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1 Introduction and the main results

In this paper we adopt the approach initiated by Balder in [11] for the study of multiple
integrals on Lebesgue spaces, and use Young measures to obtain new lower semicontinuity
results for multiple integrals on BV (2; R"), the space of functions of bounded variation.
The multiple integrals covered by the results are of the form

I(u) = /QF((II,U,VU) dz, (1.1)

where 2 C R™ is an open and bounded set, F'(x,v, X) is a normal integrand and Vu is
the density of the absolutely continuous part (with respect to Lebesgue measure) of the
distributional gradient of u.

It is well known that the natural convexity assumption in the multi-dimensional calculus
of variations is quasiconvexity as introduced by Morrey in [43]. (Notation and definitions
are given in Section 2.) The classical lower semicontinuity results for multiple integrals
defined on a Sobolev space W1P(Q; R™) (cf. [43], [42], [1] and [40]) state that under suit-
able growth conditions related to p, quasiconvexity is a necessary and sufficient condition
for sequential weak lower semicontinuity. Without the growth conditions the lower semi-
continuity results fail (cf. [15]). The growth conditions can be relaxed if one adopts the
approach proposed in [53]. It amounts to redefining I(u) for non-smooth u by a relaxa-
tional procedure and is known as the Lebesgue-Serrin extension of I(u). In the context
of quasiconvex integrands this programme was begun in [41] and there is by now numer-
ous papers on the subject. Related to the study undertaken here are, in particular, [9],
[24] and [19], where results on lower semicontinuity and relaxation were obtained for the
Lebesgue-Serrin extension of multiple integrals defined on BV (2; R™). Without certain
growth conditions the relaxational procedure defining the Lebesgue-Serrin extension can
fail to provide an extension (cf. [39]). We refer to [21] and [45] for a systematic exposition
and further references on quasiconvexity and lower semicontinuity.

Unless otherwise specified we assume throughout the paper that m, n > 1 and that Q
is an open and bounded proper subset of R™. We define I(u) for all relevant functions
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2 J. Kristensen

by the formula (1.1). The integral in (1.1) is understood as a Lebesgue integral, or if
necessary, as an upper Lebesgue integral.

The main results are contained in Theorems 1.1-1.4. However, we believe that some of the
auxiliary results may be of independent interest, in particular Lemma 1.7, which contains
a result on truncation of sequences of gradients, and Proposition 1.10 on approximation
of quasiconvex functions.

Theorem 1.1 pertains to the case where u is of bounded variation and has a distributional
gradient Du, which is absolutely continuous with respect to a fixed non-negative and finite
Radon measure p. Following [8] we define for each p € [1, 00] the space

dD
Wﬁ’p(Q;R”) = {u € BV(;R") @ Du << p, d—uu € Lﬁ},

where dDu/dp denotes the Radon-Nikodym derivative of Du with respect to p. The
Sobolev spaces with respect to a measure enjoy the same compactness properties as the
usual Sobolev spaces (cf. [8]). In particular, we note that if ¢ : [0,00) — [0,00] is a
non-decreasing function, which satisfies the condition

@—)ooast—)oo (1.2)

and if {u;} C W'l (Q; R™) satisfies

dDu;
sup /u-dw+/¢‘ J
j < Q| i Q ( dp

then for some subsequence of {u;} (for convenience not relabelled) and some u € W,} 1 R")

)du> < o0, (1.3)

dDu;  dD
Y 2% eakly in L. (1.4)
du du s

uj — u strongly in L}, and

Definition Let p € [1,00]. An integrand F = F(z,v,X) : @ x R" x R"™ — R belongs
to the class 7, if it satisfies the following three conditions:

(H1) F = F(z,v,X) is a normal integrand, i.e., Borel measurable and lower semicontinu-
ous in (v, X).

(H2) F(z,v,X) is quasiconvex in X for almost all z and all v.

(H3,) For almost all z and all v

F X
lim sup (v, X)

— 00

and no condition is required if p = oo.
It is not difficult to show (see Lemma 2.5) that under the hypothesis (H2) the condition

(H3p) is equivalent to the condition limsupy _, o |[F(z,v, X)|/|X]P < o0 (1 <p < o0).
Defining F'~ = — inf{F, 0}, we have the following result:
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Theorem 1.1 Let pu be a non-negative and finite Radon measure on 2, p € [1,00] and
Fel, If{u;} C Wl (Q; R™) satisfies (1.4),

{F~(z,uj,Vu;)} is uniformly summable on 2, (1.5)
and
sup [Vujllpe < oo, (1.6)
j
then
/F(:E,U,, Vu)dx < liminf/F(w,uj,Vuj)dx. (1.7)
Q J7eo Ja

Remark. 1t follows from the proof that if we replace the assumption (1.6) with

dDu;
dp

< 00, (1.8)

sup
L

J

then we have instead of (1.7) the conclusion

k—o0

/F(x,u,@)adw Sliminf/F(w,u]-,w)adx,
Q a Q a

where a = du/dL™.

The lower semicontinuity properties of multiple integrals with quasiconvex integrands
have previously been studied in this setting by Ambrosio, Buttazzo and Fonseca in [8].
Write ¢ = a - L™ + p® and Du = Vu - L™ + Du for the Lebesgue-Radon-Nikodym
decompositions with respect to Lebesgue measure and define the functional
dD%u

S dpe

E(u) :/F(x,u,@)adx—i-/G(m,
Q a Q dp

Then the principal result of [8] guarantees lower semicontinuity of £(u) on sequences {u;}
satisfying (1.4) and (1.8), when F is a Carathéodory integrand satisfying (H2) and (H3,),
G is a rank-1 convex normal integrand, 1 < p < oo and a € L*. It is possible to relax
the conditions on G, see [8], and we remark that the singular part in E(u) also is lower
semicontinuous under the conditions of Theorem 1.1. Observe that these results easily
give existence results for minimisation problems, where the discontinuity set is imposed a
priori.

The proof in [8] is achieved by considering the absolutely continuous part and the singular
part of E(u) separately. The singular part of E(u) is then treated by use of a result from
[3]. In dealing with the absolutely continuous part the authors use a result from [7] on
Lusin-type approximation of functions of bounded variation by Lipschitz functions. Such
approximation results were first established for Sobolev functions in [37] and [1], and used
in [1] to obtain lower semicontinuity results for multiple integrals on Sobolev spaces.

The main novelty of our result is that we allow p € [1,00] and a = dDu/dL™ € L'(f).
The extension from a € L™ to a € L' appears to be essential for the proof of our second
lower semicontinuity result stated in Theorem 1.2. Apparently this extension also requires
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a different strategy for the proof as the method based on approximation with Lipschitz
functions seems to break down if a is not essentially bounded. We also note that the reason
that we can allow the integrand F' to be merely normal (and not necessarily Carathéodory)
is due to our approach via Young measures.

Before stating Theorem 1.2 we recall that if u is of bounded variation, then it is possible
to define a measure theoretic normal N, to the jump set S, for u and to define one-sided
traces u™, u~ of u on S, (see Section 2). Let Du = Vu - L™ + D*u be the Lebesgue-
Radon-Nikodym decomposition of Du (with respect to Lebesgue measure). The space

SBV(;R") ={u e BV(;R") : D’u = D’ulS,}

of special functions of bounded variation, and its generalisation GSBV (2; R") (see Sec-
tions 2 and 6), were introduced by Ambrosio and De Giorgi in [10] as a natural setting for
weak formulations of free discontinuity problems.

Theorem 1.2 concerns the case where u is a special function of bounded variation (or,
more generally, lies in GSBV (©2; R")) and is motivated by a compactness result due to
Ambrosio (cf. [6], Theorem 2.2). The compactness result can be stated in the following
manner. If ¢ is as in (1.2), if 6 : [0, 00) — [0, 00| is concave, non-decreasing and satisfies

@—)oo as t — 0T (1.9)

and if {u;} C SBV(Q2; R") satisfies

J

sup (/Q(|uj| + (V) d + /Suje(w _ uj_|)d7-lm1> < 00, (1.10)

then for some subsequence of {u;} (for convenience not relabelled) and some u € GSBV (; R")

uj — u in measure, Vu; — Vu weakly in L

and sup/ 0(|uj —uj_|)al”;’-lm*1 < 0. (1.11)
J /S

For convenience we state a precise version of the compactness theorem for GSBV in
Section 6.

Theorem 1.2 Let § satisfy (1.9), p € [1,00] and F € Z,,. If {u;} C SBV(;R") satisfies

(1.11),
{F~ (x,uj,Vuj)} is uniformly summable on § (1.12)

and

SUPHVUJ'”]J;Q < 00, (1.13)
J

then
/F(x,u,Vu) dx < liminf/F(w,uJ-,Vu]-) dzx. (1.14)
Q Q

J—0
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Remark. 1t is possible to give a more general version of Theorem 1.2 in terms of GSBV
functions; we indicate how to do this in Section 6.

Lower semicontinuity of multiple integrals with quasiconvex integrands has been studied
in this setting by Ambrosio in [7] under the assumption 6(¢) = 6y > 0. The main novelty
of our result is the extension to the case when lim;_,00(t) = 0 (e.g. 6(¢t) = t7, where

€ (0,1)). We cover exactly the cases described in the compactness theorem for GSBV.

Comnsider the functional

E(U) = /F((II,U,VU) dx + G(x,uﬂu*,Nu) dH™ 1
Q Su

If for some constants ¢y, co, ¢3, @ > 0, > 1 and v < 1 we have
F(z,0,X) > c1|v]* + X and  G(z,u,v,N) > min{es, |u — v|7},

then by the compactness theorem the functional £ is coercive in the space GSBV (2; R").
Under the conditions of Theorem 1.2 the bulk energy term of £(u) is lower semicontinu-
ous. Corresponding lower semicontinuity results for the surface energy in £(u) have been
obtained by Ambrosio in [6] for the cases v < 0. However, under the condition that G is
regularly biconvex the methods of [6] also yield lower semicontinuity of the surface energy
in the case 7 < 1 (see also the remark following Theorem 6.2). We also notice that &(u)
can be lower semicontinuous even though the bulk energy and surface energy are not so
separately (see [19] and the references therein).

As already mentioned, we proceed as suggested by Balder in [11] and establish the lower
semicontinuity results of Theorems 1.1 and 1.2 by use of Young measures. By virtue of
the hypotheses of either Theorem 1.1 or Theorem 1.2 we can, by extracting a subsequence
if necessary, assume that {Vu;} generates a Young measure v = fgém ® vy dz (see Section
2 for notation). According to a general result from [11] (see also Theorem 2.4)

lim inf I (u;) // z,u(z), X) dvg (X) dz. (1.15)

]*)OO

Since Vu; — Vu weakly in L! it follows that almost all v, have a centre of mass (denoted
by 7,) and that 7, = Vu(z) almost everywhere. If, therefore, we have

/F(:I: u(z), X)dvy (X) > F(z,u(z),7;) ae., (1.16)

then the lower semicontinuity results of Theorems 1.1 and 1.2 follow. We express (1.16)
by saying that Jensen’s inequality holds for F'(z,u(x),-) and v, for almost every z. The
key feature of this approach is that it allows us to ignore the (z,v) dependence in F. We
establish (1.16), and hence Theorems 1.1 and 1.2, in the following manner. Let Q, denote
the class of quasiconvex functions f : R"*™ — R satisfying the growth condition

< 00 (1.17)

if p < oo; no condition is required if p = co. Note that by definition of the class Z, of
admissible integrands the functions f;(X) = F(z,u(z), X) belong to Q, for almost all z.
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The main part of the proof aims at establishing that for almost all z

VieQ,: [fdn > 1w, (1.18)

A result due to Kinderlehrer and Pedregal [32, 33] states that (1.18) for a fixed z is
equivalent to the requirement that (L™ |Q)®wv, be a gradient p-Young measure. Theorems
1.3 and 1.4 establish exactly this. Before proceeding further a few remarks are in order.

The semicontinuity result (1.15) was obtained independently by Pedregal [47] for the
case of Carathéodory integrands that are bounded from below. Pedregal also emphas-
ised the importance of Jensen’s inequality (1.16) in problems of lower semicontinuity and
highlighted it in his definition of closed W P-quasiconvexity. This approach was also used
in [31] and in [34] to obtain lower semicontinuity results for multiple integrals on W1,
The good localisation properties of Young measures were also used in [56] to study the
principle of convergence of energies.

The key results of this paper are the following two theorems.

Theorem 1.3 Let p1 be a non-negative, finite Radon measure on 2 and let {u;} be a
sequence in BV (§; R") satisfying (1.4) and (1.6). If {Vu;} generates the Young measure
v = [0z ® vy dz, then for L™-almost all z, (L™ Q) ® v, is a gradient p-Young measure.

Theorem 1.4 Let {u;} be a sequence in SBV (Q;R") satisfying (1.11) and (1.13). If
{Vu;} generates the Young measure v = [0, @, dx, then for L™-almost all z, (L™[Q) @
vy 1S a gradient p- Young measure.

Remark. We present a more general statement of Theorem 1.4 in terms of GSBV functions
in Section 6.

