walls Z the

(17) divTu=2H, Tu=

contact angle boundary condition becomes
(18) v-Tu=cosvy

on ¥ = 0f). Here v is exterior unit normal on ¥. We consider, as in [28], a domain €2 which is

a unit square, and prescribe data v, on two opposite sides, and data 7, on the remaining two
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sides. Note that no data is prescribed at the corners, nor is any growth condition imposed

at those points.

Theorem 5.1 Let Q denote the square 0 <z < 1,0 <y <1, let (71,7%) € (RUD, UD).
Then there exists a unique (up to additive constant) solution u(x,y) of (17), (18), such that

the data v1, 72 are achieved on successive sides, as indicated.

We prove the theorem in the Appendix. Note that the result is sharp, in the sense that
there can be no solution for data in Di. We observe that for data in D3, the solution
surface cannot be spherical, as its unit normal vector is discontinuous at the corner. The
surface is however bounded, as follows from Theorem 7.3 of [5], or Proposition 1 of [21].
Let us reflect the surface in a horizontal plane, and lower the reflected surface rigidly until
it lies entirely below the original one. The region interior to the cylinder Z and bounded
between the two surfaces can be regarded as a liquid blob that wets the four edges of the
support cylinder, with the same contact angles v;,7,;. Thus, by introducing two further
support surfaces beyond those of the two forming the original wedge, blobs appear with very
different behavior at the edge than is encompassed in the discussion of Sec. 4.

This result shows in particular, that for data in DQi it is not possible to exclude exotic
behavior at the edge by local considerations. There is an apparent connection with the vertex
theorems for drops on support surfaces, introduced in [13]. The liquid blob in a global wedge
consisting only of two planes has two vertices; the blob just constructed has nominally eight
vertices, however we may view the configuration alternatively (cf. Theorem 4 of [13]) as a
semi-infinite blob filling out the cylinder on one side of the surface, in which case we find
four vertices.

In the light of this discussion and of that in Sec. 4, we make the

Conjecture The free surface of any liquid blob in a wedge (that is, drop with just two
vertices) which makes constant contact angles with each of the two wedge faces, is metrically

spherical.
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For data (contact angles) arising from R the conjecture is proved in Theorem 4.1 above,
at least for surfaces that are locally graphs near L; it remains true in this case even if there
are three vertices, see Theorem 4 in [13]. Subject to the same restriction, the result holds
vacuously for data in D, as no blob can then exist ([8, Theorem 3]). The case of principal
interest that remains unsettled is that of data from D;; the example discussed just above

shows that the hypothesis on number of vertices is necessary.

6 Energy considerations

It follows from the isoperimetric inequality that, in the absence of gravity and of contact
with boundary surfaces, a spherical connected drop without holes has less surface energy
than any other configuration of the same volume. From a procedure of Gonzalez [19] we find
that a spherical cap resting on a plane with prescribed contact angle v has less energy than
any other configuration of the same volume, for which each component meets the plane (if at
all) in angle ~, and no other rigid boundary is present. This result holds both in “wetting”
(v < 7/2) and in “non-wetting” (y > 7/2) configurations. (Under restriction to spherical
free surfaces, the result was anticipated by Reynolds and Satterlee [29].) Here the mechanical
energy F is the sum of free surface energy F' = ¢S and wetting energy W = —o A cos,
where o is the surface tension, S the free surface area and A the wetted area. Our further
considerations rest on the following general observations, that seem to have been overlooked
in existing literature.

Let us assume that a sphere ¥ cuts off an area VW from a surface Z and bounds with
W a volume V inside the ball bounded by ¥. Let x be the position vector in R® measured
from the center of ¥, n the unit normal to W at x that points out of V', and =4 the angle
between n and the outward unit normal to ¥ along the circle where the tangent plane to W

at x and ¥ intersect. One then has the relation
X -0 = — COS Vx.
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We now integrate divx over V and apply the divergence theorem. In view of the relation

just above, one obtains

Lemma 6.1

—/ cos x dwx + |S| = 3|V|.
w

In the configuration described above, assume that Z consists of countably many planes I,
that meet the sphere X of radius R in angles v, (measured within V') and have portions W;

on 0V. In this situation we have

Corollary 6.1
= [Wjlcosy; +18] = 3|V,

and the energy of such configurations is given by

_ 30|V

E
R

In particular, the mechanical energy of any such configuration is positive.

