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Abstract

In this paper we address the question of solvability of the differential inclu-
sions

Du() € K(-u(-), ul, = f, ue W=(QR™),

where Df(-) € F(-, f(-)) a.e. in €, and where F : Q x R™ — 2R™" g a
multi-valued function.

Our approach to these problems is based on the idea to construct a se-
quence of approximate solutions which converges strongly and makes use of
Gromov’s idea (following earlier work of Nash and Kuiper) to control con-
vergence of the gradients by appropriate selection of the elements of the
sequence. In this paper we identify an optimal setting of this method.

We show that if for each (x,u) € QxR™, each € > 0, and each v € F(x, u)
we can find a piece-wise affine function ¢ € I, + Wy (€ R™) (here I,(y) =
v -y) with ||dist(D¢, K(z,u))||zr < € and D¢ € F(a',u') a.e. for all (z',u)
sufficiently close to (z,u), then we can resolve the differential inclusions. The
result holds provided {(z,u,v) : v € K(z,u)} is the zero set of a nonnegative
upper semicontinuous function d such that for each (z,u) the set K(z,u) is
compact and d(z,u,v;) — 0 if and only if dist(v;, K(z,u)) — 0. We also
discuss some generalizations and applications of this result.

1 Introduction

In this paper we are interested to identify an optimal principle which guar-
antees solvability of the problems

H(-u(), Du(-)) =0, u|, = f, ue W (% R™), (1.1)

where H > 0 is defined in a subset of 2 x R™ x R™*" and (z, f(z), D f(z))
belongs to this subset for a.e. x € €). Here and everywhere in the paper we
assume that €2 is a Lipschitz bounded domain in R".

Consider first the homogeneous case H = H(Du), f = l4, where [, is
an affine function with the gradient equal to A. Assume that U C R™*" is
a domain of definition of a continuous nonnegative function H and assume
that the set K := {v € U : H(v) = 0} is compact.



If we can solve the problem (1.1) with f =14, A € U, then there exists a
sequence of functions ¢y, € 14 + Wy (€ R™) with the properties D¢y € U
a.e., dist(D¢g(-), K) — 0 in L' as k — oo. This motivates

Definition 1.1 Let U, K be bounded subsets of R™*™.

We say that U can be reduced to K if for every A € U there is a sequence
of piece-wise affine functions ¢y € 14 + WOI’OO(Q; R™) with the properties:

1) Doy € U a.e. in€), k€N,

2) ||d18t(D¢k, K)||L1(Q) — 0 fO’/’ k — oo.

Here and in the following we say that ¢ is piece-wise affine if it is Lipschitz
and there exists at most countably many disjoint open sets {2; C €2, whose

union has full measure, such that qﬁ‘ﬂ_ is affine.

J
It turns out that the conditions that arise in the definition already imply
solvability of the differential inclusion.

Theorem 1.2 Assume that U is a bounded subset in R™*™, and assume
that K is a compact subset in R™ "™ to which U can be reduced.

Then for each piece-wise affine function f € WhH(Q; R™) with Df €
(UUK) a.e. in Q the problem

Du € K a.e. inQ, ue W-(Q;R™), u‘ :f‘
o9 o9

has a solution. Moreover, each e-neighborhood of f in the L™ (€2; R™)-norm
contains a solution of this problem.

Before we state the main result in the nonhomogeneous case we recall the
definitions of standard distance functions. For a point A € R™*" and a set
S C R™"™ we define

dist(A, S) := inf |A — v|.
veS

For two sets Sp, S5 we define

diSt(Sl, SQ) = Sup dlSt(A, SQ)

A€S)

The Hausdorff distance between the sets S; and S, is

diStH(Sl, SQ) = diSt(Sl, SQ) + diSt(Sg, Sl)
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We will use some other standard notions and notations the complete list of
which is located at the end of this section.

The main result of this paper is the following theorem. We state it under
rather general assumptions in view of future applications. The somewhat
indirect hypotheses on U and d are naturally suggested by the proof and are
easily verified in the context of the examples discussed below (see the proof
of Lemma 3.1 in §3 and Lemmata 4.1, 4.2 in §4).

Theorem 1.3 Let U : Q@ x R™ — 2R™" K . Q x R™ — 2B™" pe
multi-valued functions with equi-bounded values. Let also

d:{(z,u,v) e QxR" xR™" :v e (U(x,u) UK(z,u))} — [0, M]

be an upper semicontinuous function such that for each (xz,u) € Q x R™ the
set K(x,u) is compact, K(x,u) = {v € (U(z,u) U K(z,u)) : d(z,u,v) =0},
and d(z,u,v) — 0 if and only if dist(vy, K(z,u)) — 0, k — oo.

Assume that for each (xg,uq) € Q x R™, each vy € U(xg,ug), and each
€ > 0 there exists a piece-wise affine function ¢ € Wol’oo(Q; R™) such that

/ d(zg,up,vo + Dp(y))dy < € and vy + Dé(-) € U(x,u) a.e.in
"

for all (z,u) sufficiently close to (xg,ug).
Then for each piece-wise affine function f € WH(Q; R™) with Df(-) €
U(-, f(+)) a.e. in Q and each n > 0 the problem

Du() € K(-,u(*)) a.e. inQ, ue WH(Q;R™), u\m = f\m, lu—f]|ze <,

has a solution.

It is helpful to state explicitly a nonhomogeneous version of Theorem 1.2.

Corollary 1.4 Let U : Q x R™ — 2R™" K : QO x R™ — 2B™" pe
multi-valued functions with equi-bounded values, where the sets K(x,u) are
also compact and the mapping (x,u) — K(x,u) is lower semicontinuous.

Assume that for each (xg,up) € Q@ x R™, each vy € U(xg,ug), and each
€ > 0 there exists a piece-wise affine function ¢ € Wol’oo(Q; R™) such that

/ dist(vg + Do(y), K(xo,up))dy < € and vy + Do € U(z,u) a.e. in <
"
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for all (z,u) sufficiently close to (xg,ug).

Then for each piece-wise affine function f : Q — R™ with Df(z) €
Uz, f(z)) a.e. in Q and each n > 0 we can find a function f, € f +
Wy ™ (Q;R™) such that ||f — fyllze <1 and Df,(z) € K(x, f,(x)) a.e. in
Q.

Note that one of the cases of Corollary 1.4 was stated by M.Gromov [G,
p. 218] as a further development of the method of convex integration. The
main difference is that in [G] a more special approximation of the sets K
in Corollary 1.4 is required. Such approximations are not always possible in
applications, see e.g. [MSv2].

In this paper we also discuss two applications of Theorem 1.3. The first
concerns the Hamilton-Jacobi equation (1.1). In case m = 1 the well-known
theory of viscosity solutions leads to well-behaved solutions of these problems,
see e.g. [Bal, [BCD], [CrEL], [K], [L], [Su]. Recently interest to differential
inclusions restarted in view of applications to solid-solid phase transitions,
see [BJ1], [BJ2], [BJFK]. The authors of the paper [CDGG] showed that
even in the scalar case such problems might fail to have a viscosity solution.
This forces one to look for optimal results in the Sobolev class.