In some sense Theorems 1.3 and 1.4 are surprising. Quasiconvexity is defined with
specific reference to gradients, but a result of Alberti [2] states that the approximate
gradient Vu of an SBV-function u can be any summable function V' : @ — R"*™.
Of course, it is the conditions we impose on the measures Du; that force the sequence
{Vu;} to generate a Young measure with the above property. One might think that it
should be possible to decompose Vu; into a gradient and another term that converges
strongly, so that the Young measure is essentially generated by the gradients. Of course,
if possible, this would prove the theorems. However, by Example 7.9, this approach
cannot be successful. Example 7.9 displays a sequence {u;} satisfying, simultaneously,
all the conditions in Theorems 1.1-1.4, but where the sequence {Vu;} of approximate
gradients (and any subsequence thereof) does not admit a decomposition of the form
Vu; = Ej + Vv, where {E,} converges strongly in L'(Q; R"*™) and {v;} weakly in
Whi(Q; R").

Theorems 1.3 and 1.4 are very close to being optimal. In Section 7 we present examples
showing that if one of the conditions (1.4), (1.6), (1.11) or (1.13) is slightly weakened the
corresponding conclusion is false.

The proof of Theorem 1.3 is presented in Section 5. By use of a truncation argument
and the Vitali-Hahn-Saks Theorem we deduce in Section 6 Theorem 1.4 from Theorem



Lower semicontinuity 7

1.3. As noticed above Theorems 1.1 and 1.2 are then easy consequences via (1.15) and
(1.16).

To prove Theorem 1.3 we exploit the characterisation of gradient Young measures due to
Kinderlehrer and Pedregal [32, 33] (see also [45], [48] or [50]; [26] contains a generalisation).
We only need the following special case of their result.

Lemma 1.5 (D. Kinderlehrer and P. Pedregal; special case of [32, 33]) Suppose v is a
probability measure on R™™ ™ satisfying

/|X|du(X) < 0. (1.19)

The homogeneous Young measure (L™[Q) @ v is a gradient 1-Young measure if and only
if for all quasiconvez functions f for which f(X)/|X| — 1 as |X| — oo the following
inequality holds:

[rxan) = o). (1.20)

In the Appendix we present an almost self-contained proof of the full characterisation
of gradient p-Young measures covering all cases p € [1,00]. We obtain at the same time
a slight refinement of the results in [32, 33] in the sense that we are able to show that it
is only necessary to test in (1.20) with quasiconvex functions that equal | X| outside large
balls.

As a first step towards proving Theorem 1.3 we employ Lemma 1.5 to show that for
almost all x the measure (L™|Q) ® v, is a gradient 1-Young measure. We establish (1.20)
by use of well-known results on differentiation of measures along with the following result.

Lemma 1.6 Let f : R™™ — R be a non-negative, quasiconver function satisfying
fX)/|IX| = 1 as X — oo and let u : Q@ — R"™ be of locally bounded variation. For
d€(0,1), z € Q, r € (0,dist(z,09)), a € R™ and X € R"™™ ™ the following inequality
holds:

s # u —\a
[ iy e + /B )~ (X dy o

> L™(Byor) f (X).

This lemma is reminiscent of Lemma 2.5 in [9]. We derive it as a corollary of a slightly
more general inequality in Section 2, the proof of which is elementary. A similar result
appears to be false for quasiconvex functions with super-linear growth at infinity.

To conclude the proof of Theorem 1.3 we invoke the following technical result on trunca-
tion of sequences of gradients. More precisely the conclusion is established using Corollary
1.8 stating, in particular, that a gradient 1-Young measure is a gradient p-Young measure
if and only if it has a finite p'* order moment.
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Lemma 1.7 Assume that Q is a bounded Lipschitz domain. Let {u;} satisfy u; — u
weakly in WH1(Q). Assume that for some p € [1,00] there is a sequence {V;} C LP(Q; R™)
with the properties:

if p < oo, {|V;P} is uniformly summable on Q
if p =00, {V;} is bounded in L*(£2;R™)

and
Vu; —V; — 0 in measure on S

Then there is {v;} C C°(R2), such that
vj = 0 weakly (weakly* if p = 00) in Wol’p(Q),

||VUj —Vu — V'UjHl;Q —0

and, if p < oo,
{IVu + Vv, P} is uniformly summable on €.

The case p = oo was treated by Zhang in [60]. An elementary proof for the cases p < oo
relying on the Hodge decomposition is given in Section 3. We apply the result to vector
valued functions by applying it to each coordinate function. The fact that the result
is ‘scalar’, i.e. it is possible to prove it for real-valued functions and then transfer it to
vector-valued functions by applying it to each coordinate function, paves the way for many
different extensions and proofs (see [35]).

Using this result we easily derive two useful corollaries. The first concludes the proof

of Theorem 1.3 and concerns the possibility of finding generating sequences for gradient
Young measures with good integrability properties.

Corollary 1.8 Letv = [,0,®v, dx be a gradient 1-Young measure and let u € Whi(Q; R")
be an underlying deformation. Let p € [1,00] and assume that v has a finite p'" order mo-

ment, i.e. if p < oo,
//|X|pd1/$(X)d$ < 00
Q

and if p = 0o, there is a compact set C C R™ ™, such that for almost all x the measure
vy 45 carried by C.

Then there exists {vj} C CX(Q;R™), such that v; — 0 weakly (weakly” if p = c0) in

Wy P(Q;R™), {Vu + Vu;} generates v and, if p < oo, the sequence {|Vu + Vu;|P} is
uniformly summable on 2.

Corollary 1.8 is a slight refinement of a similar result in [34], where the proof was based
on a stability result from [30]. Other results in the same vein have also been obtained in
[26] using arguments based on the Lusin-type approximation of general Sobolev functions
with Lipschitz functions as in [1]. The first result of this kind seems to come from [33]
and was obtained in an indirect way. Recently similar results have been obtained in [25]
within the more general setting of compensated compactness.

The second corollary to Lemma 1.7 is the following.
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Corollary 1.9 (J. Ball and K. Zhang, [17]) Suppose f : R"*™ — R is a quasiconvez
function satisfying
lim sup 1X)
X—o00 |X|p

and no growth condition if p = 0co. Let v = fgém ® vy dx be a gradient p-Young measure.
Then

<oo if p< oo, (1.22)

/f dvy > f(Vy) (1.23)

holds for almost all z € .

The proof in [17] is based on the lower semicontinuity result in [1] and Chacon’s Biting
Lemma.

By virtue of (1.15) it is clear that Theorems 1.1 and 1.2 follow from Theorems 1.3, 1.4
and Corollary 1.9.

It is possible to prove Theorems 1.1 and 1.2 in the case p € (1, 00) without relying on
the characterisation of gradient Young measures. The proof then relies on Lemma 1.6 and
the following approximation result, which again is proved using Lemma 1.6, Corollaries
1.8 and 1.9.

Proposition 1.10 Let f : R**™ — R be a quasiconvex function, such that for some cq,
ca>0andp>1
QIX [P = ¢ < F(X) < e(|XP +1) (1.24)

holds for all X. Then there exist fj : R™*™ — R that are quasiconvez and satisfy

(a) f;(X) < fin(X),
(b) fi(X) = f(X) as j — oo,
(¢c) there exist aj, r; > 0, bj € R, such that
Fi(X) = f77(X) = a;|X| + b; if [X] >y,

where fr* denotes the convex envelope of f;.

The approximation result in [40] implies the existence of quasiconvex functions g; satis-
fying (a), (b) and

(c’) there exist r; > 0, such that g;(X) = c1|X|P — ¢y if | X| > 7y

The proof in [40] is based on a result on higher integrability of certain minimising se-
quences. For our purposes it is important that we have (c) and not (c’).

We note that assumption (1.24) cannot be avoided. In Example 7.4 we show by use
of results from [15] and [54] that the polyconvex function f(X) = |X|P + |detX|, where
p € [1,2), defined on R?*2, cannot be approximated from below by sub-quadratic rank-1
convex functions.
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The paper is organised as follows. In Section 2 we briefly recall the main definitions
and state some preliminary results. Section 3 is devoted to proving the Decomposition
Lemma (Lemma 1.7) and its corollaries. In Section 4 we give the proof of Proposition
1.10. The main results, Theorems 1.1-1.4, are proved in Sections 5 and 6. In Section 7 we
have gathered some examples that illustrate the sharpness of our hypotheses. Section 8
is an appendix and contains an essentially self-contained proof of the characterisation of
gradient Young measures.

The present paper is a revised and extended version of an earlier manuscript, where the
most important changes are that Proposition 1.10 and the full proof of the characterisation
of gradient Young measures have been included. The result stated in Theorems 1.1 and 1.3
together with a proof based on [9] was announced at the workshop ‘Calculus of Variations
and Nonlinear Elasticity’ in Cortona, Italy, June 1995.

2 Notation and preliminary results

In this section we gather some definitions and elementary results that are used in the
sequel.

2.1 Basic notation

Our main references for measure theory are [23] and [51]. Except for the Hausdorff
measure ™! all measures occurring in this paper are Radon measures. If u is a measure
and A is a set, then the measure p| A is defined as (1| A)(B) = u(AN B).

Let O be either an open or a compact subset of R” and let B(O) denote the o-field
of Borel subsets. For a bounded R%valued Radon measure on O the total variation on
A€eB(O)is

A[(A) = Sup{ZI/\(Ai)I},
i=1

where the supremum is taken over all partitions of A into countably many Borel subsets
A; and |\(A4;)| denotes the usual Euclidean norm of A(4;). The function |A| is called the
total variation measure for A and is a non-negative, finite Radon measure on O.

As the concepts of uniform absolute continuity and uniform summability are central to

the present work we display a formal definition.

Definition Let i be a non-negative, finite Radon measure on O. A family A of R-valued
bounded Radon measures on O is said to be uniformly absolutely continuous with respect
to w, briefly uniformly p-AC, if for any € > 0 there exists a 6 > 0, such that for B € B(O)

u(B) < d = |A(B)| <e forall A € A.

A family F of p summable functions V : O — R® is uniformly p summable if the family
{V-p:VeF} is uniformly p-AC.
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Remarks. 1. By the Radon-Nikodym Theorem A is uniformly p-AC if and only if each
measure in A is absolutely continuous with respect to u and the family F' = {d\/du : X €
A} of Radon-Nikodym derivatives is uniformly p summable.

2. If 1 has no atoms and {\;} is uniformly p-AC, then sup; [A;](O) < occ.

3. {\;} is uniformly p-AC if and only if the sequence {|A;|} of total variation measures is
uniformly p-AC.

Denote by C*(O; R?) the space of R%valued C*-functions on O. The subspace of func-
tions with a compact support is denoted by C*(O;R?). If d = 1 we simply write C*(O)
instead; similarly for all other function spaces.

Denote by CJ(O;R?) the space of Ré-valued continuous functions ¢ with the property:
for every € > 0 there is a compact set K C O, such that |p(z)| < e if z € O\ K. Of
course, if O is compact, C°(O;RY) = CJ(O;R?). Endowed with the supremum norm,
denoted by || - |lsc:0, C(O; R?) is a separable Banach space. By the Riesz Theorem the
dual space CJ(O;R?)’ can by the duality pairing

M) = /O o) %m dI|(2)

be identified with the space of bounded R%valued Radon measures on O. The corres-
ponding norm of A is ||[A|| = |A|(O).

Our reference for approximate limits and derivatives is [6]. Let O be an open subset
of RP and u : O — RY a Borel function. We take S = R? U {cc} to be the one point
compactification of R¢ and consider u as a function with values in S. Let d be a compatible
metric on S. Take F € B(O) and zy € O with the property LP(F N By, ) > 0 for all
r > 0. Here and throughout the paper B, , denotes the open ball centred at z¢ with
radius 7.

Approxzimate limit: v € S is said to be an approximate limit in zy for v in the domain F,
written
v=ap lim u(z),

T — xTQ
z € F

lim d(u(x),v)dr = 0.

r—0t BayrNF
The approximate limit is unique if it exists.
Jump set: The jump set S, of u is defined as the set of points where u has no approximate
limit, i.e.
Sy ={z €O : ap lim u(y) does not exist}.

—
€

[OFY)

Yy
Yy

The set S, is Borel, £L”(S,) = 0 and
u(z) = ap lim wu(y) (2.1)

N
€

y =
y €0

for almost all z € O\S,. In case (2.1) holds at = we say that u is approximately continuous
at x.
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Approzimate gradients: The function u : O — R? is approximately differentiable at 2y € Q
if it is approximately continuous at zy and if there exists a matrix X € R such that

ot [10) ~ @) = X(o — a0)

T — T |$—,’L‘0|
z €0

=0, (2.2)

In case wu is approximately differentiable at zy the matrix X in (2.2) is uniquely determined
and is called the approximate gradient of u at z¢. It is denoted by Vu(zg). The set
of points V,, where u is approximately differentiable is a Borel set and the function
Vu: V, — R¥™P is a Borel function.

Our references for function spaces are [61] and [6] for BV and SBV. We use the notations

ullpo = HUHLP(O;Rd)a [ullip0 = HUHWLP(O;Rd)

and if O = RP we omit O from the notation. The distributional gradient of a distribution
u is denoted by Du. In particular, if u : O — R? is of bounded variation, then Du =
{0u, )0z} is a R*P-valued bounded Radon measure on O. Furthermore, in this case u
is approximately differentiable almost everywhere and

1

;7{3 lu(y) — u(z) — Vu(z)(y —z)|dy — 0 as 7 — 0"

LP almost everywhere. The Lebesgue-Radon-Nikodym decomposition of Du takes the
form
Du = Vu- LP + Du,

where D*u is a singular measure. The jump set S, of u is countably (D — 1)-rectifiable,
ie.

o

Su=JKiUN,
i=1

where HP~1(N) = 0 and K; are compact sets, each contained in an embedded C! hyper-
surface [';. There exists a Borel function N, : S, — RY, such that |N,(z)| = 1 for all =
and such that N, (z) is normal HP~!-almost everywhere in K; to the surface T';. We refer
to N, as a unit normal to Sy; it is clearly not unique.