We are now prepared to prove

Theorem 6.1 If a spherical bridge or edge blob in the absence of gravity meets two wedge
faces in angles vy, v, then that configuration has smaller mechanical energy than does any
connected liquid mass of the same volume that meets only one of the faces in the prescribed

angle for that face.

Proof: In view of the above result of Gonzalez, it suffices to restrict attention to the cases in
which both configurations are spherical. A typical configuration in which the liquid contacts
both plates is illustrated in Figure 9. In this case, we translate one of the plates along the
the extension of the other while keeping its normal fixed. Simultaneously, we decrease R
so that the volume bounded by the sphere and included between the two planes remains

constant. According to Corollary 6.1 the energy of the resulting configurations increases
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I,

Figure 9: Liquid contacting two plates.

until the translated plane no longer contacts the sphere. The terminal configuration is that

of a single spherical drop on a single plate and, thus, the stated result is obtained. O

We observe that in the proof of Theorem 6.1 the contact angle on the translating plate

decreases monotonely during the procedure. We thus obtain the following:

Corollary 6.2 In any blob or bridge configuration of given volume, the mechanical energy

1s a monotone decreasing function of each of the two contact angles.

We consider now a spherical blob or wedge bridge configuration, of given volume and
prescribed contact angles, and examine the dependence of mechanical energy on the angle
2a between the bounding plates. In the case of a bridge (data in D7), one sees immediately
that the energy is independent of .. The situation for blobs is described by Theorem 6.2

below.
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Recall that spherical blobs are obtained for data in R and, in a degenerate sense, for
data on the segment {(v1,72) : 71 + 72 = 7+ 2; 71,72 < m}. We consider such a blob in a

wedge of opening angle 2« and distinguish three subcases:

Theorem 6.2 1. v, + v > .

In this case, o can be decreased to zero and there is a family of corresponding configu-
rations that transform the original configuration smoothly to that of a spherical bridge,
with the same volume and contact angles, between parallel planes. During this trans-
formation, the mechanical energy decreases monotonely until v, + v9 = ™ + 2c, which
1s the transition point between blob and wedge configurations; for further decrease of «

the energy remains constant.

2. 1+ <.

In this case, o can be decreased down to but not including the value o, = [ — (71 +
v2)]/2. In this procedure the energy decreases monotonely to zero and the drop spreads
out along the intersection line L of the two planes. More precisely, the length | along
L included in the boundary of the drop is such that (o — ac)l/?’ 15 bounded above and
below by positive constants, and the entire drop is contained in o cylinder with azis L
and radius r with r(a — a.)~Y% bounded above and below by positive constants. For

further decrease of o, no spherical configuration is possible.

3. Y1+ Y ="

In this case, a can be decreased down to but not including zero with correspondig
configurations whose energy decreases monotonely to zero. The drop spreads out both
along the intersection line L and out into the wedge. More precisely as o approaches
zero, the interface is contained in an e-neighborhood of a circular arc C, in one of
the plates with ea=2/3 bounded above and below by positive constants. The circular arc

Co, which is the intersection of the spherical interface with that plate, encloses an area
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A on that plate with Aa?® bounded above and below by positive constants, and Cl

converges, when rescaled to unit radius, to a semicircle.

Proof: Case 1. We start with a spherical blob § in a wedge between planes II; and IIs.
See Figure 10 where the dark lines represent the initial position of the planes and the initial
spherical surface ¥ is indicated by an equatorial circle in the plane of the figure. We may
assume that 7, > 7/2 so that the wedge region lies on the same side of II; as the center of

the sphere. Since 75 > m — 74, either I, is closer to the center of X as indicated in the figure,

Figure 10: Proof of Theorem 6.2.

or the center of the sphere lies interior to the wedge region. Such a blob can be transformed
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to any bridge with the same contact angles and volume as follows. We first roll one of the
plates around a cylinder with axis through the center of S and orthogonal to the plane of
the figure so that the wedge opening 2« decreases and the intersection line L moves closer
to the equatorial circle.

One observes that the volume enclosed by the sphere and between the resulting plates is
then less than the original volume. In fact, if I’ is an auxiliary plane placed as indicated in
Figure 10 so that the dark shaded triangles are congruent, then the volumes in the sphere
that project onto the shaded triangles are equal, and there is an additional volume V' that
is removed as a result of the motion. This volume can be restored by a dilation centered on
L which increases the radius of the sphere. The resulting energy according to Corollary 6.1
has decreased.

