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� Introduction and the main results

In this paper we adopt the approach initiated by Balder in ���� for the study of multiple
integrals on Lebesgue spaces� and use Young measures to obtain new lower semicontinuity
results for multiple integrals on BV ���Rn�� the space of functions of bounded variation�
The multiple integrals covered by the results are of the form

I�u� 	

Z
�
F �x� u�ru� dx� �����

where � � Rm is an open and bounded set� F �x� v�X� is a normal integrand and ru is
the density of the absolutely continuous part �with respect to Lebesgue measure� of the
distributional gradient of u�

It is well known that the natural convexity assumption in the multi
dimensional calculus
of variations is quasiconvexity as introduced by Morrey in ����� �Notation and de
nitions
are given in Section ��� The classical lower semicontinuity results for multiple integrals
de
ned on a Sobolev space W ��p���Rn� �cf� ����� ����� ��� and ����� state that under suit

able growth conditions related to p� quasiconvexity is a necessary and su�cient condition
for sequential weak lower semicontinuity� Without the growth conditions the lower semi

continuity results fail �cf� ������ The growth conditions can be relaxed if one adopts the
approach proposed in ����� It amounts to rede
ning I�u� for non
smooth u by a relaxa

tional procedure and is known as the Lebesgue
Serrin extension of I�u�� In the context
of quasiconvex integrands this programme was begun in ���� and there is by now numer

ous papers on the subject� Related to the study undertaken here are� in particular� ����
���� and ����� where results on lower semicontinuity and relaxation were obtained for the
Lebesgue
Serrin extension of multiple integrals de
ned on BV ���Rn�� Without certain
growth conditions the relaxational procedure de
ning the Lebesgue
Serrin extension can
fail to provide an extension �cf� ������ We refer to ���� and ���� for a systematic exposition
and further references on quasiconvexity and lower semicontinuity�

Unless otherwise speci
ed we assume throughout the paper that m� n � � and that �
is an open and bounded proper subset of Rm� We de
ne I�u� for all relevant functions
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by the formula ������ The integral in ����� is understood as a Lebesgue integral� or if
necessary� as an upper Lebesgue integral�

The main results are contained in Theorems ���
���� However� we believe that some of the
auxiliary results may be of independent interest� in particular Lemma ���� which contains
a result on truncation of sequences of gradients� and Proposition ���� on approximation
of quasiconvex functions�

Theorem ��� pertains to the case where u is of bounded variation and has a distributional
gradient Du� which is absolutely continuous with respect to a 
xed non
negative and 
nite
Radon measure �� Following ��� we de
ne for each p � ����� the space

W ��p
� ���Rn� 	

�
u � BV ���Rn� � Du �� ��

dDu

d�
� Lp�

�
�

where dDu�d� denotes the Radon
Nikodym derivative of Du with respect to �� The
Sobolev spaces with respect to a measure enjoy the same compactness properties as the
usual Sobolev spaces �cf� ����� In particular� we note that if � � ����� � ����� is a
non
decreasing function� which satis
es the condition

��t�

t
�� as t�� �����

and if fujg �W ���
� ���Rn� satis
es

sup
j

�Z
�
juj j dx�

Z
�
��

����dDujd�

����� d�
�
��� �����

then for some subsequence of fujg �for convenience not relabelled� and some u �W ���
� ���Rn�

uj � u strongly in L�
loc and

dDuj
d�

� dDu

d�
weakly in L�

�� �����

De�nition Let p � ������ An integrand F 	 F �x� v�X� � ��Rn �Rn�m � R belongs
to the class Ip if it satis
es the following three conditions�

�H�� F 	 F �x� v�X� is a normal integrand� i�e�� Borel measurable and lower semicontinu

ous in �v�X��

�H�� F �x� v�X� is quasiconvex in X for almost all x and all v�

�H�p� For almost all x and all v

lim sup
X��

F �x� v�X�

jXjp �� if p ���

and no condition is required if p 	��

It is not di�cult to show �see Lemma ���� that under the hypothesis �H�� the condition
�H�p� is equivalent to the condition lim supX�� jF �x� v�X�j�jXjp �� �� � p ����
De
ning F� 	 � inffF� �g� we have the following result�
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Theorem ��� Let � be a non�negative and �nite Radon measure on �� p � ����� and
F � Ip� If fujg �W ���

� ���Rn� satis�es ������

fF��x� uj �ruj�g is uniformly summable on �� �����

and

sup
j
krujkp�� ��� �����

then Z
�
F �x� u�ru� dx � lim inf

j��

Z
�
F �x� uj �ruj� dx� �����

Remark� It follows from the proof that if we replace the assumption ����� with

sup
j

����dDujd�

����
Lp�

��� �����

then we have instead of ����� the conclusionZ
�
F �x� u�

ru
a
� a dx � lim inf

k��

Z
�
F �x� uj �

ruj
a
� a dx�

where a 	 d��dLm�
The lower semicontinuity properties of multiple integrals with quasiconvex integrands

have previously been studied in this setting by Ambrosio� Buttazzo and Fonseca in ����
Write � 	 a � Lm � �s and Du 	 ru � Lm � Dsu for the Lebesgue
Radon
Nikodym
decompositions with respect to Lebesgue measure and de
ne the functional

E�u� 	

Z
�
F �x� u�

ru
a
� adx�

Z
�
G�x�

dDsu

d�s
� d�s�

Then the principal result of ��� guarantees lower semicontinuity of E�u� on sequences fujg
satisfying ����� and ������ when F is a Carath�eodory integrand satisfying �H�� and �H�p��
G is a rank
� convex normal integrand� � � p � � and a � L�� It is possible to relax
the conditions on G� see ���� and we remark that the singular part in E�u� also is lower
semicontinuous under the conditions of Theorem ���� Observe that these results easily
give existence results for minimisation problems� where the discontinuity set is imposed a
priori�

The proof in ��� is achieved by considering the absolutely continuous part and the singular
part of E�u� separately� The singular part of E�u� is then treated by use of a result from
���� In dealing with the absolutely continuous part the authors use a result from ��� on
Lusin
type approximation of functions of bounded variation by Lipschitz functions� Such
approximation results were 
rst established for Sobolev functions in ���� and ���� and used
in ��� to obtain lower semicontinuity results for multiple integrals on Sobolev spaces�

The main novelty of our result is that we allow p � ����� and a 	 dDu�dLm � L�����
The extension from a � L� to a � L� appears to be essential for the proof of our second
lower semicontinuity result stated in Theorem ���� Apparently this extension also requires
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a di�erent strategy for the proof as the method based on approximation with Lipschitz
functions seems to break down if a is not essentially bounded� We also note that the reason
that we can allow the integrand F to be merely normal �and not necessarily Carath�eodory�
is due to our approach via Young measures�

Before stating Theorem ��� we recall that if u is of bounded variation� then it is possible
to de
ne a measure theoretic normal Nu to the jump set Su for u and to de
ne one
sided
traces u�� u� of u on Su �see Section ��� Let Du 	 ru � Lm � Dsu be the Lebesgue

Radon
Nikodym decomposition of Du �with respect to Lebesgue measure�� The space

SBV ���Rn� 	 fu � BV ���Rn� � Dsu 	 DsubSug

of special functions of bounded variation� and its generalisation GSBV ���Rn� �see Sec

tions � and ��� were introduced by Ambrosio and De Giorgi in ���� as a natural setting for
weak formulations of free discontinuity problems�

Theorem ��� concerns the case where u is a special function of bounded variation �or�
more generally� lies in GSBV ���Rn�� and is motivated by a compactness result due to
Ambrosio �cf� ���� Theorem ����� The compactness result can be stated in the following
manner� If � is as in ������ if � � ������ ����� is concave� non
decreasing and satis
es

��t�

t
�� as t� �� �����

and if fujg � SBV ���Rn� satis
es

sup
j

�Z
�
�juj j� ��jruj j�� dx�

Z
Suj

��ju�j � u�j j� dHm��

�
��� ������

then for some subsequence of fujg �for convenience not relabelled� and some u � GSBV ���Rn�

uj � u in measure� ruj �ru weakly in L�

and sup
j

Z
Su

��ju�j � u�j j� dHm�� ���

�	

 ������

For convenience we state a precise version of the compactness theorem for GSBV in
Section ��

Theorem ��� Let � satisfy ������ p � ����� and F � Ip� If fujg � SBV ���Rn� satis�es
�������

fF��x� uj �ruj�g is uniformly summable on � ������

and

sup
j
krujkp�� ��� ������

then Z
�
F �x� u�ru� dx � lim inf

j��

Z
�
F �x� uj �ruj� dx� ������
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Remark� It is possible to give a more general version of Theorem ��� in terms of GSBV
functions� we indicate how to do this in Section ��

Lower semicontinuity of multiple integrals with quasiconvex integrands has been studied
in this setting by Ambrosio in ��� under the assumption ��t� � �� � �� The main novelty
of our result is the extension to the case when limt�� ��t� 	 � �e�g� ��t� 	 t� � where
� � ��� ���� We cover exactly the cases described in the compactness theorem for GSBV �

Consider the functional

E�u� 	
Z
�
F �x� u�ru� dx �

Z
Su

G�x� u�� u�� Nu� dHm���

If for some constants c�� c�� c�� 	 � �� 
 � � and � � � we have

F �x� v�X� 	 c�jvj� � c�jXj� and G�x� u� v�N� 	 minfc�� ju� vj�g�
then by the compactness theorem the functional E is coercive in the space GSBV ���Rn��
Under the conditions of Theorem ��� the bulk energy term of E�u� is lower semicontinu

ous� Corresponding lower semicontinuity results for the surface energy in E�u� have been
obtained by Ambrosio in ��� for the cases � � �� However� under the condition that G is
regularly biconvex the methods of ��� also yield lower semicontinuity of the surface energy
in the case � � � �see also the remark following Theorem ����� We also notice that E�u�
can be lower semicontinuous even though the bulk energy and surface energy are not so
separately �see ���� and the references therein��

As already mentioned� we proceed as suggested by Balder in ���� and establish the lower
semicontinuity results of Theorems ��� and ��� by use of Young measures� By virtue of
the hypotheses of either Theorem ��� or Theorem ��� we can� by extracting a subsequence
if necessary� assume that frujg generates a Young measure � 	

R
��x
 �x dx �see Section

� for notation�� According to a general result from ���� �see also Theorem ����

lim inf
j��

I�uj� 	
Z
�

Z
F �x� u�x��X� d�x�X� dx� ������

Since ruj �ru weakly in L� it follows that almost all �x have a centre of mass �denoted
by �x� and that �x 	 ru�x� almost everywhere� If� therefore� we haveZ

F �x� u�x��X� d�x�X� 	 F �x� u�x�� �x� a�e�� ������

then the lower semicontinuity results of Theorems ��� and ��� follow� We express ������
by saying that Jensen�s inequality holds for F �x� u�x�� �� and �x for almost every x� The
key feature of this approach is that it allows us to ignore the �x� v� dependence in F � We
establish ������� and hence Theorems ��� and ���� in the following manner� Let Qp denote
the class of quasiconvex functions f � Rn�m � R satisfying the growth condition

lim sup
X��

f�X�

jXjp �� ������

if p � �� no condition is required if p 	 �� Note that by de
nition of the class Ip of
admissible integrands the functions fx�X� 	 F �x� u�x�� X� belong to Qp for almost all x�
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The main part of the proof aims at establishing that for almost all x

�f � Qp �

Z
f d�x 	 f��x�� ������

A result due to Kinderlehrer and Pedregal ���� ��� states that ������ for a 
xed x is
equivalent to the requirement that �Lmb��
�x be a gradient p
Young measure� Theorems
��� and ��� establish exactly this� Before proceeding further a few remarks are in order�

The semicontinuity result ������ was obtained independently by Pedregal ���� for the
case of Carath�eodory integrands that are bounded from below� Pedregal also emphas

ised the importance of Jensen�s inequality ������ in problems of lower semicontinuity and
highlighted it in his de
nition of closed W ��p
quasiconvexity� This approach was also used
in ���� and in ���� to obtain lower semicontinuity results for multiple integrals on W ��p�
The good localisation properties of Young measures were also used in ���� to study the
principle of convergence of energies�

The key results of this paper are the following two theorems�

Theorem ��� Let � be a non�negative� �nite Radon measure on � and let fujg be a
sequence in BV ���Rn� satisfying ����� and ���	�� If frujg generates the Young measure
� 	

R
��x 
 �x dx� then for Lm�almost all x� �Lmb��
 �x is a gradient p�Young measure�

Theorem ��� Let fujg be a sequence in SBV ���Rn� satisfying ������ and ����
�� If
frujg generates the Young measure � 	

R
��x
�x dx� then for Lm�almost all x� �Lmb��


�x is a gradient p�Young measure�

Remark� We present a more general statement of Theorem ��� in terms of GSBV functions
in Section ��

In some sense Theorems ��� and ��� are surprising� Quasiconvexity is de
ned with
speci
c reference to gradients� but a result of Alberti ��� states that the approximate
gradient ru of an SBV 
function u can be any summable function V � � � Rn�m�
Of course� it is the conditions we impose on the measures Duj that force the sequence
frujg to generate a Young measure with the above property� One might think that it
should be possible to decompose ruj into a gradient and another term that converges
strongly� so that the Young measure is essentially generated by the gradients� Of course�
if possible� this would prove the theorems� However� by Example ���� this approach
cannot be successful� Example ��� displays a sequence fujg satisfying� simultaneously�
all the conditions in Theorems ���
���� but where the sequence frujg of approximate
gradients �and any subsequence thereof� does not admit a decomposition of the form
ruj 	 Ej � rvj� where fEjg converges strongly in L����Rn�m� and fvjg weakly in
W ������Rn��

Theorems ��� and ��� are very close to being optimal� In Section � we present examples
showing that if one of the conditions ������ ������ ������ or ������ is slightly weakened the
corresponding conclusion is false�

The proof of Theorem ��� is presented in Section �� By use of a truncation argument
and the Vitali
Hahn
Saks Theorem we deduce in Section � Theorem ��� from Theorem
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���� As noticed above Theorems ��� and ��� are then easy consequences via ������ and
�������

To prove Theorem ��� we exploit the characterisation of gradient Young measures due to
Kinderlehrer and Pedregal ���� ��� �see also ����� ���� or ����� ���� contains a generalisation��
We only need the following special case of their result�

Lemma ��� �D� Kinderlehrer and P� Pedregal� special case of �

� 

�� Suppose � is a
probability measure on Rn�m satisfyingZ

jXj d��X� ��� ������

The homogeneous Young measure �Lmb��
 � is a gradient ��Young measure if and only
if for all quasiconvex functions f for which f�X��jXj � � as jXj � � the following
inequality holds� Z

f�X� d��X� 	 f���� ������

In the Appendix we present an almost self
contained proof of the full characterisation
of gradient p
Young measures covering all cases p � ������ We obtain at the same time
a slight re
nement of the results in ���� ��� in the sense that we are able to show that it
is only necessary to test in ������ with quasiconvex functions that equal jXj outside large
balls�

As a 
rst step towards proving Theorem ��� we employ Lemma ��� to show that for
almost all x the measure �Lmb��
 �x is a gradient �
Young measure� We establish ������
by use of well
known results on di�erentiation of measures along with the following result�

Lemma ��� Let f � Rn�m � R be a non�negative� quasiconvex function satisfying
f�X��jXj � � as X � � and let u � � � Rn be of locally bounded variation� For
� � ��� ��� x � �� r � ���dist�x� 
���� a � Rn and X � Rn�m the following inequality
holds�Z

Bx�r

f�ru� dy � jDsuj�Bx�r� �
�

��� ��r

Z
Bx�rnBx��r

ju�y�� �a�X�y��j dy

	 Lm�Bx��r�f�X��

������

This lemma is reminiscent of Lemma ��� in ���� We derive it as a corollary of a slightly
more general inequality in Section �� the proof of which is elementary� A similar result
appears to be false for quasiconvex functions with super
linear growth at in
nity�

To conclude the proof of Theorem ��� we invoke the following technical result on trunca

tion of sequences of gradients� More precisely the conclusion is established using Corollary
��� stating� in particular� that a gradient �
Young measure is a gradient p
Young measure
if and only if it has a 
nite pth order moment�
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Lemma ��� Assume that � is a bounded Lipschitz domain� Let fujg satisfy uj � u
weakly in W ������� Assume that for some p � ����� there is a sequence fVjg � Lp���Rm�
with the properties��

if p ��� fjVj jpg is uniformly summable on �
if p 	�� fVjg is bounded in L����Rm�

and
ruj � Vj � � in measure on ��

Then there is fvjg � C�c ���� such that

vj � � weakly �weakly� if p 	�� in W ��p
� ����

kruj �ru�rvjk��� � �

and� if p ���
fjru�rvjjpg is uniformly summable on ��

The case p 	� was treated by Zhang in ����� An elementary proof for the cases p ��
relying on the Hodge decomposition is given in Section �� We apply the result to vector
valued functions by applying it to each coordinate function� The fact that the result
is �scalar�� i�e� it is possible to prove it for real
valued functions and then transfer it to
vector
valued functions by applying it to each coordinate function� paves the way for many
di�erent extensions and proofs �see ������

Using this result we easily derive two useful corollaries� The 
rst concludes the proof
of Theorem ��� and concerns the possibility of 
nding generating sequences for gradient
Young measures with good integrability properties�

Corollary ��	 Let � 	
R
��x
�x dx be a gradient ��Young measure and let u �W ������Rn�

be an underlying deformation� Let p � ����� and assume that � has a �nite pth order mo�
ment� i�e� if p ��� Z

�

Z
jXjp d�x�X� dx ��

and if p 	 �� there is a compact set C � Rn�m� such that for almost all x the measure
�x is carried by C�

Then there exists fvjg � C�c ���Rn�� such that vj � � weakly �weakly� if p 	 �� in

W ��p
� ���Rn�� fru � rvjg generates � and� if p � �� the sequence fjru � rvj jpg is

uniformly summable on ��

Corollary ��� is a slight re
nement of a similar result in ����� where the proof was based
on a stability result from ����� Other results in the same vein have also been obtained in
���� using arguments based on the Lusin
type approximation of general Sobolev functions
with Lipschitz functions as in ���� The 
rst result of this kind seems to come from ����
and was obtained in an indirect way� Recently similar results have been obtained in ����
within the more general setting of compensated compactness�

The second corollary to Lemma ��� is the following�
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Corollary ��
 �J� Ball and K� Zhang� ����� Suppose f � Rn�m � R is a quasiconvex
function satisfying

lim sup
X��

f�X�

jXjp �� if p ��� ������

and no growth condition if p 	�� Let � 	
R
��x 
 �x dx be a gradient p�Young measure�

Then Z
f d�x 	 f��x� ������

holds for almost all x � ��

The proof in ���� is based on the lower semicontinuity result in ��� and Chacon�s Biting
Lemma�

By virtue of ������ it is clear that Theorems ��� and ��� follow from Theorems ���� ���
and Corollary ����

It is possible to prove Theorems ��� and ��� in the case p � ����� without relying on
the characterisation of gradient Young measures� The proof then relies on Lemma ��� and
the following approximation result� which again is proved using Lemma ���� Corollaries
��� and ����

Proposition ���� Let f � Rn�m � R be a quasiconvex function� such that for some c��
c� � � and p � �

c�jXjp � c� � f�X� � c��jXjp � �� ������

holds for all X� Then there exist fj � R
n�m � R that are quasiconvex and satisfy

�a� fj�X� � fj���X��

�b� fj�X�� f�X� as j ���

�c� there exist aj� rj � �� bj � R� such that

fj�X� 	 f��j �X� 	 ajjXj � bj if jXj 	 rj �

where f��j denotes the convex envelope of fj�

The approximation result in ���� implies the existence of quasiconvex functions gj satis

fying �a�� �b� and

�c�� there exist rj � �� such that gj�X� 	 c�jXjp � c� if jXj 	 rj�

The proof in ���� is based on a result on higher integrability of certain minimising se

quences� For our purposes it is important that we have �c� and not �c���

We note that assumption ������ cannot be avoided� In Example ��� we show by use
of results from ���� and ���� that the polyconvex function f�X� 	 jXjp � jdetXj� where
p � ��� ��� de
ned on R���� cannot be approximated from below by sub
quadratic rank
�
convex functions�
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The paper is organised as follows� In Section � we brie�y recall the main de
nitions
and state some preliminary results� Section � is devoted to proving the Decomposition
Lemma �Lemma ���� and its corollaries� In Section � we give the proof of Proposition
����� The main results� Theorems ���
���� are proved in Sections � and �� In Section � we
have gathered some examples that illustrate the sharpness of our hypotheses� Section �
is an appendix and contains an essentially self
contained proof of the characterisation of
gradient Young measures�

The present paper is a revised and extended version of an earlier manuscript� where the
most important changes are that Proposition ���� and the full proof of the characterisation
of gradient Young measures have been included� The result stated in Theorems ��� and ���
together with a proof based on ��� was announced at the workshop �Calculus of Variations
and Nonlinear Elasticity� in Cortona� Italy� June �����

� Notation and preliminary results

In this section we gather some de
nitions and elementary results that are used in the
sequel�

��� Basic notation

Our main references for measure theory are ���� and ����� Except for the Hausdor�
measure Hm�� all measures occurring in this paper are Radon measures� If � is a measure
and A is a set� then the measure �bA is de
ned as ��bA��B� 	 ��A �B��
Let O be either an open or a compact subset of RD and let B�O� denote the �

eld

of Borel subsets� For a bounded Rd
valued Radon measure on O the total variation on
A � B�O� is

j�j�A� 	 sup
�

�X
i��

j��Ai�j
�
�

where the supremum is taken over all partitions of A into countably many Borel subsets
Ai and j��Ai�j denotes the usual Euclidean norm of ��Ai�� The function j�j is called the
total variation measure for � and is a non
negative� 
nite Radon measure on O�

As the concepts of uniform absolute continuity and uniform summability are central to
the present work we display a formal de
nition�

De�nition Let � be a non�negative� �nite Radon measure on O� A family � of Rd�valued
bounded Radon measures on O is said to be uniformly absolutely continuous with respect
to �� brie�y uniformly ��AC� if for any � � � there exists a � � �� such that for B � B�O�

��B� � � 
 j��B�j � � for all � � ��

A family F of � summable functions V � O � Rd is uniformly � summable if the family
fV � � � V � Fg is uniformly ��AC�
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Remarks� �� By the Radon
Nikodym Theorem � is uniformly �
AC if and only if each
measure in � is absolutely continuous with respect to � and the family F 	 fd��d� � � �
�g of Radon
Nikodym derivatives is uniformly � summable�
�� If � has no atoms and f�jg is uniformly �
AC� then supj j�j j�O� ���
�� f�jg is uniformly �
AC if and only if the sequence fj�j jg of total variation measures is
uniformly �
AC�

Denote by Ck�O�Rd� the space of Rd
valued Ck
functions on O� The subspace of func

tions with a compact support is denoted by Ckc �O�Rd�� If d 	 � we simply write Ck�O�
instead� similarly for all other function spaces�

Denote by C���O�Rd� the space of Rd
valued continuous functions � with the property�
for every � � � there is a compact set K � O� such that j��x�j � � if x � O n K� Of
course� if O is compact� C��O�Rd� 	 C���O�Rd�� Endowed with the supremum norm�
denoted by k � k��O� C���O�Rd� is a separable Banach space� By the Riesz Theorem the
dual space C���O�Rd�� can by the duality pairing

h���i 	
Z
O
��x� � d�

dj�j �x� dj�j�x�

be identi
ed with the space of bounded Rd
valued Radon measures on O� The corres

ponding norm of � is k�k 	 j�j�O��
Our reference for approximate limits and derivatives is ���� Let O be an open subset

of RD and u � O � Rd a Borel function� We take S 	 Rd � f�g to be the one point
compacti
cation ofRd and consider u as a function with values in S� Let d be a compatible
metric on S� Take F � B�O� and x� � O with the property LD�F � Bx��r� � � for all
r � �� Here and throughout the paper Bx��r denotes the open ball centred at x� with
radius r�

Approximate limit� v � S is said to be an approximate limit in x� for u in the domain F �
written

v 	 ap lim
x� x�
x � F

u�x��

if

lim
r���

�
Z
Bx��r�F

d�u�x�� v� dx 	 ��

The approximate limit is unique if it exists�

Jump set� The jump set Su of u is de
ned as the set of points where u has no approximate
limit� i�e�

Su 	 fx � O � ap lim
y � x
y � O

u�y� does not existg�

The set Su is Borel� LD�Su� 	 � and
u�x� 	 ap lim

y � x
y � O

u�y� �����

for almost all x � OnSu� In case ����� holds at x we say that u is approximately continuous
at x�
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Approximate gradients� The function u � O � Rd is approximately di�erentiable at x� � �
if it is approximately continuous at x� and if there exists a matrix X � Rd�D� such that

ap lim
x� x�
x � O

ju�x�� u�x���X�x� x��j
jx� x�j 	 �� �����

In case u is approximately di�erentiable at x� the matrix X in ����� is uniquely determined
and is called the approximate gradient of u at x�� It is denoted by ru�x��� The set
of points ru� where u is approximately di�erentiable is a Borel set and the function
ru � ru � Rd�D is a Borel function�

Our references for function spaces are ���� and ��� for BV and SBV � We use the notations

kukp�O 	 kukLp�O�Rd	� kuk��p�O 	 kukW ��p�O�Rd	

and if O 	 RD we omit O from the notation� The distributional gradient of a distribution
u is denoted by Du� In particular� if u � O � Rd is of bounded variation� then Du 	
f
ur�
xsg is a Rd�D
valued bounded Radon measure on O� Furthermore� in this case u
is approximately di�erentiable almost everywhere and

�

r
�
Z
Bx�r

ju�y�� u�x��ru�x��y � x�j dy � � as r � ��

LD almost everywhere� The Lebesgue
Radon
Nikodym decomposition of Du takes the
form

Du 	 ru � LD �Dsu�

where Dsu is a singular measure� The jump set Su of u is countably �D � ��
recti
able�
i�e�

Su 	

�

i��

Ki �N�

where HD���N� 	 � and Ki are compact sets� each contained in an embedded C� hyper

surface �i� There exists a Borel function Nu � Su � RD� such that jNu�x�j 	 � for all x
and such that Nu�x� is normal HD��
almost everywhere in Ki to the surface �i� We refer
to Nu as a unit normal to Su� it is clearly not unique�

If corresponding to a unit vector N and a point x we de
ne the half
spaces

���x�N� 	 fy � RD � �y � x� �N � �g�

���x�N� 	 fy � RD � �y � x� �N � �g�
then the approximate limits

u��x�Nu�x�� 	 ap lim
y � x

y � ���x�Nu�x��

u�y�� u��x�Nu�x�� 	 ap lim
y � x

y � ���x�Nu�x��

u�y�

exist for HD��
almost all x � Su� We suppress the dependence on Nu and write simply
u� 	 u��x� and u� 	 u��x�� Notice that the matrix �u��u��
Nu is uniquely determined
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HD��
almost everywhere on Su� The Lebesgue decomposition of D
su with respect to

DsubSu is
Dsu 	 Cu� �u� � u��
Nu � HD��bSu�

where Cu is a singular measure� such that jCuj�A� 	 � when A � B�O� and HD���A� �
�� A function u � O � Rd is a special function of bounded variation� brie�y u �
SBV �O�Rd�� if u is of bounded variation and Cu 	 �� or equivalently� Dsu 	 DsubSu�

��� Integrands and Young measures

De�nition �L�C� Young� ������ A Young measure on � �Rd is a non�negative Radon
measure � on ��Rd with the property ��A�Rd� 	 Lm�A� for all Borel subsets A of ��

Remark� The de
nition of Young measure used here follows that of Berliocchi and Lasry
����� It can be shown to be equivalent to the original de
nition due to Young and the ones
used in e�g� ����� ����� ����� ���� and �����

Notice that a product measure on ��Rd of the form �Lmb��
 � � is a Young measure
on ��Rd exactly if � � is a probability measure on Rd� Such Young measures are called
homogeneous� Often it is clear from the context that all Young measures considered are
Young measures on some speci
c set and in such cases we simply speak of Young measures�

De�nition An elementary Young measure is a Young measure � for which there exists
a Lm measurable mapping V � �� Rd� such thatZ

��Rd

f d� 	

Z
�
f�x� V �x�� dx

for all f � C�����Rd��

Remark� If � is an elementary Young measure as above� then we write

� 	 �V 	

Z
�
�x 
 �V �x	 dx�

where �x is the Dirac measure on � concentrated at x and �V �x	 is the Dirac measure on

Rd concentrated at V �x��

Proposition ��� ��
��� Proposition �
 pp� 
������ Let � be a Young measure on ��Rd�
Then there exists a mapping x �� �x from � into C���Rd�� � f� � � 	 �g� the set of
non�negative� �nite Radon measures on Rd with the following properties�

�i� For any Borel function f � ��Rd � ����� the function x �� R
Rdf�x�X� d�x�X� is

Lm measurable and Z
��Rd

f d� 	

Z
�

Z
Rd

f�x�X� d�x�X� dx�

�ii� �x�R
d� 	 � for Lm�almost all x�

Furthermore� if x �� � �x is another such mapping� then � �x 	 �x for Lm�almost all x�
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Remarks� �� Our Proposition ��� is a special case of Proposition �� in �����

�� We summarise the content of �i� by writing � 	

Z
�
�x 
 �x dx�

Let fVjg be a sequence of measurable mappings of � into Rd� Since the corresponding
sequence f�Vjg of elementary Young measures is always bounded in C�����Rd�� it follows
from Alaouglu�s Compactness Theorem that there is a subsequence fVjkg and a measure
� � C�����Rd��� such that

�Vjk � � weakly� in C�����Rd��� �����

The following lemma characterises the case where � is a Young measure�

Lemma ��� �N� Hungerb�uhler �
��� Kristensen �
���� Under the above assumptions the
measure � is a Young measure if and only if

sup
k
Lm�fx � � � jVjk�x�j 	 tg�� � as t��� �����

The condition �
��� is equivalent to the following condition� there exists a Borel function
h � Rd � ������ such that h�X��� as X �� and

sup
k

Z
�
h�Vjk� dx ��� �����

Remark� In case ����� and ����� hold we say that the sequence fVjkg generates the Young
measure ��

The next lemma is well
known and is easily proved using Lemma ����

Lemma ��� Let fVjg� fWjg be two sequences of measurable mappings of � into Rd� If
fVjg generates the Young measure � and if Vj � Wj � � in measure� then also fWjg
generates the Young measure ��

De�nition An extended real�valued function F � ��Rd � R�f��g is called a normal
integrand if F �x� v� � �� everywhere� if F is Borel measurable and if for every �xed
x � � the partial function F �x� �� � Rd � R � f��g is lower semicontinuous�

De�nition A real�valued function F � ��Rd � R is called a Carath�eodory integrand if
both F and �F are normal integrands�

In the statement of the next theorem we use the notation F� 	 � inffF� �g�

Theorem ��� Let fVjg be a sequence of measurable mappings of � into Rd and assume
that it generates the Young measure �� If F � ��Rd � R� f��g is a normal integrand
and if fF���� Vj�g is uniformly summable� then

lim inf
j��

Z
�
F �x� Vj�x�� dx 	

Z
F d�� �����
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If additionally F is a Carath�eodory integrand� then fF ��� Vj�g is uniformly summable on
� if and only if

lim
j��

Z
�
F �x� Vj�x�� dx 	

Z
F d�� �����

Proof� The proof can be obtained by mimicking the proof of Theorem ��� in ���� The 
rst
part of the theorem and the �if� part of the second assertion are proved in ���� and in �����
The �only if� part of the second assertion of the theorem is proved in ����� �

De�nition �D� Kinderlehrer and P� Pedregal� ���� ����� Let p � ������ A Young measure �
on ��Rn�m is a gradient p�Young measure if there exists a sequence fujg inW ��p���Rn��
such that

�i� fujg is weakly �weakly� if p 	�� convergent in W ��p���Rn��

�ii� �ruj � � weakly� in C�����Rn�m���

Remark� We call the limit u of fujg an underlying deformation for �� It follows from
Theorem ��� that if � 	

R
��x 
 �x dx� then for almost all x the probability measure �x

has a centre of mass �x and
�x 	 ru�x��

We end this subsection with an elementary� but very useful observation� Suppose that
fVjg generates the Young measure � 	

R
��x
�x dx and that V � �� Rd is a measurable

mapping� Then the sequence fVj � V g generates a Young measure

� 	

Z
�
�x 
 ��x � �V �x	� dx�

where �x � �V �x	 denotes the convolution of the two measures �x and �V �x	 de
ned as

h�x � �V �x	� fi 	
Z
Rd

f�v � V �x��d�x�v�� f � C���Rd��

Observe that convolution with �V �x	 simply corresponds to a translation with V �x��

��� Quasiconvexity

De�nition �C�B� Morrey� ��
��� A function f � Rn�m � R � f��g is quasiconvex at
X � Rn�m if for every open and bounded set � � Rm with Lm�
�� 	 � one hasZ

�
f�X �ru�x�� dx 	

Z
�
f�X� dx 	 Lm���f�X� �����

for all u � W ���
� ���Rn� for which the integral on the left hand side exists� The function

f is quasiconvex if it is quasiconvex at every X � Rn�m�

Remarks� �� It is enough to know that ����� holds for one �non
empty� open and bounded
set �� Indeed� if ����� holds for one open and bounded set � 	 � �not necessarily with
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Lm�
�� 	 ��� then it holds for all open and bounded sets � with Lm�
�� 	 �� If f ���
then the condition that Lm�
�� 	 � can be omitted �see e�g� ������
�� It can be shown �see e�g� ����� that a real
valued quasiconvex function is rank
�

convex� i�e� f is convex on rank
� lines in Rn�m�

A function f � Rn�m � R � f��g is separately convex if it is convex on lines parallel
to the coordinate axes� It can be shown that a real
valued separately convex function
is locally Lipschitz continuous �see ������ Furthermore we have the following elementary
lemma�

Lemma ��� Suppose that f � Rn�m � R is separately convex and that for some p �
�����

lim sup
X��

f�X�

jXjp ���

Then also

lim sup
X��

jf�X�j
jXjp ���

Proof� For R � � the following inequality holds�

�mnf���� inf
jXj�R

f�X� � ��mn � �� sup
jXj�R

f�X�� �����

The lemma follows from this� To derive ����� we take X�� such that jX�j � R and
f�X�� 	 infjXj�R f�X�� Let X

�� X�� � � � � X�mn
denote the orbit of X� under re�ections

in the coordinate hyperplanes �it is not assumed that the Xi�s are distinct�� By separate
convexity

�mnf��� �
�mnX
i��

f�Xi��

and since jXij � R inequality ����� follows� �

De�nition Let f � Rn�m � R � f��g be an extended real�valued function� The
quasiconvex envelope f qc of f is de�ned as

f qc�X� 	 sup fg�X� � g quasiconvex and g � fg �

Remark� It is not excluded that f qc � ���

Lemma ��� �D� Kinderlehrer and P� Pedregal� �

� the appendix�� Let f � Rn�m � R

be a continuous function� Let an open and bounded set � � Rm with Lm�
�� 	 � be given
and de�ne the extended real�valued function Q�f � R

n�m � R � f��g as

Q�f�X� 	 inf

�
�
Z
�
f�X �ru�x�� dx � u �W ���

� ���Rn�

�
�

Then Q�f 	 f qc�
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Lemma ��� �B� Yan� ���� Lemma 
���� Let f � Rn�m � R be a continuous function
and let B 	 fx � Rn � jxj � �g� For any X � Rn�m there is a sequence fujg in

W ���
� �B�Rn�� such that

�
Z
B
f�X �ruj� dx� f qc�X� and kujk��B � ��

For quasiconvex functions of linear growth at in
nity we have the following elementary
lemma� which seems to have been overlooked in the literature�

Lemma ��	 Let f � Rn�m � R be a quasiconvex function satisfying

lim sup
X��

jf�X�j
jXj ��

and de�ne f��X� 	 lim supt�� f�tX��t� Let � be a bounded Lipschitz domain in Rm

and denote by N�� the outward unit normal on 
�� For u � W ������Rn�� a � Rn and
X � Rn�m the inequality

Lm���f�X� �
Z
�
f�ru� dx�

Z
��
f���a�Xx� u�x��
N���x�� dHm���x� ������

holds�

Remarks� �� The recession function f� is a positively �
homogeneous� Lipschitz continu

ous function�

�� By the Divergence Theorem
R
�ru dx 	

R
��u
N�� dHm���

Proof� It su�ces to prove the assertion for a 	 � and X 	 �� Since � is a Lipschitz
domain we can assume that u � W ����Rm�Rn�� Let f�tgt	� be a standard C�
molli
er
and de
ne for �� � � ��� �� the convolutions

�
 	 �
 � �� and u� 	 �� � u�

Observe that �
�� � � outside �
 	 fx � dist�x��� � �g and consequently� since f is
quasiconvex at ��

Lm��
�f��� �
Z
��

f��
ru� � u� 
r�
� dx�

We now employ an auxiliary function as in ���� For each x � �
 we introduce the positively
�
homogeneous� Lipschitz function

gx�X� 	 sup
t	�

f��
�x�ru��x� � tX�� f��
�x�ru��x��
t

�

By rank
� convexity of f � gx�X� 	 f��X� whenever rankX � �� and therefore

f��
ru� � u� 
r�
� � f��
ru�� � f��u� 
r�
��
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Consequently�

Lm��
�f��� �
Z
��

f��
ru�� dx�
Z
��

f��u� 
r�
� dx�

and therefore letting � � �� we obtain by virtue of Reshetnyak�s Continuity Theorem
�see ���� Theorem ��

Lm���f��� �
Z
�
f�ru�� dx�

Z
��
f���u� 
N��� dHm���

Finally we conclude by letting � � �� and applying e�g� Theorem ������ of ����� �

Proof of Lemma ��	� Let f�
g
	� be a standard C�
molli
er and put u
 	 �
 � u� Note
that if � � � is su�ciently small� then u
 is well
de
ned and smooth on Bx�r� Because
the function t �� R

�Bx�t
ju
�y� � �a � Xy�j dHm���y� is continuous on ��r� r� we can 
nd

R � ��r� r�� such thatZ
�Bx�R

ju
�y�� �a�Xy�j dHm���y� � �

r��� ��

Z
Bx�rnBx��r

ju
�y�� �a�Xy�j dy� ������

If we apply ������ with � 	 Bx�R� notice that f
��X� 	 jXj and make appropriate use of

f 	 � we get ������ with u
 in place of u� We conclude the proof by letting � tend to �
and using Reshetnyak�s Continuity Theorem �see ����� Theorem ��� �

It is also possible to prove ������ directly by means of an argument� which is similar to
the proof of Lemma ��� in ����

� Proof of the Decomposition Lemma

In this section we prove Lemma ��� and its corollaries� The proof of Lemma ��� in the
case p �� is obtained in three steps each stated as a lemma� The main tool for the proof
is the Hodge decomposition� which is used in the last step� The case p 	� is as noted in
the Introduction a result due to Zhang�

Lemma ��� Suppose that � is a bounded Lipschitz domain� Let p � ������ let fujg be
a sequence� which converges weakly to � in W ��p��� and for which fjDuj jpg is uniformly
summable on �� Then there exists a sequence fvjg in C�c ���� such that

uj � vj � � strongly in W ��p����

Proof� To simplify notation we assume that � 	 fx � jxj � �g� The proof in the general
case is analogous� By virtue of the Rellich
Kondrachov Compactness Theorem

