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Abstract� We simplify and sharpen several results by K� Zhang concerning properties of quasi�
convex hulls of sets and quasiconvex envelopes of their distance functions� The approach emphasizes
the underlying geometry and in particular we show that Kpc � Kc implies Krc � Kc if and only
if minfm�ng � � thus answering a question raised in �Z���

This paper addresses a surprising relation between semiconvex hulls of compact sets K � M
m�n

�rst noted by Zhang �Z��� namely that Kqc � Kc implies Krc � Kc and thus Krc � Kqc� Our
approach simpli�es the original proof given by Zhang and emphasizes more the underlying geometry�
As pointed out to us by D� Preiss �P�� this implication constitutes a nonlinear version of the result
that subspaces without rank�one directions do not support any nontrivial gradient Young measure
�see �BFJK�� Theorem 	�
�� In particular� based on results by �T� Se� B�� this equivalence allows
us to show that Zhang�s statement holds for the polyconvex hull if and only if minfm�ng � �� see
Theorem  and the following remark� Thus the rank�one convex and the quasiconvex hulls agree
for special sets K with Kqc � Kc� despite of the fact that rank�one convexity and quasiconvexity
are known to be di�erent concepts for m �  ��Sv
���

In general the quasiconvex hull of a compact set is equal to the zero set of the quasiconvexi�cation
of the distance function dK�p�x� � inffjx � yjp � y � Kg� p � � 
��� �see �Z��� and this motivates
to study general properties of distance functions and their semiconvex envelopes� We show in
Example � that one cannot expect a uniform growth of dqcK�p��� close to K

qc� Moreover� Example �
demonstrates that smooth sets need not have smooth quasiconvex hulls� Both results indicate that
numerical schemes are likely to produce unreliable results� unless the boundary of the set is well
resolved�

Our last result� Theorem �� proves the surprising fact that the distance function itself cannot
be used as an indicator of whether a given set is quasiconvex or not� In fact� dK�p��� is separately
convex �i�e� convex in each argument� a property implied by quasiconvexity� on M m�n nB��� R�� R
arbitrarily large� if and only if K is convex� This was �rst proven in �Z� for p � � under stronger
assumptions on the set K� Our selfcontained proof relies entirely on the well�known fact that the
metric projection onto K is unique if and only if K is convex�

Notation� Let M m�n be the space of all real �m � n��matrices� We use j � j for the Euclidean
norm on M

m�n � i�e� jxj� � tr�xTx�� By dim�K� we understand the a�ne dimension of the set
K � M

m�n � We write

B�K� �� � fx � M
m�n � dK���x� � �g� U�K� �� � fx � M

m�n � dK���x� � �g�

A function f � M m�n � R is called polyconvex if there exists a convex function g of x and the
vector M�x� of all minors of x �i�e� all subdeterminants of x� such that f�x� � g�x�M�x��� It is
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said to be quasiconvex if for all x � M
m�n and all smooth functions � � Q � � �� 
 �n � R

m with
� � � on �Q the inequality Z

Q

f�x�D��z��dz �

Z
Q

f�x�dz

holds� Finally� f is rank�one convex if f is convex on rank�one lines� i�e�� the functions t 	�
g�t� � f�x � tr� are convex in t for all x� r � M

m�n � rank�r� � 
� A fundamental result in the
calculus of variations states that a variational integral I�u� �

R
f�Du�dz is weakly sequentially

lower semicontinuous in suitable function spaces if and only if f is quasiconvex� Polyconvexity is a
su�cient condition for quasiconvexity while rank�one convexity is a necessary one�

For any function f � M m�n � R we call

f qc�x� � supfg�x� � g � M m�n � R quasiconvex and g � fg

the quasiconvex envelope of f � the rank�one convex and the polyconvex envelope are de�ned analo�
gously� In analogy to one possible formula for the �closed� convex hull of a compact set K� denoted
by Kc� we de�ne its �closed� quasiconvex hull by

Kqc � fx � f�x� � sup
y�K

f�y� for all f � M m�n � R quasiconvexg�

A corresponding de�nition holds for the rank�one convex hull Krc and the polyconvex hull Kpc� It
is a useful fact that Kqc can also be de�ned as the set of barycenters of gradient Young measures
supported on K� In addition to these hulls related to classes of semiconvex functions we de�ne
the closed lamination convex hull Lc�K� of K as the closure of the set L�K� �

S�
i�� Li�K� where

L��K� � K and

Li���K� �
�
x � �a� �
� ��b � � � � �� 
 �� a� b � Li�K�� rank�a� b� � 


�
�

These de�nitions imply immediately that Lc�K� � Krc � Kqc � Kpc � Kc and it is an open
question whetherKrc � Kqc in M ��� � See �Mu� for a discussion of these notions and their relations�

Lemma �� Let K � M
m�n be compact� contained in the a�ne subspace X and let H be a hyper�

plane in X supporting Kc� Then �K 
H�qc � Kqc 
H and �K 
H�c � Kc 
H�

Proof� By de�nition our assumption means that there exists a linear f � X � R such that
H � fx � X � f�x� � max f�Kc�g� Given any x � Kqc 
H� we �nd a gradient Young measure �
such that spt��� � K and x �

R
z d��z�� Since

f�x� �

Z
f�y� d��y� �

Z
max f�Kc� d��y� � f�x��

we conclude spt��� � H 
K� Consequently� x � �K 
H�qc� The reverse inclusion is obvious and
the same argument with probability measures instead of gradient Young measures proves the result
for the convex hull�

The following result was �rst proven in �Z��� We include a short proof for the convenience of the
reader�

Theorem �� Let K � M
m�n be compact� If Kqc � Kc then Ldim�K��K� � Kc�

Proof� Otherwise we �nd among all compact sets for which the conclusion fails a set K� of
minimal a�ne dimension d� � 
� Let X be the d��dimensional a�ne subspace containing K�� We
choose

x� � Kc
� n Ld��K���

If X does not contain any rank�one line then K� � Kqc
� by �BFJK� Theorem 	�
� and hence

Kc
� � Kqc

� � L��K��� a contradiction� Therefore we �nd in X a rank�one line � through x� and a
point

x� � �� 
 �XK
c
�� n Ld����K��
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�if x� � �XK
c
� then we may choose x� � x��� Let H � X be a supporting hyperplane of Kc

� through
x�� We have by Lemma 
 for K� � H 
K� that

Kqc
� � H 
 �K��

qc � H 
Kc
� � Kc

��

but

x� � Kc
� n Ld����K�� � Kc

� n Ld����K���

This contradicts the minimality of d� and proves the proposition�
Motivated by a remark by D� Preiss we notice the following� Theorem � was proved using the

result from �BFJK� that in subspaces without rank�one directions all sets are quasiconvex� It turns
out that this result is also implied by Theorem ��

Theorem �� Assume that X is a linear subspace of M m�n not containing any rank�one line�
Suppose that for every K � X compact Kpc � Kc �Kqc � Kc� implies Lc�K� � Kc� Then every
compact subset of X is polyconvex �quasiconvex��

Proof� We consider the case of polyconvexity only� the argument in the quasiconvex situation is
similar� Assume that the conclusion fails� Then we can �x K � X compact and x � Kpc nB�K� ��
for some � 	 �� Let �K � �B�K� �� 
 X�c n U�x� ��� then �K is compact� and obviously �K �
B�K� �� 
X� Since taking the polyconvex hull commutes with translations we obtain

�Kc � �B�K� �� 
X�c � �K � �B�x� �� 
X� � �K � �B�K� �� 
X�pc � �Kpc�

The opposite inclusion is true in general� hence �Kc � �Kpc� On the other hand� x � �Kc n �K shows

that �Kc � �K but by our assumption on X we have �K � Lc� �K� � �Kc� a contradiction�

Remark� This equivalence allows us to answer a question raised in �Z�� whether the polyconvex
version of Theorem � holds� if Kpc � Kc� then Ldim�K��K� � Kc�

The paper �B� contains an example of a subspace of M ��� without rank�one matrices but with
a subset that is not polyconvex� On the other hand� as pointed out in �B� the results from �T� �see
also �Se�� imply the following� Whenever a linear subspace X of M m�� or M ��m does not contain
any rank�one line then all compact subsets of X are polyconvex� This shows that the polyconvex
variant of Theorem � is true if and only if min�m�n� � ��

As in �Z�� we obtain easily a comparision principle for distance functions� By de�nition� dqcK �
dqcK�H � but there holds also a reversed verion of this inequality�

Proposition �� Let p � �
���� K � M
m�n be compact and let H be a supporting hyperplane of

K� Then there is a non�decreasing� continuous function WH � ������ ����� such that WH��� � �
and

dqcK�H�p�x� �WH�d
qc
K�p�x�� for all x � H�

Proof� Assume otherwise� Then there exists a positive � and a sequence fxkg
�
k�� � H such

that dqcK�H�p�xk� 	 � but dqcK�p�xk� � 

k for all k � 
� Since dqcK�p��� majorises the convex function

x � �maxf�� jxj � maxfjyj � y � Kgg�p� we can suppose that xk � x� � H� Then obviously
dqcK�p�x�� � � but dqcK�H�p�x�� � �� which implies �see �Z
�� that x� � Kqc 
 H n �K 
 H�qc� This
contradiction to Lemma 
 �nishes our proof�

The argument just used also proves that for all quasiconvex� compact sets K and all p � �
���
there exist non�decreasing� continuous functions WK�p � ������ ����� such that WK�p��� � � and

dK�p�x� �WK�p�d
qc
K�p�x�� for all x � M

m�n �

Our next example shows that the quanti�ers cannot be interchanged�
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Example �� For all p � �
��� and all non�decreasing� continuous functions W � ����� � �����
with W ��� � � there exist a compact quasiconvex set K and a sequence fxkg in M

��� such that

dK�p�xk�
W �dqcK�p�xk���� and dK�p�xk�� ��

Proof� In the construction we use the isometric embedding of R� into M ��� which identi�es
x with diag�x�� x��� Choose a sequence fbkg

�
k�� strictly decreasing to zero such that W �bpk� �

��p�k���
k� Now we de�ne

K � f���k� bk� � k � 
g � f��� ��g and xk � � � ��k��� bk����

Obviously� dK�p�xk� � dist� � ��k���proj��K��p � ���k���p� where proj� denotes the projection
x 	� x��� Since �
� �� is a rank�one direction� we can estimate

drcK�p�xk� �



�

�
dK�p��

�k��� bk��� � dK�p��
�k� bk���

�
� �bk � bk���

p � bpk�

and hence dK�p�xk�
W �drcK�p�xk�� � ���k���p
W �bpk� � k� On the other hand K is quasiconvex

�even polyconvex� since det�x� y� 	 � for any x� y � K� x � y� see �Sv���

Example �� There exists a smooth set U � M
��� such that U qc is not smooth� in the sense that

Tan�U qc� x� �see e�g� �F� De�nition 	���� is not a linear subspace for a suitable x � U qc� This
contrasts with the situation for convex hulls� where it is easily seen that the convex hull of a smooth
compact set is again smooth�

To keep the calculations simple� we use conformal and anticonformal coordinates� i�e�� we make
the identi�cation

x � R
� ��

�
x� � x� �x� � x�
x� � x� x� � x�

�
� M

��� �

Then det�x� � x�� � x�� � x�� � x�� and jxj
� � ��x�� � x�� � x�� � x���� We de�ne on R

� the function

f�x� �
�q

x�� � x�� � �
��

� x�� � x�� � �

and de�ne U � fx � f�x� � �g� Note that even on the larger set of all x with f�x� � 
 the
gradient

rf�x� � �

p
x�� � x�� � �p
x�� � x��

�x�e� � x�e�� � ��x�e� � x�e��

is a non�vanishing C� function� Hence� �U is a smooth set containing all points x with j�x�� x��j �
j�x�� x��j � 
� This implies of course that � � � �U �rc and therefore x � � �U�rc whenever det�x� � �
and jxj � �� On the other hand� we have for v � �
��
� � R

� and all x � U

hv� �j�x�� x��j� j�x�� x��j�i � hv� ��� ��i � jvj �
���j�x�� x��j� j�x�� x��j�� ��� ��

�� 	 �� � � ��

consequently det�x� 	 � whenever x � U � This shows that � �U�pc � fx � det�x� � �g and in
particular none of the sets � �U�rc� � �U �qc� and � �U�pc is smooth at the origin� An easy� but slightly
longer calculation also shows that the same holds true for the �boundary of� the hulls U rc� U qc� and
Upc of the open set U itself�

In the last part of this note we extend results from �Z� concerning the square of the distance
function to the case of arbitrary powers� We apply a more elementary and selfcontained reasoning
which does not rely on the precise knowledge of the quasiconvex envelope of the squared distance
to a double�well �see �K��� Instead we use the following estimate the proof of which we leave to the
reader�
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Lemma �� Let K � M
m�n be a compact set and p � �
���� Suppose x � M

m�n and y � K are
such that jx� yj � dK���x� 	 �� Then we have for all v � M

m�n that

lim sup
t��

dK�p�x� tv�� dK�p�x�

t
� p � dK�p���x� lim

t��

jx� tv � yj � jx� yj

t
� p � dK�p���x�hv�

x� y

jy � xj
i�

As in �Z�� the crucial point in our proof is the nonuniqueness of the metric projection onto
nonconvex sets� For the convenience of the reader we give a short proof of this fact following �F��

Theorem �� Let K � M
m�n be compact and suppose that for every x � M

m�n there exists a
unique point ��x� � K such that j��x�� xj � dK���x�� Then K is convex�

Proof� Throughout the proof we write d�x� � dK���x�� As d�y� � d�x�� jx�yj� d is 
�Lipschitz�
Hence� if xk � x and ��xk� � y then ��x� � y which together with the compactness of K proves
that � is continuous�

We �rst assert that for all x 
� K� and all t nonnegative �
�
��x� � t�x� ��x��

�
� ��x�� Otherwise

there exists an x � K for which the assertion fails� Using uniqueness of the nearest point it is
easy to check that the set of t for which the required equality holds is a closed interval ��� T ��
T � 
� Let �x � ��x� � T �x � ��x��� The continuity of � and Peano�s existence theorem ��W�� x��
allow us to choose a positive � � d��x� and a curve � � ���� �� � M

m�n such that ���� � �x and
���t� � �����t�� � ��t��
j����t�� � ��t�j� Now consider the real�valued function t 	� �d � ���t��
From Lemma � we infer that its derivative from the right� �d � �����t�� is bounded from above by
�
 for all t � ���� �� and hence j��p�� ��q�j � d���p�� � d���q�� � q � p if � � � p � q � �� On
the other hand� as j���t�j � 
 on ���� ��� we also obtain j��p� � ��q�j � jp � qj for all p� q� Both
estimates together imply

d���p�� � d���q�� � j��p� � ��q�j � q � p whenever � � � p � q � ��

The strict convexity of the Euclidean norm implies that ������ ��� is a segment� which is due
to the direction of ����� contained in the ray f��x� � t�x � ��x�� � t 	 �g� This shows that
d���p�� � d������� p � j��p�� ��x�j for all p � ���� �� and by uniqueness of the metric projection
����p�� � ��x�� This contradicts the maximality of T � and the claim is established�

We conclude that for any x 
� K and t arbitrarily large K
U���x�� t�x���x��� tjx���x�j� � ��
In the limit t�� we obtain hx� x� ��x�i 	 h��x�� x� ��x�i � maxfhy� x� ��x�i � y � Kg which
represents K as the intersection of halfspaces and �nishes our proof�

We are now in a position to generalize the results in �Z� for the squared distance function to
arbitrary powers under weaker assumptions on K�

Theorem 	� Let K � M
m�n be compact� let p � �
���� and assume that dK�p is a separately

convex function outside of some compact set� If M m�n nK is connected� then K is convex�

Proof� By assumption we may choose a �nite R such that dK�p is separately convex whenever

restricted to a ball disjoint with �K � B�K�R�� We �rst show that the metric projection onto K

is unique in each point x 
� �K� Otherwise we �nd x � �K and y�� y� � K� y� � y�� such that
jyi � xj � dK���x�� and we may assume that hy� � y�� eji � � for some canonical basis vector ej �
We estimate using Lemma � that

lim sup
t��

dK�p�x� tej� � dK�p�x� tej�� �dK�p�x�

t

� p � dK�p���x�

�
hej �

x� y�
jx� y�j

i� h � ej�
x� y�
jx� y�j

i

�
� p � dK�p���x�hej �

y� � y�
jy� � xj

i � ��

This implies that dK�p is not separately convex near x� a contradiction�

Next� note that the metric projection onto the enlarged set �K is unique on the whole space M m�n �
Uniqueness is trivial for points in �K� so we may suppose that x 
� �K� Consider z�� z� � �K with
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jzi � xj � d �K���x� � dK���x� � R� and yi � K with jzi � yij � R� This implies jx � yij � dK���x��

and thus y� � y� � �K�x� by the claim already established� Moreover� as jx � �K�x�j � jx �
zij � jzi � �K�x�j we see that both z�� z� are in the segment ��K�x�� x� and because furthermore
jz� � �K�x�j � R � jz� � �K�x�j� z� � z�� so � �K�x� is unique� In particular� due to the foregoing

theorem� �K is a convex set�
Now� we show that �Kc � K� In fact� given any x � �Kc there is a unit vector v � M

m�n such
that hx� vi � maxfhy� vi � y � Kg� The convexity of �K implies that x�Rv � �K as well� but it is
easy to check that

B�x�Rv�R� 
K � B�x�Rv�R� 
 fy � hy� vi � hx� vig � fxg�

By de�nition of �K this shows that x � K as required�
We �nish our proof by showing that �Kc � K and M m�n nK connected imply that K is convex�

This statement is similar to Lemma ��
 in �Z�� but slightly more general� To verify our assertion�
choose any y 
� K and connect it by an arc � inside M m�n nK to a point x su�ciently far away
from the origin to ensure that x 
� Kc� By assumption� � does not intersect �Kc� and we thus infer
that y 
� Kc� This concludes the proof of the theorem�
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