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Abstract

In this paper we address the question of solvability of the di�erential inclu�
sions

Du��� � K��� u����� u
���
��


 f� u � W ������Rm��

where Df��� � F ��� f���� a�e� in �� and where F � � � Rm � �R
m�n

is a
multi�valued function�

Our approach to these problems is based on the idea to construct a se�
quence of approximate solutions which converges strongly and makes use of
Gromov�s idea �following earlier work of Nash and Kuiper� to control con�
vergence of the gradients by appropriate selection of the elements of the
sequence� In this paper we identify an optimal setting of this method�

We show that if for each �x� u� � ��Rm� each � � �� and each v � F �x� u�
we can �nd a piece�wise a�ne function � � lv �W ���

� ���Rm� �here lv�y� 

v � y� with jjdist�D��K�x� u��jjL� � � and D� � F �x�� u�� a�e� for all �x�� u��
su�ciently close to �x� u�� then we can resolve the di�erential inclusions� The
result holds provided f�x� u� v� � v � K�x� u�g is the zero set of a nonnegative
upper semicontinuous function d such that for each �x� u� the set K�x� u� is
compact and d�x� u� vj� � � if and only if dist�vj� K�x� u�� � �� We also
discuss some generalizations and applications of this result�

� Introduction

In this paper we are interested to identify an optimal principle which guar�
antees solvability of the problems

H��� u���� Du���� 
 �� u
���
��


 f� u � W ������Rm�� �
�
�

where H � � is de�ned in a subset of ��Rm �Rm�n and �x� f�x�� Df�x��
belongs to this subset for a�e� x � �� Here and everywhere in the paper we
assume that � is a Lipschitz bounded domain in Rn�

Consider �rst the homogeneous case H 
 H�Du�� f 
 lA� where lA is
an a�ne function with the gradient equal to A� Assume that U � Rm�n is
a domain of de�nition of a continuous nonnegative function H and assume
that the set K �
 fv � U � H�v� 
 �g is compact�

�



If we can solve the problem �
�
� with f 
 lA� A � U � then there exists a
sequence of functions �k � lA �W ���

� ���Rm� with the properties D�k � U
a�e�� dist�D�k���� K�� � in L� as k ��� This motivates

De�nition ��� Let U � K be bounded subsets of Rm�n�
We say that U can be reduced to K if for every A � U there is a sequence

of piece�wise a�ne functions �k � lA �W ���
� ���Rm� with the properties�

�� D�k � U a�e� in �� k � N�
�� jjdist�D�k� K�jjL���� � � for k ���

Here and in the following we say that � is piece�wise a�ne if it is Lipschitz
and there exists at most countably many disjoint open sets �j � �� whose

union has full measure� such that �
���
�j

is a�ne�

It turns out that the conditions that arise in the de�nition already imply
solvability of the di�erential inclusion�

Theorem ��� Assume that U is a bounded subset in Rm�n� and assume
that K is a compact subset in Rm�n to which U can be reduced�

Then for each piece�wise a�ne function f � W ������Rm� with Df �
�U �K� a�e� in � the problem

Du � K a�e� in �� u � W ������Rm�� u
���
��


 f
���
��

has a solution� Moreover� each ��neighborhood of f in the L����Rm��norm
contains a solution of this problem�

Before we state the main result in the nonhomogeneous case we recall the
de�nitions of standard distance functions� For a point A � Rm�n and a set
S � Rm�n we de�ne

dist�A� S� �
 inf
v�S

jA	 vj�

For two sets S�� S� we de�ne

dist�S�� S�� �
 sup
A�S�

dist�A� S���

The Hausdor� distance between the sets S� and S� is

distH�S�� S�� �
 dist�S�� S�� � dist�S�� S���

�



We will use some other standard notions and notations the complete list of
which is located at the end of this section�

The main result of this paper is the following theorem� We state it under
rather general assumptions in view of future applications� The somewhat
indirect hypotheses on U and d are naturally suggested by the proof and are
easily veri�ed in the context of the examples discussed below �see the proof
of Lemma ��
 in x� and Lemmata ��
� ��� in x���

Theorem ��� Let U � � � Rm � �R
m�n

� K � � � Rm � �R
m�n

be
multi�valued functions with equi�bounded values� Let also

d � f�x� u� v� � ��Rm �Rm�n � v � �U�x� u� �K�x� u��g � ���M �

be an upper semicontinuous function such that for each �x� u� � ��Rm the
set K�x� u� is compact� K�x� u� 
 fv � �U�x� u� �K�x� u�� � d�x� u� v� 
 �g�
and d�x� u� vk� � � if and only if dist�vk� K�x� u��� �� k ���

Assume that for each �x�� u�� � � �Rm� each v� � U�x�� u��� and each
� � � there exists a piece�wise a�ne function � � W ���

� ���Rm� such that
Z
�
d�x�� u�� v� �D��y��dy � � and v� �D���� � U�x� u� a�e� in �

for all �x� u� su�ciently close to �x�� u���
Then for each piece�wise a�ne function f � W ������Rm� with Df��� �

U��� f���� a�e� in � and each � � � the problem

Du��� � K��� u���� a�e� in �� u � W ������Rm�� u
���
��


 f
���
��
� jju	f jjL� � ��

has a solution�

It is helpful to state explicitly a nonhomogeneous version of Theorem 
���

Corollary ��� Let U � � � Rm � �R
m�n

� K � � � Rm � �R
m�n

be
multi�valued functions with equi�bounded values� where the sets K�x� u� are
also compact and the mapping �x� u�� K�x� u� is lower semicontinuous�

Assume that for each �x�� u�� � � �Rm� each v� � U�x�� u��� and each
� � � there exists a piece�wise a�ne function � � W ���

� ���Rm� such that
Z
�
dist�v� �D��y�� K�x�� u���dy � � and v� �D� � U�x� u� a�e� in �

�



for all �x� u� su�ciently close to �x�� u���
Then for each piece�wise a�ne function f � � � Rm with Df�x� �

U�x� f�x�� a�e� in � and each � � � we can �nd a function f� � f �
W ���

� ���Rm� such that jjf 	 f�jjL� � � and Df��x� � K�x� f��x�� a�e� in
��

Note that one of the cases of Corollary 
�� was stated by M�Gromov �G�
p� �
�� as a further development of the method of convex integration� The
main di�erence is that in �G� a more special approximation of the sets K
in Corollary 
�� is required� Such approximations are not always possible in
applications� see e�g� �MSv���

In this paper we also discuss two applications of Theorem 
��� The �rst
concerns the Hamilton�Jacobi equation �
�
�� In case m 
 
 the well�known
theory of viscosity solutions leads to well�behaved solutions of these problems�
see e�g� �Ba�� �BCD�� �CrEL�� �K�� �L�� �Su�� Recently interest to di�erential
inclusions restarted in view of applications to solid�solid phase transitions�
see �BJ��� �BJ��� �BJFK�� The authors of the paper �CDGG� showed that
even in the scalar case such problems might fail to have a viscosity solution�
This forces one to look for optimal results in the Sobolev class�

We show that� for m � 
� the existence of a Sobolev solution in the
case of continuous Hamiltonians H can be easily derived from Theorem 
���
In fact one can also deal with those systems of equations which meet the
requirements of the theorem� see �DM���� for such systems� Note also that
the case of single Hamiltonian �see Theorem 
�� below� does not present new
di�culties in the vectorial case m � 
 comparing with the scalar case m 
 
�
In fact one can always consider the problem in a subset where f is a�ne and
to �x all components of f but the last� This way the problem can be reduced
to the scalar problem� The main new di�culty we overcome here concerns
the situation when the convex hulls of the level sets U�x� u� �
 fv � Rn �
L�x� u� v� � �g might not form a continuous multi�valued function contrary
to the case considered in �BF�� �DeBP��

Theorem ��	 Let L � �� � Rm � Rm�n � R be a continuous function
such that lim infjvj��L�x� u� v� � � uniformly on compact sets in the x and
u variables� and let f � W ������Rm� be a piece�wise a�ne function such
that L��� f���� Df���� � � a�e� in ��

�



Then for each � � � one can �nd a function � � W ���
� ���Rm� such that

jj�jjL� � � and

L�x� f�x� � ��x�� Df�x� �D��x�� 
 � a�e� in ��

The second typical application concerns the bang�bang principle for dif�
ferential inclusions� In the convex case we can state an optimal result� The
scalar case was studied in �B�� �BF�� see also �DeBP��

We say that a set E � Rm�n contains no rank�one connections if rank�A	
B� � 
 for all A�B � E with A 

 B�

De�nition ��
 For a compact convex subset U of Rm�n we de�ne the set
of gradient extremum points gr extrU as the union of the set of all extremum
points of U and of all those faces of �U which do not contain rank�one con�
nections�

Theorem ��� Let F �x� u� � Rn � Rm � �R
m�n

be a continuous multi�
valued mapping� which is compact and convex� Let f � W ������Rm� be a
piece�wise a�ne function which satis�es the inclusion Df��� � intF ��� f����
a�e� in ��

Then for each � � � there exists u � W ������Rm� such that

u
���
��


 f� jju	 f jjL� � �� and Du��� � gr extrF ��� u���� a�e� in ��

In x� we will also show that the choice of the multi�valued mapping
�x� u�� gr extrU is optimal to solve the di�erential inclusion�

In x� we prove general reduction principles� which are Theorems 
���

��� The �rst theorem was proved in �S��� however we include its proof for
convenience of a reader� The basic technical ingredient is Lemma ��
� which
is closely related to ideas of Nash �Na�� Kuiper �Ku� and Gromov �G�� This
lemma shows how to construct a sequence uj of perturbations of a given
function to assure strong convergence of Duj� We follow the construction
from �S��� Another realization of the same idea can be found in �MSv���
�MSv���

In x� we show how to derive Theorem 
�� from the general reduction prin�
ciple� which is Theorem 
��� We also note that some generalizations of both
theorems are possible� In fact an analogous result holds for those functions

�



L which are upper semicontinuous in x� However lower semicontinuity may
prevent solvability of the problem� see x� for details�

In x� we reduce Theorem 
�	 to Corollary 
��� We show that the choice
K�x� u� �
 gr extrU�x� u� is optimal to resolve the di�erential inclusions in
question for a convex�valued multifunction �x� u�� U�x� u�� We discuss also
which progress can be made in the case of general multi�valued functions� The
main result in this direction is Theorem ���� Its consequence is an attainment
result for the case K�x� u� �
 SO���A�x� u�� SO���B�x� u� with continuous
functions A�B � ��Rm � R��� such that detB�x� u� � detA�x� u� � �� and
the singular values ���x� u� � ���x� u� of BA�� satisfy �� � 
 � ��� Here
the set U�x� u� consists of all v � R��� such that we can �nd a sequence
�j � lv �W ���

� ���R�� with the property distfD�j�K�x� u�g � � in L� as
j ��� This problem was well studied in the homogeneous case in context
of solid�solid phase transitions� see �Sv�� �MSv��� �DM��� �DM��� Now we
can treat the nonhomogeneous case�

In x� we compare our approach to the problem of solvability of the equa�
tions and the inclusions with the approach based on application of the Baire
category idea� The latter approach was developed in particular by Italian
School� see e�g� �DM���� and papers mentioned therein for the vectorial case
and �C�� �B�� �BF�� �DeBP� for the scalar case� We show that Theorem 
��
allows to obtain sharper results than those in �DM�	 ��� We can remove
additional requirements like quasiconvexity of the function L with respect to
Du in Theorem 
��� The main di�erence is that to apply the Baire category
approach one needs to require openness of the set of approximate solutions
in the L��norm� see x�� We compare the methods on example of convex sets�
which is the best studied case in literature�

Notation

We use the following notation� for a subset U of Rn the sets intU � re intU �
coU � and extrU are respectively the interior of U � the relative interior of U �
the convex hull of U � and the set of extremum points of U �a point a belongs
to extrU if it can not be represented as a convex combination of other points
of U�� The set B�a� �� denotes the ball of radius � which is centered at the
point a � Rn� The boundary of the set U is denoted by �U � Note that if
U is a convex and compact set then by the Hahn�Banach theorem for each

	



A � �U we can �nd a hyperplane H such that A � ��U �H� and U lies on
one side of this hyperplane� The sets �U �H are also convex and compact�

For each point A � �U one de�nes faces �of �U� containing A inductively
as follows� First there exists a hyperplane H such that A � ��U � H� and
U lies on one side of H� The set �U � H is a face containing A� If A is
not an interior point �relative to H� of the set �U � H then there exists a
hyperplane H � in H such that A � ��U �H �� and the set �U �H lies on one
side of H � in H� The set �U � H � is also a face containing A� Proceeding
inductively we come to the situation when either A is an interior point of the
face or the face has dimension zero� i�e� it is the singleton fAg� In the latter
case we also consider A as an interior point of the face�

It is not di�cult to show that the face which contains A as an interior
point is unique and that the dimension of this face is minimal among the
dimensions of all the faces containing A� This face will be called the smallest
face containing A and its dimension will be called the index �indA� of the
point A� Note that if A is not an extremum point of U then indA � ��

Weak and strong convergence of sequences are denoted by 	 and ��
respectively�

Recall that a multi�valued mapping F � ��Rm � �R
m�n

is called lower
semicontinuous if for each �x�� u�� � ��Rm� each v� � F �x�� u��� and each
sequence �xk� uk� converging to �x�� u�� one can �nd vk � F �xk� uk� such that
vk � v� as k ��� If F has compact values then we call F continuous if it
is continuous in the Hausdor� metric� F is called compact or convex if its
values are compact or convex sets� respectively�

� General reduction principles

In this section we prove Theorems 
��� 
�� and then derive Corollary 
���
Note that Theorem 
�� is a homogeneous version of Theorem 
��� However
we include its proof for convenience of the reader�

We recall the following version of the Vitali covering theorem� A family
G of closed subsets of Rn is said to be a Vitali cover of a bounded set S
if for each x � S there exists a positive number r�x� � �� a sequence of
balls B�xk� �k� with �k � �� and a sequence Ck � G such that x � Ck�
Ck � B�x� �k�� and fmeas Ck
meas B�x� �k�g � r�x� for all k � N�

�



The version of the Vitali covering theorem from �Sa� p�
��� says that each
Vitali cover of S contains an at most countable subfamily of disjoint sets Ck

such that meas �S n �kCk� 
 ��

We will frequently use the following construction which will be called
shortly the Vitali covering argument� Let � be a Lipschitz bounded do�
main� Given an open set �� and a function f � W ���

� ���Rm� we consider
a decomposition of �� into disjoint sets xi � �i ��� i � N� and a set of zero
measure� De�ne u�x� 
 �if��x 	 xi�
�i� for x � xi � �i ��� i � N� Then
u � W ���

� ����Rm��
The basic two properties of this construction are that Du has the same

distribution in �� as Df in �� in particular for each subset K of Rm�n we
have




meas ��

Z
��
dist�Du�x�� K�dx 





meas �

Z
�
dist�Df�x�� K�dx�

and we can make L��norm of u arbitrary small by taking �i� i � N� su��
ciently small�

The �rst basic technical ingredient of our approach is the following lemma�

Lemma ��� 	controlled L� convergence implies W ��� convergence�
Let uj be a sequence of piece�wise a�ne functions such that

uj�� 
 uj � �j� �j � W ���
� ���Rm��

and jjujjjW ������Rm� � const ���
Let �j �� int� be a sequence of subsets of � such that meas ��n�j� � �

as j � �� Suppose that �j �
 �i�j�
i	��

i
j is a union of disjoint tetrahedra �i

j

on which uj is a�ne and suppose

diam�i
j � c�in�radius of �i

j�� i � f
� � � � � i�j�g�

with c � � independent of j � N� Let

dj �
 min
��i�i�j�

in�radius of �i
j� Dj �
 max

��i�i�j�
diam �i

j

and suppose that Dj � � as j ���

�



Then the estimates

jj�jjjL� �
dj
�j��

� jj�j��jjL� �
jj�jjjL�

�
� j � N� ���
�

imply that uj converges in W ������Rm� � L����Rm��

Proof
The inequalities ���
� imply the inequalities

�X
i	j��

jj�ijjL� � const
�j� jjuj 	 u�jjL� �
�X
i	j

jj�ijjL� � �jj�jjjL�� �����

Thus the sequence uj converges in L��norm� Hence there exists u� � u� �
W ���

� ���Rm� such that uj 	
� u� in W ������Rm� as j ���

For each j � N we can extend the triangulation �j 
 �i�j�
i	��

i
j to a trian�

gulation of the whole domain �� i�e� � 
 ��i	��
i
j�

Consider piece�wise a�ne approximations uj� � �j � Rm of u� associated
with the triangulations � 
 ��i	��

i
j� i�e� u

j
� are a�ne in each set �i

j� i � N�
and equal to u� in vertices of these sets� It is not di�cult to show that

jjuj� 	 u�jjW ������Rm� � �� j ��� �����

In view of ����� and the convergence

jjujjjW �����n�j �Rm� � jjuj�jjW �����n�j �Rm� � �� j ���

it su�ces to prove that jjuj� 	 ujjjW �����j �Rm� � �� This convergence follows

from ���
�� In fact� since both functions uj� and uj are a�ne in �i
j for each

i � f
� � � � � i�j�g� maximum of the function juj� 	 ujj in �i
j is achieved in

vertices� where uj� 
 u�� Then the �rst inequality in ���
� together with the
second one in ����� imply the inequality

jDuj 	Duj�j � 

�j

in each set �i
j� i � f
� � � � � i�j�g� and the convergence ����� follows� This

proves the claim of the lemma� QED

Proof of Theorem ���


�



Let f be a piece�wise a�ne function such that Df � �U � K� a�e� in
�� We will construct a sequence of piece�wise a�ne functions uj � � � Rm

having the following properties�

Duj � �U �K� a�e� in �� jjdist�Duj�K�jjL� � �� �����

uj
���
��


 f
���
��
� �����

uj � u� in W ������Rm� � L����Rm�� �����

We take u� 
 f � Assume that uj is already de�ned� We will show how
to de�ne uj��� Let �j �� � be such that

meas �� n �j� �
meas �

�j
� ���	�

and let �j 
 �i�j�
i	��

i
j� where �i

j are disjoint tetrahedra such that Duj is con�
stant in �i

j for each i � f
� � � � � i�j�g� i�e� Duj 
 Ai
j in �i

j� i � f
� � � � � i�j�g�
We may assume also that

diam�i
j � c�in�radius of �i

j�� i � f
� � � � � i�j�g�

with some c � � independent of j � N�
We assume that dj is the minimum of the set of diameters of balls in�

scribed in the sets �i
j� i � f
� � � � � i�j�g� Dj is the maximum of the set of

diameters of the sets �i
j� i � f
� � � � � i�j�g� We may assume also Dj � ��� 

j��

Fix i � f
� � � � � i�j�g� By the assumptions of the theorem and by the
Vitaly covering argument we can �nd a piece�wise a�ne function �ij �

W ���
� ��i

j�R
m� such that �ij 

 � if the inclusion Duj�x� � K a�e� in �i

j

does not hold and

jjdist�Ai
j �D�ij� K�jjL���i

j
� �




�j
meas �i

j� A
i
j �D�ij � U� �����

jj�ijjjL���i
j
� �

dj
�j��

� jj�ijjjL���i
j
� �

jjuj 	 uj��jjL����

�
� �����

De�ne �j 
 �ij in �i
j� �j 
 � otherwise�

De�ne also uj�� �
 uj��j in �j� uj�� 
 uj otherwise� Then ����� implies
������ By Lemma ��
 the inequalities ����� show that the limit in ����� exists�
Finally ������ ����� give

Du� � K a�e� in �� u�
���
��


 f
���
��
� u� � W ���

� ���Rm�� ���
��







This completes the proof� QED

Proof of Theorem ��� The argument follows the lines of the proof of
the previous theorem� Fix � � ��

The sequence uj will be constructed in a way to meet the requirements
of Lemma ��
� i�e� uj�� 
 uj � �j� where �j � W ���

� ���Rm� are piece�wise
a�ne functions such that ���
� holds with �j such that meas ��n�j� � 

�j�
Note that to choose �j satisfying the requirement ���
� we need only know
the function �j��� We will use this �exibility to take �j with

jj�jjjL� � �
�j� ���

�

Moreover the sequence �j will satisfy one more requirement� We show how
to achieve this knowing the function �j���

Let x� be a point such that the restriction of Duj to its neighborhood is
a constant function� Let its value be A�

By assumptions we can �nd a set V � U�x�� uj�x��� such that A � V and
there is a piece�wise a�ne function � � W ���

� ���Rm� with A�D� � V a�e��

Z
�
d�x�� uj�x��� A�D��x��dx �




j
meas �� ���
��

Moreover there exists � � � such that Duj 
 A in B�x�� �� and

V � �jx�x�j���juj��U�x� uj�x� � u��

We will show that � � � can be taken so small that
Z
��
d�x� uj�x� � ���x�� A�D ���x��dx �

�

j
meas �� ���
��

for each open set �� � B�x�� �� and each function �� � W ���
� ����Rm�� which is

obtained by the Vitaly covering argument applied to �� with jj��jjL�����Rm� �
�� To prove ���
�� recall that d � M everywhere and there is a �nite set
fA�� � � � � Alg of elements of Rm�n with

meas fx � � � D��x� 

 A�� � � � � D��x� 

 Alg �



jM
meas �� ���
��


�



If � is su�ciently small then upper semicontinuity of d implies

d�x� uj�x� � u�A� Ai�	 d�x�� uj�x��� A� Ai� � 

j� i � f
� � � � � lg�

for each x � B�x�� �� and juj � �� Then for each �� under consideration we
have

d�x� uj�x� � ���x�� A �D ���x��	 d�x�� uj�x��� A�D ���x�� � 

j ���
��

in the set ��� �
 fx � �� � D �� � fA�� � � � � Algg� In view of ���
�� we have also

Z
��n���

d�x� uj�x� � ���x�� A�D ���x��dx �



j
meas ���

The latter inequality together with the inequalities ���
�� and ���
�� implies
���
��� Applying the Vitaly covering argument once more we can make the
L��norm of the function �� arbitrary small and we can assume that �� �
B�x�� �� is a tetrahedron containing x��

Applying the Vitaly covering arguments together with ���
�� we obtain

that for each j � N there exists a subset �j �
 �i�j�
i	��

i
j of � such that

meas �� n �j� � 

�j� �i
j� i � f
� � � � � i�j�g� are disjoint tetrahedra� and

Duj 
 Ai
j in each tetrahedron �i

j� i � f
� � � � � i�j�g� In addition we may
assume

diam�i
j � c�in�radius of �i

j�� i � f
� � � � � i�j�g�

with c � � independent of j � N� Moreover there exist �j � � and sets U i
j �

i � f
� � � � � i�j�g� such that

U i
j � �x��i

j
�juj��jU�x� uj�x� � u�� ���
��

and there exist piece�wise a�ne functions �ij � W ���
� ��i

j�R
m� with �Ai

j �
D�ij� � U i

j a�e� and

Z
�i
j

d�x� uj�x��u�A
i
j�D�

i
j�x��dx �

�

j
meas �i

j� for all juj � �j� 
 � i � i�j��

���
	�
Moreover in view of ���
�� we can select �ij in such a way that

jj�ijjjL���i
j
� � �j
�� jj�ijjjL���i

j
� � jj�j��jjL����
�� i � f
� � � � � i�j�g� ���
��


�



The function �j is then de�ned as �ij in �i
j� i � f
� � � � � i�j�g� �j 
 � other�

wise�
Remember that in addition to ���
�� we can assume that �j satis�es ���

�

and ���
�� By Lemma ��
 the latter assumption implies convergence uj � u�
in L����Rm� �W ������Rm�� It turns out that ���
��
�� imply the identity
d�x� u��x�� Du��x�� 
 � a�e� in �� In fact by ���
��
�� we have

