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Abstract

We show that the porous medium equation has a gradient �ow

structure which is both physically and mathematically natural� In or�

der to convince the reader that it is mathematically natural� we show

the time asymptotic behaviour can be easily understood in this frame�

work� We use the intuition and the calculus of Riemannian geometry

to quantify this asymptotic behavior�
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� The porous medium equation as a gradient

�ow

��� The porous medium equation

The porous medium equation is given by

��

�t
�r��m � �� ��

Throughout the article� � � � should be thought of as a �time�dependent
density function on the whole N�dimensional space IRN � Here� ��

�t
denotes

the �partial derivative w� r� t� time t � ����� r denotes the gradient with
respect to the spatial variables x � IRN � r� the divergence w� r� t� x and
r� the Laplacian w� r� t� x� In section �� we will give a brief derivation of
�� from assumptions on the physics of a gas �ow through a porous medium�
We restrict our attention to the case where the exponent satis	es m � �� �

N

and m � N
N��

� the reason for these restrictions will become apparent in the
sequel�

The porous medium equation is a parabolic equation� more precisely� a dif�
fusion equation for �� In case of m � �� the di�usion degenerates for � � ��

�



This for instance has the e�ect of preserving a compact support and hence
is called �slow di�usion�� The case m � � is called fast di�usion� In a weak
setting� which will be intruduced in section 
� the Cauchy problem for �� is
well�posed� Therefore� �� de	nes an evolution of densities on IRN � in other
words� a semi group on the space of densities on IRN � We will show that this
semi group has the structure of a gradient �ow�

��� Abstract gradient �ow

We claim that the porous medium equation can be interpreted as a gradient
�ow� Let us 	rst introduce the notion of a gradient �ow in the generality we
need� The mathematical structure required to make sense of a gradient �ow
is

� a di�erentiable manifoldM�

� a metric tensor g onM� which makes �M� g a Riemannian manifold�

� and a function�al E onM�

We call the dynamical system in M given by the autonomous di�erential
equation

d�

dt
� �gradEj� ��

the gradient �ow of E on �M� g� Observe that the metric tensor g is a
necessary ingredient to the notion� It converts the di�erential di� E of E�
which is a cotangent vector 	eld� into the gradient gradE of E� which is a
tangent vector 	eld�

g�gradE� s � di�E�s for all vector 	elds s onM� ��

Hence �� can be expanded into

g��
d�

dt
� s � di�Ej��s � � for all vector 	elds s along �� ��

We point out that the basic property of a gradient �ow is that the energy is
decreasing along trajectories�

d

dt
E�� � di�Ej��

d�

dt

���
� �g��

d�

dt
�
d�

dt
� �


�



��� Two interpretations of the porous medium equa�

tion as gradient �ow

It is actually well known that the porous medium equation can be interpreted
as a gradient �ow� We will introduce this �traditional� gradient �ow inter�
pretation in this section� Parallel to this� we will introduce a new gradient
�ow interpretation� In the following two sections� we will try to convince the
reader that our new way of interpreting the porous medium equation is more
natural than the traditional way�

The evolution de	ned by �� preserves non negativity of � and its mass
R
��

In both approaches� the manifold is accordingly given by

M �
n
non negative functions � on IRN with

R
� � �

o
�

We will be deliberately sloppy about the di�erential structure of the manifold
and think of the tangent space as follows

T�M �
n
functions s on IRN with

R
s � �

o
�

We now come to the metric tensor� Both approaches are based on an iden�
ti	cation of the tangent vector space

T�M ��
n
functions p on IRN

o
� � � ��

where the identi	cation is de	ned via the elliptic equation

�r�p � s for the traditional approach ��

and
�r � ��rp � s for the new approach� ��

The ��� in �� is to indicate that we identify p�s which only di�er by an
additive constant� Now� the metric tensor is de	ned by

g��s�� s� �
Z
rp� � rp� for the traditional approach

and
g��s�� s� �

Z
�rp� � rp� for the new approach� ��

�



where pi is related to si via �� resp� ��� For further reference� we notice
that this implies

g��s�� s� �
Z
s� p� for both approaches� ���

Finally the functional� It is given by

E�� � �
m��

Z
�m�� for the traditional approach

and

E�� �

���
��

�
m��

Z
�m for m �� �Z

� ln � for m � �

���
�� for the new approach� ���

Observe that the di�erential of the functional is given by

di� E���s �
Z
�m s for the traditional approach ���

and

di� E���s �

���
��
Z

m
m��

�m�� s for m �� �Z
�ln � � � s for m � �

���
�� for the new approach� ���

We now have to show that the porous medium equation indeed coincides with
the gradient �ow of E on �M� g for both approaches� First the traditional
approach� According to ��� and ���� the identity �� takes on the form

Z ��

�t
p �

Z
�m s � ��

where p is related to s via �r�p � s� We substitute s accordingly and obtain

Z ��

�t
p �

Z
�mr�p � ��

and after integration by parts

Z
�
��

�t
� r��m p � ��






Since p is arbitrary� we recover the porous medium equation�

Now the new approach� According to ��� and ���� the identity �� takes
on the form ���

��
Z

��
�t
p � m

m��

Z
�m�� s � � for m �� �Z

��
�t
p �

Z
�ln � � � s � � for m � �

���
�� �

where p is related to s via �r � ��rp � s� We substitute s accordingly and
obtain ���

��
Z

��
�t
p �

Z
m

m��
�m��r � ��rp � � for m �� �Z

��
�t
p �

Z
�ln �� �r � ��rp � � for m � �

���
�� �

We obtain after integration by partsZ
�
��

�t
� r��m p � ��

Also here� we recover the porous medium equation�

In case of the traditional approach� g does not depend on � and therefore
is a scalar product on the space of functions s with mean value zero� In
fact� it is the homogeneous part of the H���scalar product� Hence� in the
traditional approach� the Riemannian space �M� g carries the structure of a
convex subspace of a Euclidean space� On the other hand� the new approach
is genuinely Riemannian� Hence we must bring forth good reasons for con�
sidering the more complicated� new structure� We will attempt to do this in
the next two sections�

� A physical argument in favor of the new

gradient �ow

We give a brief physical derivation of the porous medium equation� The
function � describes the mass density of a gas in a porous medium� The 	rst
assumption is conservation of mass� expressed in the continuity equation

��

�t
�r � �� u � �� ���

�



where the vector 	eld u on IRN describes the �average velocity of the gas�
The second assumption is Darcy�s law

u � �M�rp�

where the function p on IRN describes the pressure of the gas and the matrix
M describes the mobility of the gas in the porous medium� M depends on
the permeability of the medium and the viscosity of the gas� We assume
that the permeability is isotropic and homogeneous� so that K � id by an
appropriate non�dimensionalization�

u � �rp� ��


The third assumption comes from thermodynamics�

p �
�E

��
� ���

where E denotes the free energy and �E
��
its functional derivative with respect

to �� In case of a free energy of the form

E �
Z
e���

where the function z �	 e�z describes how the free energy density e depends
on the density �� ��� reads

p � e���� ���

Hence ���� ��
 and ��� combine to

��

�t
�r���� � �� ���

where the function z �	 ��z describes how the osmotic pressure � depends
on the density � and is related to z �	 e�z via

��z � z e��z� e�z� ���

From ��� we see that ��� turns into the porous medium equation ��� that
is�

��z � zm ���

�



if and only if

e�z �

�
�

m��
zm for m �� �

z ln z for m � �

�
� ���

Hence� only in the new formulation does E have a physical meaning�

Also the metric tensor g of the new formulation has a physical meaning�
For this we observe that the de	nition �� of g in the new approach can be
reformulated as

g��s� s � inf
	Z

� juj�



 for all vector 	elds u on IRN

with s�r � �� u � � g �
���

Indeed� the minimizer u of the quadratic variational problem in ��� satis	es

Z
v � u for all vector 	elds v on IRN with r � v � ��

so that there exists a function p on IRN such that

u � �rp�

We now observe that the quantity
R
� juj� in ��� has a physical meaning�

It is the rate of dissipation of kinetic energy by friction when the gas moves
with velocity u through the pores of the porous medium� Hence g��s� s
measures the minimal rate of dissipation of kinetic energy by friction required
to produce the rate of change s of the density �� This allows for a nice physical
interpretation of �
� that is

d

dt
E�� � �g��

d�

dt
�
d�

dt
�

The right hand side is the rate of change of the free energy� the left hand
side is the rate of dissipation of kinetic energy by friction� the dynamics are
such that both quantities are equal� In general terms� The merit of the
right gradient �ow formulation of a dissipative evolution equation is that it
separates energetics and kinetics� The energetics endow the state space M
with a functional E� the kinetics endow the state space with a �Riemannian
geometry via the metric tensor g�

�



� A mathematical argument in favor of new

gradient �ow

��� Self similar solutions and asymptotic behaviour

It is well�known that the long�time asymptotics of the porous medium equa�
tion is described by the Barenblatt solution� Let us make this more precise�
The porous medium equation allows for a self�similar solution of the form

���t� x �
�

tN�
����

x

t�


where the pro	le ��� is given implicitly in the �pressure variable� �for a mo�
tivation of this wording see the previous section

e������y �

�����
����

m
m��

����y
m�� � maxf�� 	 �

�
jyj�� �g for m � �

ln ����y � � � �� 	 �
�
jyj� for m � �

m
m��

����y
m�� � �� 	 �

�
jyj� for m 
 �

�����
����
�

Here

	 �
�

N �m� � � �

and � is such that Z
��� � ��

These solutions were discovered by Barenblatt and Prattle ��� ����

The Barenblatt solution describes the long�time asymptotics of an arbitrary
solution � in the following sense� Rescale time and space according to

x � t� y and t � exp���

In terms of density functions� this means� pass from � to �� given by

��t� x �
�

tN�
���ln t�

x

t�


Then �� approaches the pro	le ��� of the Barenblatt solution for large times�
In case of m � �� Friedman� Kamin and Vazquez �in ���� and ���� have
proved that the pro	les converge uniformly

lim
���

k��� ���kL��IRN � � � �

�



Their proof is based on a C��a priori estimates for the solution of the porous
medium equation by Ca�arelli and Friedman �
��

��� A new asymptotic result

Hoping to convince the reader of our new approach� we will derive a new
and more quantitative asymptotic result using it� Our arguments are based
on a simple Riemannian calculus applied to the in	nite dimensional �M� g�
From now on� the notation g and E pertains solely to the new approach�
that is� it is de	ned like in �� and ���� Next to the metric tensor g� which
we also denote by h�� �i� and its induced norm j � j� we will need a few notions
from Riemannian geometry� like the gradient gradF � the Hessian HessF of a
function F on M� the latter being de	ned via the covariant derivative� see
for instance ���� Section ������� and the induced distance d� see ���� Section

����

The three key ingredients for our asymptotic result are

� �� satis	es
d��

d�
� �gradFj��� ���

In words� �� evolves according to the gradient �ow on the same Rieman�
nian manifold �M� g of an augmented functional F given by

F ��� � E��� � 	M����

where M denotes the second moment of the density ��

M��� �
Z

�
�
jyj� ���y dy�

� ��� satis	es
F ���� F ���� � � for all �� � M� ���

In words� ��� is a minimizer of F onM� Hence it it is also a stationary
point of F � that is

� � �gradFj���� ��


��



� F satis	es
HessFj�� � 	 id for all �� � M

in the sense of

hs�HessFj��si � 	 jsj� for all s � T��M and �� � M� ���

In words� F is uniformly strictly convex on �M� g� This is a conse�
quence of

HessEj�� � � and HessMj�� � id for all �� � M� ���

We will check ��� and ��� in subsection ���� ��� will be established in
subsection ���� The condition m � � � �

N
is the one which ensures that E

is convex on �M� g� The condition m � N
N��

ensures that E���� and M����
are well�de	ned and 	nite�

As we will see in subsection ��
� ���� ��
 and ��� yield by formal but basic
Riemannian calculus

d

d�

�
exp��	 � jgradFj��j

�
�

 �� ���

d

d�
�exp��	 � �F ���� F ���� 
 �� ���

d

d�

�
exp��	 � d���� ���

�
�

 �� ���

We consider these three inequalities the main result of this paper� Observe
that ���� ��� and ��� express a single fact in di�erent form� The single fact
being� �� converges to ��� with rate 	� More precisely� 	 is an exponential rate
with respect to � or a polynomial rate with respect to t� The di�erent forms
being� jgradFj��j in ��� measures how far �� is from being a stationary point
of F � F ���� F ���� in ��� is measuring how far �� is from being a minimizer
of F and 	nally d���� ��� in ��� is measuring how far �� is from ����

In subsection ���� we will identify jgradFj��j
� as the functional

jgradFj��j
� �

Z
�� jrpj� where p�y � e�����y � 	

�

�
jyj�

��



and e is the energy density given in ���� In subsection ���� we will identify
the induced metric d with the Wasserstein metric� that is

d����� ���
� � inf

��� � 	
���

Z
��� jid� �j

��

where ����� denotes the push forward of the density ��� under the transfor�
mation � of IRN � By carefully mimicking the formal Riemannian calculus
from subsection ��
� we will make the above results rigorous in Theorem � in
section 
� A relationship� not in the above concise form though� between the
porous medium equation� its self similar solution and the Wasserstein metric
was discovered by the author in �����

In the linear case m � �� above results are known to the Fokker�Planck
community in a di�erent form� In this case�

jgradFj��j
� �

Z
�� jrpj�

�
Z
�� j
�

��
r��� 	 yj�

�
Z �

��
jr��j� � �	N

Z
��� 	�

Z
��jyj�

�
Z �

��
jr��j� � �	N � �	�M����

In particular� � � jgradFj���j
� �

R �
���
jr���j

� � �	N � 	�M����� so that

jgradFj��j
� �

Z �

��
jr��j� �

Z �

���
jr���j

� if M��� � M�����

The quantity
R �

��
jr��j� is called the �Fisher information functional�� Also in

this case

F ���� F ���� �
Z
�� ln ���

Z
��� ln ��� if M��� � M����

and the quantity
R
�� ln �� is called the �entropy functional�� The decay of the

Fisher information functional and the entropy functional expressed in ���
resp� ��� for m � � seems to be due to McKean ���� and Toscani ���� Re�
cently and independently of our work� these ideas for ��� resp� ��� have been

��



extended to the case m �� � by Carrillo  Toscani ��� �for m � � and Dol�
beault  del Pino ���� �for m 
 �� Forerunners in this Liapunov�functional
based approach were also Newman ���� and Ralston ��
�� The novelty of our
above results is their formulation� interpretation and proof in framework of
Riemannian geometry� which make the approach more transparent and the
calculations seem less arbitrary�

��� The asymptotic result expressed in a more tradi�

tional framework

Convergence with rate 	 in a more traditional way can be derived from ���
with help of

� the inequalities

F ���� F ����

�
� H���� ��� for m � �
� H���� ��� for m 
 �

�
� ���

where

H����� ��� �
Z
fe����� e����� e����� ���� � ���g � ��

Here the e is the energy density� see ���� and in the case m 
 �� we
set H����� ��� � �� if ��� vanishes on a set of positive measure�

� the estimate for m 
 �

Z
j��� � ���j 
 C

Z
����m�

� �

�

H����� ���
�

� � ���

where C is a constant which only depends on m�

It is conceivable that convergence of rate 	 in stronger traditional norms can
be derived from ���� ��� and ���� But this is not the focus of this paper�

The inequality ��� will be established in subsection ���� the non negativity
of H follows immediately from the convexity of e� In the case of m � �� we
have

e�z�� e�z�� e��z� �z� � z� �
z

z�
ln

z

z�
z� � �z� � z��

��



so that

H����� ��� �
Z ���
���
ln
���
���
���� ���

Therefore� H����� ��� is also called the relative entropy of ��� w� r� t� ���� The
estimate ��� is known to the Fokker�Planck community under the name of
Csiszar�Kullback inequality �����

Let us now establish ���� Since m 
 � implies

e���w � mwm�� � m for w � ��� ��

we have

�
m��

wm � �
m��

� m
m��

wm�� �w � �

� e�w� e��� e��� �w � �

� �
�
inf
�����

e�� �w � ��

� m
�
�w � �� for all w � ��� ��� ���

We observe that since Z
���� � ��� � ��

we have Z
j��� � ���j � �

Z
f�������g

j��� � ���j�

On the other hand� setting

u �

���
��
���
���

if ��� 
 ���

� else

���
�� � ��� ���

we haveZ
f�������g

j��� � ���j

�
Z
��� ju� �j



Z

����m�

Z
��m� �u� �

�
� �

�

��



����



Z

����m�
�
m

Z
��m�

n
�

m��
um � �

m��
� m

m��
um�� �u� �

o� �

�

�

�Z
����m�

�
m

Z
f�������g

n
�

m��
��m� �

�
m��

��m� �
m

m��
��m��� ���� � ���

o� �

�

�

��� Veri�cation of key ingredients to asymptotic result

Let us now check ���� It is left to the reader to verify that �� satis	es the
equation

���

��
� r�

y ��
m � 	ry � ��� y � �� ��


!From now on� we drop the subscript y� We observe that the di�erential of
F is given by

di� F ����s �

���
��
Z
� m
m��

��m�� � 	 �
�
jyj� s for m �� �Z

�ln ��� � � 	 �
�
jyj� s for m � �

���
�� �

According to this and ���� the identity �� takes on the form
Z

���
��
p �

Z
� m
m��

��m�� � 	 �
�
jyj� s � � for m �� ��Z

���
��
p �

Z
�ln �� � � � 	 �

�
jyj� s � � for m � ��

where p is related to s via �r � ���rp � s� We substitute s accordingly and
obtain after an integration by partZ

f���
��

� r � ���r � m
m��

��m�� � 	 �
�
jyj��g p � � for m �� ��Z

f���
��

� r � ���r �ln �� � � � 	 �
�
jyj��g p � � for m � ��

Hence �� can be rewritten as

���

��
� r � ���r �

m

m� �
��m�� � 	 �

�
jyj�� � � for m �� ��

���

��
� r � ���r �ln ��� � � 	 �

�
jyj�� � � for m � ��

which turns into ��
�

�




Let us now check that in the notation of ����

F ���� F ����

�
� H���� ��� for m � �
� H���� ��� for m 
 �

�
� ���

This validates both ��� and ���� In order to show ��� in case of m �� ��
we observe that by de	nition of H���� ���

E��� � E���� �H���� ��� �
Z

m
m��

��m��� ���� ����

so that by de	nition of F �

F ��� � F ���� �H���� ��� �
Z
� m
m��

��m��� � 	 �
�
jyj� ���� ����

In case of m 
 �� we have by de	nition of ���

m
m��

��m��� � 	 �
�
jyj� � ��

so that we obtain

F ��� � F ���� �H���� ��� � �
Z
���� ��� � F ���� �H���� ����

In case of m � �� we have by de	nition of ����

� m
m��

��m��� � 	 �
�
jyj� ���� ��� � � ���� ��� for all y � IRN � ���

Indeed� if y is such that ��	 �
�
jyj� � � then m

m��
��m��� � ��	 �

�
jyj� and the

inequality ��� turns into an equality� On the other hand� if y is such that
� � 	 �

�
jyj� 
 �� ��� � � and the above inequality turns into 	

�
�
jyj� �� � ����

which is true since �� � �� Hence we obtain in this case only an inequality

F ��� � F ���� �H���� ��� � �
Z
���� ��� � F ���� �H���� ����

The identity ��� in case of m � � is also quite obvious� From de	nition of
F and ��� we obtain