We show that, for m > 1, the existence of a Sobolev solution in the
case of continuous Hamiltonians H can be easily derived from Theorem 1.3.
In fact one can also deal with those systems of equations which meet the
requirements of the theorem, see [DM1-4] for such systems. Note also that
the case of single Hamiltonian (see Theorem 1.5 below) does not present new
difficulties in the vectorial case m > 1 comparing with the scalar case m = 1.
In fact one can always consider the problem in a subset where f is affine and
to fix all components of f but the last. This way the problem can be reduced
to the scalar problem. The main new difficulty we overcome here concerns
the situation when the convex hulls of the level sets U(z,u) := {v € R" :
L(z,u,v) < 0} might not form a continuous multi-valued function contrary
to the case considered in [BF|, [DeBP].

Theorem 1.5 Let L : Q x R™ x R™*" — R be a continuous function
such that liminf)y o L(z,u,v) > 0 uniformly on compact sets in the v and
u variables, and let f € WH*(Q; R™) be a piece-wise affine function such
that L(-, f(-),Df(:)) <0 a.e. in 2.



Then for each € > 0 one can find a function ¢ € WOI’OO(Q; R™) such that
||0]| 1 < € and

L(z, f(x) + ¢(z), Df(x) + Dp(x)) = 0 a.e. in .

The second typical application concerns the bang-bang principle for dif-
ferential inclusions. In the convex case we can state an optimal result. The
scalar case was studied in [B], [BF], see also [DeBP].

We say that a set £ C R™*™ contains no rank-one connections if rank(A—
B) > 1for all A,B € E with A # B.

Definition 1.6 For a compact convex subset U of R™*"™ we define the set
of gradient extremum points gr extrU as the union of the set of all extremum
points of U and of all those faces of OU which do not contain rank-one con-
nections.

Theorem 1.7 Let F(z,u) : R* x R™ — 2R™" be a continuous multi-
valued mapping, which is compact and convezr. Let f € WH(Q; R™) be a
piece-wise affine function which satisfies the inclusion Df(-) € intF (-, f(-))
a.e. in §Q.

Then for each € > 0 there exists u € W (Q; R™) such that

u‘aﬂ =f, llu— fl|lz= <€, and Du(-) € grextrF(-,u(-)) a.e. in Q.

In §4 we will also show that the choice of the multi-valued mapping
(z,u) — grextrU is optimal to solve the differential inclusion.

In §2 we prove general reduction principles, which are Theorems 1.2,
1.3. The first theorem was proved in [S1], however we include its proof for
convenience of a reader. The basic technical ingredient is Lemma 2.1, which
is closely related to ideas of Nash [Na|, Kuiper [Ku] and Gromov [G]. This
lemma shows how to construct a sequence u; of perturbations of a given
function to assure strong convergence of Du;. We follow the construction
from [S1]. Another realization of the same idea can be found in [MSv1],
[MSv2].

In §3 we show how to derive Theorem 1.5 from the general reduction prin-
ciple, which is Theorem 1.3. We also note that some generalizations of both
theorems are possible. In fact an analogous result holds for those functions

6



L which are upper semicontinuous in z. However lower semicontinuity may
prevent solvability of the problem, see §3 for details.

In §4 we reduce Theorem 1.7 to Corollary 1.4. We show that the choice
K(z,u) := grextrU(z,u) is optimal to resolve the differential inclusions in
question for a convex-valued multifunction (z,u) — U(z,u). We discuss also
which progress can be made in the case of general multi-valued functions. The
main result in this direction is Theorem 4.5. Its consequence is an attainment
result for the case K(x,u) := SO(2)A(z,u) U SO(2)B(z,u) with continuous
functions A4, B : Q x R™ — R**? such that detB(z,u) > detA(z,u) > 0, and
the singular values \;(z,u) < Ao(z,u) of BA™! satisfy \; < 1 < \. Here
the set U(z,u) consists of all v € R**? such that we can find a sequence
¢; € 1, + Wy (Q; R?) with the property dist{D¢;; K (x,u)} — 0 in L' as
j — oo. This problem was well studied in the homogeneous case in context
of solid-solid phase transitions, see [Sv|, [MSv1], [DM2], [DM4|. Now we
can treat the nonhomogeneous case.

In §5 we compare our approach to the problem of solvability of the equa-
tions and the inclusions with the approach based on application of the Baire
category idea. The latter approach was developed in particular by Italian
School, see e.g. [DM1-4] and papers mentioned therein for the vectorial case
and [C], [B], [BF|, [DeBP] for the scalar case. We show that Theorem 1.3
allows to obtain sharper results than those in [DM1 — 4]. We can remove
additional requirements like quasiconvexity of the function L with respect to
Du in Theorem 1.5. The main difference is that to apply the Baire category
approach one needs to require openness of the set of approximate solutions
in the L*°-norm, see §5. We compare the methods on example of convex sets,
which is the best studied case in literature.

Notation

We use the following notation: for a subset U of R" the sets intU, reintU,
coU, and extrU are respectively the interior of U, the relative interior of U,
the convex hull of U, and the set of extremum points of U (a point a belongs
to extrU if it can not be represented as a convex combination of other points
of U). The set B(a,¢) denotes the ball of radius € which is centered at the
point a € R™. The boundary of the set U is denoted by 0U. Note that if
U is a convex and compact set then by the Hahn-Banach theorem for each



A € 0U we can find a hyperplane H such that A € (U N H) and U lies on
one side of this hyperplane. The sets OU N H are also convex and compact.

For each point A € OU one defines faces (of OU) containing A inductively
as follows. First there exists a hyperplane H such that A € (OU N H) and
U lies on one side of H. The set OU N H is a face containing A. If A is
not an interior point (relative to H) of the set U N H then there exists a
hyperplane H' in H such that A € (0U N H') and the set U N H lies on one
side of H' in H. The set OU N H' is also a face containing A. Proceeding
inductively we come to the situation when either A is an interior point of the
face or the face has dimension zero, i.e. it is the singleton {A}. In the latter
case we also consider A as an interior point of the face.

It is not difficult to show that the face which contains A as an interior
point is unique and that the dimension of this face is minimal among the
dimensions of all the faces containing A. This face will be called the smallest
face containing A and its dimension will be called the index (indA) of the
point A. Note that if A is not an extremum point of U then indA > 0.

Weak and strong convergence of sequences are denoted by — and —,
respectively.

Recall that a multi-valued mapping F : Q x R™ — 2R™" ig called lower
semicontinuous if for each (zg,up) € 2 x R™, each vy € F(xg, 1), and each
sequence (xy, uy) converging to (xg, ug) one can find v, € F(xy, u) such that
v — Vg as k — oo. If F' has compact values then we call F' continuous if it
is continuous in the Hausdorff metric. F' is called compact or convex if its
values are compact or convex sets, respectively.

2 General reduction principles

In this section we prove Theorems 1.2, 1.3 and then derive Corollary 1.4.
Note that Theorem 1.2 is a homogeneous version of Theorem 1.3. However
we include its proof for convenience of the reader.

We recall the following version of the Vitali covering theorem. A family
G of closed subsets of R" is said to be a Vitali cover of a bounded set S
if for each z € S there exists a positive number r(z) > 0, a sequence of
balls B(xzy,€,) with ¢, — 0, and a sequence Cy € G such that © € Cj,
Cr C B(z,¢), and {meas C)/ meas B(x,¢)} > r(x) for all k£ € N.