Z
�
d�x� u��x�� Duj���x��dx �

�

j
meas ��

We can take a subsequence uj �not relabeled� such that Duj converges to
Du� a�e� in �� and d�x� u��x�� Duj�x�� � � a�e� in ��

Since for each �x� u� � � � Rm the set K�x� u� �
 fv � U�x� u� �
d�x� u� v� 
 �g is compact and the convergence d�x� u� vk� � � holds with
vk � U�x� u� if and only if dist�vk� K�x� u�� � � we obtain that Du��x� �
K�x� u��x�� for a�e� x � ��

The proof is complete� QED

Proof of Corollary ���
This is an easy consequence of Theorem 
���
In fact it is enough to check that the function

d � f�x� u� v� � ��Rm �Rm�n � v � Ug � R�

de�ned by d�x� u� v� �
 dist�v�K�x� u��� v � U�x� u�� is upper semicontin�
uous� The latter property follows from lower semicontinuity of the multi�
valued mapping �x� u� � K�x� u�� The veri�cation of other requirements of
Theorem 
�� is straightforward� The proof is complete� QED

� Sobolev solutions of Hamilton�Jacobi equa�

tions

In this section we show how Theorem 
�� can be derived from general prin�
ciples discussed in the previous section� We discuss also how measurable
dependence on x in�uences the result� It turns out that Theorem 
�� still
holds if L is upper semicontinuous with respect to x� but the theorem might
be false if L is only lower semicontinuous in a subset of nonzero measure�


�



It is convenient to use a vector�valued version of arguments of Lemma
��� from �S��� These arguments make use of special functions ws �see ������
proposed in �Ma�� �Gu��

Lemma ��� Assume that c � Rm and assume that b � Rn� Let b� 
 t�b�
b� 
 t�b� where t� � � � t�� and let b�� � � � � bq be extremum points of a compact
convex set with � � int cofb�� � � � � bqg� De�ne Bi �
 c� bi� i � f
� � � � � qg�

Then for each � � � there exists a piece�wise a�ne function � � W ���
� ���Rm�

such that

meas fx � � � D��x� 
 B� or D��x� 
 B�g � meas �	 �� ���
�

D� � fB�� � � � � Bqg a�e� in �� �����

Proof
It is enough to prove the lemma in the scalar case m 
 
 �with c 
 
��

In fact� if ���
�� ����� hold for a function � � W ���
� ��� then we can de�ne

a function � � � � Rm by the rule �i 
 ci�� i � f
� � � � � mg� Then D� 

c�D� and the result holds in the general vector�valued case�

To prove the lemma in the scalar case consider �rst extremum points
v�� � � � � vq of a compact subset in Rn with � � int cofv�� � � � � vqg� Consider
the function

ws��� �
 max
v�fv������vqg

hv� �i 	 s� s � �� �����

It is clear that ws��� is a Lipschitz function such that Dws � fv�� � � � � vqg a�e�
and ws��� 
 � in �Ps� where Ps are polyhedrons with the property Ps 
 sP��

We can decompose � into domains �i �
 xi� siP�� i � N� and a set N of
null measure� i�e� � �
 �i�N�xi � siP�� � N � De�ne u�x� �
 wsi�x 	 xi� for
x � xi�siP�� i � N� u 
 � otherwise� Then u � W ���

� ���� Du � fv�� � � � � vqg
a�e� in ��

We can take v� 
 b�� v� 
 b� and vi � B�b�� �� � int cofb�� � � � � bqg� i �
f�� � � � � qg� Then we can perturb the function u in each set �i �
 fx � � �
Du�x� 
 vig� i � f�� � � � � qg� in such a way that the perturbation �� has the
property D�� � fb�� � � � � bqg� We can do this since vi � int cofb�� � � � � bqg and
the construction in ����� can be applied to �nd a piece�wise a�ne function
fi � W ���

� ��i� such that Dfi � fb� 	 vi� � � � � bq 	 vig� Then� the function
lvi � fi presents the perturbation in question�


�



Note that

meas fx � � � D�� 
� fb�� b�gg � �� �� ��

since

meas fx � �i � Dfi�x� 

 b� 	 vig � �� �� �� 
i � f�� � � � � qg�

This proves the claim of the lemma� QED

Now we are in a position to prove Theorem 
���

Proof of Theorem ��	 We assume

U�x� u� �
 fv � Rm�n � L�x� u� v� � �g� K�x� u� �
 �U�x� u�� �����

We de�ne d �
 	L�
To prove the assertion it is enough to verify the assumptions of Theorem


��� Let v� � U�x�� u�� and let � � �� It su�ces to show that there exists a
set U� � v� reducable to the set

K� �
 fv � U�x�� u�� � dist�v�K�x�� u��� � �g

and such that U� � U�x� u� for all �x� u� su�ciently close to �x�� u���
Note that

inffd�x�� u�� v� � v � �U�x�� u�� nK��g � 
 � ��

Since v� � U�x�� u�� we infer d�x�� u�� v�� 
 � � �� It is clear thatK� contains
the boundary of the set

U� �
 fv � U�x� u� � d�x� u� v� � minf�
�� 

�gg

and that v� � U�� We can apply Lemma ��
 to show that the set U� can be
reduced to its boundary �U�� To do this consider a rank�one matrix A and
consider t� � �� t� � � such that v� � t�A� v� � t�A � �U�� v� � tA � U� for
t ��t�� t��� We can use Lemma ��
 to assert that there exists a piece�wise
a�ne function �� � lv� �W ���

� ���Rm� such that

D�� � U� a�e�� meas fx � � � D���x� � fv� � t�A� v� � t�Agg � meas �	 ��


�



Then
R
� d�x�� u�� D���y��dy� � as �� ��

Continuity of L implies the inclusion

U� � �jx�x�j���ju�u�j��U�x� u�

if � 
 ���� � � is su�ciently small� The proof is complete� QED

Note that Theorem 
�� can be extended to the case of upper semicontin�
uous dependence of L on x� This follows from the possibility to replace the
requirement of Theorem 
�� on upper semicontinuity of the function

d � f�x� u� v� � ��Rm �Rm�n � v � �U�x� u� �K�x� u��g � ���M �

by a weaker assumption on the validity of this requirement with a sequence
of subsets �k of � instead of � itself� where meas �� n �k� � 

k� In this
case the proof follows the lines of the proof given in x� with the only change
that some estimates hold in the integral sense�

Note that the existence result is well�known in the scalar case m 
 

for Hamilton�Jacobi equations of the eikonal type H�Du���� 
 f���� see �L�
Ch� ��� Moreover for this type of equations a theory of well�posed solutions
similar to the theory of viscosity solutions was developed recently in �NJ��

It is also obvious that instead of requiring upper semicontinuity in x in
the whole domain � we can take an open subset �� of full measure� However
if we admit that L is no longer upper semicontinuous in a subset �� of �
with nonzero measure then the existence result may fail�

Consider the problem jDuj 
 f � u � W ������� where � 
 ��� 
� � ��� 
�
and u � � � R� It was remarked in �L� Remark 	���� �Cr� that one can
�nd an open� dense� and connected subset �� of � with meas f� n ��g � ��
Then taking f 
 � in ��� f 
 
 otherwise� we infer that each solution u of
the problem satis�es Du 
 � in ��� Connectedness of �� implies that u is
constant in ��� Then density implies that u is constant everywhere in �� i�e�
Du 
 � a�e� in ��

In this example f is forced to be equal to zero in a large set� It turns out
that this example can be modi�ed to include the case with f � f
� �g� In
fact let G be an open dense subset of ��� 
� with �
	 �� � meas G � 
� � � �
is given� Consider the set �� �
 G�G� Assume f 
 
 in ��� f 
 � in � n ���

Assume that u � W ������ and jDuj � f in ��� i�e� jDuj � 
 in ��� Our
claim is that jDuj � � a�e� in �� To see this notice that if A� 
 �x�� y�� � ��


	



and A� 
 �x�� y�� � �� then the point A 
 �x�� y�� also belongs to ��� Since

jA� 	 A�j � maxfjA	 A�j� jA	 A�jg

and
ju�A��	 u�A�j � jA� 	 Aj� ju�A��	 u�A�j � jA� 	 Aj

we obtain that ju�A��	 u�A��j � �jA� 	 A�j�
Since �� is dense in � we infer that u is Lipschitz with the constant � in

the whole set �� Therefore jDuj � � for a�e� x � � n ��� i�e� jDuj � f in this
set� This shows that no solution of the equation jDuj 
 f a�e� in � exists�

� Di�erential inclusions with gradient extremal

points

In this section we give the proof of Theorem 
�	� Then we show that the
choice �x� u� � gr extrU�x� u� is optimal to solve the di�erential inclusions�
We also discuss which progress can be made in the general case of continuous
multi�valued functions�

To apply the general reduction principles to the case of Theorem 
�	 we
have to establish �rst

Lemma ��� Assume that U is a compact convex set with nonempty in�
terior� Then its interior can be reduced to the set gr extrU �

Proof
To prove the lemma we have to show that given A � intU and � � � there

is a piece�wise a�ne function u � lA �W ���
� ���Rm� with the properties�


� Du � intU a�e� in ��
�� jjdist�Du� gr extrU�jjL���� � ��

Without loss of generality we can assume that A 
 �� To each point
F � �U we can associate an integer number indF which is dimension of the
smallest face �of �U� containing F � It is clear that F � extrU if and only if
indF 
 ��

Let � � �� Consider the set U � �
 f�
	 ��v � v � Ug�
Take a matrix B � Rm�n with rankB 
 
� Then there exist t� � ��

t� � � such that Ai �
 tiB � �U � �i 
 
� �� and tB � intU � for t ��t�� t���


�



By Lemma ��
 we can �nd a piece�wise a�ne function u � W ���
� ���Rm� the

gradient of which assumes �nitely many values and satis�es

Du � U � a�e�� measfx � � � Du�x� 

 Ai� i 
 
� �g � �� � �� ���
�

In the case A� 
� gr extrU � we can isolate a face U� � �U � such that
A� � re intU� �in this case indA� is equal to dimension of U��� We can also
�nd a matrix B� with rankB� 
 
 such that for some t
 � �� t� � � we have

A
 �
 A� � t
B� � �fre intU�g� A� �
 A� � t�B� � �fre intU�g�

and A� � tB� � re intU� for t ��t
� t���
Applying Lemma ��
 to the set �� �
 fx � � � Du 
 A�g we can �nd a

piece�wise a�ne function � � lA�
�W ���

� ����R
m� such that D� � intU a�e�

in �� and for u� �
 u� � we have

meas fx � �� � Du� 

 A
 or Du� 

 A�g � ��� where � � ��� �� � �� � ��

In this case
meas fx � � � Du� 
� fA�� A
� A�gg � �� �����

Note that maxfindA
� indA�g � indA� � mn� If one of the points Ai

�i � f�� �� �g� still does not belong to the set gr extrU � then we can continue
the same process in the set �i 
 fx � � � Du 
 Aig� In this case we can no
more guarantee that the gradients of the perturbations stays in the set U ��
However we can select such a perturbation with the gradient staying in the
set intU �

It is clear that we need at most mn iterations to achieve the points of the
set gr extrU �� The �nal function u � W ���

� ���Rm� is piece�wise a�ne with
the gradient assuming �nitely many values� Moreover� following ���
�� �����
we can choose u in such a way that meas fx � � � Du�x� 
� gr extrU �g � ��

Since � � � can be taken arbitrary small the claim of Lemma ��
 is proved�
QED

To apply Corollary 
�� we need to establish lower semicontinuity of the
mapping �x� u�� gr extrU�x� u��

Lemma ��� Assume that U � �� �Rm � �R
m�n

is a continuous multi�
valued mapping whose values are convex compact sets�

Then the multi�valued mapping �x� u� � gr extrU�x� u� is lower semicon�
tinuous� i�e� if v� � gr extrU�x�� u�� and �xk� uk� � �x�� u��� k � �� then
there exist vk � gr extrU�xk� uk� such that vk � v� as k ���


�



Proof
It is enough to show that the mapping �x� u� � gr extrU�x� u� is lower

semicontinuous�
Recall that to each point v � �U of a convex set U we can assign an integer

number ind�v�� which is dimension of the smallest face h of �U containing v
�in this case v � re inth��

Let v� be a gradient extremum point of the set U�x�� u��� Assume that
there exists a sequence �xk� uk�� �x�� u�� and � � � such that for each k � N
the set B��x�� u��� �� does not contain extremum points of U�xk� uk��

De�ne

I �
 infflim inf
k��

ind��vk� � �vk � v�� �vk � �U�xk� uk�g� �����

Switching� if necessary� to a subsequence we can �nd a sequence vk � �U�xk� uk�
such that vk � v� and ind�vk� 
 I � 
 for all su�ciently large k � N�

Let Vk � �U�xk� uk� be the face of dimension ind�vk� which contains vk�
k � N� We claim that for all su�ciently large k � N the face Vk does
not contain rank�one connections� Otherwise we can �nd a subsequence
�not relabeled� each element of which contains a rank�one direction ak with
jakj 
 
� ak � a�� Moreover there exists a � � � such that

vk � �vk 	 ak�� vk � ak�� � Vk� k � N� �����

If the claim ����� fails then there exists a subsequence vk �not relabeled�
and �vk � ��re intVk� such that vk 	 �vk � �� Then ind��vk� � ind�vk� for all
su�ciently large k and this contradicts ������ Therefore ����� holds�

In view of ����� we have v� � �v� 	 a��� v� � a��� � U�x�� u��� where
rank �a�� 
 
� This contradicts the assumption v� � gr extrU�x�� u��� The
contradiction proves that Vk does not contain rank�one connections if k is
su�ciently large�

Therefore vk � gr extrU�xk� uk� for all su�ciently large k � N� This
proves that in case v� can not be approximated by extremum points of
U�xk� uk� it still can be approximated by gradient extremum points of these
sets� The proof of the lemma is complete� QED

Proof of Theorem ���
This will be reduced to the veri�cation of the assumptions of Corollary


���

��



Let A � intU�x�� u��� and let � � �� Without loss of generality we can
assume A 
 ��

To meet the requirement of Corollary 
�� we can take the set U� �

�
	 ��U�x�� u�� with � � � so small that

dist�gr extrU�� gr extrU�x�� u��� � �
��

By Lemma ��
 U� can be reduced to the set gr extrU��
In view of convexity and continuity of the function �x� u� � U�x� u� the

inclusion U� � U�x� u� holds for all �x� u� su�ciently close to �x�� u��� More�
over� lower semicontinuity of the multi�valued function �x� u� � K�x� u� �

gr extrU�x� u� is the content of Lemma ����

Since all the requirements of Corollary 
�� hold the claim of Theorem 
�	
follows� QED

Now we want to show that the function �x� u� � gr extrU�x� u� is an
optimal choice to resolve the di�erential inclusions� Then we discuss the
general case� i�e� we allow nonconvex sets U�x� u��

To treat the convex case we will use the following auxiliary lemma�

Lemma ��� Let U be a compact and convex subset ofRm�n with nonempty
interior� Let K be a compact subset of �U such that for each A � intU we
can �nd a sequence uj � W ���

� ���Rm� with the property

Z
�
dist�A �Duj�x�� K�dx� �� j ���

Then gr extrU � K�

This result was proved in �Z��� The key ingredient of the proof is the
observation that given a linear subspace V of Rm�n without rank�one con�
nections and given A � V the estimate

Z
�
jD��x�	 PrVD��x�j

�dx � c
Z
�
jD��x�j�dx� c � ��

holds for every function � � lA �W ���
� ���Rm�� where PrVD� is the projec�

tion of the vector D� on the space V �see �BFJK�� the result also follows
from Theorem � in �Ta�� see also �Se�� �DP���

�




Theorem ��� Let U � � � �R
m�n

be a continuous multi�valued function
whose values are compact convex sets with nonempty interior� Let also K �
� � �R

m�n

be a lower semicontinuous and compact multi�valued function
with K��� � �U����

If for a�e� x � �� each A � intU�x�� and each � � � the problem

A�D���� � K���� � � W ���
� �B�x� ���Rm� �����

has a solution� then gr extrU��� � K��� a�e� in ��

Remark It follows from the proof that the analogous result holds if
U � ��Rm � �R

m�n

is compact� convex and a lower semicontinuous function
of x such that for each � � � there exists a subset �� of � with the following
properties� meas �� n ��� � � and the restriction of U to �� � Rm is a
continuous function�

Proof of Theorem ���
Note that there exists a sequence �k of compact subsets of � such that

meas �� n �k� � �� k ��� and the restriction of K to �k is continuous in
the Hausdor� metric� cf� �CV��

Fix k � N and �x a Lebesgue point x� of �k� We assert that there exists
a sequence uk � lA �W ���

� ���Rm� such that

dist�Duk���� K�x��� � � in L� as k ���

In fact by ����� for each � � � we can �nd a function �� � lA�W
���
� �B�x�� ���R

m�
such that D����� � K��� a�e�� Since x� is a Lebesgue point of �k and the
restriction of K to �k is continuous we infer

Z
B�x����

dist�D���x�� K�x���dx
meas B�x�� �� � �� �� ��

Then we can apply the Vitaly covering argument to construct a family u� �
lA �W ���

� ���Rm� with the property

dist�Du����� K�x���� � in L�� �� ��

Lemma ��� implies that gr extrU�x�� � K�x��� Therefore the inclusion
gr extrU��� � K��� holds a�e� in �� QED

��



To treat the general case �without requiring convexity of U���� one has to
establish an e�ective characterization of those subsets of U to which U can
be reduced�

The result of �Z�� says that given a compact set U one can always �nd
the smallest subset K � �U which �generates� U � More precisely for each
A � intU one can �nd a sequence of perturbations �k � W ���

� ���Rm� such
that dist�A � D�k� K� � � a�e� in � and each set K � having the same
property contains K as a subset� It is not known� however� whether the
sequence �k can be selected to satisfy the inclusion A�D�k � U � Moreover
it is not known how the sets K � �U depend on parameters�

However we can apply Corollary 
�� to establish the following abstract
result� We say that a compact set U with nonempty interior can be properly
reduced to a set K � �U if for each A � intU and each � � � there exists a
piece�wise a�ne function � � W ���

� ���Rm� such that

dist�A�D�� �Rm�nnintU�� � � � � a�e��
Z
�
dist�A�D��x�� K�dx � �� �����

Theorem ��	 Assume that U � � � Rm�n � �R
m�n

is a continuous
compact multi�valued function such that for each �x�� u�� � � � Rm�n and
each v � intU�x�� u�� there exists a neighborhood of v which belongs to all
sets U�x� u� with �x� u� su�ciently close to �x�� u���

Let K � ��Rm�n � �R
m�n

be a lower semicontinuous compact function
such that for each �x� u� � ��Rm�n the set U�x� u� can be properly reduced
to the set K�x� u��

Then for each piece�wise a�ne function f � W ���
� ���Rm� with Df��� �

intU��� f���� a�e� and each � � � there exists a solution of the problem

Du��� � K��� u���� a�e� in �� u � W ������Rm�� u
���
��


 f
���
��
� jju	f jjL� � ��

Proof
It su�ces to apply Corollary 
�� with V �x� u� 
 intU�x� u� instead of U �

To verify the main hypothesis of Corollary 
�� one uses the fact that� for
� � �� the set S 
 fv � dist�v�Rm�n n U�x�� u��� � �g is compact� Hence
S � U�x� u� for all �x� u� su�ciently close to �x�� u�� and the argument is
easily concluded� QED

��



Consider matrices A�B � R��� and let ���BA
��� � ���BA

��� denote the
singular values of BA��� i�e� the eigenvalues of ��BA���t�BA�������� Suppose
that

detB � detA � �� � � ���BA
��� � 
 � ���BA

���� ���	�

Then one easily checks that there are exactly two matrices B�� B� in the set
SO���B which satisfy rank�Bi	A� 
 
� i 
 
� �� LetK �
 SO���A�SO���B
and let U be the set of all those v � R��� for which there exists a sequence
�j � lv �W ���

� ���R�� with the property dist�D�j� K� � � in L�� This set
was explicitely computed in �Sv��

To indicate the dependence of U on A and B� we write sometimes UA�B�
If A and B are functions we use the notation U�x� u� 
 UA�x�u��B�x�u��

Corollary ��
 Suppose that A�B � � � R� � R��� are continuous
functions which satisfy 	
���� Then for each piece�wise a�ne function f �
W ������R�� with

Df�x� � fintU�x� f�x�� �K�x� f�x��g

and each � � � we can �nd a function u � f �W ���
� ���R�� such that

Du�x� � K�x� u�x�� a�e� in �� jju	 f jjL����R�� � ��

Proof
It is enough to treat the case of the linear boundary data f � i�e� f 
 lv�

Moreover without loss of generality we can assume that v � intU�x� lv�x��
everywhere in �� otherwise we can switch to an open subset �� of � such that
v � K�x� lv�x�� a�e� in � n ��� v � intU�x� lv�x�� everywhere in ��� The latter
holds because of continuity of the mapping �x� u�� K�x� u��

In order to verify the assumptions of Theorem ��� we use the following
facts �we always assume ���	���

�i� �A�B�� UA�B is upper semicontinuous �this follows immediately from
the description of U as a level set� see �Sv
 or �MSv���

�ii� ��intUA�B� 
 �UA�B �see �MSv��� Lemma ��
�

�iii� if F � intUA�B� then F � intUA��B� for all �A
�� B�� close to �A�B� �see

�MSv��� Corollary ����

��



�iv� UA�B can be reduced to SO���A � SO���B �see e�g� �MSv��� Lemma
�����

Now it follows from �i���iii� that the maps �A�B� � UA�B and �x� u� �
U�x� u� 
 UA�x�u��B�x�u� are continuous� In connection with �ii���iv� this shows
that UA�B can be properly reduced to SO����A� � SO����B�� QED

� Comparison with the Baire category ap�

proach

In this section we discuss di�erence between the Baire category method de�
veloped in particular by the Italian school �see e�g� �C�� �B�� �BF�� �DeBP��
�DM���� and papers mentioned therein� and our method of constructing
sequences of approximate solutions converging strongly in W ����norm� which
is based on Gromov�s idea �whose theory of convex integration greatly gen�
eralizes earlier work of Nash and Kuiper on the imbedding problem��

Recall that the Baire category approach for solving di�erential inclusions

L�Du� 
 � a�e� in �� u
���
��


 f
���
��

consists in proving that the sets of approximate solutions� i�e� of those ad�
missible functions u that

R
� jL�Du�x��jdx � �� are open and dense in the

L����Rm��norm� Then a Baire category argument allows to conclude that
the set of solutions is dense in the L��norm in the set of admissible functions�

The advantage of the method is that it reduces the problem to the con�
struction of approximate solutions� On the other hand one has to verify
openness in L� of the set of approximate solutions� which is a rather restric�
tive property�

For a more speci�c comparison with our approach we �rst recall the notion
of quasiconvexity introduced by Morrey� cf� �Mo��

De�nition 	�� Let U be a bounded subset of Rm�n� let L � U � R be
continuous and bounded from below� and let L�v� 
 � for v 
� U � We say
that L is quasiconvex at a point A � U if for each piece�wise a�ne function
� � W ���

� ���Rm� such that A�D� � U a�e� in � the inequality
Z
�
L�A �D��x��dx � L�A�meas �

��



holds�
The function Lqc is called the quasiconvexi�cation of L if for each A � U

we have

Lqc�A� �
 inf
�




meas �

Z
�
L�A�D��x��dx�

where � � W ���
� ���Rm� are piece�wise a�ne functions such that A�D� � U

a�e� in ��

It is easy to show that Lqc is a quasiconvex function�

A typical result available by the Baire category method is

Theorem 	�� �DM�� Thm����

Let � � Rn be an open set� and let � � W ������Rm� and L � Rm�n � R

satisfy the following hypotheses�

L is quasiconvex � ���
�

there exists a compact convex set U such that U � f� � Rm�n � L��� � �g�
�����

�L��qc 
 � on intU� where L� 
 	L on U and �� otherwise� �����

D� is compactly contained in intU� �����

Then there exists u � W ������Rm� such that

L�Du�x�� 
 �� a�e� x � ��

u�x� 
 ��x�� x � ��� �����

Moreover Du�x� � U a�e�

Here the authors de�ne the set of the admissible functions as

V �
 fu � ��W ���
� ���Rm� � Du�x� � U a�e� in �g�

and the sets of approximate solutions as

Vk 
 fu � V �
Z
�
L��Du�x��dx �




k
g�

��



Convexity of U allows to approximate original functions by admissible piece�
wise a�ne ones inW ����norm� see �DM�� x��� Moreover it implies complete�
ness of V in the L��norm�

The requirement of quasiconvexity of L allows to obtain openness of Vk in
the L����Rm��norm since integral functionals with quasiconvex integrands
are sequentially weak� lower semicontinuous inW ������Rm�� Moreover qua�
siconvexity of integrands is just a characterization of this property of integral
functionals �Mo�� Therefore the requirement ���
� is necessary for sequential
weak� upper semicontinuity of the integral functional with integrand L��
that means that this condition is optimal for applying the Baire category
arguments �since we need openness of Vk�� Note that density of the sets Vk
follows from the identity �L��qc 
 � on intU � Then the set �kVk is dense in
V and contains only solutions of the equation ������

Note that continuity and quasiconvexity of L
���
U
� � imply that the set

K �
 f� � U � L��� 
 �g is generally larger than the set gr extrU � First� it
follows from �Z�� that gr extrU � K� see also x�� Moreover� if A � gr extrU
and there are B�� B� � gr extrU with A ��B�� B��� rank�B� 	 B�� 
 
� then
�B�� B�� � K� This follows from continuity of L and Lemma ��
� The set of
such A might be nonempty in the case n � �� but other points of �B�� B�� may
not lie in the set gr extrU �see the example of the set U based on Proposition
����� Therefore K is generally larger than the set gr extrU �

Another interesting idea to modify the Baire category argument was pro�
posed recently in �DM��x��� see also �DM��x��� There the authors proved
Theorem 
�� under the additional requirement that K has the property�
for each � � � and each A � U there exists � 
 ���� � � such that if
u � lA�W

���
� ���Rm� satis�es jjdist�Du���� K�jjL� � � then for each sequence

�k � lA �W ���
� ���Rm� with D�k � U a�e� and �k 	

� u in W ������Rm�
the inequality

lim sup
k��

jjdist�D�k�K�jjL� � � �����

holds�

Given a piece�wise a�ne function � with D� � �U � K� the set V of
admissible functions is de�ned as the closure of the set of all piece�wise a�ne
functions

u � ��W ���
� ���Rm�� Du � �U �K��

�	



in the L����Rm��norm� It is clear that V is a complete metric space in the
L��metric�

The authors consider the standard abstract lower semicontinuous exten�
sion of the functional u � V � 	

R
� dist�Du�x�� K�dx� which is

I�u� �
 inf
uj

lim inf
uj��u�uj�V

	
Z
�
dist�Duj�x�� K�dx�

We have that if u � V and I�u� 
 � then Du � K a�e� in ��
The sets

Vk �
 fu � V � I�u� � 	

kg

of approximate solutions are automatically open in the L� topology since the
functional I�u� is sequentially lower semicontinuous in this topology� Density
of the set Vk follows from the requirement ������ In fact by ����� the set Vk
contains all functions u � V with

	
Z
�
dist�Du�x�� K�dx � ��

where � 
 ��

k� � �� Since the latter set is dense in V by the assumptions
of Theorem 
�� and the Vitaly covering argument �see x�� we infer that all Vk�
k � N� are dense in V � The Baire category argument allows to conclude that
the set �kVk� which consists of solutions f � W ������Rm� of the di�erential
inclusion

Df � K� f 
 � in ���

is dense in V �in the L��norm��
Note that in this construction the authors exploit the fact that to ap�

ply the Baire category argument it is enough to deal with neighborhoods
of the functional u � 	

R
� dist�Du�x�� K�dx at zero� i�e� it is enough to

require stability in the L��norm of those approximate solutions which have
the gradients su�ciently close to K in the integral norm�

In the latter result one does not specify the structure of the set U � How�
ever K should have special structure which in the case of convex U gives the
same result as Theorem ��� stated above�

Some improvements of the Baire category approach are still possible� In
the case of convex U one can� e�g�� try to use upper semicontinuous quasi�
convex integrands L like in the original approach due to A�Bressan �see �B��

��



�BF��� where the scalar case was completely treated� However the construc�
tion of such integrands might be a bit tricky� It is also possible to use more
�exible integrands which give functionals lower semicontinuous in a class of
functions smaller than all admissible Lipschitz functions �like rank�one con�
vex integrands and the functions given by iterative application of Lemma
��
 and their limits�� In any case the requirement of openness of the sets
of approximate solutions in the L��norm requires a special structure of U
and K� which we can avoid by dealing with strongly convergent approximate
solutions as in Theorem 
���

Theorem 
�� shows how to develop our method in the case of nonho�
mogeneous di�erential inclusions and allows to remove the quasiconvexity
requirement �i�e� the requirement that L�x� u� �� is quasiconvex�� which is
responsible for openess of the approximate solutions in L�� in the results
contained in the papers �DM�����

A di�erent version of the Baire category argument is discussed in �KP��

The case of convex sets is the best studied in literature and it is easier
to show the di�erence in the constructions described above in this case� We
will exploit a well�known fact that in the case n � � the set of extremum
points extrS of a compact convex subset S of Rn can be nonclosed� More
speci�cally we will need an example of a set S with the properties desribed
in Proposition ���� Then the set U in question will be

U �
 fv � R
�� � �v��� v��� v
�� � S� vi� � ��� 
�� i � f
� �� �gg�

Let f � ��� 
�� ��� 
� be a decreasing concave function such that f��� 
 
�
f�
� 
 �� and f is a�ne in each interval Ik �
�

�k� 

�k���� k � N� Let dk
denote the value of f � in Ik and assume dk � dk��� dk � � as k ���

Consider another function g � ��� 
� � ��� 
� such that g��� 
 
 and
g� 
 dk�� in Ik� k � N� Then g � f everywhere in ��� 
��

Consider the sets

S� �
 f�v�� v�� v
� � � � v� � 
� v� 
 	
� � � v
 � f�v��g�

S� �
 f�v�� v�� v
� � � � v� � 
� v� 
 
� � � v
 � f�v��g�

S� �
 f�v�� v�� v
� � � � v� � 
� v� 
 �� � � v
 � g�v��g�

The set S � R
 is de�ned as the convex hull of the set S� � S� � S��

��



Proposition 	�� We have

f��� 
� 
�� ���	
� 
�� �

�k� 
� f�

�k��� �

�k�	
� f�

�k���

�

�k� �� g�

�k��� k � Ng � extrS�

However no point of the set ����	
� 
�� ��� 
� 
�� n f��� �� 
�g belongs to the set
extrS�

Proof
It is obvious that the points

��� 
� 
�� ���	
� 
�� �

�k� 
� f�

�k��� �

�k�	
� f�

�k��� k � N�

belong to the set extrS� To prove the proposition we also have to show that
�

�k� �� g�

�k�� � extrS� k � N� and

�����	
� 
�� ��� 
� 
�� n f��� �� 
�g� � extrS 
 ��

Fix k � N� Let a 
 �

�k��� �� g�

�k����� Note that

dk 
 f � in Ik� dk 
 g� in Ik���

Consider the plane H�
k which contains the segments J�k �
 f�x�	
� f�x�� �

x � Ikg� J�
k �
 f�x� �� g�x�� � x � Ik��g �there exists such a plane since the

segments are parallel��
Since the functions f � g are concave we infer that the set S lies below