F ��� �
Z
�ln �� � 	 �

�
jyj� �� �

Z
�ln ��� �� ln ��� ��

����
� H���� ��� � ��

��



In particular F ���� � �� so that

F ���� F ���� � H���� ����

As announced� we will now argue that

jgradFj��j
� �

Z
�� jrpj� where p�y � e�����y � 	

�

�
jyj��

Indeed� we have by the abstract de	nition �� of the gradient

�

�
g���gradFj��� gradFj�� � sup

s�T��M

	
dFj���s�

�

�
g���s� s

�
�

By de	nition of our functional F �

dFj���s �
Z
p s with p as above�

By de	nition of our inner product

Z
p s�

�

�
g���s� s �

Z
��rp � rq �

Z
��
�

�
jrqj��

if s � T��M and the function q on IRN are related by

�r � ���rq � s�

Hence

�

�
g���gradFj��� gradFj�� � sup

function pon IRN

	 Z
��rp � rq �

Z
��
�

�
jrqj�

�

�
Z
��
�

�
jrpj��

��� Derivation of asymptotic result by formal Rieman�

nian calculus

Let us now show how ���� ��
 and ��� imply ���� ��� and ��� by formal
Riemannian calculus� For this� we forget about where our structure �M� g

��



and F came from and work exclusively within the abstract framework� The
derivation of ��� is easiest�

d

d�
jgradFj��j

� � � hgradFj���
D

D�
gradFj��i

� � hgradFj���HessFj��
d

d�
�i

����
� �� hgradFj���HessFj�� gradFj��i
����


 ��	 jgradFj��j
�� ���

Here D
D�
denotes the covariant derivative along the curve ��� The 	rst equality

comes from the fundamental property of the covariant derivative ���� Section
������� the second equality follows from the de	nition of the Hessian ����
Section �������

We now tackle ��� and ���� There are di�erent ways to derive ��� and ���
from ���� ��
 and ��� by Riemannian calculus� We choose the one we are
able to make rigorous in section 
� We need the following auxiliary result�
We recall the de	nition of the induced metric d����� ���

� as the in	mum of the

energy �modulo a factor �
R �
� j

d��
d�
j� d� over all curves ��� �� � � �	 "���� � M

which connect ��� to ����

d����� ���
� �

n R �
� j

d��
d�
j� d� j ��� �� � � �	 "���� � M

with "���� � ���� "���� � ��� g �

Let ��� �� � � �	 "���� denote a curve of least energy between ��� and ���� that
is�

d����� ���
� �

Z �

�
j
d"��

d�
j� d�� ���

In particular� ��� �� � � �	 "���� is a geodesic� that is

D

d�

d"��

d�
� �� ���

which implies
d

d�
j
d"��

d�
j� � � h

d��

d�
�
D

d�

d"��

d�
i � �� ���

��



The auxiliary result we claim is

F ����� F ���� � h
d"��

d� j���
� gradFj���i� 	

�

�
d����� ���

�� ���

Indeed� this is a consequence of

d

d�
F �"�� � h

d"��

d�
� gradFj��i

and

d�

d��
F �"�� � h

D

d�

d"��

d�
� gradFj��i� h

d"��

d�
�
D

d�
gradFj��i

����
� h

d"��

d�
�HessFj��

d"��

d�
i

����

� 	 j
d"��

d�
j�

���������
� 	 d����� ���

��

By symmetry� we also have

F ����� F ���� � �h
d"��

d� j���
� gradFj���i� 	

�

�
d����� ���

�� ���

Adding ��� and ��� yields

h
d"��

d� j���
� gradFj���i � h

d"��

d� j���
� gradFj���i � 	 d����� ���

�� ���

For later reference� we note that ��� also implies

F ���� F ��� � �j
d"��

d� j���
j jgradFj��� j

���������
� d����� ��� jgradFj��� j�

hence by symmetry�

jF ���� F ���j 
 d����� ��� maxfjgradFj��� j� jgradFj���jg� ��


��



We now derive ��� by formal Riemannian calculus� Because of ��
� ����� �
��� de	nes a �stationary solution of ���� Hence it su#ces to show the con�
traction property

d�

d�
d����� ���

� 
 �	d����� ���
� ���

for two solutions ��i of ���� Here�
d�

d�
denotes

d�

d� j��
f � lim sup

����

f��� f���

� � ��
�

We 	x a ��� For any � � let ��� �� � � �	 "����� � � M be a curve between
"����� � � ����� and "����� � � ������ We may arrange for that it is the curve
of least energy for � � �� and depends smoothly on � � so that

d����� ���
�

������
�����
�

Z �

�
j
�"��

��
j� d� for � � ��



Z �

�
j
�"��

��
j� d� for any �

������
�����
� ���

Hence for � � ���

d�

d� j��
d����� ���

�
����



d

d� j��

Z �

�
j
�"��

��
j� d�

� �
Z �

�
h
�"��

��
�
D

�� j��

�"��

��
i d�

� �
Z �

�
h
�"��

��
�
D

��

�"��

�� j��
i d�

� �
Z �

�

�
d

d�
h
�"��

��
�
�"��

�� j��
i � h

D

��

�"��

��
�
�"��

�� j��
i

�
d�

����
� �

Z �

�

d

d�
h
�"��

��
�
�"��

�� j��
i d�

� �

�
h
d"��

d� j���
�
d���
d�
i � h

d"��

d� j���
�
d���
d�
i

�

����
� ��

�
h
d"��

d� j���
� gradFj���i � h

d"��

d� j���
� gradFj���i

�

����


 ��	 d����� ���
��

��



which establishes ����

We 	nally show how to get ��� by formal Riemannian calculus� We need
the ingredient that

lim
���
�F ���� F ���� � �� ���

which in a 	nite dimensional context would immediately follow from ��� in
the weakened form of

lim
���

d���� ��� � �� ���

In our in	nite dimensional context� we obtain ��� from ��� and from ���
in the weakened form of

lim
���

jgradFj��j � � �
�

via the interpolation inequality

jF ���� F ����j 
 jgradFj��j d���� ��� for all �� � M�

which we obtain from ��
� using gradFj���
����
� ��

We now derive ��� in form of

d

d�
�F ���� F ���� 
 ��	 �F ���� F �����

We 	rst observe that

d

d�
�F ���� F ���� � hgradFj���

d��

d�
i

����
� �jgradFj��j

�� �
�

Hence we get

d

d�
�F ���� F ����

����
� �jgradFj��j

�

����
�

Z �

�

d

d�
jgradFj��j

� d�

����


 ��	
Z �

�
jgradFj��j

� d�

����
� �	

Z �

�

d

d�
�F ���� F ���� d�

����
� ��	 �F ���� F �����

��



� The geometry of �M� g�

The best way to understand the geometry of �M� g is� It is induced by a �at
Riemannian space �M�� g� via a submersion �� The intuition behind this
is the following� The porous medium equation describes the di�usion of gas
particles through a porous medium� M describes the state via the particle
densities � $ an Eulerian description� M� will describe the state via the
particle coordinates or �ow map � $ a Lagrangian description�

��� The isometric submersion �

We 	x a �� � M� We start by introducing the manifoldM� and the sub�
mersion ��M� 	 M� The manifold is the set of all di�eomorphisms of
IRN �

M� �
n
di�eomorphisms � of IRN

o
�

And � � ��� is given by the push forward of the reference density �� under
the map �� More precisely�Z

�  �
Z
��  � � for all functions  on IRN � �
�

We also use the notation
� � �����

We now endowM� with a metric tensor g�� Again� we will be sloppy about
the di�erential structure ofM� and think of the tangent space as the space
of all vector 	elds on IRN

T	M
� �

n
vector 	elds v on IRN

o
�

which we endow with the scalar product

g�	�v�� v� �
Z
�� v� � v��

In other words� �M�� g� carries the geometry of the ambient L��space with
weight ��� In particular �M

�� g� is �at�

We now argue that � is an isometric submersion from �M�� g� into �M� g�
for the notion of isometric submersion� see for instance ���� Chapter ����� We

��



have to show� For any � � M� the tangential

T	��T	M
� 	 T�M �
�

of � at � has the property

g��s� s � inf
T���v�s

g	�v� v for all s � T�M� �
�

where � � ���� We observe that �
� implies that T	� is an isometry when
restricted to the orthogonal complement �kerT	�

� of its kernel ker T	� 
T	M

�� In the language of di�erential geometry� A tangent vector in kerT	�
is called %vertical�� a tangent vector in �ker T	�

� is called %horizontal��

In order to establish property �
�� we give a characterization of the tangen�
tial T	� and the spaces ker T	� and �ker T	�

�� It is convenient to do so
in terms of the identi	cation �� of tangent vectors s � T�M with potentials
p and the following identi	cation of tangent vectors v � T	M

� with velocity
	elds u�

T	M
� ��

n
vector 	elds u on IRN

o
�



via
v � u � ��

We observe that in terms of u� the metric tensor g� assumes the form

g�	�v�� v� �
Z
� u� � u�� where � � ���� �
�

We now show that in terms of p and u�

� T	��u is the function p on IR
N �determined up to additive constants

which solves
�r � ��rp � �r � �� u� �
�

� u � kerT	� if and only if the vector 	eld u on IR
N satis	es

r � �� u � �� �
�

� u � �kerT	�
� if and only if the vector 	eld u on IRN satis	es

u � rp for some function p on IRN � �
�

��



The line �
� follows immediately from �
�� The line �
� follows from �
�
easily� Because of �
� and �
�� u � �kerT	�

� meansZ
w � u � � for all vector 	elds w on IRN with r � w � ��

which implies �
� by elementary vector calculus�

It remains to establish �
�� which we will do in the variational formZ
�rp � r �

Z
� u � r for all functions  on IRN � ���

Obviously�
� "�

��
�� � u � "���� "��� � � ���

de	nes a curve � �	 "��� � M� which for � � � passes through � and
has tangent u there� Now consider the image � �	 "��� of this curve under
�� It su#ces to show that its tangent p at � � � satis	es ���� Indeed� by
de	nition of ��Z

"���  �
Z
�� � � "��� for all functions  on IRN � ���

which we di�erentiate w� r� t� � and evaluate at � � ��

Z �"�

�� j���


����
�

Z
�� �r � � � �u � �

�
Z
�r � u for all functions  on IRN �

On the other hand� we have by de	nition �� of p� after integration by parts�

Z
�r � rp �

Z �"�

�� j���
 for all functions  on IRN �

This establishes ����

In view of the de	nition �� and of �
�� the identity �
� turns intoZ
� jrpj� � inf

T���u�p

Z
� juj��

which now is an immediate consequence of the characterization ��� of T	��u�

��



��� A property of the map �

The map � has the following important property� Let � �	 ��� be a geodesic
on �M�� g�� Then

d�

d�
�� � �kerT	����

� implies
d�

d�
�� � �kerT	����

� for all �� ���

Let us establish this property� Since �M�� g� carries the geometry of the
ambient euclidean L��space with weight ��� the geodesic equation is

���

���
� ��

We express the geodesic equation in terms of the tangent 	eld � �	 u��
given by by

��

��
� u � �� ���

Since

���

���
����
�

�

��
�u � �

�
�u

��
� � � �Du � ��

��

��
����
�

�
�u

��
�Du�u

�
� ��

where Du denotes the Jacobian of u w� r� t� the spatial variables� the geodesic
equation reads

�u

��
�Du�u � �� ��


According to �
�� the left hand side of ��� means that there exists a function
p� on IRN such that u�� � rp�� Now let the function "p��� x solve the
Hamilton�Jacobi equation

�"p

��
�
�

�
jr"pj� � � with initial data p��

Then its spatial gradient "u � r"p solves

�"u

��
�D"u�"u � � with initial data rp��

�




Hence "u and u solve the same evolution equation with identical initial data�
Therefore� "u and u coincide� In particular�

u�� � r"p�� for all ��

which according to �
� entails the right hand side of ����

��� Identi�cation of geodesics and induced distance

We will 	rst characterize geodesics and the induced distance on �M� g in
terms of geodesics and the induced distance on �M�� g�� For this� we forget
about where our structure �� �M�� g�	 �M� g came from and work exclu�
sively within the abstract framework of a Riemannian submersion with the
additional property established in the previous subsection�

The 	rst observation states how the %energy� of curves transforms under ��
Let � �	 ��� be a curve onM�� Consider its image � �	 ��� onM under
�� that is� ��� � ������ Then

Z
g��

d�

d�
�
d�

d�
 d� 


Z
g�	�

d�

d�
�
d�

d�
 d� ���

with equality if
d�

d�
� �kerT	�

��

Indeed� we have d�
d�
� T	��

d	
d�
� and therefore� according to �
��

g��
d�

d�
�
d�

d�
 
 g�	�

d�

d�
�
d�

d�
�

with equality if d	
d�
� �kerT	�

��

The second observation states what happens to geodesics under ��

If � �	 ��� is a geodesic on �M�� g� with d	
d�
� �kerT	�

��
then its image � �	 ��� is a geodesic on �M� g�

�
���

If � �	 ��� is a geodesic on �M� g with ��� � ��� then there
exists a geodesic � �	 ��� on �M�� g� with ��� � id�d	

d�
�

�kerT	�
� and such that � �	 ��� is its image under ��

���
�� ���

��



Indeed� for ���� it su#ces to show that � �	 ��� has lowest energy among
all small variations on small ��intervals� using the fact that � �	 ��� has
the same property� Let ��� � �	 "���� � be a given variation of � �	 ���� that
is� "���� � � ���� Since T	� is an isomorphism of �kerT	�

� onto T��	�M�
and since d	

d�
� �kerT	�

�� we can %lift� the variation ��� � �	 "���� � to a

variation ��� � �	 "���� � of � �	 ���� that is� ��"���� � � "���� �� with
d	
d�

� �kerT	�
�� Therefore the energy of � �	 ��� does not exceed the

energy of the variation � �	 "���� � for any ��Z
g��

d�

d�
�
d�

d�
 d�

����
�

Z
g�	�

d�

d�
�
d�

d�
 d�



Z
g�	�

d"�

d�
�
d"�

d�
 d�

����
�

Z
g��

d"�

d�
�
d"�

d�
 d��

The argument for ��� goes as follows� Let � �	 ��� be a geodesic on �M� g
with ��� � ��� Let � �	 ��� be the geodesic on �M�� g� with ��� � id
and

T	�����
d�

d�
�� �

d�

d�
�� and

d�

d�
�� � �kerT	����

��

According to the previous subsection� namely ���� the last property is pre�
served along the geodesic�

d�

d�
�� � �kerT	����

� for all ��

By ���� this implies that the image under �� � �	 ������ is a geodesic on
�M� g� By construction� it has the same initial data as � �	 ���� Hence
both geodesics coincide�

����� � ��� for all ��

The third observation states what happens to the induced distance under ��
Let d� denote the induced distance on �M�� g� and d the one on �M� g�
Let � � M be arbitrary� then

� For all � with ��� � ��

d���� �
� 
 d��id���� ���

��



� There exists a � with ��� � � and

d���� �
� � d��id���� ���

We observe that ��� and ��� imply

d���� �
� � inf

��	���
d��id���� ���

Let us start with ���� Indeed� let ��� �� � � �	 "��� be any curve on M�

with "��� � id and "��� � �� Consider its image ��� �� � � �	 "��� under
�� By assumption� "��� � �� and by de	nition of �� "��� � ��� Therefore

d���� �
� 


Z �

�
g��

d"�

d�
�
d"�

d�
 d�

����



Z �

�
g�	�

d"�

d�
�
d"�

d�
 d��

Since "� was an arbitrary curve connecting id to �� this inequality yields ����
Now let ��� �� � � �	 "��� be a curve connecting �� to � with minimal energy�
According to ���� there exists a curve ��� �� � � �	 "��� on �M�� g� such
that

d"�

d�
� �kerT	�

�� "��� � id and ��"��� � "����

In particular� � �� "��� satis	es ��� � �� and we have

d���� �
� �

Z �

�
g��

d"�

d�
�
d"�

d�
 d�

����
�

Z �

�
g�	�

d"�

d�
�
d"�

d�
 d�

� d��id����

This establishes ����

We will now use the above characterization of geodesics on �M� g in terms
of geodesics on �M�� g� and our good understanding of the latter to identify
the former� Since �M�� g� carries the geometry of the ambient L��space
with weight ��� geodesics � �	 ��� are characterized by

���

���
� �� ���

��



Now let � �	 ��� be a geodesic on �M� g with the initial data

��� � �� and
d�

d�
�� � s� ���

We represent the tangent vector s � T��M by

�r � ���rp � s� ���

According to ���� there exists a geodesic � �	 ��� on �M�� g� with ��� �
id�d	

d�
� �kerT	�

� and such that � �	 ��� is its image under �� that is

��� � ������ for all ��

Since in particular� ��� � id and

Tid��
d�

d�
�� � s and

d�

d�
�� � �kerTid�

��

we must have by our characterization of Tid�

��

��
�� � rp�

Together with ���� we infer that ��� is of the form

��� � r�
�

�
jyj� � � p�

Therefore� we have characterized our geodesic � �	 ��� with initial data
��� as

��� �
�
r�
�

�
jyj� � � p

�
���� ��


where p is related to s by ����

We will now use the above characterization of the induced distance on �M� g
in terms of the induced distance on �M�� g� and our good understanding of
the latter to identify the former� Since �M�� g� carries the geometry of the
ambient L��space with weight ��� d

� is given by

d�������
� �

Z
�� j�� � ��j

��

We therefore obtain from ��� that

d���� �
� � inf

��	
��

Z
�� jid� �j

�

Hence we have identi	ed the induced distance onM with what is called the
Wasserstein distance� which we formally introduce in section 
�

��



��� Computation of the Hessians HessE and HessM

The Hessian HessF of a function F on a Riemannian manifold �M� g can be
computed by taking second derivatives of F along geodesics� More precisely�
if � �	 ��� is a geodesic on �M� g with

��� � �� and
d�

d�
�� � s�

then

g���s�HessFj��s �
d�

d��
F ����j���� ���

As always� we represent the tangent vector s � T��M by

�r � ���rp � s�

In the previous subsection� we characterized the geodesic � �	 ��� as

��� � r������� ���

where the function ��� on IRN is given by

���� y �
�

�
jyj� � � p�y� ���

Hence convexity of a function F on the Riemannian manifold �M� g reduces
to McCann�s %displacement convexity� ���� McCann introduced� established
and used this notion for our energy functional E to prove uniqueness for a
variational problem onM $ without referral to the Riemannian structure�
As a guideline for our rigorous arguments in the next section� it will be
convenient to explicitly 	nd HessEj�� �as opposed to just showing that it is
positive semi de	nite� Therefore the calculation which now follows deviate
a bit from McCann�s�

We observe that ��� can be reformulated as

detD���� ���� � r��� � ���

so that

E���� �
Z
e

�
��

det D����

�
detD����� ���

��



where D���� denotes the N � N�matrix of second spatial derivatives of
��� and e the energy density� as de	ned in ����

Guided by the above� we consider a curve � �	 A�� in the space of symmetric
and positive de	nite N � N�matrices and a positive number z � �� Let us
recall that the energy density e and the osmotic pressure � �de	ned in ���
are related by