The version of the Vitali covering theorem from [Sa, p.109] says that each
Vitali cover of S contains an at most countable subfamily of disjoint sets C}
such that meas (S \ U,Cy) = 0.

We will frequently use the following construction which will be called
shortly the Vitali covering arqument. Let  be a Lipschitz bounded do-
main. Given an open set Q and a function f € Wy ™°(€; R™) we consider
a decomposition of ) into disjoint sets z; + ¢,Q, i € N, and a set of zero
measure. Define u(z) = ¢;f((z — 2;)/¢;) for x € x; + ¢, i € N. Then
u € Wy™(Q; R™).

The basic two properties of this construction are that Du has the same
distribution in © as Df in €, in particular for each subset K of R™*" we
have

1

meas )

| dist(Du(e), 5)dr = ! [ dist(Df (), K) .

meas §?

and we can make L*-norm of u arbitrary small by taking ¢;, © € N, suffi-
ciently small.

The first basic technical ingredient of our approach is the following lemma.

Lemma 2.1 (controlled L*° convergence implies W' convergence)
Let u; be a sequence of piece-wise affine functions such that

wjt1 = u; + ¢, ¢; € W™ (4 R™),

and ||u;]|wiee@rm) < const < oo,
Let ©2; CC intQ be a sequence of subsets of 2 such that meas (2\€2;) — 0

as j — oo. Suppose that §1; := UZ(:]%Q; 1s a union of disjoint tetrahedra Q;
on which u; is affine and suppose

diamQ;- < c(in-radius of Q;), ie{l,...,i(5)},
with ¢ > 0 independent of j € N. Let

dj:= min in-radius of 2, Dj:= max diam (2
1<i<i(j) 1<i<i(j)

and suppose that D; — 0 as j — oo.



Then the estimates

|6

b jen, @.1)

imply that u; converges in WHH(Q; R™) N L (Q; R™).

|5l < 2]-—117 [@j+1]] <

Proof
The inequalities (2.1) imply the inequalities

o0 o0
Y. MNdillre < const/27, |ju; — wollp= < D ||6ille < 2/[)ll=.  (22)
i=j+1 i=j

Thus the sequence u; converges in L*-norm. Hence there exists uy € u; +
Wy ™ (Q; R™) such that uj —* ug in WH(Q; R™) as j — oo.

For each j € N we can extend the triangulation €); = UZQQ; to a trian-
gulation of the whole domain €, i.e. Q = U2, Q.

Consider piece-wise affine approximations u% 1 Q2; — R™ of uy associated
with the triangulations €2 = U;’;Qé, i.e. u} are affine in each set Q;-, 1€ N,
and equal to ug in vertices of these sets. It is not difficult to show that

[Jug — o1 @rmy — 0, j — o0, (2.3)
In view of (2.3) and the convergence
[Jusllwiava;mm) + ||U6||W1,1(Q\Qj;Rm) — 0, j — oo.

it suffices to prove that ||u} — uj||lwii(q;mm) — 0. This convergence follows
from (2.1). In fact, since both functions u} and u; are affine in Q’ for each
i € {1,...,i(j)}, maximum of the function |ug — u;| in Q} is achieved in
vertices, where uf) = ug. Then the first inequality in (2.1) together with the
second one in (2.2) imply the inequality

|Du; — Duj| < 1/2

in each set Qé-, i € {1,...,i(j)}, and the convergence (2.3) follows. This
proves the claim of the lemma. QED

Proof of Theorem 1.2
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Let f be a piece-wise affine function such that Df € (U U K) a.e. in
2. We will construct a sequence of piece-wise affine functions u; : 2 — R™
having the following properties:

Du; € (UUK) a.e. in Q, ||dist(Du;; K)||;1 — 0, (2.4)
uj‘ag - f‘ag’ (2.5)
uj — ug in WHH(Q; R™) N L®(Q; R™). (2.6)

We take u; = f. Assume that u; is already defined. We will show how
to define u; ;. Let €; CC 2 be such that

meas )
27

meas (2 \ ;) < (2.7)
and let Q; = Uz(:]%Q;, where (2} are disjoint tetrahedra such that Du; is con-
stant in Q) for each i € {1,...,i(j)}, i.e. Du; = A5 in Q. i e {1,...,i(j)}.
We may assume also that

diamQé- < ¢(in-radius of Q;), ied{l,...,i(5)},

with some ¢ > 0 independent of j € N.

We assume that d; is the minimum of the set of diameters of balls in-
scribed in the sets Qf, 7 € {1,...,i(j)}, D; is the maximum of the set of
diameters of the sets 2, i € {1,...,4(j)}. We may assume also D; € ]0,1/;].

Fix i € {1,...,i(j)}. By the assumptions of the theorem and by the
Vitaly covering argument we can find a piece-wise affine function ¢§ €
Wy (24 R™) such that ¢t # 0 if the inclusion Duj(z) € K ae. in Q
does not hold and

(A i 1 i pi i
||dist (A% + D¢j,K)||L1(Q§_) < gj meas Q:, AL+ Dgj e U, (2.8)

; dj [luj — w1 llr=(@)
||¢j||Lo<>(Q;l) < ﬁa ||¢j||Loo(Q;l) < 9 : (2-9)
Define ¢; = ¢% in Q}, ¢; = 0 otherwise.
Define also u;41 := u; + ¢; in €5, uj11 = u; otherwise. Then (2.8) implies
(2.4). By Lemma 2.1 the inequalities (2.9) show that the limit in (2.6) exists.
Finally (2.4), (2.5) give

Duy € K a.e. in Q, uo‘aﬂ = f‘aﬂ’ uy € Wy ™ (Q; R™). (2.10)
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This completes the proof. QED

Proof of Theorem 1.3 The argument follows the lines of the proof of
the previous theorem. Fix n > 0.

The sequence u; will be constructed in a way to meet the requirements
of Lemma 2.1, i.e. uj;; = u; + ¢;, where ¢; € Wy >°(Q; R™) are piece-wise
affine functions such that (2.1) holds with €2, such that meas (2\ ;) < 1/27.
Note that to choose ¢; satisfying the requirement (2.1) we need only know
the function ¢;_;. We will use this flexibility to take ¢; with

|5l |z < /27 (2.11)

Moreover the sequence ¢; will satisfy one more requirement. We show how
to achieve this knowing the function ¢;_;.

Let xy be a point such that the restriction of Du; to its neighborhood is
a constant function. Let its value be A.

By assumptions we can find a set V' C U(xg, uj(xo)) such that A € V and
there is a piece-wise affine function ¢ € Wy (; R™) with A+ D¢ € V a.e.,

[ e, i), A+ Do(a))di < %meas Q. (2.12)

Moreover there exists 6 > 0 such that Du; = A in B(zy,d) and
V' C Nzao|<tful <sU (2, uj () + ).