�j 	
q
kujkp�� � ��
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Take a cut
o� functions �j � �� ��� �� compactly supported in � and with �j 	 � on B���j

and Lip��j� � ���j � De
ne wj 	 �juj� Clearly� wj � W ��p
� ���� wj � � strongly in Lp���

and

krwj �rujkp�� �
�Z

�nB���j

jruj jp dx
� �

p

� �
q
kujkp���

It follows that uj � wj � � strongly in W ��p���� Because C�c ��� is dense in W ��p
� ��� the

assertion of the lemma follows� �

I am indebted to Stefan M�uller for bringing the following result to my attention�

Lemma ��� Let p � ����� and let fVjg be a sequence in Lp���Rm�� Then the following
three assertions are equivalent�

�a� fjVj jpg is uniformly summable on ��

�b� For all q � p and all � � � there exist Wj � Lq���Rm�� such that

sup
j
kWjkq�� �� and kVj �Wjkp�� � ��

�c� For some q � p and all � � � there exist Wj � Lq���Rm�� such that

sup
j
kWjkq�� �� and kVj �Wjkp�� � ��

Proof� It follows easily by writing down the de
nitions� �

Lemma ��� Suppose that � is a bounded Lipschitz domain and that uj � � weakly in
W ������� Assume furthermore that for some p � ����� there is a sequence fVjg of vector
�elds in Lp with the properties Vj 	 � almost everywhere on Rm n �� fjVj jpg uniformly
summable on � and ruj � Vj � � in measure on �� Then there exists a sequence fvjg in
C�c ���� such that

kvj � ujk����� � � and fjrvj jpg is uniformly summable on ��

Before we embark on the proof we recall some facts on the Hodge decomposition�

Let Lp denote the Lebesgue space of all p
summable vector 
elds V � Rm � Rm and con

sider the subspaces Kp and Hp consisting of respectively the curl
free and the divergence

free vector 
elds� i�e�

Kp 	 fV � Lp � curlV 	 �g and Hp 	 fV � Lp � divV 	 �g�

It is readily seen that Kp and Hp are closed in Lp� If u � W ��p
loc �R

m� and ru � Lp�
then clearly ru � Kp and it is not di�cult to show that all vector 
elds in Kp can be
represented this way� i�e�

Kp 	 fru � u � Lploc and ru � Lpg� �����
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The orthogonal complement of K� in L� is H�� Therefore L� 	 K��H� by the Projection
Theorem� Let K and H denote the corresponding orthogonal projections� We extend the
Hodge decomposition V 	 K�V � �H�V � to all V � Lp by showing that the operators K
and H are of strong type �p� p� for all p � ������
The orthogonal projection of L� onto K� coincides with the metric projection onto K��

Therefore K�V � 	 ruV � where uV � L����Rm� is a minimiser of the functional

kru� V k�� 	
Z
Rm

jru� V j� dx� u � L����Rm��

By convexity it follows that uV is the �unique up to additive constants� solution of the
Euler
Lagrange equation

divDu 	 divV�

Using the Fourier transformation� denoted by F� we derive the formula

K�V � 	 F���MFV ��

where M��� 	 ��� 
 ���j�j�� In view of the Mihlin Multiplier Theorem it follows that K
is of strong type �p� p� for all p � ����� and of weak type ��� ���
Proof of Lemma 
�
� Only the case p � � requires a proof� By Lemma ��� we can assume
that uj � W ��p

� ��� and therefore we may extend each uj to a function in W ��p�Rm� by
de
ning uj 	 � outside ��

From the Dunford
Pettis Theorem we infer that frujg is uniformly summable on ��
Also fVjg is uniformly summable on �� hence applying Vitali�s Convergence Theorem to
the sequence fruj � Vjg on � we deduce kruj � Vjk��� � �� Since ruj � Vj 	 � outside
��

kruj � Vjk� � �� �����

By ����� there are wj � Lploc with rwj � Lp and
R
�wj 	 �� such that rwj 	 K�Vj��

Because supj kVjkp � � it follows from ����� that Vj � � weakly in Lp and since K is
of strong type �p� p�� rwj � � weakly in Lp� Therefore� in view of Poincar�e�s inequality�
wj � � weakly inW ��p���� Sinceruj�rwj 	 ruj�Vj�H�Vj� andH�Vj� 	 H�Vj�ruj�
we infer from ����� and the weak type ��� �� of H that� in particular�

ruj �rwj � � in measure�

This together with uniform summability on � implies by Vitali�s Convergence Theorem
that kruj �rwjk��� � �� By the Rellich
Kondrachov Compactness Theorem we deduce
that kuj � wjk����� � ��

Next we show that fjrwj jpg is uniformly summable on �� Let q � p be 
xed� Take
� � �� Since fjVj jpg is uniformly summable on � we can by Lemma ��� 
nd Wj verifying

kVj �Wjkp�� � � and sup
j
kWjkq�� ���

Recall that Vj 	 � outside � and de
ne likewise Wj 	 � outside �� Then clearly kVj �
Wjkp � � and consequently krwj �K�Wj�kp � cp� and supj kK�Wj�kq � cq supj kWjkq�
By Lemma ��� we infer that fjrwj jpg is uniformly summable on ��
The proof is concluded by use of Lemma ���� �
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Lemma ��� �K� Zhang� �	�� Lemma 
���� Suppose that � is a bounded Lipschitz domain
and that uj � � weakly in W ������� Assume furthermore that there is a sequence fVjg of
vector �elds in L� with the properties Vj 	 � almost everywhere on Rm n�� supj kVjk� �
� and Duj �Vj � � in measure on �� Then there exists a sequence fvjg in C�c ���� such
that

kvj � ujk����� � � and sup
j
kvjk����� ���

Remark� This statement is not identical to Lemma ��� in ����� but follows easily from its
proof� Some subtle generalisations have been obtained recently in �����

Proof of Lemma ���� The case p � � is covered by Lemma ��� and the case p 	 � by
Lemma ���� �

With Lemma ��� at our disposal Corollaries ��� and ��� are easy to prove�

Proof of Corollary ���� It is clear that the underlying deformation u belongs toW ��p���Rn�
and because � can be written as an increasing union of Lipschitz domains each compactly
contained in � we can assume that � is a Lipschitz domain�

By assumption we may 
nd a sequence fujg� such that uj � u weakly in W ������Rn�
and frujg generates �� Because fruj �rug generates the Young measure � 	 R��x 

��x � ��ru�x	� dx we can without loss of generality assume that u � ��
Suppose 
rst that p ��� De
ne for t � � the mapping Tt�X� 	 minft� jXjgX�jXj and

notice that the sequence fjTt�ruj�jpg is uniformly bounded� By Theorem ��� it follows
that

lim
j��

Z
�
jTt�ruj�jp dx 	

Z
��Rn�m

jTt�X�jp d��x�X��

and thus

lim
t��

lim
j��

Z
�
jTt�ruj�jp dx �

Z
��Rn�m

jXjp d��x�X��

We can therefore 
nd tj ��� such that

lim
j��

Z
�
jTtj �ruj�jp dx �

Z
��Rn�m

jXjp d��x�X� ��� �����

Let Vj 	 Ttj �ruj� and notice that Vj �ruj � � in measure on �� By Lemma ���� fVjg
generates the Young measure � and therefore� in view of ����� and Theorem ���� fjVj jpg
is uniformly summable on �� We conclude by applying Lemma ��� to each row in frujg
and by utilising Lemma ��� once again�

Assume next that p 	 �� Then there exists a R � �� such that for almost all x the
support of �x is contained in the ball jXj � R� Thus if we take t � R and let Vj 	 Tt�ruj�
we have

lim sup
j��

Z
�
jruj � Vj j dx 	 ��

and therefore the claim follows if we apply Lemma ��� to each row� �

Proof of Corollary ���� Assume that p � ������ The cases p � f���g are left to the
interested reader�
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Let u denote an underlying deformation for �� Take a ball Bx�r � � and de
ne the
measure � as

� 	

Z
Bx�r

�y 
 ��y � ��ru�y	� dy�

Clearly� � is a gradient p
Young measure �on Bx�r � Rn�m�� which has v � � as an
underlying deformation� Consequently� there is a sequence fvjg � C�c �Bx�r�R

n� as in
Corollary ���� Due to the growth condition ������� the sequence ff�ru�x� � rvj�g is
uniformly summable on Bx�r and therefore we obtain by Theorem ��� and the de
nition
of �

lim
j��

Z
Bx�r

f�ru�x� �rvj� dy 	
Z
Bx�r

Z
f�X �ru�x��ru�y�� d�y�X� dy�

By quasiconvexity we have for all jZ
Bx�r

f�ru�x� �rvj� dy 	 Lm�Bx�r�f�ru�x���

and the conclusion now follows from Lebesgue�s Di�erentiation Theorem� �

� Approximation of quasiconvex functions

This section contains a proof of Proposition ����� For the purpose of proving the lower
semicontinuity results of Theorems ��� and ��� �in the case � � p ��� the important fact
is that the approximating functions can be taken to be of linear growth at in
nity� The
re
nement that they can be taken convex outside large balls is only used in the Appendix�

The proof is divided into two steps each formulated as a lemma� In the 
rst step it is
shown by use of Corollaries ��� and ��� that it is possible to approximate with special
quasiconvex functions of linear growth at in
nity� The next step uses Lemma ��� and
concerns approximation of the special quasiconvex functions encountered in the 
rst step�
The desired approximation result follows from this�

Lemma ��� Let f � Rn�m � R be a quasiconvex function� such that for some c�� c� � �
and p � �

c�jXjp � c� � f�X� � c��jXjp � �� �����

holds for all X� Then there exist fj � R
n�m � R that are quasiconvex and satisfy

�a� fj�X� � fj���X��

�b� fj�X�� f�X��

�c� limX���fj�X��jXj� � R for each j�
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Proof� We de
ne fj as fj 	 F qc
j � where Fj�X� 	 minfj�� � jXj�� f�X�g� Notice that

hereby fj are quasiconvex and satisfy conditions �a� and �c�� It is also clear that fj � f �
By translation it su�ces to show that fj��� � f���� For that purpose we apply Lemma

��� and 
nd uj �W ���
� �B�Rn�� where B 	 fx � jxj � �g� such that kujk��B � � and

fj��� �
�

j
� �
Z
B
Fj�ruj�x�� dx� �����

Let tj � R denote the right
hand side of ������ Extracting a subsequence if necessary we
can assume that tj � t � R� The lower bound in ����� implies that frujg is bounded
in L� and hence that fujg is bounded in W ���

� �B�Rn�� By Theorem ��� we can extract a
subsequence �for convenience not relabelled�� such that frujg generates a Young measure
� on B �Rn�m�

Put Ej 	 fx � B � j�� � jruj�x�j� � f�ruj�x��g and notice that

tjLm�B� 	 j

Z
Ej

�� � jruj j� dx�
Z
BnEj

f�ruj� dx�

and therefore by ����� and the lower bound in ������Z
Ej

�� � jruj j� dx� � and sup
j

Z
BnEj

jruj jp dx ���

By de la Vall�ee
Poussin�s criterion fruj�BnEjg is uniformly summable on B and since

jruj j�Ej � � strongly in L��B� it follows that frujg is uniformly summable on B� This
implies that uj � � weakly in W ���

� �B�Rn� and that � is a gradient �
Young measure�
Passing to the limit in ����� yields by Theorem ��� �applied to the normal integrand
F �t�X� 	 t�f�X� and the sequence ��BnEj �ruj��

lim
j��

fj���Lm�B� 	 lim inf
j��

Z
BnEj

f�ruj� dx 	
Z
B�Rn�m

f�X� d��x�X��

Referring to the lower bound in ����� it follows that � has a 
nite pth order moment and
therefore by Corollary ��� that it is a gradient p
Young measure� The proof is concluded
using Corollary ��� taking into account that an underlying deformation for � is u � �� �

Lemma ��� Let f � Rn�m � R be a quasiconvex function� such that

lim
X��

f�X�

jXj 	 �� �����

There exist fj � R
n�m � R that are quasiconvex and satisfy

�a� fj�X� � fj���X��

�b� fj�X�� f�X��

�c� fj�X� 	 f��j �X� 	 aj jXj� bj for large jXj� where aj� bj � R�
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Proof� Since f is bounded from below we can without loss of generality assume that f is
strictly positive� Fix � � ��� �� and take c 	 c��� � R� such that

f�X� 	 �jXj � c

for all X� For each positive integer k we de
ne the function gk � R
n�m � R as gk 	 Gqc

k �
where

Gk�X� 	

�
f�X� if jXj � k�

�jXj � c if jXj � k�

Observe that gk is quasiconvex� satis
es gk�X� 	 �jXj � c if jXj � k and gk�X� �
gk���X� � f�X� for all X and all k�

Fix X � Rn�m� We claim that

lim
k��

gk�X� 	 ��� �

�
�f�X�� �����

Since gk�X� 	 inff�
R
BGk�X �ru� dx � u � W ���

� �B�Rn�g and Gk�X� 	 �jXj � c for all

X and k there exists by Lemma ��� a sequence fukg �W ���
� �B�Rn� satisfying

�gk�X� �
�

k
�Lm�B� �

Z
B
Gk�X �ruk� dx�

uk � � strongly in L��B�Rn� and sup
k

Z
B
jrukj dx ���

If Ek 	 fx � B � jX �ruk�x�j � kg� then

lim
k��

gk�X�Lm�B� 	 lim sup
k��

Z
B
f�X �ruk� dx� ��� �� lim inf

k��

Z
Ek

jX �rukj dx�

Since lim infk��

R
Ek
jX�rukj dx � lim supk��

R
Bf�X�ruk��� dx and since by Lemma

��� it follows that

lim sup
k��

Z
B
f�X �ruk� dx 	 f�X�Lm�B��

the inequality ����� follows�

Next take for a positive integer j� � 	 �� ��j and consider the corresponding sequence
fgj�kg�k�� as constructed above� For each j� there exists by ����� and Dini�s Lemma an
integer kj� such that

gj�kj �X� � ��� �

j � ��f�X� if jXj � j�

If we de
ne fj 	 maxfgi�ki � i 	 �� � � � � jg� then fj are quasiconvex and satisfy �a�
�c��
Indeed� �a� and �b� are obvious from the construction and �c� follows because

fj�X� 	 max
��i�j

f��� ��i�jXj � cig

with equality if jXj 	 max��i�j ki� �

Proof of Proposition ����� This is a straightforward consequence of Lemma ��� and Lemma
���� �
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� Lower semicontinuity in Sobolev�type spaces

The principal goals in the section are the proofs of Theorems ��� and ���� We start with
an elementary lemma�

Lemma ��� Let � and � be non�negative� �nite Radon measures on � and let f�jg be a
sequence of bounded Rd�valued Radon measures on �� If f�jg is uniformly ��AC and if

�j 	 Vj � � � �sj �

denotes the Lebesgue�Radon�Nikodym decomposition of �j with respect to �� then fVjg is
uniformly � summable�

Proof� This is easily seen by writing down the de
nitions� �

Lemma ��� Let � be a non�negative� �nite Radon measure on � and let fujg be a se�
quence in BV ���Rn�� Assume that fDujg is uniformly ��AC and that frujg generates
the Young measure �� Then there exists a Lm negligible set N � �� such that for x � �nN
each �x is a probability measure with a centre of mass �x and Jensen�s inequalityZ

f d�x 	 f��x�

holds for all quasiconvex functions f � Rn�m � R for which f�X��jXj has a �nite limit
as X ���

Proof� The proof proceeds in four steps�

�� Claim� without loss of generality we can assume that supj jDujj��� � � and that
uj � u strongly in L����Rn� for some u � BV ���Rn��

Sincem � � and jDujj�A� 	 � wheneverHm���A� 	 � it follows that fDujg is uniformly
�na
AC� where �na is the non
atomic part of �� i�e� �na 	 ��Px����fxg��x� Henceforth
we shall suppose that � 	 �na and the uniform �
AC� then implies that supj jDuj j��� �
�� Let B be an open ball contained in � and de
ne

vj�x� 	 uj�x���
Z
B
uj�y� dy� x � B�

Clearly� Dvj 	 DujbB and by Poincar�e�s inequality it follows that fvjg is bounded in
BV �B�Rn�� By virtue of the Rellich
Kondrachov Compactness Theorem there is a sub

sequence �for convenience not relabelled� and some v � BV �B�Rn�� such that vj � v
strongly in L��B�Rn�� Note that frvjg generates the Young measure �b�B �Rn�m� 	R
B�x 
 �x dx� Since it is su�cient to prove that the Young measure � has the claimed
property on any ball contained in � Step � concluded�

�� Consider the Lebesgue
Radon
Nikodym decompositions with respect to the Lebesgue
measure�

� 	 a � Lm � �s and Duj 	 ruj � Lm � Vj � �s�
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Claim� without loss of generality we can assume that u � �� ruj � � weakly in
L����Rn�m� and Vj � � weakly in L�

�s���R
n�m��

By Lemma ���� frujg is uniformly Lm summable on � and fVjg is uniformly �s sum

mable on �� Furthermore we deduce from Step � that Duj � Du weakly� in C������ and
using the uniform summability of the terms in the Lebesgue decompositions we deduce

ruj �ru weakly in L����Rn�m�

and

Vj � V weakly in L�
�s���R

n�m��

The claim follows by considering the di�erence fuj � ug� using the observation made at
the end of Subsection ��� and noting that the class of quasiconvex functions f for which
f�X��jXj has a 
nite limit as X �� is invariant under translation�

�� Fix a quasiconvex function f � Rn�m � R with the property f�X��jXj � � as
X ���
Claim� there exists a negligible set Nf � �� such that for x � � nNf �x is a probability

measure� �x 	 � and Z
f d�x 	 f����

Let �� be the set of all x in � for which �x is a probability measure with �x 	 �� The
set �� has full measure in �� Fix x � �� and take r � �� such that Bx�r � �� In view of
������ with X 	 �� v 	 � and � � ��� �� we have

f���Lm�Bx��r� �
Z
Bx�r

f�ruj� dy�

�jDsuj j�Dsuj� �
�

��� ��r

Z
Bx�rnBx��r

juj�y�j dy�

Since ff�ruj�g is uniformly summable and frujg generates the Young measure � it
follows from Theorem ��� thatZ

Bx�r

f�ruj� dy �
Z
Bx�r

Z
f d�y dy�

For the singular measure we notice that

jDsujj�Bx�r� 	

Z
Bx�r

jVj j d�s�

and since fjVj jg is uniformly �s summable and �s is non
atomic there exist by the Dunford

Pettis Theorem a subsequence fjVjk jg and a g � L�

�s���� such that jVjk j � g weakly in
L�
�s���� Passing to the limit through this subsequence we obtain

�mf��� � �
Z
Bx�r

Z
f d�y dy �

�

Lm�Bx�r�

Z
Bx�r

g d�s�
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By Lebesgue�s Di�erentiation Theorem the set �f of points x � �� for which

Lm�Bx�r�
��

Z
Bx�r

g d�s � �

and

�
Z
Bx�r

Z
f d�y dy �

Z
f d�x

as r � �� has full Lm measure� If we de
ne Nf 	 � n �f � then for x � � nNf we obtain
as r � �� and then � � �� that

f��� �
Z
f d�x�

as claimed�

�� We show that it is possible to 
nd a negligible set N � which is independent of f �

Let E denote the space of continuous functions g � Rn�m � R for which g�X��jXj has
a 
nite limit as X �� and de
ne the norm of g � E as

kgk 	 sup
X

jg�X�j
� � jXj �

Hereby E is a separable Banach space and if therefore Q denotes the set of all quasiconvex
functions in E there exists a countable set F � Q� which is dense in Q� We now de
ne
N 	

S
f�F Nf and it is not di�cult to show that N has the desired properties� �

Proof of Theorem ��
� By Lemma ��� there is a negligible set N � such that for all x � �nN
each �x is a probability measure with a centre of mass and with the property that Jensen�s
inequality Z

f d�x 	 f��x� �����

holds for all quasiconvex functions f for which f�X��jXj has a 
nite limit as X � ��
Since supj krujkp�� �� it follows that for p ���

Z
�

Z
jXjp d�x�X� dx ���

and hence that Z
jXjp d�x�X� �� �����

for almost all x� For p 	 � it follows that there exists a compact set K � Rn�m� such
that for almost all x

�x is supported in K� �����

Let M � � denote the exceptional set in ����� in case p �� and in ����� in case p 	��
The proof is concluded since for x � �n �N �M� it follows from Lemma ��� and Corollary
��� that �Lmb��
 �x is a gradient p
Young measure� �
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Proof of Theorem ���� As mentioned in the Introduction it is possible to give a proof
based on Theorem ��� and Theorem ���� We also mentioned that in the case p � �����
it is possible to give a proof� which only uses Proposition ���� and Lemma ���� We focus
on the latter leaving the details of the case p � f���g to the interested reader�
We can assume that the left
hand side of ����� is less than�� Because fF��x� uj �ruj�g

is assumed uniformly summable it then follows that the left
hand side of ����� is a real
number� By extracting a subsequence if necessary we can assume thatZ

�
F �x� uj �ruj� dx� l � R�

Put Vj 	 �uj�ruj� and consider the corresponding sequence f�Vjg of elementary Young
measures� Since supj Lm�fx � � � jVj�x�j 	 tg� � � as t � � there exists by Lemma
��� a subsequence �for convenience not relabelled�� which generates a Young measure ��
Because uj � u locally in measure it follows that if

� 	

Z
�
�x 
 �x dx�

then �x 	 �u�x	 
 �x� where

� 	

Z
�
�x 
 �x dx

is a Young measure generated by frujg� In view of Theorem ���Z
�

Z
F �x� u�x�� X� d�x�X� dx � l� �����

As in the proof of Lemma ��� we see that ruj �ru weakly in L����Rn�m� and therefore
�x 	 ru�x� almost everywhere� Let N be the negligible set from Lemma ��� and put
�� 	 fx � � nN � �x 	 ru�x�g� We claim that for x � �� the inequality

F �x� u�x��ru�x�� �
Z
F �x� u�x��X� d�x�X� �����

holds� Together with ����� this entails ������

Fix x � �� and put f�X� 	 F �x� u�x�� X�� Then f is quasiconvex and by �Hp� and
Lemma ���

lim sup
X��

jf�X�j
jXjp ���

For an integer k � � de
ne fk�X� 	 jXjp�k�maxff�X���kg� We now apply Proposition
���� to fk and we apply Lemma ��� to each of the approximating quasiconvex functions�
Hereby we deduce that

fk�ru�x�� �
Z
fk d�x 	

�

k

Z
jXjp d�x�X� �

Z
maxff��kg d�x

for all k� Passing to the limit k �� the inequality ����� follows� �
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� Lower semicontinuity in GSBV

Before proceeding with the proof of Theorem ��� we brie�y recall some de
nitions and
results from ���� The following de
nition is motivated by some minimisation problems that
are not coercive in SBV ���Rn�� but in the enlargement GSBV ���Rn� �see ���� Example
�����

De�nition �L� Ambrosio and E� De Giorgi� ������ A Borel function u � � � Rn is a
generalised special function of bounded variation� brie�y u � GSBV ���Rn�� if � � u �
SBVloc��� for all � � C��Rn� for which r� has compact support�

Remarks� �� Under the natural de
nitions of �addition� and �multiplication with scalar�
the space GSBV ���Rn� is a vector space�
�� For bounded functions there is nothing new as GSBV � L� 	 SBVloc�
�� In this paper we assume that n � � and then we have that a Borel function u �
GSBV ���Rn� if and only if � � u � SBVloc��� for all � � C�c �Rn�� Recall that v �
SBVloc��� if and only if vj� � SBV ��� for all open subsets � that are compactly contained
in ��

Proposition ��� �L� Ambrosio� �	�� Propositions ��
 and ����� Let u � GSBV ���Rn��
Then u is approximately di�erentiable almost everywhere in � and the jump set Su is
countably recti�able� If Nu denotes a Borel measurable unit normal to Su� then it is
possible to de�ne one�sided traces u� and u� by the procedure described in Section 
�

Remark� If u � GSBV ���Rn� and � � C�c �Rn�� then

D�� � u� 	 r��u�ru � Lmb�� ���u��� ��u���Nu � Hm��bSu�

�Indeed� by the Chain Rule for approximate derivatives r�� � u��x� 	 r��u�x��ru�x�
and� since � especially is continuous� ��u�� 	 ��u�� on S��u	 � Su and ��u

�����u�� 	 �
on Su n S��u	��
The motivation for introducing the space GSBV ���Rn� comes from the following com


pactness result� To state it we need three test functions �� � and g�

Let � � ������ ����� be a convex non
decreasing function satisfying the condition
��t�

t
�� as t��� �����

Let � � ������ ����� be a concave non
decreasing function satisfying the condition
��t�

t
�� as t� ��� �����

Let g � ��Rn � ����� be a normal integrand satisfying the condition

g�x� v� �� as v �� �����

for almost all x � ��
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Theorem ��� �L� Ambrosio� �	� Theorem 
�
�� Let �� � and g be three functions as
described above� Let fujg be a sequence in GSBV ���Rn� and assume that

sup
j

�Z
�
�g�x� uj� � ��jruj j�� dx �

Z
Suj

��ju�j � u�j j� dHm��

�
��� �����

Then there exists a subsequence fujkg and a function u � GSBV ���Rn�� such that ujk �
u in measure on � and rujk �ru weakly in L����Rn�m�� Furthermore� the function u
also satis�es the inequality �	����

Remarks� �� The last statement that u also satis
es ����� is not explicit in ���� However�
it follows from the results in Section ��� of ��� that the integrand ��a� b�N� 	 ��ja� bj� is
regularly biconvex and then the proof of Theorem ��� in ��� can be used to show thatZ

Su

��ju� � u�j� dHm�� � lim inf
j��

Z
Suj

��ju�j � u�j j� dHm���

The lower semicontinuity of the bulk energy term follows from Fatou�s Lemma and the
convexity of X �� ��jXj��
�� The function � is sub
additive� �This follows easily if we for 
xed s 	 � consider the
auxiliary function h�t� 	 ��t�� ��s�� ��s� t�� t 	 � and observe that it is non
decreasing
because � is concave��

The main result of this section ensures �by ������ and Corollary ���� lower semicontinuity
of quasiconvex integrals in the setting prescribed by this compactness result�

Theorem ��� Let fujg be a sequence in GSBV ���Rn�� which satis�es the boundedness
condition �	���� Assume that for some p � ������ supj krujkp�� � � and that frujg
generates the Young measure