If corresponding to a unit vector N and a point z we define the half-spaces
7 (2,N) = {y € RP : (y—x)-N >0},
7 (z,N)={yeRP : (y —z)-N <0},
then the approximate limits

u(z,Ny(z)) =ap  lim  u(y), u (z,Ny(z))=ap lim  u(y)
v e @ Mue) v e (@ Nule)

exist for #P~1-almost all z € S,. We suppress the dependence on N, and write simply
ut =uT(z) andu™ = u (z). Notice that the matrix (u™ —u~)®N, is uniquely determined
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HP~1almost everywhere on S,. The Lebesgue decomposition of D*u with respect to
Dsu|S, is
Diu=Cu+ (ut —u) ® Ny - HP 1Sy,

where Cu is a singular measure, such that |Cu|(4) = 0 when A € B(O) and HP~1(4) <
o0o. A function u : O — R? is a special function of bounded variation, briefly u €
SBV(0;RY), if u is of bounded variation and Cu = 0, or equivalently, D*u = D*u|S,.

2.2 Integrands and Young measures

Definition (L.C. Young, [59].) A Young measure on Q x R is a non-negative Radon
measure v on Q0 x R with the property v(A x R%) = L™(A) for all Borel subsets A of .

Remark. The definition of Young measure used here follows that of Berliocchi and Lasry
[18]. It can be shown to be equivalent to the original definition due to Young and the ones
used in e.g. [11], [13], [45], [48] and [50].

Notice that a product measure on  x R? of the form (£™|Q) ® v/ is a Young measure
on ) x R% exactly if v/ is a probability measure on R?. Such Young measures are called
homogeneous. Often it is clear from the context that all Young measures considered are
Young measures on some specific set and in such cases we simply speak of Young measures.

Definition An elementary Young measure is a Young measure v for which there exists
a L™ measurable mapping V : @ — R%, such that

/QXRdde:/Qf(x,V(x))dx
for all f € CY(Q x RY).

Remark. If v is an elementary Young measure as above, then we write

V=c¢cy = /533 ®5V(m) dz,
Q

where d; is the Dirac measure on {2 concentrated at z and dy(,) is the Dirac measure on
R¢ concentrated at V(z).

Proposition 2.1 (/20], Proposition 13 pp. 39-40.) Let v be a Young measure on £ x R,
Then there exists a mapping © — vy from Q into CJ(RY)' N{\ : X > 0}, the set of
non-negative, finite Radon measures on R with the following properties.

(i) For any Borel function f : Q x R — [0,00] the function x — [gaf(z,X)dvy(X) is
L™ measurable and
/ fdl/:/ fz,X) dvy(X) de.
OxR4 QJ R4

(ii) vz (RY) =1 for L™-almost all x.

Furthermore, if z — vl is another such mapping, then vl, = v, for L™-almost all x.
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Remarks. 1. Our Proposition 2.1 is a special case of Proposition 13 in [20].
2. We summarise the content of (i) by writing v = /(53; ® vy dx.
Q
Let {V;} be a sequence of measurable mappings of £ into R?. Since the corresponding
sequence {ey; } of elementary Young measures is always bounded in C (€2 x R%) it follows

from Alaouglu’s Compactness Theorem that there is a subsequence {V}, } and a measure
v € CY(Q x R, such that

ey;, — v weakly” in Co(Q x RY). (2.3)
The following lemma characterises the case where v is a Young measure.

Lemma 2.2 (N. Hungerbihler [29], Kristensen [34].) Under the above assumptions the
measure v is a Young measure if and only if

sup L7({z € Q : |V ()] >t}) =0 ast — oo. (2.4)
k

The condition (2.4) is equivalent to the following condition: there exists a Borel function
h: R4 — [0,00], such that h(X) — oo as X — oo and

sup/h(ij)dw < 00. (2.5)
k Ja

Remark. In case (2.3) and (2.4) hold we say that the sequence {V}, } generates the Young
measure V.

The next lemma is well-known and is easily proved using Lemma 2.2.

Lemma 2.3 Let {V;}, {W;} be two sequences of measurable mappings of @ into RY. If
{V;} generates the Young measure v and if V; — W; — 0 in measure, then also {W;}
generates the Young measure v.

Definition An extended real-valued function F : Q x R — RU{zo0} is called a normal
integrand if F(z,v) > —oo everywhere, if F is Borel measurable and if for every fized
x € Q the partial function F(x,-): R4 = R U {+oo} is lower semicontinuous.

Definition A real-valued function F : Q x R* — R is called a Carathéodory integrand if
both F' and —F are normal integrands.

In the statement of the next theorem we use the notation F~ = —inf{F, 0}.
Theorem 2.4 Let {V;} be a sequence of measurable mappings of Q@ into R? and assume

that it generates the Young measure v. If F : Q x R4 — R U {00} is a normal integrand
and if {F~(-,V;)} is uniformly summable, then

liminf/F(x, Vj(x)) dx > /F dv. (2.6)
Q

Jj—o0
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If additionally F is a Carathéodory integrand, then {F(-,V;)} is uniformly summable on
Q if and only if

lim [ F(z,Vj(z))dx = /F dv. (2.7)

j—)OO 0

Proof. The proof can be obtained by mimicking the proof of Theorem 2.6 in [5]. The first
part of the theorem and the ‘if’ part of the second assertion are proved in [11] and in [18].
The ‘only if’ part of the second assertion of the theorem is proved in [33]. O

Definition (D. Kinderlehrer and P. Pedregal, [32, 33].) Letp € [1,00]. A Young measure v
on QxR™™ is q gradient p- Young measure if there exists a sequence {u;} in WP (Q; R™),
such that

(i)  {u;} is weakly (weakly* if p=00) convergent in W1P(Q; R"™);

(ii) ey, — v weakly® in CJ(Q x R™*™)',
Remark. We call the limit u of {u;} an underlying deformation for v. It follows from
Theorem 2.4 that if v = fQ(F;,; ® v, dz, then for almost all z the probability measure v,

has a centre of mass v, and

v, = Vu(z).
We end this subsection with an elementary, but very useful observation. Suppose that

{V;} generates the Young measure v = [,6, ® v, dz and that V : @ — R? is a measurable
mapping. Then the sequence {V; + V'} generates a Young measure

A:/ém@)(yx*(sV(x))dxa
Q

where v x 0y/(;;) denotes the convolution of the two measures v, and dy () defined as

(vax by f) = [ J(0+V(@)dvs(v), | € R,

Observe that convolution with dy(,) simply corresponds to a translation with V'(xz).

2.3 Quasiconvexity

Definition (C.B. Morrey, [43].) A function f : R"™™ — R U {+oo} is quasiconvez at
X € R™™ if for every open and bounded set w C R™ with L™(0w) = 0 one has

[+ V) do = [ 10 ds = £7@) () (2.8

or all u € W™ w; R™) for which the integral on the left hand side exists. The function
0
f is quasiconvex if it is quasiconvex at every X € R™™.

Remarks. 1. It is enough to know that (2.8) holds for one (non-empty) open and bounded
set w. Indeed, if (2.8) holds for one open and bounded set w = Q (not necessarily with
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L™(02) = 0), then it holds for all open and bounded sets w with £™(dw) = 0. If f < oo,
then the condition that £™(0w) = 0 can be omitted (see e.g. [45]).

2. It can be shown (see e.g. [45]) that a real-valued quasiconvex function is rank-1
convex, i.e. f is convex on rank-1 lines in R™*™.

A function f : R™™ — R U {£o0} is separately convex if it is convex on lines parallel
to the coordinate axes. It can be shown that a real-valued separately convex function
is locally Lipschitz continuous (see [21]). Furthermore we have the following elementary
lemma.

Lemma 2.5 Suppose that f : R™™ — R is separately convex and that for some p €
[1,00)

Then also

Proof. For R > 0 the following inequality holds:

2™ f(0) — p}?ngf(X) <(@2™-1) &?&f(X)‘ (2.9)

The lemma follows from this. To derive (2.9) we take X!, such that |X!| < R and
f(XYH) = inf|y|<gr f(X). Let X' X2,...,X?"" denote the orbit of X! under reflections
in the coordinate hyperplanes (it is not assumed that the X*’s are distinct). By separate
convexity

2mn

2 F(0) <> F(XY,
=1

and since | X’| < R inequality (2.9) follows. O

Definition Let f : R"™ — R U {£oo} be an extended real-valued function. The
quasiconvex envelope f1¢ of f is defined as

fI9X) =sup{g(X) : g quasiconvex and g < f}.

Remark. It is not excluded that f9¢ = —oo.

Lemma 2.6 (D. Kinderlehrer and P. Pedregal, [32] the appendiz.) Let f : R"*™ — R
be a continuous function. Let an open and bounded set w C R™ with L™(0w) = 0 be given
and define the extended real-valued function Q,f : R"™™ — R U {£oo} as

Quf(X) = inf{]ﬁf(XJkVu(x))dx cu€ Wol’w(w;R”)}.

Then Q. f = fi°.
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Lemma 2.7 (B. Yan, [58] Lemma 3.1.) Let f : R"™*™ — R be a continuous function
and let B = {x € R" : |z| < 1}. For any X € R"™ ™ there is a sequence {u;} in
WOI’OO(B;R"), such that

£+ T do = X) and om0
B

For quasiconvex functions of linear growth at infinity we have the following elementary
lemma, which seems to have been overlooked in the literature.

Lemma 2.8 Let f: R"™™ — R be a quasiconvez function satisfying

: £ (X)]
lim sup
X—00 |X|

< 00

and define f*(X) = limsup,_,, f(tX)/t. Let Q be a bounded Lipschitz domain in R™
and denote by Npq the outward unit normal on 0. For v € WH(;R"), a € R and
X € R™™ the inequality

L) F(X) < /Qf(Vu) dot [ 0+ Xo—u(e) © Non(e) " (o) (210)
holds.

Remarks. 1. The recession function f° is a positively 1-homogeneous, Lipschitz continu-
ous function.

2. By the Divergence Theorem [,Vudz = [5,u ® Noo dH™ .

Proof. 1t suffices to prove the assertion for ¢ = 0 and X = 0. Since € is a Lipschitz
domain we can assume that v € W5HL(R™; R"™). Let {¢;};~0 be a standard C*®°-mollifier
and define for €, § € (0,1) the convolutions

Ne =pes*1lqg and us = @5 * u.

Observe that 7.5 = 0 outside Q. = {x : dist(z,Q) < ¢} and consequently, since f is
quasiconvex at 0,

L) (0) < /Q F(1-Vug + g ® Vi) dz.

We now employ an auxiliary function as in [9]. For each z € €2, we introduce the positively
1-homogeneous, Lipschitz function

By rank-1 convexity of f, g,(X) = f*°(X) whenever rankX < 1, and therefore

f(neVus +us @ Vne) < f(n-Vus) + 2 (us @ Vne).
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Consequently,
£7@)f0) < [ fnVuds+ [ f2(us @ Vi) o
Qe Qe

and therefore letting ¢ — 0T we obtain by virtue of Reshetnyak’s Continuity Theorem
(see [49] Theorem 3)

£™(Q)1(0) < /Q F(Vug)da+ [ (=g @ Nog) a2

Finally we conclude by letting § — 0% and applying e.g. Theorem 5.10.7 of [61]. O

Proof of Lemma 1.6. Let {p.}.~0 be a standard C*°-mollifier and put u. = ¢, x u. Note
that if € > 0 is sufficiently small, then u, is well-defined and smooth on B, ,. Because
the function ¢t — faBI Jue(y) — (a + Xy)| dH™ '(y) is continuous on [0r,r] we can find
R € [0r,r], such that ,

m—1 1 (a
/aquRlus(y)—(aJer)ldH (y) < TT0) /BI,T\BI,MWE(Q) (a + Xy)|dy. (2.11)

If we apply (2.10) with Q = B, g, notice that f*°(X) = |X| and make appropriate use of
f >0 we get (1.21) with wu. in place of u. We conclude the proof by letting ¢ tend to 0
and using Reshetnyak’s Continuity Theorem (see [49], Theorem 3). O

It is also possible to prove (1.21) directly by means of an argument, which is similar to
the proof of Lemma 2.5 in [9].

3 Proof of the Decomposition Lemma

In this section we prove Lemma 1.7 and its corollaries. The proof of Lemma 1.7 in the
case p < oo is obtained in three steps each stated as a lemma. The main tool for the proof
is the Hodge decomposition, which is used in the last step. The case p = oo is as noted in
the Introduction a result due to Zhang.

Lemma 3.1 Suppose that S is a bounded Lipschitz domain. Let p € [1,00), let {u;} be
a sequence, which converges weakly to 0 in WHP(Q) and for which {|Du;|P} is uniformly
summable on Q. Then there exists a sequence {v;} in C°(S2), such that

wj —v; — 0 strongly in WHP(Q).

