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Abstract

Ferromagnetic materials display a complex microstructure of domains�

walls� Bloch lines and singular points on scales ranging from ��� �m

down to a few nm� Understanding the formation and overall e�ects of

these structures is crucial for key technological applications� At the same

time the rich source of experimental data and the simple mathematical

formulation makes the analysis of magnetic microstructure an excellent

model problem to develop new mathematical tools for the understanding

of multiscale problems� which are ubiquitous in science�

In this paper we describe some basic mathematical problems and re�

port on recent analytical progress in three areas� rigorous scaling laws�

branching and dimensionally reduced theories for thin �lms�

� The energy functional

Ferromagnetic materials display a complex microstructure of magnetic domains�
walls� Bloch lines and singular points ranging from ��� �m down to a few nm
and beyond �see Fig� ��� Understanding the formation and the overall e�ects of
these structures is crucial for a number of key technology applications� At the
same time the rich source of experimental data and the simple mathematical
formulation makes the analysis of magnetic microstructures an excellent model
problem to develop new mathematical tools for the understanding of multiscale
problems� which are ubiquitous in science�

Somewhat surprisingly the huge variety of magnetic structures can often
be understood through minimisation of a simple energy functional� which only
involves two material parameters� Let � � R� represent a magnetic body and
let m	 �� R� denote its magnetisation �per unit volume�� In non
dimensional
variables the energy associated to such a magnetisation is given as �Br �
� HS ���

E�m� � w�

Z
�
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Figure �	 Top	 Large domains on the surface of an iron whisker� Bottom left	
Domains and domain walls �black and white lines� in a silicon
iron crystal 
 at
much higher resolution vortex like patterns �Bloch lines� would become visible
where the line switches from black to white� Bottom right	 several generations of
re�nement near the boundary of an iron �lm� a related� but di�erent� situation is
discussed in Section � below� All pictures courtesy of R� Sch�afer� IFW Dresden�

and the di�erent terms are referred to as the exchange� anisotropy� magneto

static and external �eld �or Zeeman� energy� respectively� The scalar variable u
is the potential of the magnetic �eld hind� i�e� hind � �ru� and is related to m
by Maxwell�s equations which read �in suitable units�

div ��ru�m� � � in R�� �����

Here m is extended by zero outside �� and the equation is supposed to hold in
the sense of distributions� Finally m satis�es the saturation condition

jmj � � in �� ���
�

To the naive mathematical eye the exchange energy jrmj� is the highest
order term which makes ����� � ���
� a �nonlocal� lower order perturbation of
the harmonic map problem� While this point of view is useful to understand
some aspects �e�g� regularity of minimisers �Ca ���� it does not provide much
insight into the complexity of the observed magnetic microstructures� Indeed
much of the microstructure formation is driven by the magnetostatic energy�
and the exchange energy acts primarily as a limiting factor against in�nite
re�nement� To get a better understanding of the energy functional it is useful
to look at the di�erent energy terms separately �see Fig� ���

�



uniaxial cubic

Figure �	 Competition of anisotropy and magnetostatic energy for a uniaxial
material �left column� and a cubic material �right column�� The preferred ori

entations are shown in the top row� the magnetostatic energy prefers alignment
with the sides of the rectangle� For the uniaxial material this leads to the for

mation of small closure domains� Their size is limited by the exchange energy
of the new horizontal phase boundaries�

� The anisotropy energy ��m� favours special directions of the magnetisa

tion� Most materials have either uniaxial or cubic symmetry�

� The magnetostatic energy jruj� tries to eliminate the �distributional� di

vergence of m �see ������� Written out separately for the interior and the
boundary �with outer normal �� of � this becomes

divm � � in �� m � � � � on ���

This is known as the principle of �pole avoidance�� It favours a magnetisa

tion which is parallel to the boundary and in particular strongly disfavours
uniform magnetisation of the sample� For uniaxial materials there is thus
a competition between pole avoidance and low anisotropy energy� which
drives the formation of �ne scale structure �see Fig� ���

� The exchange energy jrmj� favours uniform or at least slowly varying
magnetisation� It


 sets a �nest length scale �of order w� and in�uences the hierarchy of
coarser scales


 de�nes a wall energy �see Section 
 below� and


 determines the inner structure of the walls�

The relative importance of the anisotropy energy and the magnetostatic
energy is measured by the quality parameter Q� which varies over �ve orders
of magnitude between di�erent materials �see Table ��� Materials with a low
values of Q are called soft� because the magnetisation is easy to rotate�






Q w
Permalloy ������ � nm
�
Iron ���� 
�� nm
SmCo� 
� ��� nm

Table �	 Material parameters for typical soft and hard materials

� Basic mathematical questions

Over the last thirty years �and in some cases longer� the physics� engineering
and materials science communities have gained an enormous amount of insight
and intuition about magnetic microstructures through theory combined with
large scale experimental and computational e�orts� The recent book by Hubert
and Sch�afer �HS ��� gives a beautiful survey� Noteworthy achievements include

a� Constructions of plausible energy minimisers �usually with a few free pa

rameters which are optimised analytically or numerically�

b� Large scale �nite
element or boundary
element computations which give
solutions to speci�c problems and allow one to compute �phase diagrams�
that show the switching between di�erent prototype constructions �e�g�
di�erent types of walls� for di�erent material parameters and specimen
geometry�

c� Simpli�ed theories� usually derived in a somewhat ad
hoc way by astutely
neglecting �or greatly simplifying� certain contributions to the energy in
special regimes� A typical example is phase theory� which applies to large
bodies and corresponds to the limit w � ��

From a mathematical point of view a� corresponds to upper bounds for the
magnetic energy through subtle choices of test functions� Optimising over a
certain number of constructions does not of course rule out that a radically
di�erent choice might yield a much lower energy� Regarding b� there have been
remarkable successes but the nonlocal and nonconvex character of the energy
in combination with the multitude of lengthscales involved still pose signi�cant
challenges� The reliable computation of a rather small piece of Permalloy ���nm
x � �m x � �m� has been proposed as a benchmark problem and is near the limit
of current capabilities �NIST� RZH ���� For a rather critical view of numerical
computation see also �Ah ���� Regarding c� it would be desirable to have a
framework in which simpli�ed theories can be derived in a rigorous way �for
phase theory this was done independently in �De �
� and �Ta �����

We thus see the following challenges for the mathematical analysis	

� Understanding the separation into multiple spatial scales�

More precisely� one would like to know the typical lengthscales exhib

ited by the minimiser and how these depend on the material parameters
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and the sample dimensions� Examples are the width and type of domain
walls and the typical domain size in the basal plane of a strongly uni

axial ferromagnet �see e�g� �HS ���� pp� �������� and Section � below��
This question can be partially answered by investigating how the minimal
energy and its components �anisotropy� exchange and magnetostatic en

ergy� depend on the material parameters and the sample dimensions� Of
course� one expects di�erent scalings in di�erent regimes� The goal is thus
to identify these scalings and their cross�overs�

Mathematically� this amounts to establishing upper and lower bounds for
the minimal energy which exhibit the same scaling in the material param

eters and sample dimensions�

� Making use of the separation of spatial scales to derive reduced theories
with fewer lengthscales�

Generally speaking� whenever there is a clear separation of lengthscales�
there is hope that the original problem decomposes into a hierarchy of
simpler problems� As a speci�c example consider the elimination of the
domain wall length scale� The wall structure� given the state left and
right of the wall� is determined by a microscopic variational problem�
which de�nes a wall energy density� The expression for the wall energy
density is an ingredient to a more macroscopic variational problem� which
determines the location of the walls� One example of a regime where
the derivation of such a hierarchy of simpler models is both realistic and
desirable is that of soft thin �lms �see Section ���

Mathematically� the derivation of reduced theories amounts to identifying
a suitable ��limit of the original variational problem� A �rst step is to
establish su�cient compactness for the minimisers in the limit�

� Scaling laws for domain walls

The competition of anisotropy� exchange and magnetostatic energy often leads
to a separation of the specimen � into regions of slowly varying magnetisation
�Weiss domains� which are separated by thin layers where the magnetisation
changes rapidly �domain walls�� Understanding the inner structure of such
domain walls is one of the major research topics in micromagnetics �see �HS ���
and the references therein� and here we can only give a very brief introduction�

The simplest wall is the so called Bloch wall �which was actually �rst de

scribed by Landau and Lifshitz�� Here the magnetisation only varies in one
direction n and performs a ��� degree rotation in a plane perpendicular to n�
Thus in an in�nite body divm � � so that the magnetostatic energy vanishes�
Optimisation of the exchange and anisotropy energy yields a wall energy �per
surface area� of �w

p
Q and a wall thickness of order w�

p
Q �with exponential

decay beyond that scale��
In a thin �lm a Bloch wall with far �eld magnetisation in the �lm plane �cho


sen as the x�� x� plane in the following� involves a large out
of
plane component
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m� of the magnetisation� This gives a strong contribution to the distributional
divergence of m at the top and bottom surface ��surface charges��� which is ener

getically very unfavourable in thin �lms �for a detailed mathematical discussion
see e�g� �GJ ���� see also Table � below��

Hence N�eel suggested already in the ���s a di�erent construction� where the
magnetisation rotates in the �lm plane� This completely avoids surface charges
at the expense of a certain amount of in
plane divergence and leads to a much
lower energy than the Bloch wall� In thin �lms the exchange energy also puts a
high penalty on variations of m in the normal direction� For the purpose of the
following discussion we will therefore consider a constrained theory in which we
assume that

m � m�x�� x��� m� � �� �
���

We make some remarks about the validity of these assumptions at the end of this
section� Using �
��� the magnetostatic energy can be computed using Fourier
transform in the tangential variables� and if we assume that the typical length
scale on which m varies in tangential directions is large compared to the �lm
thickness the normalised energy of a �lm with basis � � R� and thickness D
becomes

I�m� � D��E�m� � w�

Z
�

jrmj� �Q

Z
�

��m� �
D

�
jjdivmjj�H���� � �
���

where the homogeneous H���� norm of a function f can be expressed in terms
of its Fourier transform  f�k� �

R
e���ik�y dy as

jjf jj�H���� �

Z  jf j��k�
�	jkj dk

To study the energy of a N�eel wall we consider a uniaxial material� i�e�
��m� � m�

�� and a strip � � ��L�L�� ��� �� with boundary conditions

m��L� x�� � ������ �
���

and periodic boundary conditions in x�� A one dimensional ansatz yields an
energy of order

D

lnmin��� !Q�L�w�
� with !Q � �Q

w�

D�
�

provided that !Q � � and w � L� We ask whether this is essentially optimal
or whether a genuinely two
dimensional wall �such as the commonly observed
cross
tie walls �HS ���� p� ���� pp� �������� can give a qualitatively lower energy�
For Q � � �i�e� an ideally soft material� we have the following result�

Theorem ��� �Upper and lower bounds for �d N�eel walls �DKMO ��b�	
There exist universal constants � 
 c� � C� 
 	 such that if Q � � and

w 
 L�� then

c�
D

lnL�w
� min

	���
�	���

I�m� � C�

D

lnL�w
�
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For one
dimensional walls much more precise results are available� We con

sider an in�nite strip R � ��� �� and to enforce the presence of a wall we add
the constraint m���� � ��

Theorem ��� �Finer asymptotics for �d N�eel walls �EM ���	 For !Q �
� we have

min
m�	�
���	���


m�m	x�


I �
D	

�

�

ln �� !Q
�O

�
�ln ln��� !Q���

�ln �� !Q��

�
�

Slightly weaker estimates were obtained in Cervera�s thesis �Ce ���� Work
in progress addresses the precise behaviour of the minimisers� Subtle formal
asymptotics suggest that the minimisers have a logarithmic decay on a scale
D� !Q�

We �nally brie�y comment on the hypotheses m� � �� m � m�x�� x��� They
are only justi�ed for thin �lms� i�e� for �lms in which the ratio � � w�D is
su�ciently large� Striking work of La Bonte and Hubert in the late ���s showed
that for � 
 ��� a new wall type with a genuinely three
dimensional structure has
lower energy than the standard N�eel wall and the cross
tie wall discussed above�
Since then a number of other wall types have been discovered� see �HS ����
pp� �������� for a review and a numerically computed �phase diagram� in the
D�w�Q plane �Figs� 
���

���� pp� ������
� loc� cit��� A rigorous analysis of
the bifurcation pattern between di�erent wall types is a major open problem�

� Domain branching

Strongly uniaxial ferromagnets often show a complex domain pattern on a sur

face perpendicular to the easy axis �known as a basal plane�� see Fig� 
 and
�HS ���� pp� 

��

� �theory� and pp� ������� �experiment�� The magnetic
domains inside the ferromagnet are roughly parallel to the easy axis and re�ne
towards the boundary� The possibility of such a re�nement was �rst suggested
by Lifshitz �Li ���� and in the ���s Hubert used a simpli�ed one
dimensional en

ergy to establish a �"
 power law for the average domain spacing as a function
of the distance from the basal plane� see �HS ��� loc� cit� for further discussion�
Choksi et al� have recently studied the full three
dimensional energy

!E�m� � �

Z
�

jrmj�Q

Z
�

m�
� �m�

� �

Z
R�

jruj� �����

in a domain � � ��L�L�� ��� ���� Here the exchange energy has been replaced
by a wall energy �

R jrmj� where the integrand is understood as a Radon mea

sure� This formulation allows for jumps of m across a surface and assigns them
an energy proportional to the jump height and the surface area� In this way
the energy of the walls is included without resolving the detailed wall structure�
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Figure 
	 Branched and unbranched con�gurations� Theorem ��� shows that for
small wall energy the unbranched con�guration is always far from minimising�
no matter how complex the structure in the basal plane is�

For the standard ��� degree Bloch wall one has � � �w
p
Q� As a further sim


pli�cation we consider periodic boundary conditions in the x� and x� variables�
We let


 � min�Q� ��� E� � min
jmj��

!E�m�

and we de�ne the minimal energy of unbranched con�gurations by

E� � minf !E�m� 	 jmj � ��m�x� � m�x�� x��g�

Theorem 
�� �Domain branching �CKO ���	 If � 
 
min�L�L��� then

c�

�������L��� � E� � C�


�������L���� �����

c�

�������L��� � E� � C�


�������L���� �����

In particular the energy of all unbranched con�gurations is much larger than E�

if �� 
L�

The upper bound in ����� is achieved by a branched con�guration with av

erage domains size proportional to d���� where d is the distance from the basal
plane� The key point is the lower bound which assures that no other con�gura

tion gives a better scaling law for the energy� Its proof involves an interesting
new interpolation inequality between BV� L� and H�� �CKO ���� Lemma ��
�

An open mathematical question is whether the result can be extended to the
full micromagnetic energy E instead of !E �with the correspondence � � �w

p
Q�

and whether in a suitable asymptotic sense minimisation of E and !E are equiv

alent� In a much simpler one dimensional setting such a result was established
in �AM ��� using the new concept of Young measures on micropatterns which
allows one to take advantage of an asymptotic separation of scales�
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� Thin �lm limits

We wish to derive a limiting two
dimensional theory for thin �lms� We will
consider a material with low anisotropy and include a weak applied �eld� lying
in the �lm plane� Again we will focus on scaling laws and limits of the energy�

Physically� there are a number of small parameters	 the �lm thickness D�
its typical lateral dimension L� the Bloch line width w and the quality factor
Q� which measures the strength of the anisotropy� We will focus on the limit
of small aspect ratio d � D�L and indicate below the conditions which are
required on the other parameters� We suppose in particular that the applied
�eld is proportional to the aspect ratio� hext � dHext �this re�ects the fact that
the in
plane demagnetising factor is also approximately proportional to d for
small d�� We scale length by ��L and energy by ��L� and we use the notation