��z � z e��z� e�z�

Therefore� we have

d

d�

�
e


z

detA

�
detA

�
� ��


z

detA

�
d

d�
detA�

d�

d��

�
e


z

detA

�
detA

�
� ��


z

detA

�
z

�detA�
�
d

d�
detA�

� �


z

detA

�
d�

d��
detA�

By elementary linear algebra�

d

d�
detA � tr�A�� �A

��
 detA�

d�

d��
detA � �tr

�
A�� �A

��

��

detA�

�
tr�A�� �A

��


��

detA

� tr�A�� d
�A

d��
 detA�

Hence if the curve � �	 A�� additionally satis	es d�A
d��

� �� we obtain

d�

d��

�
e


z

detA

�
detA

�
� �w ���w� ��w

�
tr �A��B

��
detA

� ��w tr
�
A��B

��
detA�

where we have used the abbreviations

B ��
dA

d�
and w ��

z

detA
�

Since

�A��B� � A��
�C�A�
� with C �� A��
�BA��
��

��



where C is a symmetric matrix� we have

tr
�
A��B

��
� trC� �

�

N
�trC� �

�

N

�
tr �A��B

��
� ���

Since ��w � wm � �� we therefore obtain

d�

d��

�
e


z

detA

�
detA

�
� �w ���w� ���

�

N
 ��w

�
tr �A��B

��
detA�

Since w ���w � �� � �
N
 ��w � �m � �� � �

N
wm � � by our assumption

m � �� �
N
� this implies

d�

d��

�
e


z

detA

�
detA

�
� �� ���

For later reference� we notice that if in addition A�� � id�

d�

d�� j���

�
e


z

detA

�
detA

�
� �z ���z� ��z �trB� � ��z trB�� ���

Now consider D����� We observe that � D���� is symmetric� � D���� is
positive de	nite �for su#ciently small � since D���� � id� � ��

���
D���� � �

because of ���� Hence we may apply the above to A�� � D���� and obtain

d�

d��
E����

����
�

Z ��

���

�
e


��
detD�

�
detD�

�
����

� ��

Since �
�� j���

D��
����
� D�p and D���� � �� we also get

d�

d�� j���
E���� �

Z ��

��� j���

�
e

�
��

detD��

�
detD��

�

����
�

Z n
������ �� � ���� �r

�p� � ���� tr �D
�p�

o
�

We conclude by

g���s�HessEj�� s
����
�

d�

d�� j���
E����

�
Z n

������ �� � ���� �r
�p� � ���� tr �D

�p�
o

� �� ���

��



This establishes the 	rst part of ���� Let us point out again that it is the
condition m � �� �

N
which ensures that E is convex on �M� g�

Let us now identify HessMj��� It follows immediately from ��� that

M���� �
Z
��
�

�
jr���j��

Hence we obtain

g���s�HessMj��s
����
�

d�

d�� j���
M����

����
�

Z
�� j

�r�

�� j���
j�

����
�

Z
�� jrpj

�

���
� g���s� s� ���

This establishes the second part of ����

� Rigorous results

��� Weak solutions of the porous medium equation

In case of m � � and for non�zero initial data with compact support� there
is no �classically di�erentiable solution of the porous medium equation� We
therefore must work with the notion of a weak solution� The well�established
existence and uniqueness theory for weak solutions is based on the traditional
gradient �ow approach� as presented in the subsection ���� In particular� ex�
istence is based on the identity �
 in subsection ���� which in the traditional
approach reads as

d

dt

Z
�

m��
��tm�� � �

Z
jr�m�tj��

This identity yields the essential a priori estimates� Uniqueness is based on
the convexity of the functional in the traditional approach� which leads to a
contraction property of the semi group in the induced norm �remember that
in the traditional approach� the space carries the geometry of a convex subset

��



of a euclidean function space� so that intrinsic convexity of the functional
reduces to ordinary convexity� Here that means that if ��� �� are solutions�
then

d

dt

Z
jrp�tj �

Z
����t� ���t ����t

m � ���t
m 
 ��

where� in the spirit of ���

�r�p�t � ���t� ���t�

De	nition � Let �� be a measurable and non negative function on IRN with

Z
�

m��
�m��
� 
 ��

Let � be a measurable and non negative function on ����� IRN with

ess sup
t������

Z
�

m��
��tm�� 
 ��

Then �m is locally integrable� more precisely

ess sup
t������

Z
��m�t�m���� 
 ��

where �m� �� denotes the dual exponent to m� �� Assume further that �m

has a distributional spatial gradient r�m satisfying

Z �

�

Z
jr�m�tj� dt 
 ��

Then � is called a weak solution of the porous medium equation with initial
data �� if

Z
������IRN

�
��

�

�t
�r�m � r

�
�

Z
�� ��

for all  � C�
� ������� IRN�

��



��� The Wasserstein metric

In subsection ���� we formally derived that the induced metric d on �M� g
is given by

d���� ��
� � inf

���	
��

Z
�� jid� �j

��

Morally speaking� this is the Wasserstein metric� The precise de	nition of
the Wasserstein metric relaxes the above variational problem� This is done
by embedding the set of one�to�one transformations � with �� � ���� into
the set of all probability measures � on IRN � IRN with marginals given by
the Lebesgue densities ��� �� via

� � �id� ����� ��


that is Z
�x�� x���dx�dx� �

Z
���x� �x����x� dx�

for all  � C�
� �IR

N � IRN�

Then Z
�� jid� �j

� �
Z
jy� � y�j

� ��dy�� dy��

and it is the latter functional one minimizes on the set of all probability
measures � with marginals �� dy� and �� dy�� The relaxed variational problem
is one version of the Monge�Kantorowicz mass transference problems� the
��s are called �transference plans�� the function jy� � y�j

� is the �cost� of
transferring a unit mass from y� to y��

De	nition � For two non negative Borel measures �� and �� of equal mass�
we introduce

P ���� ��

�
n

non negative Borel measure � on IRN � IRN



Z

�y���dy� dy� �
Z
�y����dy� andZ

�y���dy� dy� �
Z
�y����dy� for all  � C�

� �IR
N

o
�

�




d���� ��
� is de�ned as

d���� ��
� � inf

��P �������

Z
jy� � y�j

� ��dy� dy� � ���

If �� and �� have Lebesgue densities �� � �� dy� resp� �� � �� dy�� we also
write

d���� ��
� � d���� ��

��

The space P ���� �� always contains the product measure �� � ��� Hence
d���� �� � ����� is well de	ned� If the second moments of �� and �� are
	nite� then the transference plan �� � �� has 	nite cost� so that d���� �� �
����� It is then an easy exercise in soft methods that the variational problem
��� admits a minimizer of 	nite cost� It has been known to the probabilists
for a long time that d indeed de	nes a metric on the space of probability mea�
sures on IRN with 	nite second moments� This distance function is popular
in probability theory since it metrizes the topology of weak�& convergence
�up to second moments� We found the few results on d we need in ���� or
����� We summarize them in the following Lemma�

Lemma � Let f����g��� and f����g��� be two sequences of non negative
Borel measures on IRN � We assume that the masses of ���� and ���� are
�nite and equal and that there exist two non negative Borel measures �� and
�� on IRN of �nite mass such that

Z
 d�i � lim

���

Z
 d�i�� for all  � C�

� �IR
N  and i � �� ��

Then
d���� ��

� 
 lim inf
���

d������ ����
��

If in addition

Z �

�
jyj� d�i � lim

���

Z �

�
jyj� d�i�� for i � �� ��

then
d���� ��

� � lim
���

d������ ����
��

��



The variational problem in ��� has recently received some attention by ana�
lysts� If the measures �� and �� have bounded support and Lebesgue densities
�� � �� dy� resp� �� � �� dy�� Brenier ��� has shown uniqueness of the mini�
mizing transference plan � and proved that the support of � is the graph of
the gradient of a �generically non smooth convex function� more precisely�

� � �id�r����� ���

A glance back to ��
 then shows that the initial relaxation from one�to�
one transformations � to transference plans � is non essential and just of
technical convenience� In particular� ��� yields that

�� � r����� ���

We also invite the reader to compare ��� with ��� in subsection ����

Ca�arelli ��� and Gangbo  McCann ���� ��� �
� have extended Brenier�s re�
sult to more general strictly convex cost functions� The case of cost functions
of degenerate convexity ���� and concave cost functions ��
� is qualitatively
di�erent�

��� The statement of the rigorous result

Theorem � Let m satisfy m � N
N��

and m � � � �
N
� Let � be a weak

solution of the porous medium equation with initial data �� in the sense of
De�nition �� We assume that additionallyZ

�� � � and
Z
��
�

�
jxj� 
 ��

We consider the function �� on ������ IRN given by

��t� x �
�

tN�
���ln t�

x

t�
�

where 	 � �
�m���N��

� Then� in a distributional sense�

d

d�

h
exp��	 � jgradFj�����j

�
i

 ��

d

d�
�exp��	 � �F ������ F ����� 
 ��

d

d�

h
exp��	 � d������ ���

�
i

 ��

��



with the understanding that the quantities in the square brackets are �nite
for � � ��� The precise meaning of jgradF��j

� and F ����F ���� is given in
���� resp� ����� d denotes the Wasserstein distance as in De�nition 	�

Let us now explain what we understand by jgradF��j
� and F ��� � F ���� in

Theorem �� In subsection ����� we have identi	ed jgradF��j
� as

jgradFj��j
� �

Z
�� jrpj� where p�y � e�����y � 	

�

�
jyj��

We observe that thanks to the fundamental relationship z e���z � ���z be�
tween energy density ��� and osmotic pressure ���� we have