We will show that § > 0 can be taken so small that

. . 3 -
/~ d(z,u;(z) + ¢(x), A+ Do(x))dr < - meas (2.13)
Q J
for each open set Q C B(wg,¢) and each function b€ Wy (; R™), which is
obtained by the Vitaly covering argument applied to ¢, with ||¢||L°°(Q;Rm) <

d. To prove (2.13) recall that d < M everywhere and there is a finite set
{A1,..., A} of elements of R™*™ with

meas {z € Q: Do(x) # As,..., Do(z) £ A} < jiMmeas Q. (214)
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If § is sufficiently small then upper semicontinuity of d implies
d(.’L‘, uj('r) + u, A + Az) - d(l‘Oa Uj(xo)a A + Az) S 1/]7 (XS {17 ) l}:

for each 2 € B(xg,6) and |u| < 6. Then for each ¢ under consideration we
have

d(z,uj(x) + ¢(x), A+ Do(w)) — d(wo, us(x0), A+ Dg(x)) <1/ (2.15)

in the set Q) == {x € Q: D¢ € {A;,..., A;}}. In view of (2.14) we have also

[ o, (0 + 32), A + D))o < S

The latter inequality together with the inequalities (2.12) and (2.15) implies
(2.13). Applying the Vitaly covering argument once more we can make the
L*-norm of the function ¢ arbitrary small and we can assume that Q C
B(x,0) is a tetrahedron containing x.

Applying the Vitaly covering arguments together with (2.13) we obtain

that for each j € IN there exists a subset ); := Uz(:]%Q; of €2 such that
meas (2 \ ;) < 1/27, Q! i € {1,...,i(j)}, are disjoint tetrahedra, and
Du; = A; in each tetrahedron Qé-, i €{1,...,i(j)}. In addition we may
assume _ .

diam(2; < c(in-radius of ), i € {1,...,i(j)},

with ¢ > 0 independent of ;7 € N. Moreover there exist J; > 0 and sets U]’f,
i€ {l,...,i(j)}, such that

l]]Z C ﬂ$€Q§,|u\§5jU(x7 u](x) + U), (216)

and there exist piece-wise affine functions ¢} € W, (U R™) with (A% +
D¢}) € U} a.e. and

. . 3 .
/, d(x, uj(z)+u, Aj+De}(x))dr < ;meas Q% for all |u| <45, 1 <4 <i(j)).
Q'L

i
(2.17)
Moreover in view of (2.13) we can select d)é- in such a way that

16510ty < 03/2 [165lleqaiy < M djarlloeiey/2, i € {1,...,i(j)}. (2.18)
J J
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The function ¢; is then defined as ¢% in Q, i € {1,...,i(j)}, ¢; = 0 other-
wise.

Remember that in addition to (2.18) we can assume that ¢; satisfies (2.11)
and (2.1). By Lemma 2.1 the latter assumption implies convergence u; — g
in L>°(Q; R™) N WH1(Q; R™). It turns out that (2.16-18) imply the identity
d(z,up(x), Dug(z)) = 0 a.e. in Q. In fact by (2.16-18) we have

/ d(z,up(z), Duji(z))de < Emeas Q.
Q J

We can take a subsequence u; (not relabeled) such that Du; converges to
Duy a.e. in Q, and d(z, ug(x), Duj(x)) — 0 a.e. in €.

Since for each (z,u) € Q x R™ the set K(z,u) := {v € U(z,u) :
d(z,u,v) = 0} is compact and the convergence d(x,u,vy) — 0 holds with
v € U(z,u) if and only if dist(vg, K(z,u)) — 0 we obtain that Dug(z) €
K(x,up(x)) for a.e. x € Q.

The proof is complete. QED

Proof of Corollary 1.4
This is an easy consequence of Theorem 1.3.
In fact it is enough to check that the function

d:{(z,u,v) e QxR" xR™":veU} - R,

defined by d(z,u,v) = dist(v, K(z,u)), v € U(x,u), is upper semicontin-
uous. The latter property follows from lower semicontinuity of the multi-
valued mapping (z,u) — K(z,u). The verification of other requirements of
Theorem 1.3 is straightforward. The proof is complete. QED

3 Sobolev solutions of Hamilton-Jacobi equa-
tions

In this section we show how Theorem 1.5 can be derived from general prin-
ciples discussed in the previous section. We discuss also how measurable
dependence on x influences the result. It turns out that Theorem 1.5 still
holds if L is upper semicontinuous with respect to x, but the theorem might
be false if L is only lower semicontinuous in a subset of nonzero measure.
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It is convenient to use a vector-valued version of arguments of Lemma
2.3 from [S2]. These arguments make use of special functions w; (see (3.3))
proposed in [Ma], [Gul].

Lemma 3.1 Assume that ¢ € R™ and assume that b € R". Let by = t10,
by = t9b, wherety, <0 < ty, andlet by, ..., b, be extremum points of a compact
convez set with 0 € int co{by,...,b,}. Define B;:==c®b;, i € {1,...,q}.

Then for each € > 0 there exists a piece-wise affine function ¢ € WOI’OO(Q; R™)
such that

meas {z € Q: Dp(x) = By or Dp(x) = By} > meas ) — €, (3.1)
D¢ € {By,...,B,} a.e. in Q. (3.2)

Proof

It is enough to prove the lemma in the scalar case m = 1 (with ¢ = 1).
In fact, if (3.1), (3.2) hold for a function ¢ € W, "*°(Q2) then we can define
a function ¢ : Q@ — R™ by the rule ¢; = ¢;9p, i € {1,...,m}. Then D¢ =
¢ ® D1 and the result holds in the general vector-valued case.

To prove the lemma in the scalar case consider first extremum points
v1,...,0, of a compact subset in R" with 0 € intco{vy,...,v,}. Consider
the function

ws(-) = max (v,-)—s, s>0. (3.3)

vE{V1,...,uq}
It is clear that wy(-) is a Lipschitz function such that Dwg € {vy,...,v,} a.e.
and wy(-) = 0 in OPs, where Py are polyhedrons with the property P, = sP;.

We can decompose €2 into domains €); := x; +s; P, © € N, and a set N of
null measure, i.e. Q:= Ujen(z; + 5;P1) UN. Define u(z) := ws, (x — x;) for
z € ;4 5,P, i € N, u=0 otherwise. Then u € W,"*°(Q), Du € {vy,... ,Uq}
a.e. in €.

We can take vy = by, v = by and v; € B(by,€) Nintco{by,...,b,}, i €
{3,...,4}. Then we can perturb the function u in each set €; := {x € Q:
Du(z) = v;}, 1 € {3,...,¢}, in such a way that the perturbation ¢, has the
property Do, € {by,...,b,}. We can do this since v; € int co{by, ..., b,} and
the construction in (3.3) can be applied to find a piece-wise affine function
fi € Wol’oo(Qi) such that Df; € {b; — v;,...,b, — v;}. Then, the function
l,, + [i presents the perturbation in question.
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Note that
meas{z € Q: Do, & {b1,b2}} = 0, € = 0,
since
meas{x € Q; : Dfi(x) b —v;} =0, e >0, Vi€ {3,...,q}.

This proves the claim of the lemma. QED

Now we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5 We assume

Ulz,u) :={ve R™": L(z,u,v) <0}, K(z,u):=0U(x,u). (3.4)

We define d := —L.
To prove the assertion it is enough to verify the assumptions of Theorem

1.3. Let vy € U(xg,up) and let € > 0. It suffices to show that there exists a
set U, 3 vy reducable to the set

Ke:={v € U(zo, wo) : dist(v, K (zo, up)) < €}

and such that U, C U(z,u) for all (z,u) sufficiently close to (z¢, up).
Note that

inf{d(xg, up,v) : v € (U(xg,up) \ K¢)} > v > 0.

Since vy € U(xg, ug) we infer d(zg, ug, vg) = n > 0. It is clear that K, contains
the boundary of the set

Ue:={veU(x,u):dz,u,v) > min{n/2,v/2}}

and that vg € U.. We can apply Lemma 3.1 to show that the set U, can be
reduced to its boundary 0U,. To do this consider a rank-one matrix A and
consider t; < 0,t5 > 0 such that vy + t; A, v + 1o A € OU,, vy + tA € U, for
t €]t,ta[. We can use Lemma 3.1 to assert that there exists a piece-wise
affine function ¢, € I, + Wy™(Q; R™) such that

D¢, € U, ae., meas{z € Q: Do.(x) € {vg+ 114, v9 + t2A}} > meas Q —e.
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Then [, d(xq, ug, Do(y))dy — 0 as e — 0.
Continuity of L implies the inclusion

Ue C ﬁ|$7$0\§5,|u7u0|§6U(1‘; ’U,)
if 0 = d(e) > 0 is sufficiently small. The proof is complete. QED

Note that Theorem 1.5 can be extended to the case of upper semicontin-
uous dependence of L on x. This follows from the possibility to replace the
requirement of Theorem 1.3 on upper semicontinuity of the function

d:{(z,u,v) e QxR xR™" :v € (U(x,u) U K(z,u))} — [0, M]

by a weaker assumption on the validity of this requirement with a sequence
of subsets € of  instead of €2 itself, where meas (2\ ) < 1/k. In this
case the proof follows the lines of the proof given in §2 with the only change
that some estimates hold in the integral sense.

Note that the existence result is well-known in the scalar case m = 1
for Hamilton-Jacobi equations of the eikonal type H(Du(-)) = f(-), see [L,
Ch. 7]. Moreover for this type of equations a theory of well-posed solutions
similar to the theory of viscosity solutions was developed recently in [NJ].

It is also obvious that instead of requiring upper semicontinuity in z in
the whole domain €2 we can take an open subset )y of full measure. However
if we admit that L is no longer upper semicontinuous in a subset ' of )
with nonzero measure then the existence result may fail.

Consider the problem [Du| = f, u € Wh*(Q), where Q = [0,1] x [0, 1]
and u : Q@ — R. It was remarked in [L, Remark 7.5], [Cr| that one can
find an open, dense, and connected subset Q of Q with meas {Q\ Q} > 0.
Then taking f = 0 in Q, f = 1 otherwise, we infer that each solution u of
the problem satisfies Du = 0 in Q. Connectedness of Q implies that u is
constant in €. Then density implies that u is constant everywhere in Q, i.e.
Du =0 a.e. in 2.

In this example f is forced to be equal to zero in a large set. It turns out
that this example can be modified to include the case with f € {1,3}. In
fact let G be an open dense subset of [0, 1] with (1 —¢) < meas G < 1,€ >0
is given. Consider the set Q := G x G. Assume f=1in Q, f=3in Q \ Q.

Assume that u € WH(Q) and |Du| < f in Q, i.c. |Du| < 1in Q. Our
claim is that [Du| < 2 a.e. in Q. To see this notice that if 4, = (z,1,) € Q
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and Ay = (z2,y2) € () then the point 4 = (x1,y2) also belongs to Q. Since
|Ar — Ap| > max{[A — A, [A — Ay[}

and
[u(A1) —u(A)] < [A1 — A, [u(As) —u(A)] <[4 — A|

we obtain that |u(A;) — u(A2)| < 2|4; — Ay

Since Q is dense in  we infer that u is Lipschitz with the constant 2 in
the whole set Q. Therefore |Du| < 3 for a.e. z € Q\ Q, i.e. |Du| < f in this
set. This shows that no solution of the equation |Du| = f a.e. in € exists.

4 Differential inclusions with gradient extremal
points

In this section we give the proof of Theorem 1.7. Then we show that the
choice (z,u) — grextrU(z,u) is optimal to solve the differential inclusions.
We also discuss which progress can be made in the general case of continuous
multi-valued functions.

To apply the general reduction principles to the case of Theorem 1.7 we
have to establish first

Lemma 4.1 Assume that U is a compact convex set with nonempty in-
terior. Then its interior can be reduced to the set grextrU.

Proof

To prove the lemma we have to show that given A € intU and ¢ > 0 there
is a piece-wise affine function u € [, + Wol’oo(Q; R™) with the properties:

1) Du € intU a.e. in €,

2) ||dist(Du, grextrU)||11(q) < 6.

Without loss of generality we can assume that A = 0. To each point
F € 0U we can associate an integer number indF' which is dimension of the
smallest face (of OU) containing F'. It is clear that F' € extrU if and only if
indF' = 0.

Let € > 0. Consider the set U¢ := {(1 —¢)v : v € U}.

Take a matrix B € R™*" with rankB = 1. Then there exist ¢; < 0,
ty > 0 such that A; := ;B € U (i = 1,2) and tB € intU* for t €lty,ts].

18



By Lemma 3.1 we can find a piece-wise affine function u € W,*°(Q; R™) the
gradient of which assumes finitely many values and satisfies

Du € U a.e., meas{z € Q: Du(x) # Aj,i =1,2} < ¢ <e. (4.1)

In the case A; ¢ grextrU¢ we can isolate a face Uy C 0U® such that
Ay € reintU; (in this case indA; is equal to dimension of U;). We can also
find a matrix By with rankB; = 1 such that for some t3 < 0, 4 > 0 we have

A3 = Al + t3B1 S 8{re intUl}, A4 = A1 + t4Bl S 0{1"6 intUl},

and A, +tB; € reintU, for t €]ts, t4].

Applying Lemma 3.1 to the set ; := {z € Q: Du = A} we can find a
piece-wise affine function ¢ € Iy, + Wy ™ (; R™) such that D¢ € intU a.e.
in Q; and for u; := u + ¢ we have

meas {x € Oy : Duy # As or Duy # Ay} < €9, where 0 < €9, €1 + €3 < €.

In this case
meas {x € Q: Duy & {As, A3, A4}} < e (4.2)

Note that max{indAs,indA,} < ind4; < mn. If one of the points A;
(1 € {2,3,4}) still does not belong to the set grextrU¢ then we can continue
the same process in the set ; = {z € Q: Du = A;}. In this case we can no
more guarantee that the gradients of the perturbations stays in the set U*€.
However we can select such a perturbation with the gradient staying in the
set intU.

It is clear that we need at most mn iterations to achieve the points of the
set grextrU¢. The final function u € WOI’OO(Q; R™) is piece-wise affine with
the gradient assuming finitely many values. Moreover, following (4.1), (4.2)
we can choose u in such a way that meas {z € Q : Du(x) € grextrU¢} < e.

Since € > 0 can be taken arbitrary small the claim of Lemma 4.1 is proved.
QED

To apply Corollary 1.4 we need to establish lower semicontinuity of the
mapping (z,u) — grextrU(z, u).

Lemma 4.2 Assume that U : Q x R™ — 2B™" s 4 continuous multi-
valued mapping whose values are convexr compact sets.