Since the enclosed volume stays bounded from zero, the radius of the spherical interface
increases to a finite limit R. The reasoning above shows that the energy is an increasing
function of the wedge angle until the distance from the intersection line L to the center of
the sphere equals R. At this point, L reaches the equatorial circle and becomes tangent to
the sphere, and the topology of the edge blob changes to that of a bridge. Any continued
rolling of the support plane, which decreases the wedge angle and leaves the contact angles
constant as before, results in bridge configurations with the same energy and volume. Since
any wedge configuration that admits a spherical tubular bridge can be obtained in this way,

the result follows.

Case 2. In this case, we may assume that the distance from the center of ¥ to Il is greater
than that from the center to II;, and that the center of X lies in the half space determined
by Il opposite that containing the enclosed volume. See Figure 11.

One sees now directly that decreasing « by rolling one of the planes as before decreases
the volume. Hence, when the volume is corrected by a dilation, the overall energy decreases

as before. In this case, however, there is no positive lower bound for the volume that can be
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Figure 11: Proof of Theorem 6.2, Case 2.

obtained by rolling, so that the radius of the interfaces becomes arbitrarily large. The angle
« is bounded below by the value given in the statement of the theorem, and it follows from
this that the drop tends, as a set, to the intersection line L.

The order of magnitude estimates in the theorem are obtained easily by observation of

the limiting geometrical configuration.

Case 3. In this case, II; and Il are equidistant from the center of ¥, and the center of X
may be assumed to be on the same side of II; as the enclosed volume, but on the opposite

side of II, as the enclosed volume; see Figure 12.
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Figure 12: Proof of Theorem 6.2, Case 3.

As « is decreased by rolling one of the planes on a cylinder as before, the intersection
line L approaches a point on the cylinder. The rolling again results in arbitrarily small
volumes which must be accompanied by arbitrarily large dilations to correct the volume.
It follows from Corollary 6.1 that the energy tends to zero. The order of growth estimates
and goemetric statements can be ascertained from the limiting configuration indicated in
Figure 12. It is also clear that explicit estimates could be obtained.

The order of magnitude estimates follow analogously as in Case 2. a

Thus, the energy of any bridge of given volume is less than that of any blob with the same
contact angles on the plates, and the energy of the blob is in turn less than that of any drop
on a single plate that meets the plate in either of the prescribed angles.

It is interesting that in Case 2 every finite point in the wedge away from L is eventually
no longer in contact with the drop as a decreases to its critical value while, in contrast, in
the borderline Case 3 every finite point in the wedge is eventually on the boundary of the
drops that result as the wedge angle is decreased. The perturbation from Case 3 to Case 2,

as the radii of the contact circles separate from each other, is thus seen to be singular in the
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limit as the blob radius becomes infinite.

We were informed by Henry Wente that alternate proofs of Theorems 6.1 and 6.2 can
be obtained by adapting procedures from [42]. It may also be possible to obtain a proof
from the methods of [46], though the energy considered there, being a parametric elliptic

functional, is essentially different from the energy considered in this paper.

Acknowledgments. We wish to thank Victor Brady for carrying out the computations
leading to Figures 8. This research was supported in part by a grant from the National
Aeronautics and Space Administration, and in part by a grant from the National Science
Foundation. The second and third authors wish to express their thanks to the Max-Planck-

Institut MIS in Leipzig for its hospitality during completion of the work.

Appendix: Proof of Theorem 5.1

Our essential weapon will be Theorem 7.10 of [10]. Since H is constant in our setting, the
problem reduces to showing that for every Caccioppoli set Q* C Q, with Q* # Q, 0, there
will hold

(A1) B(Q) = / dxa- — f BT xods + 2H / oo > 0.
Q o0 Q

Here y is characteristic function, 3 denotes cosine of boundary data, T denotes trace oper-
ator, and

1
(A2) 2H = — Bds.

€2 Joo
In the case under consideration, we have
(A3) 2H = 2(b1 + Ba).

As in the discussion in [10] Chapter 6 and in [16] Sec. 2, we see that there is a Caccioppoli
set Q0 (perhaps equal to () or Q) that minimizes ®, and Q° is bounded in € by a finite number
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of non-intersecting circular (extremal) arcs I' of radius R = 1/2H. Further, if any such arc
meets ¥ = 0f) at a point interior to one of the boundary segments, then it does so in an
angle v, measured interior to Q°. We suppose that we are faced with this state of affairs, and
examine a representative such arc. Since the problem is invariant under the substitutions
u— —u, H— —H, v— m— v, we may suppose that v; < 7, < 7 — ;. Since additionally
we know that no solution can exist for data in D}, we may limit attention to data in the
domain G indicated in Figure 1A, that is, we may assume also y; + 7y, > 7/2. We distinguish

the various possibilities, in terms of the cosines [3;, 35 of the angles:
Y2

71

Figure 1A: Data Normalization.

Case 1: f; = 0. Then also #; = 0. The only possible solution is u = const., which does in

fact satisfy the conditions of the theorem.

Case 2: 3, =0, 1 > 0. Then 2H = 2(3;, and thus the radius of any extremal is R = 1/2/;.

We consider the various subcases that can occur:
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Case 2.1: An extremal I' cuts two ; = 0 sides in angle 7/2. Then I" must be linear,
contradicting 3; > 0.

Case 2.2: An extremal I' joins the two end points of a 5 = 0 side, as in Figure 2A. We
assert first that in such a configuration, there holds 7 > ~;. If v; = 0, that needs no proof.
If vy > 0 and 7 < 71, one could construct a segment ¢ as indicated in Figure 2A, joining I'
to a 1 > 0 side with incident angle 7; as in the figure. Replacing the arc [ by the segment
¢, we find that the change in ® becomes

6@ =q—1+ph= {sin7 — sin 7y +sin(y, — 7) cos 1} + O(1?)

sin 7y,
l

sin 7y,

(A4) f(r)+ 0.

We have f(y1) =0, f'(1) = cosT — cos(y1 — 7) cosy; > 0, and we conclude 6® < 0 if [ is
small enough. Thus the configuration cannot minimize, unless 7 > ;. If 7 = 7; = 0 then

removal of the extremal leads to a change
(A5) §® = —1R+ gR <0

so that I' could not minimize. If 44 > 0 then 7 > 0, and we can then decrease ® by replacing
a segment of [' by a segment p orthogonal to the 3, = 0 side, as indicated in the figure. We
conclude that for the considered case, I' does not minimize.

Case 2.3: An extremal I' cuts two 3; > 0 sides in angle ;. Since [, = 0, ® is invariant
under rigid translation of I' parallel to these sides, and thus we may assume that I" passes
though two of the vertices, as in Figure 2A, with incident angle v, on the 3; > 0 side. This
case is thus reduced to the previous one; the configuration cannot minimize.

Case 2.4: An extremal I" appears as a semicircle, meeting a single 3, = 0 side at both end
points in angles 7/2, or as a circular arc including a semicircle, meeting a single 3; > 0 side
in angles v;, as indicated in Figure 2A. The former subcase is excluded by (A5); the latter

one cannot occur since the radius R of each extremal is R = 1/2H =1/243, > 1/2.
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ﬁl>0 I O ﬁl>0

71

Ba =10
Figure 2A: Extremal configuration; Cases 2.2-2.4.

Case 2.5: An extremal I’ meets a f; = 0 side in angle 7/2, and a #; > 0 side in angle v;, as
in Figure 3A. We assert that ® is decreased by removing I'. In fact, deletion of I' leads to
the change d® = —|I'| 4+ 23,|2| — hf;. Fixing attention on the lower extremal in the figure,
we have, since the height y < R on T, 26,|Q| = 26, [ydx < [ dx < fmdx = |T|,
and thus 0® < 0. Thus, such a configuration could not minimize.
We may thus assume that neither (3, nor (3, vanishes.

Case 3: 1+ 2 =0, /182 #0. Then H = 0 (the minimal surface case) and the extremals
are straight lines. No such line can meet interior points of two opposite sides of €2, as the
requirement of equal incident angles would imply 3132 = 0. Nor can such an extremal
meet two adjacent sides at interior points, as one would then have v; + v = /2, while

the condition 3y + » = 0 implies 7, + 79 = m. Suppose ' passes through a corner point,
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B >0 By >0
T

/2

P =0

Figure 3A: Extremal configurations; Case 2.5.

as in Figure 4A. Then in the triangle cut off there can be no other extremals, and we find

®=+1+h?—p1h—LFs=+vV1+h?>+ (1 —h)—1>0,since 3; > 0. Since ® vanishes on

the null set, also this case cannot yield a minimizer.