Proof. To simplify notation we assume that 2 = {z : |z| < 1}. The proof in the general
case is analogous. By virtue of the Rellich-Kondrachov Compactness Theorem

35 =/ llujllps2 —= 0.
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Take a cut-off functions 7; : 2 — [0, 1] compactly supported in  and with n; = 1 on By,
and Lip(n;) < 2/4;. Define w; = n;ju;. Clearly, w; € Wol’p(Q), w; — 0 strongly in LP(2)
and

p
||ij—wj||p;as(/ |wj|pdw> + 2/l
Q\Bo,éj

It follows that u; — w; — 0 strongly in W1?(€2). Because C°(92) is dense in Wol’p(Q) the
assertion of the lemma follows. 0

I am indebted to Stefan Miiller for bringing the following result to my attention.

Lemma 3.2 Let p € [1,00) and let {V;} be a sequence in LP($;R™). Then the following
three assertions are equivalent:

(a) {|V;|P} is uniformly summable on €.

(b) For all ¢ > p and all € > 0 there exist W; € LY(S; R™), such that

sup [|[Wjllgo < oo and ||V; — Wj[pa <e.
J

(¢) For some q¢ > p and all € > 0 there exist W; € LY(S; R™), such that

sup [|[Wjllgo < oo and ||V; — Wj[pa <e.
J

Proof. 1t follows easily by writing down the definitions. O

Lemma 3.3 Suppose that € is a bounded Lipschitz domain and that u; — 0 weakly in
WLHH(Q). Assume furthermore that for some p € [1,00) there is a sequence {V;} of vector
fields in LP with the properties V; = 0 almost everywhere on R™ \ Q, {|V;|P} uniformly
summable on Q and Vuj; —V; — 0 in measure on Q. Then there exists a sequence {v;} in
C° (), such that

v; —uill1.1.0 = 0 and {|Vv;|P} is uniformly summable on €.
j G115 j Y

Before we embark on the proof we recall some facts on the Hodge decomposition.

Let L? denote the Lebesgue space of all p-summable vector fields V : R™ — R™ and con-
sider the subspaces K? and H? consisting of respectively the curl-free and the divergence-
free vector fields, i.e.

KP={Vel’: curlV=0} and HP={Vell: divV =0}

It is readily seen that K? and HP are closed in LP. If u € Wllo’f(Rm) and Vu € LP,
then clearly Vu € K? and it is not difficult to show that all vector fields in KP can be
represented this way, i.e.

K? ={Vu :uelLl

loc

and Vu € LP}. (3.1)
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The orthogonal complement of K? in L? is H?. Therefore L? = K?@ H? by the Projection
Theorem. Let K and H denote the corresponding orthogonal projections. We extend the
Hodge decomposition V.= K(V) + H(V) to all V € LP by showing that the operators K
and H are of strong type (p,p) for all p € (1, c0).

The orthogonal projection of L? onto K? coincides with the metric projection onto K?2.
Therefore K(V) = Vuy, where uy € LY?(R™) is a minimiser of the functional

|[Vu— V|3 = / |Vu — V|*dz, u € L'*(R™).
Rm

By convexity it follows that uy is the (unique up to additive constants) solution of the
Euler-Lagrange equation
divDu = divV.

Using the Fourier transformation, denoted by F, we derive the formula
K(V) =F Y(MFV),

where M (£) = —(£ ® £)/]€)?. In view of the Mihlin Multiplier Theorem it follows that K
is of strong type (p,p) for all p € (1,00) and of weak type (1,1).

Proof of Lemma 3.3. Ouly the case p > 1 requires a proof. By Lemma 3.1 we can assume
that u; € WO1 P(£)) and therefore we may extend each u; to a function in W1P(R™) by
defining u; = 0 outside (1.

From the Dunford-Pettis Theorem we infer that {Vu;} is uniformly summable on €.
Also {Vj} is uniformly summable on €2; hence applying Vitali’s Convergence Theorem to
the sequence {Vu; — V;} on Q we deduce |Vu; — Vj||1;0 — 0. Since Vu; — V; = 0 outside
Q,

IVu; = Vil = 0. (3:2)

By (3.1) there are w; € LY with Vw; € L? and [,w; = 0, such that Vw; = K(V}).
Because sup; ||V}, < oo it follows from (3.2) that V; — 0 weakly in L? and since K is
of strong type (p,p), Vw; — 0 weakly in LP. Therefore, in view of Poincaré’s inequality,
w; — 0 weakly in WP (). Since Vu;—Vw; = Vu;—V;+H(V;) and H(V;) = H(V;—Vu;)
we infer from (3.2) and the weak type (1,1) of H that, in particular,

Vuj — Vw; — 0 in measure.

This together with uniform summability on €2 implies by Vitali’s Convergence Theorem
that | Vu; — Vwj||1;,0 — 0. By the Rellich-Kondrachov Compactness Theorem we deduce
that ||U,] — w]'||1,1;g — 0.

Next we show that {|Vw;P} is uniformly summable on Q. Let ¢ > p be fixed. Take
e > 0. Since {|V}|P} is uniformly summable on £ we can by Lemma 3.2 find W; verifying

IVi = Willps < & and sup|[Wjlge < oo.
J

Recall that V; = 0 outside  and define likewise W; = 0 outside Q. Then clearly ||V; —
Willp < € and consequently ||[Vw; — K(Wj)l|, < cpe and sup; [|[K(W;)|; < ¢qsup; [[Wl4-
By Lemma 3.2 we infer that {|Vw;[P} is uniformly summable on €.

The proof is concluded by use of Lemma 3.1. O
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Lemma 3.4 (K. Zhang, [60] Lemma 3.1.) Suppose that Q is a bounded Lipschitz domain
and that uj — 0 weakly in WH1(Q). Assume furthermore that there is a sequence {V;} of
vector fields in L° with the properties Vj = 0 almost everywhere on R™\ Q, sup; ||V}l <
oo and Duj—Vj — 0 in measure on 2. Then there exists a sequence {v;} in C°(S2), such
that

lvj — ujlli,i0 = 0 and sup [vjl1,00:0 < oo
J

Remark. This statement is not identical to Lemma 3.1 in [60], but follows easily from its
proof. Some subtle generalisations have been obtained recently in [46].

Proof of Lemma 1.7. The case p < 0o is covered by Lemma 3.3 and the case p = oo by
Lemma 3.4. U

With Lemma 1.7 at our disposal Corollaries 1.8 and 1.9 are easy to prove.

Proof of Corollary 1.8. Tt is clear that the underlying deformation u belongs to W1 (Q; R")
and because {2 can be written as an increasing union of Lipschitz domains each compactly
contained in €2 we can assume that 2 is a Lipschitz domain.

By assumption we may find a sequence {u;}, such that u; — u weakly in W!(; R")
and {Vu;} generates v. Because {Vu; — Vu} generates the Young measure A = [0, ®
(V2 * 6_vu(x)) dz we can without loss of generality assume that u = 0.

Suppose first that p < co. Define for ¢ > 0 the mapping 73(X) = min{¢, | X|} X/|X| and
notice that the sequence {|7;(Vu;)[P} is uniformly bounded. By Theorem 2.4 it follows
that

J—00

tim [ |7(Vuy) P do = / (7,(X) [P di(, X),
Q QxRnrxm

and thus
lim lim / 1T, (V)P dae < / X [P d(z, X).
Q QxRnxm

t—00 j—00

We can therefore find ¢; — oo, such that

tim | |13, (V)P dee < / X PP di(z, X) < oo. (3.3)
J=J0 QxRnxm

Let V; = T}, (Vu;) and notice that V; — Vu; — 0 in measure on ). By Lemma 2.3, {V;}
generates the Young measure v and therefore, in view of (3.3) and Theorem 2.4, {|V;|P}
is uniformly summable on €2. We conclude by applying Lemma 3.3 to each row in {Vu;}
and by utilising Lemma 2.3 once again.

Assume next that p = oo. Then there exists a R > 0, such that for almost all = the
support of v, is contained in the ball | X| < R. Thus if we take t > R and let V; = T;(Vu;)
we have

limsup/ |Vuj — Vi dz =0,
Q

Jj—o0
and therefore the claim follows if we apply Lemma 3.4 to each row. O

Proof of Corollary 1.9. Assume that p € (1,00). The cases p € {1,00} are left to the
interested reader.
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Let v denote an underlying deformation for v. Take a ball B;, C Q and define the
measure A as
A= . (5y ® (I/y * 5—Vu(y)) dy.
Clearly, A is a gradient p-Young measure (on By, x R"*™), which has v = 0 as an
underlying deformation. Consequently, there is a sequence {v;j} C C°(B;,;R") as in
Corollary 1.8. Due to the growth condition (1.22), the sequence {f(Vu(z) + Vuv;)} is

uniformly summable on B, , and therefore we obtain by Theorem 2.4 and the definition
of A

lim f(Vu(z) + Vu;) dy = / /f(X + Vu(z) — Vu(y)) dvy (X) dy.

j—)OO Ba:,'r

By quasiconvexity we have for all j

; f(Vu(z) + Vvj)dy 2 L7 (Byr) f(Vu(z)),

and the conclusion now follows from Lebesgue’s Differentiation Theorem. 0

4 Approximation of quasiconvex functions

This section contains a proof of Proposition 1.10. For the purpose of proving the lower
semicontinuity results of Theorems 1.1 and 1.2 (in the case 1 < p < oc) the important fact
is that the approximating functions can be taken to be of linear growth at infinity. The
refinement that they can be taken convex outside large balls is only used in the Appendix.

The proof is divided into two steps each formulated as a lemma. In the first step it is
shown by use of Corollaries 1.8 and 1.9 that it is possible to approximate with special
quasiconvex functions of linear growth at infinity. The next step uses Lemma 1.6 and
concerns approximation of the special quasiconvex functions encountered in the first step.
The desired approximation result follows from this.

Lemma 4.1 Let f: R™™ — R be a quasiconvez function, such that for some c1, ca > 0
and p >1
01|X|p—02 Sf(X) S02(|X|p+1) (41)

holds for all X. Then there exist fj : R™*™ — R that are quasiconvez and satisfy
(a) fi(X) < fi+1(X),
(b) fi(X) = f(X),

(¢) limx oo (fj(X)/|X]) € R for each j.
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Proof. We define f; as f; = F;]C, where F;(X) = min{j(1 + |X|), f(X)}. Notice that
hereby f; are quasiconvex and satisfy conditions (a) and (c). It is also clear that f; < f.
By translation it suffices to show that f;(0) — f(0). For that purpose we apply Lemma
2.7 and find u; € WOI’OO(B;R"), where B = {z : |z| < 1}, such that ||u;||c;s — 0 and

f;(0) + % > fFj(VUj($)) dz. (4.2)

B

Let t; € R denote the right-hand side of (4.2). Extracting a subsequence if necessary we
can assume that t; — ¢ € R. The lower bound in (4.1) implies that {Vu;} is bounded
in L' and hence that {u;} is bounded in Wy"' (B; R"). By Theorem 2.4 we can extract a
subsequence (for convenience not relabelled), such that {Vu;} generates a Young measure
von B x R"™™,

Put E; ={z € B : j(1+|Vu;(z)|) < f(Vu;(z))} and notice that

t;L"(B) :j/v(1+|Vuj|)dac+/B\Evf(Vuj)dx,

J

and therefore by (4.2) and the lower bound in (4.1),

/ (1+|Vu;|)dz — 0 and sup/ |Vu,; P dz < .
E; i JB\E;

By de la Vallée-Poussin’s criterion {Vu;lp\g;} is uniformly summable on B and since
[Vuj|1g;, — 0 strongly in L'(B) it follows that {Vu;} is uniformly summable on B. This

implies that u; — 0 weakly in WO1 ’I(B; R") and that v is a gradient 1-Young measure.
Passing to the limit in (4.2) yields by Theorem 2.4 (applied to the normal integrand
F(t,X) =t" f(X) and the sequence (1p\g,, Vu;))

lim £,(0)£7(B) > limin [ f(Vujydo> [ f0X) dv(a X).
J—0 J—0 B\Ej BxRn»xm

Referring to the lower bound in (4.1) it follows that v has a finite p order moment and
therefore by Corollary 1.8 that it is a gradient p-Young measure. The proof is concluded
using Corollary 1.9 taking into account that an underlying deformation for v is v = 0. O

Lemma 4.2 Let f : R™™™ — R be a quasiconvex function, such that
X
lim ——= =1. (4.3)

There exist f; : R"*™ — R that are quasiconvez and satisfy

(a) fj(X) < fit1(X),
(b) fi(X) = f(X),
(¢) fj(X) = [7(X) = a;|X| +b; for large | X|, where aj, b; € R.
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Proof. Since f is bounded from below we can without loss of generality assume that f is
strictly positive. Fix 6 € (0,1) and take ¢ = ¢(d) € R, such that
F(X) 261X +c
for all X. For each positive integer k we define the function g, : R"*™ — R as g, = G},

o) — { JO0) X <H,

where

S|IX|+c if|X|> k.
Observe that gj is quasiconvex, satisfies gx(X) = 6|X| + ¢ if | X| > k and gx(X) <
gr+1(X) < f(X) for all X and all k.
Fix X € R"*™. We claim that
. 1

lim ge(X) > (2 — 5)/(X). (4.4)

k—o0 1)
Since gi(X) = inf{f;Gr(X + Vu)dz : u € WOI’OO(B;R")} and Gi(X) > | X| + ¢ for all
X and k there exists by Lemma 2.7 a sequence {uy} C WO1 >°(B; R") satisfying

(g (X) + k)ﬁm /Gk X + Vuy) dz,

ugp — 0 strongly in L'(B;R"™) and sup/ |Vug|dz < oo.
k JB
If B, ={xz € B : |X 4+ Vug(z)| > k}, then

klim g (X)L™(B) > hmsup/ f(X 4+ Vug)dz — (1 —6) liminf [ |X + Vuy|dz.
— 00

k—o0 k=00 J g,

Since lim infyo0 [5 | X + Vug|dz < limsupy_, [5f(X +Vuy)/d dz and since by Lemma
2.8 it follows that
limsup/f(X + Vuy) dx > f(X)L™(B),
B

k—o0
the inequality (4.4) follows.