�

��
r���� � ��re����

and thus Z �

��
jr���� � 	 �� yj� �

Z
�� jrpj�� ���

provided �� is locally bounded away from zero� Observe that even if this is
not the case� the l� h� s� of ��� is well de	ned as a number in ������ since
r���� vanishes almost everywhere on the set where �� vanishes� It is this
weak formulation

jgradF��j
� �

Z �

��
jr���� � 	 �� yj�� ���

we use in Theorem ��

By F ���� F ���� we understand

F ���� F ���� ���

�

��
�
�R

e��� � 	
R
�� �
�
jyj�

�
�
�R

e���� � 	
R
���

�
�
jyj�

�
for m � ��R

fe���� e����� e����� ���� ���g for m 
 �

��
� �

The second line is inspired by the identity ��� in subsection ���� We point
out that in both lines� the integrands are non negative� hence the number
F ���� F ���� � ����� is well de	ned�

��



The main technical di#culty in mimicking the Riemannian calculus is the
possible lack of regularity of solutions of the porous medium equation� Our
approach is to mimic the Riemannian calculus in a completely smooth setting
�Proposition � and then to use an approximation argument �in the proof of
Theorem ��

Proposition � Let e and � be smooth functions on ���� related by

��z � z e��z� e�z and thus ���z � z e���z ���

and satisfying

��z � � and z ���z� ���
�

N
 ��z � �� ���

limz��e
��z � �� and limz��e�z � �� ���

Let the open '  IRN satisfy

' is convex and �' is smooth�

Let the function �� of be a smooth and positive function on ����� � '
which solves

���

��
�r � ���rp � � in ������ '� ��


��rp � � � � on ������ �'� ���

where

p � e���� � 	
�

�
jyj�

for some �xed 	 � �� We observe that the evolution equation ��
���� con�
serves mass� Thanks to ���� there exists a smooth stationary solution ��� of
��
���� with the same mass� it is given by

e������y � 	
�

�
jyj� � � and

Z
�
��� �

Z
�
����� ���

Then �� and ��� satisfy

d

d�

�
exp��	 �

Z
�
���� jrp��j�

�

 �� ���

��



d

d�
�exp��	 � �F ������ F ����� 
 �� ���

d

d�

h
exp��	 � d����� ����

�
i

 �� ����

where

F ��� � E��� � 	M��� �
Z
�
e��� � 	

Z
�
��
�

�
jyj��

��� Proof of the Proposition

We start with the proof of ���� At the center of our attention is

p�y � e�����y � 	
�

�
jyj��

that is� p �� gradFj�� � �
d��
d�
� We have

d

d�

Z
�
�� jrpj� �

Z
�

n
�� �rp � r��p� �� �� jrpj

�
o

����
� �

Z
�

	
�� �rp � r��p�r � ���rp

�

�
jrpj�

�

� �
Z
�
��rp �

�
r��p�r�

�

�
jrpj�

�
�
Z
��
��rp � � jrpj�

����
� �

Z
�
��rp �

�
r��p�r�

�

�
jrpj�

�

� �
Z
�
��rp �

h
r��p� D

�p�rp
i
�

which mimics d
d�
jgradFj��j

� � � hgradFj���
D
d�
gradFj��i� We now split p into

p � p� � 	 p� where p��y � e�����y and p��y �
�

�
jyj��

that is� p� �� gradEj�� and p� �� gradMj��� We will show that

�
Z
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
������ ��� ���� �r�p� � ���� tr �D�p�

o

�
Z
��

����rp � II�rp� ����

��



where v � II�v denotes the second fundamental form of �'� This mimics

�hgradFj���
D

d�
gradEj��i � hgradFj���HessEj�� gradFj��i�

as can be seen from ���� On the other hand� it is obvious thatZ
�
��rp �

h
r��p� � D

�p��rp
i
� �

Z
�
�� jrpj�� ����

which mimics

hgradFj���
D

d�
gradMj��i � �hgradFj���HessMj�� gradFj��i � �jgradFj��j

��

as can be seen from ����

Let us establish the identity ����� For this� we write the 	rst part of the
integrand of the l� h� s� in ���� as follows�

���rp � r��p�

� ���rp � r�e����� �� ���
����
� ���rp � r�e�����r � ���rp�

� �rp � r��� e�����r � ���rp� �rp � r�� e�����r � ���rp
����
� �rp � r������r � ���rp� �rp � r�� e�����r � ���rp�

Thanks to the formula

r � �rp � rp� ��rp� � r�rp � rp� � ���rp �rp � rp�r � ���rp

� ��rp �D�p��rp� ��rp� �D
�p�rp

� rp � rp�r � ���rp�

which we rearrange to

��rp �D�p��rp � �
n
rp � rp�r � ���rp � ��rp� �D

�p�rp
o

� r � �rp � rp� ��rp� �

we have for the second part of the integral of the l� h� s� in �����Z
�
��rp �D�p��rp

��



� �
Z
�

n
r � ���rprp � rp� � ��rp� �D

�p�rp
o

�
Z
��
rp � rp� ��rp � �

����
� �

Z
�

n
r � ���rprp � rp� � ��rp� �D

�p�rp
o

and rewrite the integrand as

r � ���rprp � rp� � ��rp� �D
�p�rp

����
� r � ���rp e�����rp � r�� �r������ �D�p�rp�

Hence we obtain for the whole integral of the l� h� s� in �����Z
�
��rp �

h
r��p� �D

�p��rp
i

� �
Z
�

n
rp � r������r � ���rp� �r������ �D�p�rp

o
�

A further integration by parts yieldsZ
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
r�p �����r � ���rp � ����r � �D�p�rp

o

�
Z
��

n
rp � � �����r � ���rp � ���� � � �D�p�rp

o
����

Let us consider the boundary integral in ����� The Neumann boundary con�
dition ��� means that rp is a tangential vector 	eld on �'� Di�erentiating
the Neumann boundary condition along this tangential vector 	eld yields

� �D�p�rp�rp � II�rp � � on �'� ����

We use the identity ���� to substitute � �D�p�rp in ���� and obtainZ
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
r�p �����r � ���rp � ����r � �D�p�rp

o

�
Z
��

����rp � II�rp� ���


��



We reconsider the 	rst part of the bulk integrand on the r� h� s� in ���
�

�����r � ���rpr�p � ����� �� �r�p� � �����r�� � rpr�p

� ����� �� �r�p� �r������ � rpr�p

and perform a last integration by partsZ
�
r������ � rpr�p

� �
Z
�
����r � �r�prp �

Z
��

���� � � rpr�p

����
� �

Z
�
����r � �r�prp�

Hence we obtainZ
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
����� �� �r�p� � ����

h
�r � �r�prp �r � �D�p�rp

io

�
Z
��

����rp � II�rp�

We conclude the proof of identity ���� by evoking the formula

�r � �r�prp �r � �D�p�rp � tr�D�p� � �r�p��

In order to conclude

d

d�

Z
�
�� jrpj� 
 ��	

Z
�
�� jrpj��

and thereby the proof of ���� it remains to show that the right hand side of
���� is non negative� that is� hs�HessEj��si � �� Here we use our assumptions
on � and '� The integral over ' is non negative� since its integrand is non
negative�

������ ��� ���� �r�p� � ���� tr �D�p�

����

� ������ ��� ���� �r�p� � ����
�

N
�r�p�

����

� ��

��



where we have used trC� � �
N
�trC� for a symmetric N �N�matrix C as in

��� of subsection ���� The integral over �' is non negative since its integrand
is non negative� Our assumption ��� on � implies that the 	rst factor ����
is non negative� the convexity of ' implies that the second fundamental form
II of �' is positive semi de	nite� hence also the second factor rp � II�rp is
non negative�

Let us now tackle ����� Following the lines of subsection ��
� we start by
deriving an auxiliary result� Let ���� ��� be smooth and positive functions on '�
We think of ��i �i � �� � as being extended on IR

N by zero so that according
to ����

F ���i � E���i � 	M���i �
Z
e���i � 	

Z
��i
�

�
jyj��

Let � denote an optimal transference plan in the de	nition of d����� ���
�� We

consider pi �� gradFj��i � that is�

pi�y � e����i�y � 	
�

�
jyj��

The auxiliary result states that

F ����� F ���� �
Z
rp��y� � �y� � y���dy�dy� � 	

�

�
d����� ���

�� ����

The integral is well de	ned� since p� is smooth on ' and � is supported on
' � '� In order to derive and interpret inequality ����� we need the curve
��� �� � � �	 ��� of least energy between ��� and ���� In this sense� ���� mimics
��� in subsection ��
� that is�

F ����� F ���� � hgradFj��� �
d��

d� j���
i� 	

�

�
d����� ���

��

In terms of ��� �� � � �	 ���� inequality ���� obviously is a consequence of

d�

d� j���
F ���� �

Z
rp��y� � �y� � y���dy�dy� ����

and
d�

d��
F ���� � 	 d����� ���

�� ����

��



The latter obviously splits into

d�

d��
E���� � � and ����

d�

d��
M���� � d����� ���

�� ����

For these statements to make sense� we need the existence of a �weak curve
��� �� � � �	 ��� of least energy between ��� and ���� It is provided by results
of McCann ���� which rely on earlier work by Brenier ���� Let us state these
results� According to Brenier ���� there exists a convex function �� on IRN

such that

� � �id�r������ and in particular ��� � r������� ����

According to McCann ��� Proposition ��� �ii��

��� � r������ where ���y � ��� �
�

�
jyj� � � ���y

de	nes a non negative and integrable function ��� on IR
N � A glance back to

��
 in subsection ��� will convince the reader of our interpretation of � �	 ���
as a geodesic $ which by construction is the curve of least energy between
��� and ���� We observe that in terms of ��Z

���  �
Z
�� y� � ��� � y���dy�dy� for all  � C�

� �IR
N � ����

Furthermore� McCann shows in ��� Theorem ���� that the transformation
formula ��� in subsection ��� can be made rigorous� For all � � ��� � we
have

Z
e�����y dy �

Z
e

�
����y�

detD����y�

�
detD����y� dy�� � ����

We recall that a convex function � has a gradient r� and a Hessian D�� in
the sense that for almost every y��

��y

� ��y� � �y � y� � r��y� � �y � y� �D
���y���y � y� � o��y � y�

��

�




A proof of this result of Alexandrov can be found in ��� Theorem A�����
The symmetric and positive semi de	nite matrix D����y� in ���� is to be
understood in this sense� We observe that D����y� � �D���y�� ���� id
is positive de	nite for � 
 �� Hence the division by detD���y� in ����
causes no problem�

Let us start with ����� We note that our assumptions on e and � imply the
convexity of ���� � z �	 e�z� Indeed�

z� e���z
����
� z ���z

����

� z ���
�

N
 ��z

����

� � for all z � ��

Therefore� we have

e�z� e�z� � e��z� �z � z� for all z � � and z� � ��

We thus obtain

E����� E���� �
Z
e����� ���� � ����

Trivially�

M�����M���� �
Z �
�
jyj� �����y� ����y dy�

so that by de	nition of p�

�

�
�F ����� F ���� ����

�
Z
p�
�

�
���� � ���

�����
�

Z �

�
�p��� y� � ��� � y�� p��y���dy�dy�� ���


We observe that �� the ��integral is supported on '�'� �� for all �y�� y� �
'�' we have� as a consequence of the convexity of '� � y������ y� � '�
�� p� is smooth in '� This implies that

lim
���

�

�
�p��� y� � ��� � y�� p��y� � rp��y� � �y� � y�

uniformly in �y�� y� in the support of ��

��



Therefore� the passage to the limit � � � in the inequality ���
 yields �����

Convexity of E along geodesics as expressed in ���� can be derived from
the representation ���� by copying the arguments given in subsection ��
�
The argument for the strict convexity of M along geodesics as quanti	ed in
���� is simpler� According to �����

M���� �
Z �

�
jyj�����y dy �

Z �
�
j� y� � ��� � y�j

� ��dy�� dy��

and therefore

d�

d��
M���� �

Z
jy� � y�j

� ��dy�� dy� � d����� ���
��

Now that we have established our auxiliary result ����� we observe that by
symmetry� we also have

F ����� F ���� � �
Z
rp��y� � �y� � y���dy�dy� � 	

�

�
d����� ���

�� ����

Adding ���� and ���� yieldsZ
�rp��y��rp��y� � �y� � y���dy�dy� � 	 d����� ���

�� ����

Furthermore� we obtain from ����� dropping the 	 �
�
d����� ���

��term�

F ����� F ����

�
Z
rp��y� � �y� � y���dy�dy�

� �
Z

jrp��y�j
� ��dy�dy�

� �

�
Z

jy� � y�j
� ��dy�dy�

� �

�

� �
Z

�
��� jrp�j

�
� �

�

d����� ����

and thus by symmetry

jF ����� F ����j


 max

�Z
�
��� jrp�j

�
� �

�

�
Z

�
��� jrp�j

�
� �

�

�
d����� ���� ����

��



We now are in the position to prove that for two smooth and positive solutions
��� and ��� of ��
��� we have

d�

d�
d����� ���

� 
 ��	 d����� ���
�� ����

Since ����� � ��� de	nes a �stationary smooth and positive solution of
��
���� this proves ����� In order to prove ����� we consider the smooth
velocity 	elds

ui � �rpi where pi�y � e����i�y � 	
�

�
jyj�� ����

Since ��i satis	es ��
���� we have

���i
��

�r � ���i ui � � in ����� '�

ui � � � � on ����� �'�

Let us 	x a time �� and show that the last two lines imply that

d�

d� j����
d������� �����

�


 �
Z
�u����� y�� u����� y� � �y� � y������ dy�dy�� ����

where ���� is an optimal transference plan in the de	nition of the Wasser�
stein metric d�������� ������

�� Obviously� ���� together with the de	nition
���� of the velocities and the inequality ���� imply ����� In order to prove
����� we observe that

��i

��
�� � ui�� � �i�� and �i��� � id�

de	nes a family f�i��g� of di�eomorphism of ' which are such that for any
� � �����

��i�� � �i�����i����

Therefore�
��� � ������ ���������

��



de	nes an admissible transference plan in the de	nition of d������� �����
�

�observe that ���� is supported in ' � '� where ����� ���� is de	ned�
Hence for all � � ���

�

� � ��

�
d������� �����

� � d�������� ������
�
�



�

� � ��

Z
jy� � y�j

� ���� dy�dy��
Z
jy� � y�j

� ����� dy�dy�
�

�
Z �

� � ��

�
j����� y�� ����� y�j

� � jy� � y�j
�
�
����� dy�dy� ����

We observe that by de	nition of �i

lim
����

�

� � ��

�
j����� y�� ����� y�j

� � jy� � y�j
�
�

� � �u����� y�� u����� y� � �y� � y�

uniformly in �y�� y� in the support of �����

Therefore� the passage to the limit � � �� in the inequality ���� yields �����

We 	nally address ���� As in our formal calculus in subsection ��
� we need
to know beforehand that

lim
���
�F ���� F ���� � �� ����

As in subsection ��
� we obtain ���� from ��� and ���� in the weakened
form of

lim
���

Z
�
�� jrpj� � � resp� lim

���
d���� ���� � �

via the interpolation

jF ���� F ����j 

Z

�
�� jrpj�

� �

�

d���� ����

which follows from ���� and ���� The other ingredient is d
d�
�F ��� �

F ���� � �jgradFj��j
�� that is�

d

d�
�F ���� F ���� �

d

d�
F ���

��



�
Z
�
p
��

��
����
� �

Z
�
pr � �����rp

����
� �

Z
�
�� jrpj��

The rest of the argument follows the few corresponding lines in subsection
��
�

��� Proof of the Theorem	 part I

Deriving Theorem � from Proposition � is an uninspiring exercise in approx�
imation arguments� For convenience� we set again

e�z �

�
�

m��
zm for m �� �

z ln z for m � �

�
�

��z � zm�
��z � �

m��
zm��

and observe that these functions are related by

z e���z � ���z and ���z � ��z�

We divide the statement of the theorem into two parts� The 	rst part is to
show that for a� e� �� and a� e� � with � � �� we have

exp��	 �
Z �

����
jr������ � 	 ���� yj�


 exp��	 ��
Z �

���
jr����� � 	 ��� yj

�� ����

exp��	 �
	Z

e����� � 	
Z
����

�

�
jyj�

�
�
Z

e���� � 	
Z
���
�

�
jyj�

��


 exp��	 ��
	Z

e���� � 	
Z
���
�

�
jyj�

�
�
Z

e���� � 	
Z
���
�

�
jyj�

��
for m � �� ���


exp��	 �
Z
fe������ e����� e����� ������ ���g


�




 exp��	 ��
Z
fe����� e����� e����� ���� � ���g

for m 
 �� ����

exp��	 � d������ ���
� 
 exp��	 �� d����� ���

�� ����

where ��� � ������ We start by observing that for a� e� �� � ln�t� we haveZ
��� � � and

Z
���� 
 ��

����� � L�
loc�IR

N and r����� � L��IRN�

where �� � ��t�� We 	x such a �� � ln�t�� W� l� o� g� we may assume that
the r� h� s� of ����� ���
� ���� and ���� are 	nite� that isZ �

���
jr����� � 	 ��� yj

� 
 ��Z
e���� 
 � for m � ��Z

fe����� e����� e����� ���� � ���g 
 � for m 
 ��Z
���
�

�
jyj� 
 ��

the latter being a consequence of the assumption that d����� ���
� 
 � and

the fact that
R
���

�
�
jyj� 
��

We now approximate ���� We will construct functions ����� and R� 
� such
that

'� � fjyj 
 R�g�

����� is smooth and positive on '�

with

R�
���
�	 ���

����� on '�

� else

�
���
�	 ��� in L��IRN � ����

Z
��

�

�����
jr������� � 	 ����� yj

� ���
�	

Z �

���
jr����� � 	 ��� yj

�� ����

Z
��
e������

���
�	

Z
e���� for m � �� ����


�



Z
��
fe������� e����� e����� ������ � ���g

���
�	

Z
fe����� e����� e����� ���� � ���g for m 
 �� ����

Z
��
�����

�

�
jyj�

���
�	

Z
���
�

�
jyj�� ����

and such that ���� and ('� �de	ned by �����t� x �
�

tN�
�

������
x
t�
�

 and ('� �

tN�
� '� satisfy �

���� on ('�

� else

�
���
�	 �� in L��IRN � ����

Z
���
������

���
�	

Z
����� ����

We construct ����� in three steps� The 	rst step� For R 
� we set

'R � fjyj 
 Rg� ('R � fjxj 
 tN�
� Rg�

and observe that �
��� on 'R

� else

�
R��
�	 ��� in L��IRN�

�
�� on ('R

� else

�
R��
�	 �� in L��IRN�

By monotone convergence�

Z
�R

�

���
jr����� � 	 ��� yj

� R��
�	

Z �

���
jr����� � 	 ��� yj

�

Z
�R

e����
R��
�	

Z
e���� for m � ��

Z
�R
fe����� e����� e����� ���� � ���g

R��
�	

Z
fe����� e����� e����� ���� � ���g for m 
 ��


�



Z
�R
���
�

�
jyj�

R��
�	

Z
���
�

�
jyj��Z

��R
����

R��
�	

Z
�����

The second step� We 	x R 
� an set for � � �

����� � minfmaxf���� �g�
�

�
g and hence

���� � minfmaxf���
�

tN�
�

g�
�

� tN�
�

g�

Obviously

�����
���
�	 ��� in L��'R�

����
���
�	 �� in L��('R�

Since

r������� �

�
r����� if ��� � ���

�
�


� else

�
�

we have

�

�����
jr������� � 	 ����� yj

� ���
�	

�

���
jr����� � 	 ��� yj

� a� e� in 'R�

We also have for su#ciently small �

�

�����
jr������� � 	 ����� yj

� 

�

�����
jr�������j

� � �	� ����� jyj
�



�

���
jr�����j

� � �	� maxf���� �g jyj
�

with �Z
�R

�

���
jr�����j

�

� �

�




�Z
�R

�

���
jr����� � 	 ��� yj

�

��

�

� 	
Z

�R
��� jyj

�
� �

�


 ��

Z
�R
maxf���� �g jyj

� 
 ��


�



Therefore by dominated convergenceZ
�R

�

�����
jr������� � 	 ����� yj

� ���
�	

Z
�R

�

���
jr����� � 	 ��� yj

��

In case of m � � we have for � � �

� 
 e������ 
 maxfe����� �g�

Since maxfe����� �g is integrable on 'R� we obtain by dominated convergenceZ
�R

e������
���
�	

Z
�R

e�����

In case of m 
 �� we observe that for

z� � minfmaxfz� �g�
�

�
g and � 
 z� 


�

�

we have

� 
 e�z�� e�z�� e��z� �z� � z� 
 e�z� e�z�� e��z� �z � z��

Since

� 
 ��� 

�

�
on 'R

for � � �� we haveZ
�R
fe������� e����� e����� ������ � ���g



Z
�R
fe����� e����� e����� ���� � ���g �

On the other hand� we have by Fatou�s lemmaZ
�R
fe����� e����� e����� ���� � ���g


 lim inf
���

Z
�R
fe������� e����� e����� ������ � ���g �

so that we obtainZ
�R
fe������� e����� e����� ������ � ���g

���
�	

Z
�R
fe����� e����� e����� ���� � ���g �


�



Finally� we have for � � �

� 
 ������ 
 maxf����� �g�

Since maxf����� �g is integrable on ('R� we obtain by dominated convergenceZ
��R

������
���
�	

Z
��R

�����

The third step� Fix R 
� and � � �� Since

����� � ���
�

�
� on 'R andZ

�R
jr�������j

� 

�

�

Z
�R

�

�����
jr�������j

�



�

�

Z
�R

�

�����
jr������� � 	 ����� yj

� �
�

�
	�

Z
�R
����� jyj

�


 ��

there exists for � � � a function ������ with

������ is smooth and ��� �
�
��valued on 'R

and

������
��
�	 ����� in L��'R�

r��������
��
�	 r������� in L��'R�

This obviously implies

Z
�R

�

������
jr�������� � 	 ������ yj

� ��
�	

Z
�R

�

�����
jr������� � 	 ����� yj

�

Z
�R

e�������
��
�	

Z
�R

e������ for m � ��

Z
�R
fe�������� e����� e����� ������� � ���g

��
�	

Z
�R
fe������� e����� e����� ������ � ���g for m 
 ��







Z
�R
������

�

�
jyj�

��
�	

Z
�R
�����

�

�
jyj��

and

�����
��
�	 �� in L��('R�Z

��R
�������

��
�	

Z
��R

�������

Collecting all these results� we obtain

lim
R��

lim
���

lim
��

�
������ on 'R

� else

�
� ��� in L��IRN�

lim
R��

lim
���

lim
��

Z
�R

�

������
jr�������� � 	 ������ yj

� �
Z �

���
jr����� � 	 ��� yj

�

lim
R��

lim
���

lim
��

Z
�R

e������� �
Z
e���� for m � ��

lim
R��

lim
���

lim
��

Z
fe�������� e����� e����� ������� � ���g

�
Z
fe����� e����� e����� ���� � ���g for m 
 ��

lim
R��

lim
���

lim
��

Z
�R
������

�

�
jyj� �

Z
���
�

�
jyj��

and

lim
R��

lim
���

lim
��

�
����� on ('R

� else

�
� �� in L��IRN�

lim
R��

lim
���

lim
��

Z
��R

������� �
Z
�����

Choosing appropriate sequences R�
���
	 �� ��

���
	 � and ��

���
	 � gives the

desired '� � 'R� and ����� � ������ �� �

We have to approximate � in the degenerate case� that is� for m � �� We
start by constructing a smooth �� with

���z � �
z ����z� ���

�
N
 ���z � �

�
for all z � �� ���



�



and
��� � const on ��� �

�
��

��� � �� on �����
��� � �� on �����

Indeed� consider

���z �

�
mz for z 
 �

zm � �m� � for z � �

�
�

which is di�erentiable with

����z �

�
m for z 
 �
mz for z � �

�
�

It is easy to check that this �� satis	es ���
 and

��� � const on ��� ���
��� � �� on �����
��� � �� on �����

It remains to smoothen �� in a neighborhood of z � �� We now set

���z � �m ���
z

�
�

Then we have by rescaling

���z � �
z ����z� ���

�
N
 ���z � �

�
for all z � �� ����

and
��� � const on ��� �

�
��

��� � �� on �� ����
��� � �� on �����

���
�� ����

while
��

���
�	 � uniformly in ����� ����

We de	ne e� by

���z � z e���z� e��z � z�
d

dz
�
�

z
e��z� and e���� � e���


�



and observe that this automatically implies

z e��� �z � ����z� ����

and� thanks to the 	rst line in �����

lim
z��

e���z � �� and lim
z��

e��z � ��

Since also e�� � �� we infer that

e�
���
�	 e uniformly in �����

Since for 	xed � 
 �� ����� is bounded away from zero on the bounded set

'� � we have we may choose a sequence of positive numbers ��
���
	 � such

that for ��� � e� � ���� � e��  we have

��������� � �������� on '� for � � �� ����
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Whenever it is notationally convenient� we write ���� e� � ��� e in the case
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de	nes a subsolution for ������������ for C � �� Since for both m � �
and m 
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by standard linear parabolic theory� Hence� thanks to the relationship of ��
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We will recover ����� ���
� ���� and ���� from the above in the limit
� � ��

The 	rst goal is to identify the limit of ��� with ��� To this purpose� we
consider the �� related to ��� via the usual transformation
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We now derive the energy estimate �in the traditional sense� From ��������
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where we have used in the last line that the integrand of the boundary integral
is non negative �remember that '� is a ball with center �� We reformulate
the inequality as
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We now pass to the limit in the inequalities ������������� �
�� We 	rst
investigate the convergence of ����� to ���� We consider the case of m 
 ��
According to ���� we haveZ

��
�����

���
�	

Z
��� � �� ��
�

so that ����� satis	es

e��������y � 	
�

�
jyj� � � for y � '� and

Z
��
�����

���
�	 ��

whereas ��� is characterized by

e������y � 	
�

�
jyj� � � for y � IRN and

Z
��� � ��

It is therefore a matter of elementary analysis to show�
����� on '�

� else

�
���
�	 ���

�
in L��IRN and

a� e� in IRN for a subsequence

�
� ��
�

Z
��
�����

�

�
jyj�

���
�	

Z
���
�

�
jyj�� ��



lim
���

nZ
��
e������ � 	

Z
��
�����

�

�
jyj�

�
��
�

�
Z

��
e���� � 	

Z
��
���
�

�
jyj�

�o
� �� ��
�

keeping in mind that m � N
N��

ensures that
R
je����j�

R
���

�
�
jyj� 
��

We now consider the case m � �� We observe that ����� and ��� are also
characterized by

����� minimizesZ
��
e���� � 	

Z
��
��
�

�
jyj�

among all �� � � with
R
�� �� �

R
�� �����

�����
����

��
�

resp�
��� minimizesZ

e��� � 	
Z
��
�

�
jyj�

among all �� � � with
R
�� � �

�����
���� � ��
�

��



We will employ a variational argument to conclude�
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We would now like to pass to the limit in the r� h� s� of ����� We start by
observing that according to ��
��

a�
���
�	 �� ����

According to ����� lim���

R
��
je����� � e����j � �� according to ���� and

monotone convergence�Z
��
e���� � am�

Z
��
e����

���
�	

Z
e�����

so that Z
��
e�����

���
�	

Z
e�����

According to ���� and monotone convergence�

Z
��
���
�

�
jyj� � a�

Z
��
���
�

�
jyj�

���
�	

Z
���
�

�
jyj��

Together we obtain

Z
��
e����� � 	

Z
��
���
�

�
jyj�

���
�	

Z
e���� � 	

Z
���
�

�
jyj�� ���


��



In particular� the r� h� s� of ���� is bounded� hence is the l� h� s�� This
implies due to e � � and ����
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This establishes ���� and ����� Thanks to the strict convexity of e� ����
and ���� ensure that the weak convergence ���� turns into the desired
strong convergence �����
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We now address the case of m 
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This can be done in two steps� The 	rst step is to mollify �� into a ���� The
second step consists in passing to
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We pass 	rst to the limit � � � and then to the limit � � �� We consider
the right hand side of ����� ����� ���� and ���� 	rst� Our strategy is to
express these terms in terms of ���� and then pass to the limits� We obtain
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In case of m � �� we have
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In case of m 
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and then the same argument as in the case m � � applies� Finally�
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�

�N�
����

x
��
� Since ���� converges to the Dirac measure at
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we obtain by Lemma � that
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It follows immediately from De	nition � that
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so that also here we obtain

lim
���

lim
���

exp��	 ln � d���
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��

Altogether� we see that the r� h� s� of ����� ����� ���� and ���� converge
to the r� h� s� of ����� ���
� ���� and �����

We now consider the l� h� s� of the inequalities ����� ����� ���� and ����
in the limit � � � and � � �� From ���� and ����� one can deduce by
standard techniques for the porous�medium type equations �see for instance
���� that

lim
���

���

����� � � in L������� IRN�

with no restriction on the relation between � and �� By the lower semicon�
tinuity arguments from the 	rst part of the proof we see the l� h� s� of �����
���
� ���� and ���� are estimated by the limes superior of the l� h� s� of
����� ����� ���� and ����� This achieves the second part of the proof�
that is� the proof of ����� ���
� ���� and �����
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