Case 4: 61+ (2 > 0, 81, B> > 0. No extremal can meet interior points of adjacent boundary
segments, as it would have to do so in the incident angles 71,79, as in Figure 5A, and there
would then hold 7y + v, < 7/2, whereas we know v, + 75 > /2 (see Figure 1A). Nor can
an extremal from a minimizing set meet a single (8; > 0) side, either as indicated or at
one or both corner points, as one sees directly that removal of the extremal would decrease
®. Similarly, no extremal from a minimizing set can begin and end at diagonally opposite

points. Were an extremal to meet interior points of two opposite sides as in the figure, we
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B B
!

fa

Figure 4A: Extremal in minimal surface case.

would find

COS 7Y;
(A6) 2Rcosy; =1= S R
COS 71 + COS Y2
a contradiction. Suppose an extremal passes through a corner point, meeting the adjacent
(B; > 0) side in angle 7. Then as in Case 2.2 above, 7 > 7;. Thus again we find the

contradiction vy, + 7, < 7/2.

Case 5: 31+ [, >0, 1 >0, f3 <0. Thus, 0 <y, <7/2 <7y <7 —7. As in Case 4, no
extremal can meet interior points of opposite sides of the square. Nor can an extremal can
have both end points on a single /3 side, as that would conflict with Theorem 6.11 of [10].

We consider an extremal [' that meets a 3; side in angle 7, and an adjacent (3, side in angle
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71
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Figure 5A: Extremal configurations; Case 4

79, as in Figure 6A. Removal of such an extremal would result in a change in ® equal to

b b
5<I>:—/ \/1+y’2dx—(b—a)ﬁ2+%/ (y — Rcos(m — yq)) dx

(A7) dx <0

1 b 72
- ﬁ/a V=2
and thus I[' cannot be part of a minimizing set. The same reasoning disposes of the case in
which an extremal begins and ends interior to a 5 side. However, for an extremal joining
the two corners of a (3, side, that procedure no longer works as indicated, and we proceed
somewhat differently. Letting 7 be the subtended half-angle for such an extremal, as at the

top of Figure 6A, we obtain that the change of ® on removal of the extremal will be

(A8) 0P =-—

o] 3

2sinT 2sinT

1 in 2 1
<T+s1n T+2ﬂgsin7> = f(7), 0<71<
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Figure 6A: Extremal configuration; Case 5

We have

R r 1 1
~ 2sint 2(By + Bo) g 2(1 + )

so that By > sin7 — 1. Thus f(7) < —7 —sin7(cos 7 + 2sinT — 2), and f(0) =0, f(7/2) =

(A9)

—m/2 < 0. We calculate f'(1) = (—2cos7T + 2 — 4sin7)cost = g¢(7)cos7. There holds
g(0) =0, g(n/2) <0, and ¢'(1) < 0 for 7 < tan~' 2, ¢’(7) > 0 for larger 7. Thus ¢(7) (and
hence also f'(7)) is negative for all 0 < 7 < 7/2. We conclude that also f(7) < 0 in that
interval, and hence that the extremal cannot minimize. The remaining cases, of an extremal
joining two corners of a 3; side, and of an extremal joining diagonal corners, can be excluded

as in Case 4.
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All cases have been covered, and the proof of existence for Theorem 5.1 is complete.
Uniqueness up to an additive constant follows from Theorem 3.1 of [15]. (Note that the full
strength of this result is needed for uniqueness; Theorem 5.1 of [10] would not suffice, as the

solutions are not known to be in the class Wh! in the square.) O

Corollary 6.3 For any 3 in the range 0 < < 1, there exists a “Scherck type” minimal

surface over a square, achieving “capillary” data +3 and — 3 on adjacent sides of the square.

It is this class of surfaces that were studied numerically by Mittelmann and Zhu in [28].
By choosing # = 1, we obtain the classical Scherk minimal surface z = log cosz — logcos y.
The identity of the surface described in the corollary with the Scherk surface follows as
above from Theorem 3.1 of [15]. If 8 < /2/2 then the surface u(z,y) is continuous and
differentiable up to the vertex of the square [21], [5]; if v/2/2 < B < 1 then u(z,y) has
a discontinuous unit normal at the vertex, and is shown numerically in [28] to be itself

discontinuous.
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