� �
w

D
� x� � �x�� x��� div�m� � ��m� � ��m��

In the scaled variables the �lm domain is denoted by

�d � � � ��� d�� � � R��

Then the three dimensional problem and the two
dimensional limiting prob

lem can be formulated as follows �as usual magnetisations are extended by zero
outside their domain of de�nition for the computation of the distributional di

vergence��

Three�dimensional problem	
Admissible magnetisations

Ad �
�
m � L���d�R

�� 	 jmj � �
�
� ������

Energy

Ed�m� � ��d�
Z
�d

jrmj� �Q

Z
�d

��m� �

Z
R�

jruj�

� �d

Z
�d

Hext �m �Hext�� � �� ������

#u � divm� ������

Two�dimensional problem	
Admissible magnetisations

A� �
�
m � L����R�� 	 m� � �� jmj � �

�
� ����
�

Energy

E��m� �

Z
R�

jruj� � �

Z
�

Hext �m�� ������

#u � div�m�H�
�fx� � �g� ������

�



Order of Ed relevant term

d � vol���
R
�
m�

�� �GJ ���

d� ln �
d �m� � ��� � � on domain walls

and on ��

d� hind� Hext� jmj � �

$$ jmj � �

d�� ln �
d $ wall energy

d� ln �
d vortex energy �large literature�

Table �	 Conjectured and proven energy scalings in thin �lms in the regime
� � O���� Q� d� �

The last equation may be equivalently written as

#u � � for x� �� ��

�
�u

�x�

�
� div�m� on x� � ��

where �f ��x�� � lim��� f�x
�� �� � f�x����� denotes the jump across the plane

fx� � �g�
Note that the limit functional no longer involves rm and hence m can have

jump discontinuities across an interface �these correspond to domain walls��
The normal component of m� however� cannot jump across a smooth interface
as long as E� is �nite� If the normal component jumps then divm contains a
line measure and the �rst term in ������ is in�nite� Similarly we must have
m� � �� � � on �� �in the sense of H���������� A more detailed analysis shows
that jumps in the normal component of m lead to an energy contribution of
order d� ln���d� while the relevant competition between the external �eld and
the induced �eld occurs at order d� �see Table ���

To formulate our convergence result it is convenient to rescale the thickness
variable and to de�ne all functions on the �xed domain �� � � � ��� ��� Let

md�x
�� x�� � m�x�� x��d�� %m�x�� �

R �
� m�x�� x��dx� and de�ne

!Ed�m� �

�
Ed�md� ifmd � Ad�
�	 else

!E��m� �

�
E�� %m� ifm�x�� x�� � %m�x�� and %m � A��
�	 else

We assert that minimisers of !Ed converge to minimisers of !E�� More gener

ally we establish ��convergence�

��



Theorem ��� ��DKMO ��b�	 Let � be open� simply connected and bounded

with smooth boundary� Suppose that

Q

d
� �� ���d ln���d��� ��

��

d
�	� as d� ��

Then d�� !Ed ��converges to !E� with respect to the weak topology of L�����R
���

Remark� As regards the assumptions on � and d� a typical data set for a
Permalloy �lm is Q � ������� D � ��nm� L � ��m� w � �nm� whence d � ����
� � ���� More generally one often has Q � d � �� while � � O���� which is
compatible with the hypotheses above�

Note that the three
dimensional problem and the limit problem involve
di�erent constraints on m� The limit problem has the additional constraints
m� � � and m�x�� x�� � %m�x�� �hence we have established �
��� rigorously at
the current scaling of the energy�� On the other hand the di�cult nonconvex
constraint jmj� � � has been replaced by the convex �even quadratic� constraint
jmj� � �� The limit problem is thus much easier to tackle both analytically and
numerically� In particular all minimisers are solutions of the Euler
Lagrange
equation

hind � hext � �m� ������

��jmj � �� � �� ������

where ��x� are Lagrange multipliers and where �hind is the tangential gradient
r�u of the solution of ������ restricted to the plane x� � �� From ������ and
������ one can immediately read o� the qualitative behaviour of the solutions
in dependence of the applied �eld Hext � He� where e is a unit vector	