� 	

Z
�
�x 
 �x dx�

Then for almost all x the measure �Lmb��
 �x is a gradient p�Young measure�

Remark� We obtain Theorem ��� in the special case� where fujg � SBV ���Rn� and
g�x� v� 	 jvj�
A brief outline of the proof is as follows� First it is shown� utilising Theorem ���� that

it is not restrictive to assume that uj � � in measure and that ruj � � weakly in L��
Next we truncate the functions uj to obtain new functions vj with the properties vj � �
in L�� ruj �rvj � � in L� and� by use of the Vitali
Hahn
Saks Theorem �Theorem ���
below�� fDvjg is uniformly �
AC for some �� We conclude using Theorem ����

Theorem ��� ��

�� Theorem 
 p� ����� Let � be a non�negative� �nite Radon measure
on �� Assume that f�jg is a sequence of bounded Rd�valued Radon measures on � and
that each �j is ��AC� If for all � measurable sets A � � the limit limj�� �j�A� exists in
Rd� then f�jg is uniformly ��AC�
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Proof of Theorem 	�
� The proof proceeds in three steps�

�� It is not restrictive to assume that uj � � in measure on � and ruj � � weakly in
L����Rn�m��

By Theorem ��� there exist a subsequence of fujg �for convenience not relabelled�
and u � GSBV ���Rn�� such that uj � u in measure on � and ruj � ru weakly
in L����Rn�m�� De
ne vj 	 uj � u� Then vj � GSBV ���Rn�� vj � � in measure
and rvj � � weakly in L����Rn�m�� By the remarks following Theorem ��� and since
Svj � Suj � Su�

sup
j

Z
Svj

��jv�j � v�j j� dHm�� � � sup
j

Z
Suj

��ju�j � u�j j� dHm���

This concludes Step ��

�� Let � � C�������� be such that ��t� 	 t if t � ��� �� and ��t� 	 � if t 	 �� Denote by
Lip��� its Lipschitz constant and notice that Lip��� � ������ De
ne the radial mapping

 �v� 	

�
��jvj� vjvj if v �	 ��

� if v 	 ��

For � � � de
ne the rescaled function  ��v� 	 � ����v�� Clearly�  � � C�c �Rn�Rn� and

Lip� �� 	 Lip����  ��v� 	 v if jvj � � and  ��v� 	 � if jvj 	 ���

De
ne uj�� 	  ��uj��

Claim� there exist numbers �j � �� such that fuj��jg � SBV ���Rn� satis
es

kuj��jk��� � �� �����

kruj��j �ruk��� � � �����

and

Duj��j �A�� � �����

for all Borel sets A � ��
Clearly� uj�� � SBVloc���R

n��

kuj��k��� � sup j �j � sup j�j� �����

and

Duj�� 	 ruj�� � Lm � �u�j�� � u�j���
Nuj�� � Hm��bSuj�� �
By the Chain Rule for approximate derivatives ruj�� 	 r ��uj�ruj� where �I denotes
the n� n unit matrix�

r ��uj� 	 r ����uj� 	 �����juj j�
���juj j I �

uj 
 uj
���jujj�

�
���juj j������jujj�� �����juj j�

�
�
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In particular� r ��uj� 	 I when juj j � �� and by Step � we then deduce that

ruj�� �ruj � � in measure on ��

Since also jruj��j � Lip���jruj j it follows that fruj�� �rujg is uniformly summable on
� and consequently� by Vitali�s Convergence Theorem�

lim
j��

kruj�� �rujk��� 	 �� �����

Put

M 	 sup
j

Z
Suj

��ju�j � u�j j� dHm���

By ������ M ��� Since  � is continuous

u�j�� 	  ��u
�
j �� u

�
j�� 	  ��u

�
j � and Suj�� � Suj �

and� in particular� ju�j���u�j��j � c�� where c 	 � sup j�j� Next note that !��t� 	 inff��t�� t�g�
� � ��� ��� has the same properties as � besides being � at t 	 �� Hence we can assume
that ���� 	 �� Because � is concave the di�erence quotient ��t��t is non
increasing� hence

ju�j�� � u�j��j
�
�
ju�j�� � u�j��j�Lip���

� � Lip���
c�

��c��
������

Hm�� almost everywhere on Suj�� � Because � is non
decreasing and Lip� �� 	 Lip���

�

�
ju�j�� � u�j��j
Lip���

�
� ��ju�j � u�j j�

and together with ������ this implies

sup
j

Z
Suj��

ju�j�� � u�j��j dHm�� � Lip���M
c�

��c��
� ������

In view of ����� it is possible to 
nd numbers �j � �� such that

�j � � and kruj��j �rujk��� � �� ������

By ������ ������ and ������ it follows that uj��j � SBV ���Rn�� that ������ ����� hold and
that for any Borel set A � ��

jDuj��j �A�j � j
Z
A
ruj��j dxj�

Z
A�Suj��j

ju�j��j � u�j��j j dHm�� � ��

hence that ����� holds�

�� De
ne for each j the non
negative� 
nite Radon measure

�j�A� 	

Z
A
jruj��j j dx�

Z
A�Suj��j

ju�j��j � u�j��j j dHm��� A � B����
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De
ne for each h � C����� the number

h��hi 	
�X
j��

h�j �hi
�j�� � �j����

�

It is readily seen that � hereby is a bounded� linear functional on C����� and that h��hi 	 �
if h 	 �� Therefore � is a non
negative� 
nite Radon measure on ��
From the de
nition it follows that each Duj��j is �
AC� Let A be a � measurable subset

of �� Since Radon measures are Borel regular there is a Borel subset B of �� such that
A � B and ��B n A� 	 �� By �
AC and �����

Duj��j �A� 	 Duj��j �B�� ��

and hence by the Vitali
Hahn
Saks Theorem fDuj��jg is uniformly �
AC� The conclusion
now follows from Theorem ���� �

Proof of Theorem ��
� The proof is analogous to the proof for Theorem ��� and is omitted
here� Notice also that it is possible to state the result in terms of GSBV 
functions as
mentioned in the remark following Theorem ���� �

� Examples and remarks

We discuss the various hypotheses encountered in the paper and give examples showing
that some are indispensable�

Ad� �H��� The condition that F is a normal integrand does not appear to be necessary
for Theorems ��� and ��� to hold� Indeed� in the case n 	 � much less is needed if the
integrand is autonomous as is shown in ����� However� for the method employed in this
paper it seems that being a normal integrand is close to the weakest possible regularity
assumption on F �

Under the assumption that F is a non
negative Carath�eodory integrand satisfying the
growth condition �H�p�� the result of ��� states that quasiconvexity of F �x� v�X� in X for
almost all x and all v is necessary and su�cient for I�u� to be sequentially weakly lower
semicontinuous onW ��p �and similarly for p 	��� So far no necessary condition has been
found if F is merely assumed to be a normal integrand� The condition should be related
to quasiconvexity� but it is likely that it also involves the v
variable�

Ad� �H��� Quasiconvexity is the natural assumption in the multi
dimensional case� It is
however very hard to verify that a given function is quasiconvex and partly for this reason
rank
� convexity and polyconvexity have been studied in the calculus of variations� The
function f � Rn�m � R � f��g is rank
� convex if it is convex on rank
� lines in Rn�m

and it is polyconvex if f�X� is a convex function of the minors of X �e�g� if m 	 n 	 �� f
is polyconvex if f�X� 	 h�X�detX�� where h is convex��

If f is C�� then rank
� convexity of f is equivalent to the Legendre
Hadamard condition
for r�f � r�f�X��a
b� a
b� 	 � �X� a� b� The notion of polyconvexity was introduced
by Ball in ���� �some special cases appear implicit in ����� ����� and is related to null
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Lagrangians and to weak sequential continuity �see also ���� and ������ For real
valued
functions we have schematically�

polyconvex 
 quasiconvex 
 rank
� convex�

If minfm�ng 	 �� then the concepts reduce to ordinary convexity� whereas for m� n � �
there are quadratic polyconvex functions that are not convex� For m� n � � there exist
quasiconvex functions that are not polyconvex �see ���� and the references therein�� Rank

� convexity is equivalent to quasiconvexity for quadratic forms in all dimensions and if
minfm�ng 	 �� then it is even equivalent to polyconvexity �see ���� and the references
therein�� It is not di�cult to show that the same is true for polynomials of at most third
degree� However� as shown by "Sver�ak in ����� there are polynomials of degree � on Rn�m�
which are rank
� convex but not quasiconvex when n 	 �� m 	 �� This example con
rmed
a conjecture from ���� �for dimensions n 	 �� m 	 ��� Morrey�s conjecture� that rank
�
convexity does not imply quasiconvexity� is still open in dimensions n 	 �� m 	 �� We
refer to ���� for a further discussion of the matter�

Ad� �H�p�� The lower semicontinuity results fail without the growth condition �H�p�
�cf� ������ In ���� Ball and Murat observed that in the case� where F �x� v�X� 	 f�X�
is bounded from below �but allowed to be �� a necessary condition for I�u� to be se

quentially weakly lower semicontinuous on W ��p is that the condition ����� holds for all
u �W ��p

� ���Rn�� They called this strengthening of the ordinary quasiconvexity condition
for W ��p
quasiconvexity �ordinary quasiconvexity corresponds to W ���
quasiconvexity��
It is not hard to see that if F �x� v�X� 	 f�X� satis
es �H�p�� then quasiconvexity is equi

valent to W ��p
quasiconvexity� The W ��p
quasiconvexity condition depends in a dramatic
way on p� As a consequence of ���� Theorem ���� it follows that for m 	 n 	 � the function
f�X� 	 jdetXj is W ��p
quasiconvex if and only if p 	 m �see also ������ It is still an open
question whether W ��p
quasiconvexity together with some regularity of f � e�g� continuity�
is su�cient for sequential weak lower semicontinuity of I on W ��p too� We notice that by
Example ��� of ���� there are lower semicontinuous functions f � which are W ��� quasicon

vex� but not rank
� convex� A result of Tartar ������ p� ���� states� also in this generality�
that rank
� convexity is a necessary condition for sequential weak lower semicontinuity of
I� Hence some additional assumption is needed in general for W ��p
quasiconvexity to be a
su�cient condition for sequential weak lower semicontinuity on W ��p� See ����� Theorem
��� and Conjecture ��� and the remarks afterwards� Partial results have been obtained in
���� and �����

In ���� Pedregal observed that if theW ��p
quasiconvexity condition is slightly strengthened
it becomes su�cient� Following Pedregal a Borel function f � Rn�m � R�f�g� which is
bounded from below is closed W ��p
quasiconvex if for all probability measures � on Rn�m

for which �Lmb��
 � is a gradient p
Young measure� Jensen�s inequality holds for f and
�� Z

f d� 	 f���� where � 	

Z
X d��X��

Whether this condition is necessary for I to be sequentially weakly lower semicontinu

ous on W ��p too is still an open problem� Note that under the growth condition �H�p�
quasiconvexity is equivalent to closed W ��p
quasiconvexity and that the results in Theor

ems ��� and ��� remain valid if instead of �H�� and �H�p� we assume that F �x� v�X� is
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closed W ��p
quasiconvex in X� Notice also that with this assumption F 	 � is allowed�
An example in ���� shows that the structure of gradient p
Young measures can be rather
complicated� Consequently� the question of whether� for su�ciently regular functions�
W ��p
quasiconvexity is equivalent to closed W ��p
quasiconvexity might be subtle� Partial
results in this direction have been obtained in �����

The next result shows the signi
cance of �H�p� for multiple integrals I with integrands
F �x� v�X� 	 f�X�� The result is well
known and is a special case of a general result due
to Alberti ���� Our proof is elementary and cannot be adapted to treat the general case
considered in ����

Let f � Rn�m � R � f�g be a lower semicontinuous function� which is bounded from
below� Let p � ������ u� �W ��p���Rn� and de
ne

A 	 fu �W ��p���Rn� � u� u� �W ��p
� ���Rn�g�

I�u� 	

Z
�
f�ru� dx�

Proposition ��� The functional I is �nite on A if and only if there exists a constant
c � �� such that

�X � Rn�m � f�X� � c�� � jXjp��

Remark� Instead of requiring I � � on A it is enough if fu � A � I�u� � �g has an
interior point in A �W ��p���Rn��

Proof� The �if� part is trivial� Assume that I � � on A and consider A � W ��p���Rn�
as a complete metric space� Without loss in generality we can assume that f 	 �� By
Fatou�s Lemma I is lower semicontinuous on A� Since

�

t��

fu � A � I�u� � tg 	 A

it follows from Baire�s Theorem that for some t the sub
level set fu � A � I�u� � tg has
non
empty interior� Assume that for u� � A and � � �

I�u� � t �����

holds whenever u � A and ku� u�k��p�� � ��

We next construct a test function u� which together with ����� yields the conclusion�
De
ne � � ����� � ��� �� as ��s� 	 � if s � ��� and ��s� 	 �� � �s�� if s 	 ���� Take
x� � � to be a p
Lebesgue point of ru� and consider r � ��� dist�x�� 
���� For X � Rn�m

de
ne

vr�x� 	 �

�����x� x�
r

����
�
�X�x� x��� u��x��� x � Rm

and

ur 	 vr � u� � A�
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Notice that for some c� 	 c��m�n� p�

kur � u�k��p�� 	 kvrk��p�� � c��jXjrm�p � kru�kp�Bx��r�

for r � ��� dist�x�� 
����
Fix c� � c�jru��x��j and take R � ��� dist�x�� 
���� such that

kur � u�k��p�� � c��� � jXj�rm�p

if r � ��� R�� Clearly�

I�ur� 	
Z
Bx��r��

f�rur� dx 	 Lm�Bx��r���f�X�

and hence taking

r 	 min

�
R�

�
�

c��� � jXj�
�p�m�

we infer from ����� that

t 	 Lm�B������min

�
Rm�

�
�

c��� � jXj�
�p�

f�X��

or
f�X� � c�� � jXjp�

for some suitable c� which is independent of X� �

Recall that any convex function f � Rn�m � R is the point
wise limit of an increasing
sequence of convex functions of linear growth at in
nity� The results in ���� imply that
a similar statement is false for quasiconvex functions� The next example shows that the
situation does not improve if we relax the requirement and only try to approximate with
rank
� convex functions� Before turning to the details of this we 
rst observe a simple
consequence of a result due to Sivaloganathan ���� �see also ������

Let � � � and B��
 	 fx � Rm � jxj � �g� A function u � B��
 � Rm is called radial if
there exists a function R � ��� ��� R� such that for almost all x

u�x� 	
R�jxj�
jxj x�

Recall �see e�g� ����� that form � � and p 	 � the radial function u belongs toW ��p�B��
�R
m�

if and only if R � ��� ��� R can be taken absolutely continuous and such thatZ 


�
rm��

�
jR��r�jp �

����R�r�r
����
p�

dr ��� �����

Proposition ��� Let f � Rm�m � R be a rank�� convex function� which for some p 	 �
satis�es the growth condition

lim sup
X��

jf�X�j
jXjp ��� �����
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Then for X � Rm�m and radial functions u �W ��p
� �B�Rm� the inequality

�
Z
B
f�X �ru� dx 	 f�X� �����

holds� where B denotes the open unit ball in Rm�

Proof� We can assume that X 	 �� By ���� the inequality ����� holds if u is a smooth radial
function� Fix any radial function u in W ��p

� �B�Rm� and take � � �� Using a standard
molli
er argument we can 
nd smooth radial functions uj � B��
 � Rm� where uj�x� 	 �
if jxj 	 �� such that ku � ujk��p�B��� � �� where we have extended u by � outside B� By
the growth assumption �����Z

B���

f�ruj� dx�
Z
B���

f�ru� dx 	
Z
B
f�ru� dx� f���Lm�B��
 n B�

and since uj is a smooth� radial function vanishing at 
B��
Z
B���

f�ruj� dx 	 f���Lm�B��
��

we deduce ������ �

Proposition ��� Let f � Rm�m � R � f�g be a function with the property that it can
be approximated from below by rank�� convex functions fj� i�e�� fj � f and fj � f point�
wise� each fj verifying the growth condition ���
� for some �xed p 	 �� Then ����� holds

for f and all radial functions u �W ��p
� �B�Rm��

Proof� This is easy� �

Example ��� Let p � ��� �� and de
ne f�X� 	 jXjp � jdetXj� X � R���� Then f is
polyconvex and satis
es the p� � growth condition

jXjp � f�X� � �jXj� � ��

We claim that f cannot be approximated from below with rank
� convex functions fj that
grows polynomially slower at � than f � i�e�� for some q � �

lim sup
X��

jfj�X�j
jXjq ��

holds for each j� The following argument is inspired by the proof of Theorem ��� in �����

Reductio ad absurdum� assume that for some q � � this is possible� Then by Proposition
��� the inequality ����� holds for f and all radial functions u � W ��q

� �B�R��� However�
this cannot be true� Indeed� for � � � introduce the radial function

u��x� 	

p
���� jxj�
jxj x� x � B�
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Observe that u� � W ��q
� �B�R�� and therefore by the assumption and Proposition ����

taking X 	
p
�I and u 	 u� in �����

�
Z
B
f�
p
�I �ru�� dx 	 f�

p
�I��

Since f�
p
�I� 	 �p�p�� � � and

�
Z
B
f�
p
�I �ru�� dx � cp�

p��

we obtain

cp�
p�� 	 �p�p�� � ��

Since p � � this is a contradiction if � is large enough�

Ad� ����� and ������� That it is necessary to impose some additional condition on the
sequence of negative parts follows from Counterexample ��� in ����� There it is shown that
if m 	 n 	 � and F �x� v�X� 	 detX� then I�u� is not sequentially weakly lower semicon

tinuous on W ���� In ���� Meyers found a technical condition which might be relevant in
this connection� However� no attempt has been made to investigate this condition in the
present setting�

The content of the next example is well
known and shows� on the level of Young measures�
the di�erence between the multi
dimensional case m� n � � �considered in this paper� and
the scalar case minfm�ng 	 ��

Example ��� Let p � ����� and � be a Young measure on � �Rn�m with a 
nite pth

order moment� Assume that

� 	

Z
�
�x 
 �x dx and �x 	 � a�e�

If m 	 � or n 	 �� then � is a gradient p
Young measure� For m� n 	 � this is in general
false�

�The 
rst assertion follows because quasiconvexity is just convexity in the case minfm�ng 	
�� The second assertion follows from the fact that if m� n 	 � there are quasiconvex func

tions� which are not convex� If p 	 � we can take any second order minor and if p � ��� ��
the examples are provided in e�g� ������

The following example concerns the hypotheses ����� and ������ in Theorems ��� and
����

Example ��� Let p � ����� and � be a Young measure on � �Rn�m with a 
nite pth

order moment� Assume that

� 	

Z
�
�x 
 �x dx and �x 	 � a�e�
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There exists a sequence fujg � SBV ���Rn� with the properties

kujk��� � � � sup
j

�
krujkp�� �

Z
Suj

ju�j � u�j j dHm��

�
���

fjruj jpg is uniformly summable on � if p ��
and

�ruj � � weakly� in C�����Rn�m���

Proof� For simplicity we assume that � 	 B 	 fx � Rm � jxj � �g and that � is
homogeneous� � 	 �LmbB� 
 � �� We also assume that p � �� the case p 	 � can be
treated analogously�

There is a sequence fVjg� such that Vj � � weakly in Lp�B�Rn�m�� fjVj jpg is uniformly
summable on B and fVjg generates � �see ������ It is not restrictive to assume that each
Vj is compactly supported in B� In view of Theorem � in ��� applied to each row of Vj we
can 
nd vj � SBV �B�Rn� with the properties

rvj 	 Vj and

Z
Svj

jv�j � v�j j dHm�� � ckVjk��B �

where c is a constant depending on m and n only� Because Vj is compactly supported in
B we can also take vj to be compactly supported in B�

Put tj 	 kvjk��B and consider the family Fj of all closed balls of radius less than
�jtj�

��� which are contained in B� By Vitali�s Covering Theorem there exists an at most
countable sub
family Fj � which covers Lm
almost all of B and consists of pairwise disjoint
balls� Write Fj 	 fB

xjk�r
j
k
gk�Kj

and de
ne

uj�x� 	 rjkvj

�
x� xjk

rjk

�
if x � B

xjk�r
j
k
� k � Kj �

Hereby uj is well
de
ned and it is readily veri
ed that uj � SBV �B�Rn�� that

kujk��B � ��j � jDuj j�B� � jDvjj�B� � �� � c�kVjk��B
and that fjruj jpg is uniformly summable on B� Fix � � C���B� and � � C���Rn�m� and
compute Z

B
���ruj� dx 	

Z
B

�
�X
k�Kj

�rjk�
m��xjk � rjkx�

�
A��Vj�x�� dx

Since � is uniformly continuousX
k�Kj

�rjk�
m��xjk � rjkx�� �

Z
B
� dy

uniformly in x � B and consequentlyZ
B
���ruj� dx�

Z
B
� dx

Z
�d� ��

�

The next example concerns the hypothesis ����� in Theorems ��� and ����
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Example ��� Let � be a Young measure on ��Rn�m with a 
nite 
rst order moment
and assume that

� 	

Z
�
�x 
 �x dx and �x 	 � a�e�

There exists a sequence fujg � C�c ���Rn�� such that

kujk��� � �� sup
j
krujk��� ��

and
�ruj � � weakly� in C�����Rn�m���

Proof� As in Example ���� but instead of applying Theorem � of ��� we apply Theorem �
with p 	 � and � 	 ��j� We leave the details of this to the interested reader� �

As mentioned in the Introduction there are sequences fujg of functions satisfying the
conditions of Theorems ���
���� but that do not allow a decomposition ruj 	 rvj � Ej �
where fEjg converges strongly in L� and fvjg converges weakly in W ���� Before giving
the example we state an auxiliary lemma�

It is well known that given any vector 
eld V of class C� on Rm� there exists a function
whose gradient is V if and only if curlV 	 �� where curlV is the function of Rm into
Rm�m de
ned by

�curlV �r�s 	

Vs

xr

� 
Vr

xs

for r� s 	 �� � � � �m�

By a molli
er argument a similar result may be proved when V is a distribution and
curlV 	 � in the distributional sense�

Lemma ��	 Let fVjg be a sequence converging weakly� to V in L��Rm�Rm�� If Vj 	
rvj�Ej� fEjg converges strongly in L� and fvjg converges weakly in W ���� then curlVj �
curlV strongly in W���p

loc for all p ���

Here we recall that hj � � strongly in W���p
loc means that for each open and bounded

subset � � Rm and p� 	 p��p� �� we have

hhj ��i � �

uniformly in � �W ��p�

� ��� with k�k��p��� � ��

Proof� Suppose that vj � v weakly in W ��� and Ej � E strongly in L�� Because
V 	 rv �E and

Vj � V 	 r�vj � v� � �Ej �E�

we can without loss in generality assume that V 	 E 	 � and v 	 ��

Let t � �M 	 � sup kVjk�� Then we have thatZ
fjrvj j	tg

jrvj j dx � t

t�M

Z
fjEj j	t�Mg

jEjj dx� ��
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By Lemma ��� we may 
nd a sequence fwjg which is bounded in W ����Rm� and such
that vj �wj � � strongly in W ����Rm�� Since Ej �rvj �rwj 	 Vj �rwj � � weakly�

in L� and strongly in L� we have that Vj �rwj � � strongly in Lploc for all p �� and
thus the claim of the lemma follows� �

Example ��
 Let B denote the open unit ball in Rm and de
ne for uj � W ����B� the
functions !uj � SBV �Rm� as

!uj�x� 	

�
uj�x� if jxj � ��
� if jxj 	 ��

If uj � � weakly� in W ����B�� then !uj � � strongly in L��Rm��

Hm���S
uj � � Hm���
B� and fD!ujg is uniformly �
AC�

where � 	 LmbB�Hm��b
B� However� in general fcurlr!ujg does not converge strongly
to � in W���p

loc for p � �� Indeed� assume for simplicity that m 	 � and let � � C�c �R���
Then

h
r!uj

x

� 
r!uj

y

��i 	 �h
D
s!uj


x
� 
Ds!uj


y
��i 	

Z
�B
uj

�

�


x
� 
�


y

�
dH��

thus if uj �	 � on 
B� then for each p� �� we have that

sup jh curlr!uj ��ij 	��

where the supremum is taken over� say� � � C�c �B���� with k�k��p� � ��

� Appendix

This appendix contains a proof of the characterisation of gradient Young measures� The
general result we set out to prove is the following� where we note that it di�ers from the
results of Kinderlehrer and Pedregal ���� ��� only in �c�� where we test with rather special
quasiconvex functions�

Theorem 	�� Let p � ����� and let � 	
R
��x 
 �x dx be a Young measure� Then � is a

gradient p�Young measure if the following three conditions are satis�ed�

�a� � has a �nite pth order moment�

�b� there exists u �W ������Rn�� such that �x 	 ru�x� almost everywhere�

�c� for all quasiconvex functions f � Rn�m � R satisfying f�X� 	 f���X� 	 jXj for
jXj large the Jensen inequality Z

f d�x 	 f��x�

holds for almost all x�
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Conversely� if � is a gradient p�Young measure� then there exists a Lm negligible set N � ��
such that for any quasiconvex function f � Rn�m � R verifying the growth condition

lim sup
X��

f�X�

jXjp ��� if p ��� �����

and no growth condition if p 	�� then the Jensen inequalityZ
f d�x 	 f��x�

holds for all x � � nN �

Some of the technical ingredients in the proof are taken from ����� however� the proof
relies on the Hahn
Banach Separation Theorem and is in this sense similar in spirit to the
original proofs in ���� ���� The key points distinguishing our proof are the use of Corollary
��� �or Proposition ������ the choice of function space �we treat the case of inhomogeneous
Young measures directly� and the observation contained in Lemma ����

We start with a lemma� which in the case p 	� is identical to Theorem ��� in ����� The
general result can be inferred from the results in ����� but we give a self
contained proof
essentially following the strategy proposed in ���� for the case p 	��

Lemma 	�� Let p � ����� and B 	 fx � Rm � jxj � �g� If � is a gradient p�Young
measure and � 	

R
��x 
 �x dx� then there is a Lm negligible set N � �� such that for

x � � nN the measure �LmbB�
 �x is a gradient p�Young measure�

Proof� We only give the proof for the case p � ������ The remaining cases can be
treated analogously� By assumption there exists a sequence fujg� such that for some
u �W ��p���Rn�

uj � u weakly in W ��p���Rn�

and

�ruj � � weakly� in C�����Rn�m���

Extracting a subsequence if necessary we can assume that

jruj jp � Lmb�� � weakly� in C�������

where � is a non
negative� 
nite Radon measure on the closure � of �� Let f�kg and f�lg
be two sequences� which are dense in C���B� and C���Rn�m�� respectively� We can assume
that each �k � C�c �B�� Extend �k by � outside B and put