Next take for a positive integer j, 6 =1 — 1/j and consider the corresponding sequence
{95 k172, as constructed above. For each j, there exists by (4.4) and Dini’s Lemma an

integer k;, such that
2

gjk; (X) > (1 — j——l)f(X) if [X] <.

If we define f; = max{g;x, : + = 1,...,7}, then f; are quasiconvex and satisfy (a)-(c).
Indeed, (a) and (b) are obvious from the construction and (c) follows because

£(X) 2 max {(1= 1/9)X] + i}

with equality if | X| > max<;<;j k. O

Proof of Proposition 1.10. This is a straightforward consequence of Lemma 4.1 and Lemma,
4.2. O
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5 Lower semicontinuity in Sobolev-type spaces

The principal goals in the section are the proofs of Theorems 1.1 and 1.3. We start with
an elementary lemma.

Lemma 5.1 Let 1 and v be non-negative, finite Radon measures on § and let {\;} be a
sequence of bounded R%-valued Radon measures on . If {\;} is uniformly p-AC and if

A=V,

denotes the Lebesgue-Radon-Nikodym decomposition of \; with respect to v, then {V;} is
uniformly v summable.

Proof. This is easily seen by writing down the definitions. O

Lemma 5.2 Let ;v be a non-negative, finite Radon measure on 2 and let {u;} be a se-

quence in BV (; R"™). Assume that {Duj} is uniformly p-AC and that {Vu;} generates
the Young measure v. Then there exists a L™ negligible set N C 2, such that for x € Q\ N
each vy is a probability measure with a centre of mass v, and Jensen’s inequality

[ 5w

holds for all quasiconvex functions f : R"*™ — R for which f(X)/|X| has a finite limit
as X — oo.

Proof. The proof proceeds in four steps.

1. Claim: without loss of generality we can assume that sup,; |Du;|(2) < oo and that
u; — u strongly in L'(Q; R") for some u € BV (Q; R").

Since m > 1 and |Duj|(A) = 0 whenever H™ 1(A) = 0 it follows that {Du;} is uniformly
pna-AC, where fi,, is the non-atomic part of p, i.e. pna = p— 3 comu({z})d,. Henceforth
we shall suppose that ;1 = 15,4 and the uniform p-AC, then implies that sup; [Du;|(2) <
oo. Let B be an open ball contained in €2 and define

vj(z) = uj(x) —]iuj(y) dy, z € B.

Clearly, Dv; = Duj|B and by Poincaré’s inequality it follows that {v;} is bounded in
BV (B;R™). By virtue of the Rellich-Kondrachov Compactness Theorem there is a sub-
sequence (for convenience not relabelled) and some v € BV (B;R"), such that v; — v
strongly in L!(B; R"). Note that {Vv,} generates the Young measure v|[(B x R"*™) =
f B(F;,; ® vy dz. Since it is sufficient to prove that the Young measure v has the claimed
property on any ball contained in €2 Step 1 concluded.

2. Consider the Lebesgue-Radon-Nikodym decompositions with respect to the Lebesgue
measure:
p=a L™+ p° and Duj = Vu,- L™ +Vj-pu’.
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Claim: without loss of generality we can assume that v = 0, Vu; — 0 weakly in
L' (2 R™™) and V; — 0 weakly in L. (€; R"™™).

By Lemma 5.1, {Vu;} is uniformly £™ summable on Q and {V;} is uniformly p* sum-
mable on . Furthermore we deduce from Step 1 that Du; — Du weakly* in CJ(2)’ and
using the uniform summability of the terms in the Lebesgue decompositions we deduce

Vu; — Vu weakly in L'(Q; R™*™)
and
V; = V weakly in L. (Q;R"™).

The claim follows by considering the difference {u; — u}, using the observation made at
the end of Subsection 2.2 and noting that the class of quasiconvex functions f for which
f(X)/|X] has a finite limit as X — oo is invariant under translation.

3. Fix a quasiconvex function f : R"*™ — R with the property f(X)/|X| — 1 as
X — o0.

Claim: there exists a negligible set Ny C €, such that for z € Q\ Ny v, is a probability
measure, 7, = 0 and

[1dv.= 10

Let Qg be the set of all  in €2 for which v, is a probability measure with 7, = 0. The
set €y has full measure in ). Fix z € €y and take r > 0, such that B, C 2. In view of
(1.21) with X =0, v =0 and ¢ € (0,1) we have

FO)L™(Bgor) < . f(Vug) dy+

1
+|D%u;|(D%u; —1—7/ u;i(y)| dy.
D0 )+ g [ )

Since {f(Vu;)} is uniformly summable and {Vu;} generates the Young measure v it
follows from Theorem 2.4 that

F(Vuj) dy — /w/fdz/y dy.

Bw,r
For the singular measure we notice that
Doul(Bar) = [ Vildu,

and since {|V}|} is uniformly ;* summable and £* is non-atomic there exist by the Dunford-
Pettis Theorem a subsequence {|V}, |} and a g € LLS(Q), such that |V}, | — g weakly in
LlllS (©). Passing to the limit through this subsequence we obtain

1
e <][ / dv, d _1_7/ du’.
f(0) < . fdvydy [’m(BI’T) Bw,rg 12
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By Lebesgue’s Differentiation Theorem the set {2 of points x € 2 for which

Em(Bmyr)_l/ gdu® — 0
Bw,r

ﬁ;w/fd%dy_{/fd%

as r — 07 has full L™ measure. If we define Ny = Q\ Q, then for z € Q\ N; we obtain
as 7 — 01 and then § — 1~ that

and

10 < [ 1.

as claimed.
4. We show that it is possible to find a negligible set N, which is independent of f.

Let £ denote the space of continuous functions g : R"*™ — R for which g(X)/|X| has
a finite limit as X — oo and define the norm of g € £ as

X
lgll = sup 2200
x 1+][X]

Hereby & is a separable Banach space and if therefore Q denotes the set of all quasiconvex
functions in £ there exists a countable set F' C Q, which is dense in Q. We now define
N=U rer Ny and it is not difficult to show that /N has the desired properties. O

Proof of Theorem 1.3. By Lemma 5.2 there is a negligible set IV, such that for all z € Q\ N
each v, is a probability measure with a centre of mass and with the property that Jensen’s
inequality

/szﬂ%) (5.1)

holds for all quasiconvex functions f for which f(X)/|X| has a finite limit as X — oc.
Since sup; || Vu,||p0 < oo it follows that for p < oo,

//|X|P dvy(X) d < oo,
Q

/ IX|P duy(X) < oo (5.2)

and hence that

for almost all z. For p = oc it follows that there exists a compact set K C R™*™, such
that for almost all z
v, is supported in K. (5.3)

Let M C Q denote the exceptional set in (5.2) in case p < oo and in (5.3) in case p = c0.
The proof is concluded since for z € Q\ (N U M) it follows from Lemma 1.5 and Corollary
1.8 that (L™|Q) ® v, is a gradient p-Young measure. O
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Proof of Theorem 1.1. As mentioned in the Introduction it is possible to give a proof
based on Theorem 1.3 and Theorem 2.4. We also mentioned that in the case p € (1, 00)
it is possible to give a proof, which only uses Proposition 1.10 and Lemma 5.2. We focus
on the latter leaving the details of the case p € {1, 00} to the interested reader.

We can assume that the left-hand side of (1.7) is less than co. Because {F'~(z,u;, Vu;)}
is assumed uniformly summable it then follows that the left-hand side of (1.7) is a real
number. By extracting a subsequence if necessary we can assume that

/F(x,u]-,VUj)dw —1leR.
Q

Put Vj = (uj, Vu;) and consider the corresponding sequence {ey; } of elementary Young
measures. Since sup; L™ ({z € Q : |[Vj(z)| > t}) — 0 as t — oc there exists by Lemma
2.2 a subsequence (for convenience not relabelled), which generates a Young measure A.
Because u; — u locally in measure it follows that if

A:/51®>\$d$,

Q

V:/(SI@VId:B
Q

is a Young measure generated by {Vu;}. In view of Theorem 2.4

// u(z), X) dvy (X) dz < 1. (5.4)

As in the proof of Lemma 5.2 we see that Vu; — Vu weakly in L!(€; R"*™) and therefore
v, = Vu(z) almost everywhere. Let N be the negligible set from Lemma 5.2 and put
QA ={zeQ\N : 7, =Vu(z)}. We claim that for z € Q' the inequality

then Ay = dy(y) ® vy, where

F(z,u(x),Vu(z)) < /F(x u(z), X) dvy (X) (5.5)
holds. Together with (5.4) this entails (1.7).
Fix z € @ and put f(X) = F(z,u(z),X). Then f is quasiconvex and by (H,) and

Lemma 2.5 S0
. J(X
lim su
Yoee |XPP

For an integer k > 0 define f(X) = |X|P/k +max{f(X), —k}. We now apply Proposition
1.10 to fr and we apply Lemma 5.2 to each of the approximating quasiconvex functions.

Hereby we deduce that
/f;C dvy = /|X|p dvg (X /max{f, —k}dyy,

for all k. Passing to the limit & — oo the inequality (5.5) follows. O

< 00
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6 Lower semicontinuity in GSBV

Before proceeding with the proof of Theorem 1.4 we briefly recall some definitions and
results from [6]. The following definition is motivated by some minimisation problems that
are not coercive in SBV (€2; R™), but in the enlargement GSBV (2; R") (see [6], Example
5.3).

Definition (L. Ambrosio and E. De Giorgi, [10].) A Borel function u : Q@ — R" is a
generalised special function of bounded wvariation, briefly u € GSBV (;R"™), if pou €
SBVie(Q) for all ¢ € CH(R™) for which V¢ has compact support.

Remarks. 1. Under the natural definitions of ‘addition’ and ‘multiplication with scalar’
the space GSBV (2; R"™) is a vector space.

2. For bounded functions there is nothing new as GSBV N L*® = SBV,.

3. In this paper we assume that n > 1 and then we have that a Borel function u €
GSBV(;R") if and only if ¢ o u € SBVj,.(Q2) for all ¢ € CL(R"). Recall that v €
SBV.(2) if and only if v|, € SBV (w) for all open subsets w that are compactly contained
in €.

Proposition 6.1 (L. Ambrosio, [6], Propositions 1.3 and 1.4.) Let uw € GSBV (Q;R").
Then u 1s approximately differentiable almost everywhere in  and the jump set Sy s
countably rectifiable. If N, denotes a Borel measurable unit normal to S,, then it is
possible to define one-sided traces ut and u™ by the procedure described in Section 2.

Remark. If u € GSBV (Q; R") and ¢ € C}(R"), then
D(pou)=Vo(u)Vu-LQ+ (o(ut) — o)) Ny - H™ Sy

(Indeed, by the Chain Rule for approximate derivatives V(g o u)(z) = Vo(u(z))Vu(x)
and, since @ especially is continuous, p(u)* = @(u) on Sy,) C Sy and p(u™)—p(u) =0
on Su \ Sgo(u))

The motivation for introducing the space GSBV (2; R™) comes from the following com-
pactness result. To state it we need three test functions ¢, 8 and g.

Let ¢ : [0,00) — [0, 00] be a convex non-decreasing function satisfying the condition

@—)oo as t — oo. (6.1)

Let 6 : [0,00] — [0, 00] be a concave non-decreasing function satisfying the condition

@ — o0 as t— 0%, (6.2)

Let g : 2 x R™ — [0, 00] be a normal integrand satisfying the condition
g(z,v) = 00 as v — 00 (6.3)

for almost all z € Q.
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Theorem 6.2 (L. Ambrosio, [6] Theorem 2.2.) Let ¢, 6 and g be three functions as
described above. Let {u;} be a sequence in GSBV (;R") and assume that

sup {/Q(g(x,u]') + ¢(|Vay|)) dz + /Sujequ; ) d%ml} oo (64)

J

Then there exists a subsequence {u;, } and a function u € GSBV (;R"), such that u;, —
u in measure on 0 and Vuj, — Vu weakly in L'(Q; R ™). Furthermore, the function u
also satisfies the inequality (6.4).

Remarks. 1. The last statement that u also satisfies (6.4) is not explicit in [6]. However,
it follows from the results in Section 5.1 of [6] that the integrand ¢(a, b, N) = 6(Ja —b|) is
regularly biconvex and then the proof of Theorem 3.7 in [6] can be used to show that

/ O(jut —u”])dH™ ! < liminf/ 9(|u]+ —uy ) dH™ L.
Su Su;

J—00

The lower semicontinuity of the bulk energy term follows from Fatou’s Lemma and the
convexity of X — ¢(|X]).