Then the multi-valued mapping (z,u) — grextrU(z,u) is lower semicon-
tinuous, i.e. if vy € grextrU(zg, wy) and (zx,ur) — (2o, uo), k — 00, then
there exist vy € grextrU (xy, uy) such that vy — vg as k — oco.
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Proof

It is enough to show that the mapping (x,u) — grextrU(x,u) is lower
semicontinuous.

Recall that to each point v € U of a convex set U we can assign an integer
number ind(v), which is dimension of the smallest face h of OU containing v
(in this case v € reinth).

Let vy be a gradient extremum point of the set U(xg, ug). Assume that
there exists a sequence (xy, ug) — (20, ug) and € > 0 such that for each k € N

the set B((xg,ug), €) does not contain extremum points of U (xy, uy).
Define

I := Hlf{h]gr_l}g}lf md(ﬁk) DU — Vg, U € 8U(xk, uk)} (43)

Switching, if necessary, to a subsequence we can find a sequence vy € U (2, uy)
such that vy — vy and ind(vy) = I > 1 for all sufficiently large k£ € N,

Let Vi C OU(xg, ug) be the face of dimension ind(v;) which contains vy,
k € N. We claim that for all sufficiently large k¥ € N the face V) does
not contain rank-one connections. Otherwise we can find a subsequence
(not relabeled) each element of which contains a rank-one direction a) with
lag| = 1, ar, — ag. Moreover there exists a 0 > 0 such that

Vi € [Uk — ak6, Vg + ak6] C Vk, k € N. (44)

If the claim (4.4) fails then there exists a subsequence v;, (not relabeled)
and 7y € O(reintV}) such that vy — 0y — 0. Then ind(9;) < ind(v) for all
sufficiently large k& and this contradicts (4.3). Therefore (4.4) holds.

In view of (4.4) we have vy € [vg — agd, vy + agd] C U(xg,up), where
rank (ag) = 1. This contradicts the assumption vy € grextrU(zo, up). The
contradiction proves that V, does not contain rank-one connections if & is
sufficiently large.

Therefore v, € grextrU(xzy,u) for all sufficiently large k¥ € N. This
proves that in case vy can not be approximated by extremum points of
U(zg, ug) it still can be approximated by gradient extremum points of these
sets. The proof of the lemma is complete. QED

Proof of Theorem 1.7
This will be reduced to the verification of the assumptions of Corollary
1.4.
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Let A € intU(zo,ug), and let € > 0. Without loss of generality we can
assume A = 0.

To meet the requirement of Corollary 1.4 we can take the set Us :=
(1 = 8)U(xp,up) with § > 0 so small that

dist(gr extrUs; grextrU (zo, up)) < €/2.

By Lemma 4.1 Us can be reduced to the set grextrUs.

In view of convexity and continuity of the function (z,u) — U(z,u) the
inclusion Us C U(z,u) holds for all (z,u) sufficiently close to (zg, ugp). More-
over, lower semicontinuity of the multi-valued function (z,u) — K(z,u) :=
grextrU(x, u) is the content of Lemma 4.2.

Since all the requirements of Corollary 1.4 hold the claim of Theorem 1.7
follows. QED

Now we want to show that the function (x,u) — grextrU(z,u) is an
optimal choice to resolve the differential inclusions. Then we discuss the
general case, i.e. we allow nonconvex sets U(z, u).

To treat the convex case we will use the following auxiliary lemma.

Lemma 4.3 Let U be a compact and convex subset of R™*™ with nonempty
interior. Let K be a compact subset of OU such that for each A € intU we
can find a sequence u; € Wy (Q; R™) with the property

/ dist(A + Duj(x), K)dz — 0, j — oo.
Q
Then grextrU C K.
This result was proved in [Z1]. The key ingredient of the proof is the

observation that given a linear subspace V of R™*" without rank-one con-
nections and given A € V' the estimate

[ 1D6(2) = PryDo(a) dz > ¢ [ |Do(a) da, ¢ >0,
Q Q
holds for every function ¢ € 14 + W, *°(€; R™), where Pry D¢ is the projec-

tion of the vector D¢ on the space V' (see [BFJK]; the result also follows
from Theorem 3 in [Ta], see also [Se|, [DP]).
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Theorem 4.4 Let U : Q — 28" be a continuous multi-valued function
whose values are compact convex sets with nonempty interior. Let also K :
Q — 2R™ be a lower semicontinuous and compact multi-valued function
with K(-) C oU(-).

If for a.e. x € Q, each A € intU(z), and each € > 0 the problem

A+ Do() € K(), 6 € Wy™(B(,€); R™) (45)
has a solution, then grextrU(-) C K(-) a.e. in €.

Remark It follows from the proof that the analogous result holds if
U:QxR™ — 2R™" is compact, convex and a lower semicontinuous function
of x such that for each 6 > 0 there exists a subset {25 of 2 with the following
properties: meas (2 \ €;) < 0 and the restriction of U to Qs x R™ is a
continuous function.

Proof of Theorem 4.4

Note that there exists a sequence {2, of compact subsets of {2 such that
meas (2 \ ) — 0, £ — oo, and the restriction of K to {2 is continuous in
the Hausdorff metric, cf. [CV].

Fix £ € N and fix a Lebesgue point x, of 2. We assert that there exists

a sequence uy € Iy + W, (Q; R™) such that
dist(Duy(-), K(x0)) — 0 in L' as k — oo.

In fact by (4.5) for each € > 0 we can find a function ¢, € [4+Wy > (B(xo, €); R™)
such that D¢.(-) € K(-) a.e.. Since z is a Lebesgue point of € and the
restriction of K to € is continuous we infer

/( dist(D6.(x), K (r0) i/ meas Blao, ) =50, ¢ =0
B(zg,e

Then we can apply the Vitaly covering argument to construct a family u, €
Ly + Wy (; R™) with the property

dist(Duc(+), K(19)) — 0in L', € — 0.

Lemma 4.3 implies that grextrU(xzg) C K(xg). Therefore the inclusion
grextrU(-) C K(-) holds a.e. in Q. QED
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To treat the general case (without requiring convexity of U(+)) one has to
establish an effective characterization of those subsets of U to which U can
be reduced.

The result of [Z2] says that given a compact set U one can always find
the smallest subset K C OU which ”generates” U. More precisely for each
A € intU one can find a sequence of perturbations ¢, € Wy ™(Q; R™) such
that dist(A + D¢y, K) — 0 a.e. in 2 and each set K’ having the same
property contains K as a subset. It is not known, however, whether the
sequence ¢ can be selected to satisfy the inclusion A + D¢, € U. Moreover
it is not known how the sets K C OU depend on parameters.

However we can apply Corollary 1.4 to establish the following abstract
result. We say that a compact set U with nonempty interior can be properly
reduced to a set K C QU if for each A € intU and each ¢ > 0 there exists a
piece-wise affine function ¢ € W, ™ (Q; R™) such that

dist(A+Dg, (R™™\intU)) > § > 0 a.c., /Q dist(A+ Do (z), K)dz < e. (4.6)

Theorem 4.5 Assume that U : Q x R™™ — 2B™" s 4 continuous
compact multi-valued function such that for each (xq,uy) € Q X R™™ and
each v € intU(xzg, up) there exists a neighborhood of v which belongs to all
sets U(x,u) with (z,u) sufficiently close to (xq, up).