H � � div�m� � � �pole avoidance�

� 
 H 
 Hcrit�e� hext � hind � � ��eld expulsion�

H � Hcrit�e� � � � somewhere ��eld penetration�

Following work of van den Berg �vdB ��� for H � �� Bryant and Suhl �BS ���
studied previously the second regime using physical reasoning through an elec

trostatic analogy� Their arguments� however� do not cover the regime of �eld
expulsion �except in in very special cases�� which arises naturally in our ap

proach via energy minimisation�

The limit functional has� however� one de�ciency� While it determines div�m�

and hence hind uniquely� it usually does not determine m uniquely� This can
already be seen in the simplest case hext � � and � � unit disc� In this case
the only conditions on m� are that it be divergence free and of length less than
one� One possible solution is the vortex �eld m��x� � ��x�� x���jx�j another is
m� � �� As we shall see in the next section a strong degree of nonuniqueness
persists even if we reimpose the constraint jm�j � ��

��



The reason for this is that E� only captures the leading order term in an
asymptotic expansion of the full energy functional �see Table ��� It misses in
particular the wall energy� Including these higher order terms one may be able
to recover the constraint jmj � � and derive a further selection criterion based
on a limiting wall energy� Underpinning these ideas by a rigorous analysis is
a very challenging problem� see the following two sections for a more detailed
discussion�

On the other hand nonuniqueness of minimisers of E� provides an interesting
insight� The quantities div�m� �and hence hind� are robust in the sense that
they are not much a�ected by a slight perturbation of the original energy� The
full �eld m� by contrast is not robust and can be easily changed by lower order
perturbations of the energy� Experimentally one often observes a ripple
like �ne
structure of the magnetisation �eld� It is an interesting question whether this
phenomenon may be related to a lack of robustness of m��

Empirically� we found that the following simple procedure yields a robust
and e�cient numerical scheme� whose results agree well with experiment �and
even predicted new experimental results� �DKMO ��b�� We use the notation
r�u � ����u� ��u�� Clearly div�r�u � ��

� Step �	 Compute a minimiser m� of the convex energy E��

� Step �	 Determine m � m� �r�u by computing the viscosity solution u
of

jm� �r�uj � ��

This can be done very e�ciently by a fast marching method �Se ����

In this way the original di�cult nonconvex problem is split into two subprob

lems which can be solved e�ciently and reliably� An interesting open problem
is whether the selection of the viscosity solution agrees with �energy
based� se

lection criteria �see Conjecture �����

� The van den Berg construction

Let us consider in more detail a thin �lm without external �eld� Hext � ��
Van den Berg �vdB ��� argued on physical grounds that as d � � the limiting
magnetisation m should be independent of x� and should be determined by
solving the following problem	

m� � �� jmj � � in � ������

div�m� � � in �� m� � �� � � on ��� ������

The latter condition is equivalent to the existence of a stream function v� with
m� � r�v� One thus obtains the eikonal equation

jrvj � � in �� v � const on ��� ������

��



Van den Berg proposes to solve this equation by the method of characteristics
and graphically constructs explicit solutions for a variety of �lm geometries� The
characteristics typically intersect and thus rv exhibits jump discontinuities on
a singular set� This singular set� which is typically one
dimensional� corresponds
to domain walls �whose thickness has been shrunk to zero in taking the limit
d� ��� This construction does not give unique solutions� indeed there is a large
�exibility in introducing additional singularities� Van den Berg argues that by
including a suitable wall energy� which penalises the jumps on the singular set�
one should be able to select a physically preferred solution�

Leaving aside the details of the geometric construction by characteristics one
can easily understand non
uniqueness as follows� A typical solution of ������ is
given by the distance function v�x� � dist�x�R�n��� and for any compact subset

 � � of measure zero one obtains another solution by v� � dist�x�R� n��n
���

Comparing van den Berg�s problem ������� ������ with minimisation of our
limit functional E�� we see that the two agree except for the fact that we only
require jm�j � � while van den Berg requires equality� Mathematically his
approach may thus be summarised in the following two conjectures�

Conjecture 
�� �Compactness	 A subsequence of minimisers md of !Ed con�

verges strongly in L� and the limit m satis�es jmj � ��

Remark� By strict convexity of the L� norm weak convergence and the
condition jmj � � together are equivalent to strong convergence�

Conjecture 
�� �Selection	 A higher order expansion of the energy selects

those solutions m of the eikonal equation which minimise a suitable wall energy

computed along the singular set of m�

Both conjectures are wide open� Compactness has recently been established
for a related problem� which we now describe�

� Compactness

Consider a function v 	 � � R� � R� In connection with work on liquid crystals
Aviles and Giga �AG ��� have studied the functional

E��v� � �

Z
�

jr�vj� dx�
�

�

Z
�

��� jrvj��� dx ������

for � � �� Together with the inequality a � b 
 �
p
ab the following result

ensures that sequences with bounded energy are relatively compact as �� ��

Theorem ��� �Compactness for the AG functional �ADM ��� DKMO ��a�	
Let � � R� be open and suppose that

jj�� jrvkj�jjL� � ��

jjr�vkjjL� jj�� jrvkj�jjL� is bounded�

�




Then the sequence

frvkg is relatively compact in L�����

Our proof uses the method of compensated compactness �Ta ��� and a suit

able choice of �entropies�� i�e� nonlinear expressions &�m� whose divergence can
be controlled under the hypothesis of the theorem�

A major unsolved problem is to determine the ��limit of E�� The conjec

tured form is �AG ��� OG ���

E� �

��
	

R
S

�
� �rv�

�
dH� if jrvj � � a�e�

and H��S� 
	�
�	 else�

where S is the discontinuity set of rv�
From the work of Jin and Kohn �JK ��� we know� roughly speaking� that this

form is correct if v only jumps across a single �at interface� The general case
is completely open� In fact it is not even known whether the ��limit is a local
functional of v� A necessary condition for E� to be a ��limit is that it be lower
semicontinuous� Aviles and Giga showed that this is indeed the case under the
additional restriction rv � BV and that the exponent 
 plays a particular role	
lower semicontinuity fails for any exponent � � 
 �see �AG ��� for the details��

Let us brie�y comment on the similarities and di�erences between the AG
functional and the micromagnetic energy� To simplify the discussion assume
from the beginning that Q � � and m�x�� x�� � m�x��� If we assume� as in
Section 
� that m varies on a length scale large compared to the �lm thickness
��wide walls��� we can approximate the magnetostatic energy and we obtain in
dimensionless variables

Ed�m� � ��d�
Z
�

jrmj� dx� d

Z
�

m�
� dx�

d�

�
jjdiv�m�jj�H���� � ������

The usual Bloch wall construction yields a test function with div�m� � �
and shows that the minimum of the normalised energy Ed���d

�� is uniformly
bounded� Setting � � �d we obtain

Ed�m�

�d�
� �

Z
�

jrmj� dx�
�

�

Z
�

m�
� dx�

�

��
jjdiv�m�jj�H���� � ����
�

Hence for �� � the expression div�m� must be small so that m� � r�v� More

over m�

� � � � jm�j�� Thus the compactness result stated above �almost� gives
compactness of sequences for which the normalised energy ����
� is bounded�
There are two di�culties� however� First� for �� � the walls are actually narrow
compared to the �lm thickness� so the correct approximation for the magneto

static energy is djjdiv�m�jj�H�� � jjm�jj�H���� � Secondly� and more seriously� the
assumption m�x�� x�� � m�x�� is no longer justi�ed when � 
 ���� see the dis

cussion at the end of Section 
� Hence compactness for the full micromagnetic
energy without additional constraints remains a major challenge�

��
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