�l�x� 	

Z
�l d�x�

In view of Theorem ��� we have for x � � and r � dist�x� 
��

lim
j��

Z
�
r�m�k�

y � x

r
��l�ruj�y�� dy 	 �"�k�r � �l��x��
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where "�k�r�y� 	 r�m�k��y�r� and � denotes convolution� Let �� denote the set of points
x � �� where

lim
r���

�"�k�r � �l��x� 	

Z
B
�k dy �l�x��

lim
r���

��Bx�r�

Lm�Bx�r�
	

d�

dLm �x� � R

and

lim
r���

r�p �
Z
Bx�r

ju�y�� u�x��ru�x��y � x�jp dy 	 ��

Put N 	 � n �� and notice that Lm�N� 	 �� Fix x � � n N and introduce for r �
��� dist�x� 
��� the rescaled functions ux�rj and ux�r as respectively

ux�rj �y� 	
�

r
�uj�x� ry�� u�x��� y � B

and

ux�r�y� 	
�

r
�u�x� ry�� u�x��� y � B�

For convenience of notation put

Ii�j� r� 	
X
l�k�i

�����
Z
�k�y��l�rux�rj �y�� dy �

Z
B
�k dy �l�x�

����
�
�

�

Z
B
jux�rj �y��ru�x�yjp dy � sup

�
��

Z
B
jrux�rj �y�jp dy � d�

dLm �x�
�

and notice that limr��� limj�� Ii�j� r� 	 � for each i� For each i take 
rst ri � ��� ��i��
such that

lim
j��

Ii�j� ri� � ��i

and next ji � i� so Ii�ji� ri� � ��i� De
ne vi 	 ux�riji
and notice that fvig�i�� �W ��p�B�Rn�

has the properties
vi � ru�x���� weakly in W ��p�B�Rn�

and

lim
i��

Z
B
�k�l�rvi� dy 	

Z
B
�k dy

Z
�l d�x

for all k� l 	 �� �� � � � The proof is concluded by noticing that the linear span of tensor
products �k 
 �l is dense in C���B �Rn�m�� �

Proof of the second part of Theorem ���� Apply Lemma ��� and Corollary ���� �

In the remainder of this section we focus on proving the 
rst part of Theorem ���� In
view of Corollary ��� it su�ces to show that � is a gradient �
Young measure� Since � is
a gradient �
Young measure if and only if � 	

R
��x 
 ��x � ��ru�x	� dx is and �x 	 � we

can assume that u � �� Hence by Lemma ��� we can assume that the measure

� 	

Z
�
�x 
 �x dx

satis
es the conditions�
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�a��

Z
��Rn�m

jXj d��x�X� ���

�b�� �x 	 � for almost all x�

�c�� for all quasiconvex functions f � Rn�m � R satisfying f�X��jXj � � as X � �
the inequality Z

f d�x 	 f���

holds for almost all x�

We introduce some notation for the proof� The space of Lipschitz functions F � � �
Rn�m � R is a �non
separable� Banach space with the norm

kFk 	 jF �x�� ��j � Lip�F ��
where x� � � is arbitrary but 
xed and Lip�F � denotes the Lipschitz constant of F � �The
Lipschitz constant refers to the metric dist��x�X�� �y� Y �� 	 jx � yj � jX � Y j�� Let E
denote the subspace of Lipschitz functions F � ��Rn�m � R with the property that the
function

�x�X� �� F �x�X�

� � jXj
admits a continuous extension to �� �Rn�m�f�g� �the closure of � times the one
point
compacti
cation of Rn�m with the natural metric topology�� It is readily veri
ed that E
is a closed subspace and hence that �E � k � k� is a Banach space� �E is non
separable� but
that is immaterial for our purposes��

Let P denote the set of positive measures � on ��Rn�m satisfying

��A�Rn�m� 	 Lm�A� for all Borel sets A � � and

Z
��Rn�m

jXj d��x�X� ���

Let Y denote the subset of P consisting of measures � with the additional property that
there exists a sequence fujg in W ���

� ���Rn�� such that

uj � � weakly in W ���
� ���Rn�

and
�ruj � � weakly� in C�����Rn�m���

We regard P as a subset of the dual space E � by the duality pairing

h��F i 	
Z
F d�� F � E �

and hereby we have that

k�k 	 sup
kFk��

h��F i � c

Z
�� � j � j� d��

where c � � is a constant depending on the diameter of � only�

We are going to show that � � Y by using the Hahn
Banach Separation Theorem in the
dual space of E � Before proceeding to the details of this we need some auxiliary results�
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Lemma 	�� If Y denotes the weak� closure of Y in E �� then Y �P 	 Y�

Proof� Fix � � Y �P� Take f�ig�i�� � W ���
� ���� which is dense in C����� and ffjg�j�� �

W ����Rn�m�� which is dense in C���Rn�m�� De
ne F �x�X� 	 jXj� �x�X� � � �Rn�m�
and notice that F � E � Since also �i 
 fj belongs to E for all i� j 	 � it follows that for
each positive integer k there exists �k in Y� such that whenever i� j � k

jh�k � ��F ij� jh�k � �� �i 
 fjij � �

k
�

By de
nition of Y and in view of Theorem ��� we may take uk � W ���
� ���Rn� verifying

for i� j � kZ
�
jukj dx� j

Z
�
jrukj dx�

Z
��Rn�m

jXj d�k�x�X�j� j
Z
�
�ifj�ruk� dx�

Z
�i
fj d�kj � �

k
�

Thus we have in particular for i� j � k

j
Z
�
jrukj dx�

Z
��Rn�m

jXj d��x�X�j � j
Z
�
�ifj�ruk� dx�

Z
�i 
 fj d�j � �

k
�

and therefore

lim
k��

Z
�
�ifj�ruk� dx 	

Z
�i 
 fj d�

for all integers i� j 	 � and

lim
k��

Z
�
jrukj dx 	

Z
��Rn�m

jXj d��x�X�� �����

We infer that

lim
k��

Z
�
�f�ruk� dx 	

Z
� 
 f d�

for all ��� f� � C������ C���Rn�m� and hence that frukg generates the Young measure ��
By ����� and Theorem ���� frukg is uniformly summable and therefore fukg converges
weakly to � in W ������Rn�� This proves that � � Y� �

The next result is an approximation result� It states that a general Young measure in
Y can be approximated by piecewise constant Young measures from Y� In the statement
of the lemma we denote by Gk the collection of all open dyadic cubes Q of side
length ��k

contained in �� that is

Gk 	 fQ 	 ��k�x� ��� ��m� � � � x has integer coordinatesg�

Lemma 	�� Let � 	
R
��x
 �x dx � Y and let k be a positive integer� If we de�ne �k � P

as

h�k� � 
 fi 	
X
Q�Gk

Z
Q
��x�

�
�
Z
Q

Z
f d�y dy

�
dx�

for � � C������ f � C���Rn�m�� then �k � Y and �k � � weakly� in E ��
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Proof� Since �x 	 � almost everywhere in � we may apply the averaging principle �see
e�g� Theorem ��� in ���� or ����� to deduce that for each Q � Gk the probability measure
�Q de
ned as

h�Q� fi 	 �
Z
Q

Z
f d�y dy� f � C���Rn�m��

gives rise to a homogeneous gradient �
Young measure �LmbQ�
�Q� De
ne Rk 	 �n
SGk

and note that �k 	 �LmbRk�
 ���
P

Q�Gk
�LmbQ�
�Q� it follows from this that �k � Y�

Considered as a linear functional on E the norm of �k is

k�kk � c

Z
�

Z
�� � j � j� d�x dx�

thus the sequence f�kg is norm
bounded in E �� To conclude the proof we 
x � �W �������
f �W ����Rn�m�� such that � 
 f � E and compute

h�k� � 
 fi 	
X
Q�Gk

Z
Q
��x��

Z
Q

Z
f d�y dy dx�

Because the function x �� R
fd�x is summable it follows that h�k� � 
 fi � h�� � 
 fi and

the lemma follows from this� �

Lemma 	�� If coY denotes the weakly� closed convex hull of Y in E �� then coY�P 	 Y�

Proof� By Lemma ��� it su�ces to prove that Y is convex� In view of Lemmata ��� and ���
it is enough to show that if �� 	 �Lmb��
��� and �� 	 �Lmb��
��� are two homogeneous
measures in Y� then also � 	 t�� � ��� t��� belongs to Y for each t � ��� ���
To start the proof we make the following observations� Let U be a non
empty open�

bounded subset of Rm� let u �W ���
� �U �Rn� and de
ne the probability measure � �u as

h� �u� fi 	 �
Z
U
f�ru� dx� f � C���Rn�m�

and �u 	 �Lmb�� 
 � �u� Using the generalised Riemann
Lebesgue lemma �see e�g� �����
Theorem ���� p� ��� it is easy to show that �u belongs to Y� and by Lemma ��� it is
clear that any homogeneous measure in Y is the weak� limit in E � of some sequence f�ujg�
where uj belong to W

���
� ���Rn��

Take open and bounded subsets U�� U� � Rm satisfying

U� � U� 	 # and Lm�U�� 	 tLm�U� � U���

Take fui�jg�j�� �W ���
� �Ui�R

n�� such that

lim
j��

h�ui�j �F i 	 h�i�F i� F � E � i 	 �� ��

De
ne vj �W ���
� �U� � U��R

n� as

vj�x� 	

�
u��j�x� if x � U��
u��j�x� if x � U��
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Clearly� �vj � Y and for F � E
lim
j��

h�vj �F i 	 ht�� � ��� t����F i�

hence t�� � ��� t��� � Y� The claim follows from Lemma ���� �

Proof of �rst part of Theorem ���� In view of Lemma ��� and since � � P it su�ces to
show that � � coY� In order to prove this we notice that by the Hahn
Banach Separation
Theorem

coY 	
�
fH � H weakly� closed half
space containing Yg�

Let H be a weakly� closed half
space in E � that contains Y� By de
nition there exists
a weakly� continuous linear functional T � E � � R and a number t � R� such that
H 	 fl � E � � T �l� 	 tg� A weakly� continuous linear functional is an evaluation
functional� i�e� T �l� 	 hl�Gi� l � E � for some G � E �cf� ����� and since Y � H

h��Gi 	 t

for all � � Y� We claim that this implies that

Gqc � E and

Z
�
Gqc�x� �� dx 	 t� �����

where for each x � �� Gqc�x� �� denotes the quasiconvex envelope of G�x� ���
By hypothesis �c�� this entails that � belongs to H� Hence we conclude the proof by

verifying ������

Recall that for a positive integer k� Gk denotes the family of all open dyadic cubes of
side
length ��k contained in �� For each Q � Gk pick uQ �W ���

� ���� ��m�Rn� and extend

each uQ to all of R
m by ��� ��m periodicity� De
ne vj �W ���

� ���Rn� as

vj�x� 	

��
�

�

j�k
uQ�j�

kx� if x � Q�Q � Gk�
� otherwise�

Then vj � � weakly in W ���
� ���Rn� and frvjg generates the Young measure � 	

R
��x


��x dx� where by use of the notation from the proof of Lemma ��� we have

��x 	

�
� �uQ if x � Q�Q � Gk�
�� otherwise�

Clearly� � � Y and so

t �
Z
�n
S
Gk

G�x� �� dx�
X
Q�Gk

Z
Q

Z
����	m

G�x�ruQ�y�� dy dx�

For each Q � Gk we let xQ � � be the lower left corner point of Q� Since G is Lipschitz
continuous and the diameter of each Q is

p
m��k we get

t �
Z
�n
S
Gk

G�x� �� dx �
p
m��kLip�G�Lm��� �

X
Q�Gk

Lm�Q�
Z
����	m

G�xQ�ruQ�y�� dy
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or

t� �k �
X
Q�Gk

Lm�Q�
Z
����	m

G�xQ�ruQ�y�� dy�

where �k � � is independent of the functions uQ and tends to � as k tends to �� Taking
the in
mum over uQ �W ���

� ���� ��m�Rn� yields the inequality

t� �k �
X
Q�Gk

Lm�Q�Gqc�xQ� ���

which is valid for each k� By Lemma ��� below it follows that Gqc belongs to E and
therefore we conclude the proof by letting k tend to in
nity and noticing that the right
hand side is a Riemann sum for the integral

R
�G

qc�x� �� dx� �

Lemma 	�� Let F � E and assume that there exists �x�X� � � � Rn�m� such that
F qc�x�X� � ��� Then F qc � E�

Proof� For �x�X� and �y� Y � we have

F �x�X� 	 F �y� Y �� Lip�F ��jx � yj� jX � Y j��

Taking y 	 x� and Y 	 X yields

F qc�x�X� 	 F qc�x��X�� Lip�F �jx� x�j�

and therefore it follows that F qc is real
valued for all �x�X�� Next we take Y 	 X �H
and get

F qc�x�X� 	 F qc�y�X �H�� Lip�F ��jx � yj� jHj��
whereby we conclude that F qc is Lipschitz continuous� It follows easily that F qc�x�X��jXj
has a 
nite limit as X �� and that this limit is independent of x � �� �
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