Let K : Q x R™" — 2R™" pe ¢ lower semicontinuous compact function
such that for each (x,u) € Q x R™™ the set U(x,u) can be properly reduced
to the set K(x,u).

Then for each piece-wise affine function f € WOI’OO(Q;R"‘) with Df(-) €
intU(-, f(-)) a.e. and each n > 0 there exists a solution of the problem

Du() < K(au()) a.e. in ), u € WLOO(Q;Rm)a U‘OQ = f‘ag’ ||u_f||L°° <.

Proof

It suffices to apply Corollary 1.4 with V(z,u) = intU(x, u) instead of U.
To verify the main hypothesis of Corollary 1.4 one uses the fact that, for
d > 0, the set S = {v : dist(v, R™*" \ U(zg,up)) > 0} is compact. Hence
S C U(z,u) for all (x,u) sufficiently close to (zg,u) and the argument is
easily concluded. QED

23



Consider matrices A, B € R**? and let \;(BA™!) < A\y(BA™!) denote the
singular values of BA™!, i.e. the eigenvalues of [(BA™!)!(BA~')]'/2. Suppose
that

detB > detA >0, 0 < \(BA ') <1< \(BAY). (4.7)

Then one easily checks that there are exactly two matrices By, By in the set
SO(2)B which satisfy rank(B;—A) = 1,7 = 1,2. Let K := SO(2)AUSO(2)B
and let U be the set of all those v € R?*? for which there exists a sequence
¢; € 1, + Wy (Q; R?) with the property dist(D¢;, K) — 0 in L'. This set
was explicitely computed in [Sv].

To indicate the dependence of U on A and B, we write sometimes Uy p.
If A and B are functions we use the notation U(x,u) = Ua(zu),B(wu)-

Corollary 4.6 Suppose that A,B : Q x R?> — R?*? are continuous

functions which satisfy (4.7). Then for each piece-wise affine function f €
Whoo(Q; R?) with

Df(z) € {intU(z, f(z)) U K(z, f(2))}
and each € > 0 we can find a function u € f 4+ Wy (Q; R2) such that

Du(z) € K(z,u(z)) a.e. inQ, [|u— f||lpe@mrz) < €

Proof

It is enough to treat the case of the linear boundary data f, i.e. f =1,.
Moreover without loss of generality we can assume that v € intU(z,l,(x))
everywhere in €2, otherwise we can switch to an open subset Q of Q such that
v € K(z,1,(x)) ae. in Q\ Q, v € intU(z, l,(x)) everywhere in €. The latter
holds because of continuity of the mapping (x,u) — K(z,u).

In order to verify the assumptions of Theorem 4.5 we use the following
facts (we always assume (4.7)).

(i) (A, B) = Ua g is upper semicontinuous (this follows immediately from
the description of U as a level set, see [Sv] or [MSv1])

(ii) O(intUa ) = OU4 g (see [MSv1], Lemma 5.1)

(iii) if F' € intUy g, then F € intUy p for all (A', B') close to (A, B) (see
[MSv1], Corollary 5.2)
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(iv) Ua,p can be reduced to SO(2)AU SO(2)B (see e.g. [MSv1], Lemma
3.2).

Now it follows from (i)-(iii) that the maps (A, B) = Ua p and (z,u) —
U(z,u) = Ui(zu),B(z,u) are continuous. In connection with (ii)-(iv) this shows
that Uy p can be properly reduced to SO(2)(A) U SO(2)(B). QED

5 Comparison with the Baire category ap-
proach

In this section we discuss difference between the Baire category method de-
veloped in particular by the Italian school (see e.g. [C], [B], [BF], [DeBP],
[DM1-4]| and papers mentioned therein) and our method of constructing
sequences of approximate solutions converging strongly in W'-norm, which
is based on Gromov’s idea (whose theory of convex integration greatly gen-
eralizes earlier work of Nash and Kuiper on the imbedding problem).
Recall that the Baire category approach for solving differential inclusions

L(Du) =0 a.e. in Q, u‘aﬂ = f‘m

consists in proving that the sets of approximate solutions, i.e. of those ad-
missible functions u that [, |L(Du(x))|dx < €, are open and dense in the
L*>*(©; R™)-norm. Then a Baire category argument allows to conclude that
the set of solutions is dense in the L>°-norm in the set of admissible functions.

The advantage of the method is that it reduces the problem to the con-
struction of approximate solutions. On the other hand one has to verify
openness in L of the set of approximate solutions, which is a rather restric-
tive property.

For a more specific comparison with our approach we first recall the notion
of quasiconvexity introduced by Morrey, cf. [Mo].

Definition 5.1 Let U be a bounded subset of R™*", let L : U — R be
continuous and bounded from below, and let L(v) = oo for v & U. We say
that L is quasiconvex at a point A € U if for each piece-wise affine function
¢ € Wy (4 R™) such that A+ Dé € U a.e. in Q the inequality

/QL(A + D¢(x))dx > L(A) meas €2
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holds.
The function L€ is called the quasiconvezification of L if for each A € U
we have

1
LIo(4) 1= inf —— /Q L(A + Dé(x))da,

where ¢ € WOI’OO(Q; R™) are piece-wise affine functions such that A+D¢ € U
a.e. in Q.

It is easy to show that L% is a quasiconvex function.
A typical result available by the Baire category method is

Theorem 5.2 [DM1, Thm.2.1]
Let Q C R™ be an open set, and let ¢ € WH(Q; R™) and L : R™" — R
satisfy the following hypotheses:

L is quasiconves; (5.1)

there exists a compact convex set U such that U C {£ € R™ " : L(&) <0}

(5.2)
(L7)" =0 on intU, where L~ = —L on U and + oo otherwise;  (5.3)
D¢ is compactly contained in intU. (5.4)
Then there exists u € WH*(Q; R™) such that
L(Du(z)) =0, a.e. z € Q,
u(z) = ¢(x), = € 0. (5.5)

Moreover Du(z) € U a.e.

Here the authors define the set of the admissible functions as
Vi={uc o+ W, (Q;R™) : Du(z) € U ae. in Q}.

and the sets of approximate solutions as

Ve={ueV: [ Lo (Du(@)ds < %}.
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Convexity of U allows to approximate original functions by admissible piece-
wise affine ones in W1*°-norm, see [DM1, §6]. Moreover it implies complete-
ness of V' in the L*®°-norm.

The requirement of quasiconvexity of L allows to obtain openness of V}, in
the L*°(€2; R™)-norm since integral functionals with quasiconvex integrands
are sequentially weak* lower semicontinuous in W1 (£2; R™). Moreover qua-
siconvexity of integrands is just a characterization of this property of integral
functionals [Mo]. Therefore the requirement (5.1) is necessary for sequential
weak™ upper semicontinuity of the integral functional with integrand L—,
that means that this condition is optimal for applying the Baire category
arguments (since we need openness of V}). Note that density of the sets Vj
follows from the identity (L)% = 0 on intU. Then the set NV} is dense in
V' and contains only solutions of the equation (5.5).

Note that continuity and quasiconvexity of L‘U < 0 imply that the set

K :={£ €U: L) = 0} is generally larger than the set grextrU. First, it
follows from [Z1] that grextrU C K, see also §4. Moreover, if A € grextrU
and there are By, By € grextrU with A €]By, By[, rank(By; — By) = 1, then
[B1, By € K. This follows from continuity of L and Lemma 3.1. The set of
such A might be nonempty in the case n > 3, but other points of | By, By[ may
not lie in the set grextrU (see the example of the set U based on Proposition
5.3). Therefore K is generally larger than the set grextrU.

Another interesting idea to modify the Baire category argument was pro-
posed recently in [DM3,84], see also [DM4,86]. There the authors proved
Theorem 1.2 under the additional requirement that K has the property:
for each € > 0 and each A € U there exists 6 = d(e) > 0 such that if
u € Ly+Wy ™ (Q; R™) satisfies ||dist(Du(-), K)||;: < & then for each sequence
br € la+ Wy™(Q;R™) with D¢, € U ae. and ¢ —* u in WH®(Q; R™)
the inequality

lim sup |dist(Dey; )|l 12 < e (5.6)
k—o0

holds.

Given a piece-wise affine function ¢ with D¢ € (U U K) the set V' of
admissible functions is defined as the closure of the set of all piece-wise affine
functions

ue d+ Wy (QR™), Duc (UUK),
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in the L*°(€; R™)-norm. It is clear that V' is a complete metric space in the
L°°-metric.

The authors consider the standard abstract lower semicontinuous exten-
sion of the functional u € V- — — [, dist(Du(z), K)dz, which is

I(u) :=inf liminf —/ dist(Du,(z), K)dx.
Uj uj—*u,u; €V 0
We have that if w € V and I(u) = 0 then Du € K a.e. in (.
The sets
Vii={ueV:I(u)>-1/k}

of approximate solutions are automatically open in the L*> topology since the
functional I(u) is sequentially lower semicontinuous in this topology. Density
of the set Vj follows from the requirement (5.6). In fact by (5.6) the set Vj
contains all functions u € V' with

—/&mpmemxg@
Q

where 6 = §(1/k) > 0. Since the latter set is dense in V' by the assumptions
of Theorem 1.2 and the Vitaly covering argument (see §2) we infer that all Vj,
k € N, are dense in V. The Baire category argument allows to conclude that
the set Ny Vi, which consists of solutions f € W1(Q; R™) of the differential
inclusion

Df €K, f=¢indQ,

is dense in V' (in the L*-norm).

Note that in this construction the authors exploit the fact that to ap-
ply the Baire category argument it is enough to deal with neighborhoods
of the functional u — — [, dist(Du(z), K)dz at zero, i.e. it is enough to
require stability in the L*-norm of those approximate solutions which have
the gradients sufficiently close to K in the integral norm.

In the latter result one does not specify the structure of the set U. How-
ever K should have special structure which in the case of convex U gives the
same result as Theorem 5.2 stated above.

Some improvements of the Baire category approach are still possible. In
the case of convex U one can, e.g., try to use upper semicontinuous quasi-
convex integrands L like in the original approach due to A.Bressan (see [B],
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[BF]), where the scalar case was completely treated. However the construc-
tion of such integrands might be a bit tricky. It is also possible to use more
flexible integrands which give functionals lower semicontinuous in a class of
functions smaller than all admissible Lipschitz functions (like rank-one con-
vex integrands and the functions given by iterative application of Lemma
3.1 and their limits). In any case the requirement of openness of the sets
of approximate solutions in the L°°-norm requires a special structure of U
and K, which we can avoid by dealing with strongly convergent approximate
solutions as in Theorem 1.2.

Theorem 1.3 shows how to develop our method in the case of nonho-
mogeneous differential inclusions and allows to remove the quasiconvexity
requirement (i.e. the requirement that L(z,u,-) is quasiconvex), which is
responsible for openess of the approximate solutions in L*, in the results
contained in the papers [DM2-4|.

A different version of the Baire category argument is discussed in [KP].

The case of convex sets is the best studied in literature and it is easier
to show the difference in the constructions described above in this case. We
will exploit a well-known fact that in the case n > 3 the set of extremum
points extrS of a compact convex subset S of R™ can be nonclosed. More
specifically we will need an example of a set S with the properties desribed
in Proposition 5.3. Then the set U in question will be

U:={v e R : (vi1,v21,v31) € 5, vp €[0,1], i € {1,2,3}}.

Let f : [0,1] — [0, 1] be a decreasing concave function such that f(0) =1,
f(1) =0, and f is affine in each interval Iy :=]1/2% 1/2* '] k € N. Let dj
denote the value of f’ in I and assume dy < dj1, dp — 0 as k — oc.

Consider another function g : [0,1] — [0, 1] such that ¢(0) = 1 and
¢ =djy1 in Iy, k € N. Then g > f everywhere in ]0, 1].

Consider the sets

S_ = {(v1,v2,v3) : 0 < v <1,y =—1,0 < w3 < fur)},

Spi={(v,v2,v3) 1 0< vy <1, v =1,0 < w3 < fuy)},
So = {(v1,v2,v3) : 0< vy <1, 03 =0,0 < w3 < g(v1) )
The set S C R? is defined as the convex hull of the set S_ U S, U Sp.
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Proposition 5.3 We have

{(0,1,1),(0,=1,1), (1/2%,1, f(1/2")), (1/2", =1, £ (1/2%)),
(1/2%,0,9(1/2F)), k € N} C extrS.

However no point of the set [(0,—1,1),(0,1,1)]\ {(0,0,1)} belongs to the set
extrS.

Proof
It is obvious that the points

(0,1,1), (0, —1,1), (1/2%,1, f(1/2%)), (1/2%, =1, f(1/2%)),k € N,

belong to the set extrS. To prove the proposition we also have to show that
(1/2%,0,g(1/2%)) € extrS, k € N, and

([(0,=1,1), (0,1, D]\ {(0,0, 1) }) N extrS = 0.
Fix k € N. Let a = (1/2%71,0,g(1/2F71)). Note that
dk = f’ in Ik, dk == g’ in Ik—l-

Consider the plane H, which contains the segments J, := {[z,—1, f(z)] :
x € Iy}, Jp = {[z,0,9(z)] : © € I;_1} (there exists such a plane since the
segments are parallel).

Since the functions f, g are concave we infer that the set S lies below
H, . Moreover H, NS =S, , where S, is the convex hull of the set .J, U .JP.
Since a is an extremum point of the set S; it is also an extremum point of
the set S.

To show that each point b € (](0,1,1), (0, —1,1)[\{(0,0,1)}) does not lie
in the set extrS consider a sequence b; — b. We will show that b; & extrS
for all sufficiently large 7 € N. If b; is sufficiently close to b and the first
coordinate of b; is zero, then b; € {(0,z,y) : =1 <2 < 1,0 <y <1} and b;
can not be an extremum point of the latter set. Another possibility to stay
in the set extrS is b; € (Ux(Hf U H; ) NS, i.e. b; € Uk(Sy USY). However
all extremum points of the sets S;", S, have the second coordinate equal to
1, =1 or 0. This shows that b; ¢ extrS for all sufficiently large j € N. This
proves the claim. QED
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