2. The function @ is sub-additive. (This follows easily if we for fixed s > 0 consider the
auxiliary function h(t) = 0(t) +0(s) —0(s+1t), t > 0 and observe that it is non-decreasing
because 6 is concave.)

The main result of this section ensures (by (1.15) and Corollary 1.9) lower semicontinuity
of quasiconvex integrals in the setting prescribed by this compactness result.

Theorem 6.3 Let {u;} be a sequence in GSBV (Q;R"), which satisfies the boundedness
condition (6.4). Assume that for some p € [1,00], sup;[|[Vu;llp,0 < oo and that {Vu,}

generates the Young measure
V= /(53; Q vy dx.
0

Then for almost all z the measure (L™|Q) @ vy is a gradient p- Young measure.

Remark. We obtain Theorem 1.4 in the special case, where {u;} C SBV({;R") and
g(z,v) = [o].

A brief outline of the proof is as follows. First it is shown, utilising Theorem 6.2, that
it is not restrictive to assume that u; — 0 in measure and that Vu; — 0 weakly in L!.
Next we truncate the functions u; to obtain new functions v; with the properties v; — 0
in L*, Vu; —Vv; = 0 in L' and, by use of the Vitali-Hahn-Saks Theorem (Theorem 6.4
below), {Dwv;} is uniformly p-AC for some p. We conclude using Theorem 1.3.

Theorem 6.4 (/22], Theorem 2 p. 158.) Let i be a non-negative, finite Radon measure
on Q. Assume that {\;} is a sequence of bounded R%-valued Radon measures on Q and
that each \j is p-AC. If for all i measurable sets A C € the limit lim; oo A\j(A) exists in
R4, then {\;} is uniformly p-AC.
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Proof of Theorem 6.3. The proof proceeds in three steps.

1. It is not restrictive to assume that u; — 0 in measure on {2 and Vu; — 0 weakly in
L (Q; R™™),

By Theorem 6.2 there exist a subsequence of {u;} (for convenience not relabelled)
and u € GSBV({;R"), such that u; — u in measure on © and Vu; — Vu weakly
in L'(Q; R"™™). Define v; = uj — u. Then v; € GSBV(;R"), v; — 0 in measure
and Vv; — 0 weakly in L'(Q; R™ ™). By the remarks following Theorem 6.2 and since
Sy, C S, U Su,

sup g 0(|v;-r - v;|)d7-lm_1 < 25up/s 0(|uj+ - u;|)d7-lm_1.
i J Sy, i JSu;

This concludes Step 1.

2. Let ¢ € C}([0,00)) be such that ¢(t) =t if t € [0,1] and ¢(¢) = 0 if ¢ > 2. Denote by
Lip(¢) its Lipschitz constant and notice that Lip(¢) € (1,00). Define the radial mapping

o)) ifv#£0
@(U):{SDOODU ifvioj

For 6 > 0 define the rescaled function ®5(v) = §®(5~1v). Clearly, @5 € C}(R"; R") and
Lip(®s) = Lip(p), ®s5(v) = v if |v| < 6 and P45(v) = 0 if |v]| > 20.
Define Uj,5 = (1)5(Uj).

Claim: there exist numbers d; > 0, such that {u;, } C SBV({;R") satisfies

1,6, lloc;2 = O, (6.5)
||VUJ‘,5J. — VUHl;Q —0 (6.6)
and
Duj,(;j (A) — 0 (67)
for all Borel sets A C Q.
Clearly, u; 5 € SBVjo.(; R"),
[[ujsllocs < sup |@4] < sup [p|d (6.8)

and
Dujs = Vujs- L™ + (u;fé — uji(;) ® Ny, 5 - Hml | S 5-

By the Chain Rule for approximate derivatives Vu;; = V®;5(u;)Vuj, where (I denotes
the n X m unit matrix)

_ (67 u, Uj @ Uj . _ _
V(1) = V(6 ) = E o S (5 30 ) — o0 ).
J J
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In particular, V®;5(u;) = I when |u;| <, and by Step 1 we then deduce that
Vujs — Vu; — 0 in measure on €.

Since also |Vu; 5| < Lip(p)|Vu;| it follows that {Vu;s — Vu,} is uniformly summable on
Q) and consequently, by Vitali’s Convergence Theorem,

im ||Vu;s — Vuj|li,o = 0. (6.9)
—00

J

Put

M = sup/ 9(|u]+ - u;|)d7-[m_1.
j Su]

By (6.4), M < oco. Since @4 is continuous
U;:d = @d(uj—), Uj_7(5 = @5(’[1]_) and Suj,é g Suj7

and, in particular, |uj:5—u;5| < ¢, where ¢ = 2sup |p|. Next note that 6(¢) = inf{6(t),¢7},
v € (0,1), has the same properties as 6 besides being 0 at ¢t = 0. Hence we can assume
that 6(0) = 0. Because 6 is concave the difference quotient 6(¢)/¢ is non-increasing, hence

|u;:(5 — g ) co

< Lip(p) 77— (6.10)
0 (Jufy — uj sl /Lin(e) ) b(cd)

H™=! almost everywhere on Su; s~ Because 6 is non-decreasing and Lip(®s) = Lip(p)

|u;“(5 — ;4
20 IO <« t _us
’ ( Lin@p) ) =0 il

and together with (6.10) this implies

_ - . cd
sgp/s | |u;:6—uj76|d7-l < Llp(w)MH(cé). (6.11)
u],(s
In view of (6.9) it is possible to find numbers J; > 0, such that
5]- — 0 and ||Vuj7(5j — VUjHl;Q — 0. (6.12)

By (6.8), (6.11) and (6.12) it follows that u;s € SBV(Q;R"), that (6.5), (6.6) hold and
that for any Borel set A C 2,

|Duj,5]' (A < |/V'Uzj7(5j dz| +/ |u;:5j - U;5j|d7.[m—1 0,
A A

NSu; 4,
hence that (6.7) holds.

3. Define for each j the non-negative, finite Radon measure

11;(A) = / Vs, dz +/ [ufs, —uis |dH™!, A € B(Q).
A ANSy

7.0
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Define for each h € CJ(2) the number

=Y )
291"‘#] Q))

J=1

It is readily seen that u hereby is a bounded, linear functional on C(€2) and that (u;h) >0
if h > 0. Therefore u is a non-negative, finite Radon measure on €.

From the definition it follows that each Du; s, is u-AC. Let A be a p measurable subset
of . Since Radon measures are Borel regular there is a Borel subset B of €2, such that
A C B and u(B\ A) =0. By u-AC and (6.7)

Duj,(gj (A) = DU,j,gj (B) — 0,

and hence by the Vitali-Hahn-Saks Theorem {Du; s, } is uniformly p-AC. The conclusion
now follows from Theorem 1.3. O

Proof of Theorem 1.2. The proof is analogous to the proof for Theorem 1.1 and is omitted
here. Notice also that it is possible to state the result in terms of GSBYV-functions as
mentioned in the remark following Theorem 1.2. O

7 Examples and remarks

We discuss the various hypotheses encountered in the paper and give examples showing
that some are indispensable.

Ad. (H1). The condition that F' is a normal integrand does not appear to be necessary
for Theorems 1.1 and 1.2 to hold. Indeed, in the case n = 1 much less is needed if the
integrand is autonomous as is shown in [27]. However, for the method employed in this
paper it seems that being a normal integrand is close to the weakest possible regularity
assumption on F.

Under the assumption that F' is a non-negative Carathéodory integrand satisfying the
growth condition (H3,), the result of [1] states that quasiconvexity of F'(z,v, X) in X for
almost all z and all v is necessary and sufficient for I(u) to be sequentially weakly lower
semicontinuous on WP (and similarly for p = c0). So far no necessary condition has been
found if F' is merely assumed to be a normal integrand. The condition should be related
to quasiconvexity, but it is likely that it also involves the v-variable.

Ad. (H2). Quasiconvexity is the natural assumption in the multi-dimensional case. It is
however very hard to verify that a given function is quasiconvex and partly for this reason
rank-1 convexity and polyconvexity have been studied in the calculus of variations. The
function f: R"*™ — R U {+£oo} is rank-1 convex if it is convex on rank-1 lines in R™"*"™
and it is polyconvex if f(X) is a convex function of the minors of X (e.g. if m=n =2, f
is polyconvex if f(X) = h(X,detX), where h is convex).

If f is C?, then rank-1 convexity of f is equivalent to the Legendre-Hadamard condition
for V2f:  V2f(X)(a®b,a®b) >0 VX,a,b. Thenotion of polyconvexity was introduced
by Ball in [12] (some special cases appear implicit in [43], [44]) and is related to null
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Lagrangians and to weak sequential continuity (see also [14] and [21]). For real-valued
functions we have schematically:

polyconvex = quasiconvex = rank-1 convex.

If min{m,n} = 1, then the concepts reduce to ordinary convexity, whereas for m, n > 1
there are quadratic polyconvex functions that are not convex. For m, n > 1 there exist
quasiconvex functions that are not polyconvex (see [45] and the references therein). Rank-
1 convexity is equivalent to quasiconvexity for quadratic forms in all dimensions and if
min{m,n} = 2, then it is even equivalent to polyconvexity (see [21] and the references
therein). It is not difficult to show that the same is true for polynomials of at most third
degree. However, as shown by Sverdk in [55], there are polynomials of degree 4 on R"*™,
which are rank-1 convex but not quasiconvex when n > 3, m > 2. This example confirmed
a conjecture from [43] (for dimensions n > 3, m > 2). Morrey’s conjecture, that rank-1
convexity does not imply quasiconvexity, is still open in dimensions n = 2, m > 2. We
refer to [45] for a further discussion of the matter.

Ad. (H3,). The lower semicontinuity results fail without the growth condition (H3,)
(cf. [15]). In [15] Ball and Murat observed that in the case, where F(z,v,X) = f(X)
is bounded from below (but allowed to be oo) a necessary condition for I(u) to be se-
quentially weakly lower semicontinuous on WP is that the condition (2.8) holds for all
u € I/VO1 P(w; R™). They called this strengthening of the ordinary quasiconvexity condition
for W'P-quasiconvexity (ordinary quasiconvexity corresponds to W *°-quasiconvexity).
It is not hard to see that if F(z,v, X) = f(X) satisfies (H3,), then quasiconvexity is equi-
valent to W1P-quasiconvexity. The W !P-quasiconvexity condition depends in a dramatic
way on p. As a consequence of [15] Theorem 4.1, it follows that for m = n > 2 the function
f(X) = |detX| is WP-quasiconvex if and only if p > m (see also [28]). It is still an open
question whether W!P-quasiconvexity together with some regularity of f, e.g. continuity,
is sufficient for sequential weak lower semicontinuity of I on WP too. We notice that by
Example 3.5 of [15] there are lower semicontinuous functions f, which are Wh! quasicon-
vex, but not rank-1 convex. A result of Tartar ([57], p. 164) states, also in this generality,
that rank-1 convexity is a necessary condition for sequential weak lower semicontinuity of
I. Hence some additional assumption is needed in general for W !P-quasiconvexity to be a
sufficient condition for sequential weak lower semicontinuity on W1?. See [15], Theorem
3.1 and Conjecture 3.7 and the remarks afterwards. Partial results have been obtained in
[38] and [35].

In [47] Pedregal observed that if the W P-quasiconvexity condition is slightly strengthened
it becomes sufficient. Following Pedregal a Borel function f : R"*™ — R U {oo}, which is
bounded from below is closed W!-quasiconvex if for all probability measures v on R™"*™
for which (£L™|Q) ® v is a gradient p-Young measure, Jensen’s inequality holds for f and
v:

/fduzf(v), wherev:/Xdy(X).

Whether this condition is necessary for I to be sequentially weakly lower semicontinu-
ous on WP too is still an open problem. Note that under the growth condition (H3,)
quasiconvexity is equivalent to closed W P-quasiconvexity and that the results in Theor-
ems 1.1 and 1.2 remain valid if instead of (H2) and (H3,) we assume that F(z,v,X) is
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closed W'P-quasiconvex in X. Notice also that with this assumption F' = oo is allowed.
An example in [17] shows that the structure of gradient p-Young measures can be rather
complicated. Consequently, the question of whether, for sufficiently regular functions,
W lP-quasiconvexity is equivalent to closed W !'P-quasiconvexity might be subtle. Partial
results in this direction have been obtained in [35].

The next result shows the significance of (H3,) for multiple integrals I with integrands
F(z,v,X) = f(X). The result is well-known and is a special case of a general result due
to Alberti [4]. Our proof is elementary and cannot be adapted to treat the general case
considered in [4].

Let f: R™™ — R U {oo} be a lower semicontinuous function, which is bounded from
below. Let p € [1,00), ug € WHP(Q; R") and define

A={ue W'P(QR") : u—ug € WP (R},
I(u) = /Qf(Vu) dzx.

Proposition 7.1 The functional I is finite on A if and only if there exists a constant
c >0, such that
VX eR™™:  f(X)<c(l+]|X]P).

Remark. Instead of requiring I < oo on A it is enough if {u € A : I(u) < oo} has an
interior point in A C WHP(Q; R™).

Proof. The ‘if’ part is trivial. Assume that I < oo on A and consider A C WP(Q; R")
as a complete metric space. Without loss in generality we can assume that f > 0. By
Fatou’s Lemma I is lower semicontinuous on 4. Since

Ej{uEA:I(u)ﬁt}:A
t=1

it follows from Baire’s Theorem that for some t the sub-level set {u € A : I(u) < ¢} has
non-empty interior. Assume that for u; € A and 6 > 0

I(u) <t (7.1)

holds whenever u € A and |ju — u1l|1,p;0 < 6.

We next construct a test function u, which together with (7.1) yields the conclusion.
Define 7 : [0,00) — [0,1] as n(s) = 1 if s < 1/2 and 7(s) = (2 — 2s)T if s > 1/2. Take
xo € Q to be a p-Lebesgue point of Vu; and consider r € (0, dist(zg,d)). For X € R"*™

define
V(7)) =1 ( =%

. ) (X (x —=zo) —ui(z)), z € R™

and
u" =v" +u € A
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Notice that for some ¢; = ¢1(m,n,p)

1" —url1pg = 10" l1pe < (X ™ + (| Vuallys,, )

for r € (0, dist(xg,09)).
Fix ¢z > ¢1|Vui(zo)| and take R € (0, dist(zg,df)), such that

l" = wrlli e < ea(1+ X[/

if r € (0, R]. Clearly,

and hence taking

we infer from (7.1) that

F(X) < el +[X]P)

or

for some suitable ¢, which is independent of X. O

Recall that any convex function f : R"*™ — R is the point-wise limit of an increasing
sequence of convex functions of linear growth at infinity. The results in [15] imply that
a similar statement is false for quasiconvex functions. The next example shows that the
situation does not improve if we relax the requirement and only try to approximate with
rank-1 convex functions. Before turning to the details of this we first observe a simple
consequence of a result due to Sivaloganathan [54] (see also [16]).

Let p>0and By, = {z € R™ : |z| < p}. A function u : By, — R™ is called radial if
there exists a function R : [0, p] — R, such that for almost all =

Recall (see e.g. [15]) that for m > 1 and p > 1 the radial function u belongs to W*(Bg ,; R™)
if and only if R : (0, p) — R can be taken absolutely continuous and such that

/Oprm—l <|R’(r)|p + ‘@

Proposition 7.2 Let f: R™*™ — R be a rank-1 convez function, which for some p > 1
satisfies the growth condition
£ (X))

limsup ~——— < oc. 7.3
X—00 |X|p ( )

p) dr < oo. (7.2)
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Then for X € R™ ™ and radial functions u € Wol’p(B; R™) the inequality

][f(X + Vu)dz > f(X) (7.4)
B
holds, where B denotes the open unit ball in R™.

Proof. We can assume that X = 0. By [54] the inequality (7.4) holds if u is a smooth radial
function. Fix any radial function v in WO1 P(B;R™) and take p > 1. Using a standard
mollifier argument we can find smooth radial functions u; : By, — R™, where u;(z) = 0
if |x| = p, such that |lu — ujl|1p;B,, — 0, where we have extended u by 0 outside B. By
the growth assumption (7.3)

f(Vuj)dz — f(Vu)dz = / f(Vu)dz + f(0)L™(Bo, \ B)
Bo,, Bo,p B

and since u; is a smooth, radial function vanishing at 0By ,

: f(Vuj) dz > f(0)L™(Bo,p),

we deduce (7.4). O

Proposition 7.3 Let f : R™*™ — R U {oc} be a function with the property that it can
be approzimated from below by rank-1 conver functions f;, i.e., f; < f and f; — f point-
wise, each f; verifying the growth condition (7.8) for some fized p > 1. Then (7.4) holds
for [ and all radial functions u € Wol’p(B; R™).

Proof. This is easy. O

Example 7.4 Let p € [1,2) and define f(X) = |X[|P + |detX|, X € R?>*2. Then f is
polyconvex and satisfies the p, 2 growth condition

1 X[P < f(X) <2IX|* + 1.

We claim that f cannot be approximated from below with rank-1 convex functions f; that
grows polynomially slower at oo than f, i.e., for some q < 2

|15 (X))]

limsup —“——— < ©
X—00 |X|q

holds for each j. The following argument is inspired by the proof of Theorem 4.1 in [15].

Reductio ad absurdum: assume that for some ¢ < 2 this is possible. Then by Proposition
7.3 the inequality (7.4) holds for f and all radial functions u € VVO1 (B;R?). However,
this cannot be true. Indeed, for A > 0 introduce the radial function

VAL = )

T, T € B.
|z|

ux(z) =
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Observe that uy € WO1 “(B;R?) and therefore by the assumption and Proposition 7.3,
taking X = VI and u = uy, in (7.4)

][f(x/XI + Vuy) dz > f(V).
B
Since f(VAI) = 2PAP/2 + X\ and
][f(\/XI + Vuy) dz < cp\P/?
B

we obtain
cpAP/2 > 9P \PI2 4 )

Since p < 2 this is a contradiction if A is large enough.

Ad. (1.5) and (1.12). That it is necessary to impose some additional condition on the
sequence of negative parts follows from Counterexample 7.3 in [15]. There it is shown that
ifm=mn=2and F(z,v,X) = detX, then I(u) is not sequentially weakly lower semicon-
tinuous on W12, In [42] Meyers found a technical condition which might be relevant in
this connection. However, no attempt has been made to investigate this condition in the
present setting.

The content of the next example is well-known and shows, on the level of Young measures,
the difference between the multi-dimensional case m, n > 1 (considered in this paper) and
the scalar case min{m,n} = 1.

Example 7.5 Let p € [1,00] and v be a Young measure on  x R"*™ with a finite p"
order moment. Assume that

V:/(Sx@dew and 7; =0 a.e.
Q

If m =1orn=1, then v is a gradient p-Young measure. For m, n > 2 this is in general
false.

(The first assertion follows because quasiconvexity is just convexity in the case min{m,n} =
1. The second assertion follows from the fact that if m, n > 2 there are quasiconvex func-
tions, which are not convex. If p > 2 we can take any second order minor and if p € [1, 2)
the examples are provided in e.g. [60].)

The following example concerns the hypotheses (1.9) and (1.11) in Theorems 1.2 and
1.4.

Example 7.6 Let p € [1,00] and v be a Young measure on  x R"*™ with a finite p*"
order moment. Assume that

V:/(SI@VICZ:E and 7, =0 a.e.
Q
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There exists a sequence {u;} C SBV(£; R") with the properties

lujlli;0 = 0, sup (HVUJ'HP;Q +/S |U;r —uy | dHWZl) < o0,
j i

J

{|Vu;[P} is uniformly summable on © if p < oo

and
evu; — v weakly™ in CJ (€ x R™™)".

Proof. For simplicity we assume that @ = B = {zr € R™ : |z| < 1} and that v is
homogeneous: v = (L™|B) ® v'. We also assume that p < oo; the case p = oo can be
treated analogously.

There is a sequence {V}}, such that V; — 0 weakly in L?(B; R"*™), {|V;|P} is uniformly
summable on B and {V;} generates v (see [36]). It is not restrictive to assume that each

Vj is compactly supported in B. In view of Theorem 3 in [2] applied to each row of V; we
can find v; € SBV(B;R") with the properties

Vo =V and [ fof =oM< eV,
Yj
where c is a constant depending on m and n only. Because Vj is compactly supported in

B we can also take v; to be compactly supported in B.

Put t; = |lvj|[1;p and consider the family F; of all closed balls of radius less than
(jt;)~"', which are contained in B. By Vitali’s Covering Theorem there exists an at most
countable sub-family F;, which covers £™-almost all of B and consists of pairwise disjoint
balls. Write F; = {B_;  }rek,; and define

k> k

J
T —x,

uj(x):rivj( . ) iffL‘EBIi’ri,kEKj.
k

Hereby u; is well-defined and it is readily verified that v; € SBV (B;R"), that
lujlli;z < 1/7, [Duj|(B) < |Duv;|(B) < (14 0)||Vjllip

and that {|Vu;[P} is uniformly summable on B. Fix n € C(B) and ¢ € CJ(R"*™) and
compute

/B np(Vay) di = / S ()t + i) | o(Vi(@) d

B\ kek;
Since 7 is uniformly continuous

> ()] + i) = ]{9 ndy

kEKj

uniformly in £ € B and consequently
/ ne(Vu;) de — /ndx /(pdy’.
B B

The next example concerns the hypothesis (1.4) in Theorems 1.1 and 1.3.
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Example 7.7 Let v be a Young measure on {2 x R™"*™ with a finite first order moment
and assume that

V= /(5I®l/zd$ and 7, =0 a.e.
Q
There exists a sequence {u;} C C!(£2; R"), such that

[ujllio — 0, sup [[Vuglla < oo
J

and
evu; — v weakly® in Cj (€ x R™™)".

Proof. As in Example 7.6, but instead of applying Theorem 3 of [2] we apply Theorem 1
with p =1 and € = 1/j. We leave the details of this to the interested reader. g

As mentioned in the Introduction there are sequences {u;} of functions satisfying the
conditions of Theorems 1.1-1.4, but that do not allow a decomposition Vu; = Vv; + Ej,
where {E;} converges strongly in L' and {v;} converges weakly in W'!. Before giving
the example we state an auxiliary lemma.

It is well known that given any vector field V' of class C' on R™, there exists a function

whose gradient is V if and only if curlV = 0, where curlV is the function of R™ into
R™*™ defined by

0V B oV,
Oz, Oz

(curlV), forr,s =1,...,m.

By a mollifier argument a similar result may be proved when V is a distribution and
curlV = 0 in the distributional sense.

Lemma 7.8 Let {V;} be a sequence converging weakly* to V in L®°(R™;R™). If V; =
Vvj+E;, {E;} converges strongly in L' and {v;} converges weakly in Wb, then curlV; —
curlV' strongly in lecl’p for all p < oc0.

P

Here we recall that h; — 0 strongly in VVl;C1 means that for each open and bounded

subset w C R™ and p’ = p/(p — 1) we have

(hjip) =0

uniformly in ¢ € Wol’p’(w) with ||t prw < 1.

Proof. Suppose that v; — v weakly in W! and E; — E strongly in L!. Because
V =Vv+ FE and
Vi—=V =V(vj —v) + (Ej - E)
we can without loss in generality assume that V = F =0 and v = 0.
Let t > 2M = 2sup ||Vj||oo. Then we have that

/ Vo,lde < —" |B;|dz — 0.
{|Vo; >t} t =M {5 >-m3
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By Lemma 3.4 we may find a sequence {w;} which is bounded in W1 (R™) and such
that v; — w; — 0 strongly in WL (R™). Since E; + Vv; — Vw; = V; — Vw; — 0 weakly*
in L™ and strongly in L' we have that V; — Vw; — 0 strongly in Lfoc for all p < co and
thus the claim of the lemma follows. g

Example 7.9 Let B denote the open unit ball in R™ and define for u; € Wh*°(B) the
functions u; € SBV(R™) as

o o) if x| <1,
“J(i)_{ 0 if|z]>1.

If u; — 0 weakly* in W1°°(B), then @; — 0 strongly in L=(R™),
Hmfl(Suj) < H™ 1(0B) and {Du;} is uniformly u-AC,

where p = L™ B+ H™ | 0B. However, in general {curlV;} does not converge strongly
to 0 in V[/l;cl’p for p > 1. Indeed, assume for simplicity that m = 2 and let p € C°(R?).
Then

aV’l_Lj 8Va] aDs’l_Lj aDSﬂ,j / dp dp 1
< Oz dy 2 < Oz oy 2 P Bu] or Oy
thus if u; # 0 on 0B, then for each p’ < co we have that

sup | curlVa;; )| = oo,

where the supremum is taken over, say, ¢ € C2°(By2) with [j¢[/1,r < 1.

8 Appendix

This appendix contains a proof of the characterisation of gradient Young measures. The
general result we set out to prove is the following, where we note that it differs from the
results of Kinderlehrer and Pedregal [32, 33] only in (c), where we test with rather special
quasiconvex functions.

Theorem 8.1 Let p € [1,00] and let v = [0, ® v, dx be a Young measure. Then v is a
gradient p-Young measure if the following three conditions are satisfied:

(a) v has a finite p* order moment;
(b) there exists u € WHL(Q; R™), such that U, = Vu(zx) almost everywhere;

(c) for all quasiconvex functions f : R"*™ — R satisfying f(X) = f*(X) = |X]| for
| X| large the Jensen inequality

[tiv = 1@

holds for almost all x.
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Conwversely, if v is a gradient p- Young measure, then there exists a L™ negligible set N C €2,
such that for any quasiconvez function f : R™™ — R wverifying the growth condition

: f(X)
lim su
X X

< oo, ifp< oo, (8.1)
and no growth condition if p = oo, then the Jensen inequality

/dex > (V)
holds for all z € 2\ N.

Some of the technical ingredients in the proof are taken from [34], however, the proof
relies on the Hahn-Banach Separation Theorem and is in this sense similar in spirit to the
original proofs in [32, 33]. The key points distinguishing our proof are the use of Corollary
1.8 (or Proposition 1.10), the choice of function space (we treat the case of inhomogeneous
Young measures directly) and the observation contained in Lemma 8.3.

We start with a lemma, which in the case p = oo is identical to Theorem 2.3 in [32]. The
general result can be inferred from the results in [33], but we give a self-contained proof
essentially following the strategy proposed in [32] for the case p = oo.

Lemma 8.2 Let p € [1,00] and B = {z € R™ : |z| < 1}. If v is a gradient p-Young
measure and v = fQ(SI ® vy dz, then there is a L™ negligible set N C €, such that for
z € Q\ N the measure (L™|B) ® vy is a gradient p-Young measure.

Proof. We only give the proof for the case p € (1,00). The remaining cases can be
treated analogously. By assumption there exists a sequence {u;}, such that for some
u € WHP(Q; R")

uj — u weakly in WP(Q; R"™)

and
evu, — v weakly® in CJ(Q x R™*™)".

Extracting a subsequence if necessary we can assume that
|Vau|P - L™Q — p weakly™ in CJ(Q),

where y is a non-negative, finite Radon measure on the closure Q of 2. Let {n;} and {¢;}
be two sequences, which are dense in C§(B) and CJ(R™*™), respectively. We can assume
that each n; € CL(B). Extend n; by 0 outside B and put

wuo) = [ v,

In view of Theorem 2.4 we have for x € Q and r < dist(x, 9Q)

lim [ (L0
J—=0 Jo T

Jo1(Vuj(y)) dy = (ke x ;) (),
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where 7, (y) = ™0 (—y/r) and x denotes convolution. Let Q' denote the set of points
z € (2, where
tiw (7, +2)(2) = [ e dy o)
r—0t B
. ,U(Fx r) dp
1 S = eER
,r__l>r(l],l+ £m(Bm7r) dﬁm (x)
and

lim P ]{B“|u(y) —u(z) — Vu(z)(y —z)|P dy = 0.

r—0t

Put N = @\ € and notice that L™(N) = 0. Fix z € Q\ N and introduce for r €

0, dist(z,0Q)) the rescaled functions v and u®" as respectively
J

z,r

E(y) = ~(us(a + y) — u(a)),y € B

and
WT(y) = (ule+ ry) — u(@)y € B

For convenience of notation put

i) = 3 (| [nwess @ - [ naraie)

I+k<i

)+

d
+ [ 43 ) = Vulo)yP dy+ sup {o, [ v - —“(x)}
B B acm

and notice that lim, g+ lim; o 1;(j,7) = 0 for each i. For each i take first r; € (0,1/1),
such that

lim I;(4,7) < 1/i

J—0

and next j; > 1, so I;(j;, ;) < 1/i. Define v; = uif” and notice that {v;}3°, ¢ WhP(B; R")
has the properties
v; = Vu(z)(-) weakly in WHP(B;R")

lim /nkcpl(Vvi)dy:/ Mk dy/cpz dvy
1— 00 B B

for all k,I = 1,2,... The proof is concluded by noticing that the linear span of tensor
products 7 ® ¢; is dense in CJ(B x R™*™). O

and

Proof of the second part of Theorem 8.1. Apply Lemma 8.2 and Corollary 1.9. O

In the remainder of this section we focus on proving the first part of Theorem 8.1. In
view of Corollary 1.8 it suffices to show that v is a gradient 1-Young measure. Since v is
a gradient 1-Young measure if and only if A = [0, ® (Ve * 0_yy(y)) dz is and Ay = 0 we
can assume that © = 0. Hence by Lemma 4.2 we can assume that the measure

V:/(Sx@umdx
Q

satisfies the conditions:
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(a”) / | X | dv(z, X) < oo
QxRrxm

(b’) 7, = 0 for almost all x;

(¢’) for all quasiconvex functions f : R™ — R satisfying f(X)/|X| — 1 as X — o0
the inequality

[rav.> 50
holds for almost all z.

We introduce some notation for the proof. The space of Lipschitz functions F' : £ x
R™ ™ — R is a (non-separable) Banach space with the norm

[1E']l = [F(z0,0)] + Lip(F),

where ¢ € Q is arbitrary but fixed and Lip(F') denotes the Lipschitz constant of F'. (The
Lipschitz constant refers to the metric dist((z, X),(y,Y)) = |z —y| +|X —Y]|.) Let &
denote the subspace of Lipschitz functions F' : Q x R™*™ — R with the property that the
function

F(z,X)
(x,X)r—>T|X|

admits a continuous extension to  x (R"*™ U {oo}) (the closure of §) times the one-point
compactification of R"*"™ with the natural metric topology). It is readily verified that &
is a closed subspace and hence that (£,] - ||) is a Banach space. (€ is non-separable, but
that is immaterial for our purposes.)

Let P denote the set of positive measures p on 2 x R™ ™ satisfying

p(A x R™™) = L™(A) for all Borel sets A C Q and / | X | dp(z, X) < oo.
QanXm

Let Y denote the subset of P consisting of measures p with the additional property that
there exists a sequence {u;} in WOI’I(Q; R"), such that

uj — 0 weakly in WOI’I(Q; R")

and
evu, — o weakly® in Cg(€ x R™™Y'.

We regard P as a subset of the dual space £ by the duality pairing

(M;F>=/qu,F€€,

and hereby we have that
Il = sup uiF) < [0+ D,
IF]I<1

where ¢ > 0 is a constant depending on the diameter of Q2 only.

We are going to show that ¥ € Y by using the Hahn-Banach Separation Theorem in the
dual space of £. Before proceeding to the details of this we need some auxiliary results.
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Lemma 8.3 If Y denotes the weak* closure of Y in &', then YNP =Y.

Proof. Fix ¢ € YNP. Take {n;}2, C W,*°(2), which is dense in C3(£2) and {fi}52, C
WLoo(R™ ™), which is dense in C)(R™*™). Define F(z,X) = |X|, (z,X) € Q x R"™*™,
and notice that F' € £. Since also 7; ® f; belongs to & for all 4, 7 > 1 it follows that for
each positive integer k there exists v in Y, such that whenever + + 5 < k

(v — & F)| + (v — &mi © )] < %

By definition of Y and in view of Theorem 2.4 we may take uy € WO1 (Q; R™) verifying
fori+j <k

1
/|uk|d:1:+|/|Vuk|d:1:—/ |X|dz/k(a:,X)|—|—|/nifj(Vuk)dac—/m®fjdyk| <
Q Q QxRnxm Q

Thus we have in particular for i 4+ j < k

2
[ Vurlde = [ x1de@ 0+ [ nfi(Vag)do— [ gdel <
Q QxRnxm Q

and therefore
lim ’Ihf](vuk) dr = /ni ® fj d¢
0

k—00

for all integers i, 7 > 1 and

lim /|Vuk|d$:/ | X | dé(z, X). (8.2)
k—oo Jq QxRXm

We infer that
lim nf(Vuk)dx:/n®fd£
Q

k—o0

for all (n, f) € CY(2) x CY(R™ ™) and hence that {Vuy} generates the Young measure €.
By (8.2) and Theorem 2.4, {Vuy} is uniformly summable and therefore {u} converges
weakly to 0 in W11 (€; R"). This proves that £ € Y. O

The next result is an approximation result. It states that a general Young measure in
Y can be approximated by piecewise constant Young measures from Y. In the statement
of the lemma we denote by Gy, the collection of all open dyadic cubes @ of side-length 27%
contained in €2, that is

Gr=1{Q =2"%(z + (0,1)™) C Q : z has integer coordinates}.

Lemma 8.4 Let & = [0, ®&, dz € Y and let k be a positive integer. If we define &, € P

) Ene =3 /Qn(w) (é/fdfydy) i,

Qegy,
for n € CY(Q), f € C{R™ ™), then & € Y and & — & weakly* in E'.
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Proof. Since £, = 0 almost everywhere in Q we may apply the averaging principle (see
e.g. Theorem 3.1 in [33] or [48]) to deduce that for each @) € Gy the probability measure
pg defined as

(s /) = é/fdsy dy, f € CYR™™),

gives rise to a homogeneous gradient 1-Young measure (L™ |Q)® 1. Define R, = Q\J Gx
and note that & = (L™ R) ® do + D _geg, (L™ Q) ® puq; it follows from this that & € Y.

Considered as a linear functional on £ the norm of & is

||ak||s(:/9/<1+|-|>d5xdx,

thus the sequence {£;} is norm-bounded in £’. To conclude the proof we fix n € W1H°(€),
f € WHee(R"*™), such that n ® f € £ and compute

Gunen) =Y [ o) [ 1d,dyda.
Because the function z — [ fd¢, is summable it follows that ({x;7 ® f) = (£ ® f) and
the lemma follows from this. 0

Lemma 8.5 IfcoY denotes the weakly* closed convex hull of Y in &', thencoY NP =Y.

Proof. By Lemma 8.3 it suffices to prove that Y is convex. In view of Lemmata 8.3 and 8.4
it is enough to show that if u; = (L™|Q) @ p} and py = (L™ Q) @ uhy, are two homogeneous
measures in Y, then also p = tu; + (1 — t)ue belongs to Y for each t € (0,1).

To start the proof we make the following observations. Let U be a non-empty open,
bounded subset of R™, let u € WO1 ’1(U; R"™) and define the probability measure v, as

(Whi f) = ]{J f(Vu) da, | € CYRM™)

and v, = (L™|Q) ® v),. Using the generalised Riemann-Lebesgue lemma (see e.g. [21],
Theorem 1.5, p. 21) it is easy to show that v, belongs to Y, and by Lemma 3.1 it is
clear that any homogeneous measure in Y is the weak® limit in £ of some sequence {v, it

where u; belong to WOI’I(Q; R").
Take open and bounded subsets U, Us C R™ satisfying
UiNUs; =0 and ﬁm(Ul) = tﬁm(Ul U UQ).
Take {u;;}2°, C Wy (U; R™), such that

lim (vy, s F) = (ui; F), F €& i=1,2.

Jj—o0

Define v; € Wol’l(Ul U Us; R") as
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Clearly, v, €Y and for F € £

j—oo
hence tu1 + (1 — t)uz € Y. The claim follows from Lemma 8.3. g

Proof of first part of Theorem 8.1. In view of Lemma 8.5 and since v € P it suffices to
show that v € ©0Y. In order to prove this we notice that by the Hahn-Banach Separation
Theorem

Y = ﬂ{H : H weakly” closed half-space containing Y }.

Let H be a weakly* closed half-space in & that contains Y. By definition there exists
a weakly* continuous linear functional T : £ — R and a number ¢ € R, such that
H={le¢& :T(l) > t}y. A weakly* continuous linear functional is an evaluation
functional, i.e. T'(l) = ([;G), | € &' for some G € & (cf. [52]) and since Y C H

(1;G) >t

for all 4 € Y. We claim that this implies that
G% € £ and /Gqc(x, 0)dx > t, (8.3)
Q

where for each z € Q, G%(z,-) denotes the quasiconvex envelope of G(z,-).

By hypothesis (¢’) this entails that v belongs to H. Hence we conclude the proof by
verifying (8.3).

Recall that for a positive integer k, G denotes the family of all open dyadic cubes of
side-length 27* contained in (2. For each Q € Gy, pick ug € Wol’l((O, 1)™; R™) and extend
each ug to all of R™ by (0,1)™ periodicity. Define v; € Wol’l(Q; R") as

1
ﬁUQ(ﬂkx) ifze@;Q € Gy,

0 otherwise.

v;(z) =

Then v; — 0 weakly in Wol’l(Q; R") and {Vv;} generates the Young measure i = [0, ®
ph dz, where by use of the notation from the proof of Lemma 8.5 we have

, { Vi, ife€QQE Gy
Hg =

09 otherwise.
Clearly, 1 € Y and so
t§/ G(z,0)dz + Z // G(z,Vug(y)) dy dz.
2\U Gk Qeg, 7 @7 (0.1)™

For each @ € G we let g € Q be the lower left corner point of (). Since G is Lipschitz
continuous and the diameter of each Q is /m2~* we get

t< G(z,0) dz + v/m2 *Lip(G)L™( Lm G(zo,Vu d
< [, G0 4 Vi Lip(@) @+ 3 @, Ge Vualw) dy
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or

t—er <Y Em(Q)/ Gz, Vug(y)) dy,

Qegk (0:1)
where g, > 0 is independent of the functions ug and tends to 0 as k tends to co. Taking
the infimum over ug € WO1 ’1((0, 1)™; R™) yields the inequality

e < 3 LMQ)G (xq,0),
QEGy

which is valid for each k. By Lemma 8.6 below it follows that G belongs to £ and
therefore we conclude the proof by letting & tend to infinity and noticing that the right
hand side is a Riemann sum for the integral [,G9¢(z,0) da. O

Lemma 8.6 Let F' € £ and assume that there exists (z,X) € Q x R"™ ™, such that
F1(z,X) > —oc0. Then F1¢ € €.

Proof. For (z,X) and (y,Y) we have
F(z,X) = F(y,Y) — Lip(F)(lz —y| + |X = Y).
Taking y = zg and Y = X yields
Fi(z,X) > FIx9,X) — Lip(F)|z — zo|,

and therefore it follows that F'9¢ is real-valued for all (z, X). Next we take Y = X + H
and get

Fi(z, X) > F*(y, X + H) — Lip(F)(|z — y| + |H|),
whereby we conclude that F'9¢ is Lipschitz continuous. It follows easily that F'9¢(z, X) /| X]|
has a finite limit as X — oo and that this limit is independent of x € ). O
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