H�
k � Moreover H�

k �S 
 S�k � where S
�
k is the convex hull of the set J�k �J

�
k �

Since a is an extremum point of the set S�k it is also an extremum point of
the set S�

To show that each point b � ����� 
� 
�� ���	
� 
��nf��� �� 
�g� does not lie
in the set extrS consider a sequence bj � b� We will show that bj 
� extrS
for all su�ciently large j � N� If bj is su�ciently close to b and the �rst
coordinate of bj is zero� then bj � f��� x� y� � 	
 � x � 
� � � y � 
g and bj
can not be an extremum point of the latter set� Another possibility to stay
in the set extrS is bj � ��k�H

�
k �H�

k �� � S� i�e� bj � �k�S
�
k � S

�
k �� However

all extremum points of the sets S�
k � S

�
k have the second coordinate equal to


� 	
 or �� This shows that bj 
� extrS for all su�ciently large j � N� This
proves the claim� QED

��



Acknowledgements We thank Prof� M�Crandall for communicating to
us the arguments of P�L�Lions �L� Remark 	��� and for indicating the paper
�NJ
� both discussed at the end of x�� We also thank Prof� M�Bardi and
Prof� G�Colombo for making this interaction possible� We are grateful to
B�Kirchheim for very helpful comments and to Prof� B�Dacorogna and Prof�
P�Marcellini for interesting scienti�c interaction�

References

�B� Bressan A� The most likely path of a di�erential inclusion� J� Di�� Eqs��
�� �
����� pp� 
���
	��

�Ba� Barles G� Solutions de viscosit�e des �equations de Hamilton�Jacobi�
Mathematiques et Applications 
	� Springer� Berlin� 
����

�BF� Bressan A�� Flores F� On total di�erential inclusions� Rend� Sem� Mat�
Uni� Padova �� �
����� pp� ��
��

�BCD� Bardi M�� Capuzzo Dolcetta I� Optimal Control an viscosity solutions
of Hamilton�Jacobi�Bellman equations� Birkh aser� 
��	�

�BJ
� Ball J�M�� James R�D� Fine mixtures as minimizers of energy� Arch�
Rational Mech� Anal� 
�� �
��	�� pp�
�����

�BJ�� Ball J�M�� James R�D� Proposed experimental tests of a theory of �ne
microstructure and the two�well problem� Phil� Trans� Roy�Soc� London
A ��� �
����� pp���������

�BFJK� Bhattacharya K�� Firoozye N�� James R�D�� Kohn R�V� Restrictions
on microstructure� Proc� Roy� Soc� Edinburgh� 
�� A �
����� pp������	��

�C� Cellina A� On the di�erential inclusion x� � f	
� 
g� Atti Accad� Naz�
Lincei Rend� Cl� Sci� Fis�Mat� Natur� �� �
����� pp�
���

�CrEL� Crandall M�G�� Evans L�C�� Lions P�L� Some properties of viscosity
solutions of Hamilton�Jacobi equations� Trans� Amer� Math� Soc� ���
�
����� pp���	�����

�




�CDGG� Cardaliaguet P�� Dacorogna B�� Gangbo W�� Georgy N� Geometric
restrictions for the existence of viscosity solutions� Ann� Inst� H� Poincar�e
Anal� Non� Lin�eaire 
� �
����� pp�
�����
�

�Cr� Crandall M� Oral communication�

�CV� Castaing C�� Valadier M�� Convex analysis and measurable multifunc�
tions� Lecture Notes in Mathematics� vol� ���� Springer�Verlag� Berlin�
New York� 
�		�

�DM
� Dacorogna B�� Marcellini P� General existence theorems for
Hamilton�Jacobi equations in the scalar and vectorial cases� Acta Math�
ematica 
	� �
��	�� pp�
��	�

�DM�� Dacorogna B�� Marcellini P� Cauchy�Dirichlet problem for �rst order
nonlinear systems� J� Funct� Analysis 
�� �
����� pp���������

�DM�� Dacorogna B�� Marcellini P� On the solvability of implicit nonlinear
systems in the vectorial case� AMS series of Contemporary Mathematics�

��� �to appear��

�DM�� Dacorogna B�� Marcellini P� Implicit Partial Di�erential Equations�
Birkh auser� 
����

�DeBP� De Blasi F�� Pianigiani G� On the Dirichlet problem for Hamilton�
Jacobi equations� A Baire category approach� Preprint of the University
of Rome �Tor Vergata�� 
��	�

�DP� DiPerna R�J� Compensated compactness and general systems of con�
servation laws� Trans� Amer� Math� Soc� ��� �
����� pp���������

�ET� Ekeland I�� Temam R� Convex analysis and variational problems� Am�
sterdam� North�Holland� 
�	��

�G� Gromov M� Partial di�erential relations� Springer� Berlin� 
����

�Gu� Guseinov F�V� To the question of extensions of multi�dimensional vari�
ational problems� Izvestiya Mathematics� v� �� �
����� N 
� pp����
�

�K� Kruzkov S�N� Generalized solutions of Hamilton�Jacobi equation of
eikonal type� USSR Sborkin �	 �
�	��� pp���������

��



�KP� Kirchheim B�� Preiss D� �forthcoming�

�Ku� Kuiper� On C��isometric imbeddings I� II� Indag� Math� 
	 �
�����
pp��������� pp� ��������

�Ma� Matov V�I� Investigation of the problem of multidimensional calculus
of variations� Vestnik Moskovskogo Universiteta� Matematika �� �
�	���
N 
� pp��
����

�Mo� Morrey C�B� Quasi�convexity and lower semicontinuity of multiple in�
tegrals� Paci�c J� Math� � �
����� pp�������

�MSv
� M�uller S�� 
Sver�ak V� Attainment results for the two�well problem by
convex integration� Edited by J�Jost� International Press� 
���� pp�����
��
�

�MSv�� M�uller S�� 
Sver�ak V� Unexpected solutions of �rst and second or�
der partial di�erential equations� Documenta Math�� Extra volume ICM

���� II� pp���
�	���

�L� Lions P�L� Generalized solutions of Hamilton�Jacobi equations� Re�
search Notes in Math�� Vol���� Pitman� London� 
����

�Na� Nash J� C��isometric imbeddings� Ann� Math� �� �
����� pp���������

�NJ� Richard T� Newcomb II� Jianzhong S� Eikonal equations with disconti�
nuities� Di�� Integ� Equations � �
����� pp� 
��	�
����

�S
� Sychev M� Comparing various methods of resolving nonconvex vari�
ational problems� Preprint� SISSA ��!��!M� September 
���� Triest�
Italy�

�S�� Sychev M� Characterization of homogeneous scalar variational problems
solvable for all boundary data� Proc� Royal Soc� Edinburgh� Sect�A �to
appear��

�Sa� Saks S� Theory of the integral� Hafner� New York� 
��	�

�Se� Serre D� Formes quadratique et calculus de variations� J� Math� Pures
Appl� �� �
����� pp�
		�
���

��



�Sv� 
Sver�ak V� On the problem of two wells� In �Microstructure and phase
transitions�� IMA Vol� Appl� Math�� ��� edited by Eriksen J� et al��
Springer� 
���� pp�
�
�����

�Su� Subbotin A�I� Generalized solutions of �rst order partial di�erential
equations� the dynamical optimization perspective� Birk auser� Boston�

����

�Ta� Tartar L� The compensated compactness method applied to systems of
conservations laws� in� Systems of Nonlinear Partial Di�erential Equa�
tions �J�M�Ball� ed��� NATO ASI Series� Vol� C


� Reidel� 
���� pp�����
����

�Z
� Zhang K� On various semiconvex hulls in the calculus of variations� Calc�
Var� � �
����� pp�
���
���

�Z�� Zhang K� On the structure of quasiconvex hulls� Ann� Inst� Henri
Poincar�e 
� �
����� N �� pp���������

��


