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Abstract

We consider a spherically symmetric� static system of a Dirac particle interacting
with classical gravity and an SU��� Yang�Mills �eld� The corresponding Einstein�
Dirac�Yang�Mills equations are derived� Using numerical methods� we �nd di�erent
types of soliton�like solutions of these equations and discuss their properties� Some of
these solutions are stable even for arbitrarily weak gravitational coupling�

� Introduction

The coupling of gravity to other classical force �elds and to quantum mechanical particles
has led to many interesting solutions of Einstein�s equations and has given some insight
into the nature of the nonlinear interactions� The �rst such examples are the Bartnik�
McKinnon �BM� solutions of the Einstein�Yang�Mills �EYM� equations ��	� For these
solutions
 the repulsive Yang�Mills force compensates the attractive gravitational force�
unfortunately
 these solutions are unstable ��	� If
 on the other hand
 one considers quan�
tum mechanical Dirac particles
 the gravitational attraction is balanced by the repulsion
due to the Heisenberg Uncertainty Principle
 and this leads to stable bound states of the
resulting Einstein�Dirac �ED� system �
	� However
 a pure ED system is somewhat ar�
ti�cial
 because physical Dirac particles also exhibit electroweak and strong interactions

which in all realistic situations are much stronger than gravity� Thus the question arises
if Dirac particles in a gravitational �eld still form bound states if an additional strong
coupling to a non�abelian Yang�Mills �YM� �eld is taken into account �the case of an
abelian gauge �eld was considered in ��	�� Related questions are
 do the BM solutions be�
come stable if one includes Dirac particles
 and which physical e�ects does the nonlinear
coupling in the Einstein�Dirac�Yang�Mills �EDYM� equations lead to�

In order to address these questions
 we consider here a static
 spherically symmetric
EDYM system of one Dirac particle in a gravitational �eld and an SU��� Yang�Mills �eld�
In this system
 the spinors couple only to the magnetic component of the YM �eld
 and we
thus obtain a consistent ansatz by setting the electric component identically equal to zero�
In the limit of weak coupling of the spinors
 our system goes over to the EYM system ��	�
In contrast to the two�particle singlet state studied in �
	
 we consider here only one Dirac
particle �this becomes possible because the inclusion of the SU��� Yang�Mills �eld changes
the representation of the rotation group on the spinors� see Section ��� Thus one cannot
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recover exactly the ED system �
	
 but the limit of a weak Yang�Mills �eld yields equations
which are closely related to the ED equations of the two�particle singlet�

By numerically seeking bound states of the EDYM system
 we �nd a surprisingly rich
solution structure� First of all
 we �nd solutions where the Dirac particle is bound by the
gravitational attraction
 and where the Dirac particle also generates a YM �eld� Stable
solutions of this type exist also in the physically realistic situation of weak gravitational
and strong YM coupling� This result shows that the magnetic component of the YM
�eld
 which usually has a repulsive e�ect �like e�g� for the BM solutions� cannot prevent
Dirac particles from forming stable bound states� We also �nd other types of solutions
where the binding comes about through the nonlinear interaction of all three �elds� These
solutions have stable and unstable branches
 whereby the stable solutions are found for
weak gravitational coupling
 provided that the YM coupling is su�ciently strong
 but not
too strong� Finally
 we study the relation between these solutions and the BM solutions�
We �nd one�parameter families of solutions which join the BM ground state with our new
solutions� This shows that the BM ground state can be made stable by the inclusion of
a Dirac particle
 but only if the coupling to the spinors is su�ciently strong� The �rst
excited BM state
 on the other hand
 cannot be joined with our new solutions� Namely

perturbing this state by an additional Dirac particle yields a separate unstable branch of
EDYM solutions�

The plan of the paper is as follows� In Section � we derive the SU����EDYM equations�
In Section 
 we obtain a limiting system constructed by letting the gravitational constant
tend to zero and letting the YM coupling constant tend to in�nity� We �nd numerical
solutions of this system and discuss their properties� In the last section
 we consider
solutions of the full EDYM equations
 obtained by tracing the solutions of our limiting
system and the BM solutions while continuously varying the coupling constants�

� Derivation of the Equations

The general EDYM equations are obtained by variation over Lorentzian metrics gij 
 YM
connections A
 and Dirac wave functions �
 of the action

S �

Z �
�

��� �
R � ��G�m�� � �

��� e�
Tr�Fij F

ij�

�p�det g d�x � �����

where R is scalar curvature
 G is the Dirac operator �which depends on the gravitational
and YM �elds�
 Fij is the YM �eld tensor
 and where the trace is taken over the YM
index� The gravitational and YM coupling constants are denoted by � and e
 respectively�
The appearance of the factor e�� in ����� requires a brief explanation� In contrast to the
usual form of the gauge�covariant derivative Dj � �j � ieAj 
 we use here the convention
Dj � �j � iAj �this makes it possible to work with the particularly convenient form of
the gauge potentials used in ��	�� Our convention is obtained from the usual one by the
transformation Aj � e��Aj � Under this transformation
 the �eld strength tensor behaves
like Fij � e�� Fij 
 and this gives rise to the factor e�� in ������

In this paper
 we shall study a particular EDYM system
 which is obtained as follows�
First of all
 we consider a spherically symmetric
 static metric in polar coordinates


ds� �
�

T �r��
dt� � �

A�r�
dr� � r� d�� � r� sin� � d�� � �����

�



with positive functions A and T � The Einstein tensor corresponding to this metric is given
in �
	� Moreover
 as in ��	
 we restrict attention to the magnetic component of an SU���
Yang�Mills �eld and choose for the YM potential the ansatz

A � w�r� �� d� � �cos � �� � w�r� sin� ��� d� ���
�

with a real function w
 where �� � �
� �� is the standard basis of su��� ��� are the Pauli

matrices�� The YM current j and energy�momentum tensor T i
j � �

��e� Tr �F iaFja �
�
� F

abFab 	
i
j� are computed to be

j �
�

��e�

�
� A

�r�
w�� � A�T � �AT �

�r� T
w� � w�� � w��

�r�

��
��

�

��
� �� csc���

�

��

�

T �
� �

�

��e�

�
� �

r�
��� w��� � �

r�
A w��

�
�����

T �
� �

�

��e�

�
� �

r�
��� w��� �

�

r�
A w��

�
�����

T �
� � T �

� �
�

��e�

�
�

r�
��� w���

�
� �����

and all other components vanish� When coupled to the Dirac spinors
 the YM potential
���
� has the disadvantage that it depends on � and �
 in a way which makes it di�cult
to separate variables in the Dirac equation� To remedy this
 we perform the SU��� gauge
transformation Aj � UAjU

�� � iU��jU
��� with

U��� �� � exp
�
�i� ��

�
exp

�
�i�� � �� ��

�
exp

�
i�

�
��
�




The resulting YM potential is

A � �w � �� r sin� ��� d� � �� d�� � �����

where we use the following �polar� linear combinations of the � matrices


� r � �� cos� � �� sin� cos� � �� sin� sin�

�� �
�

r

�
��� sin� � �� cos� cos� � �� cos� sin�

�
�� �

�

r sin�

�
��� sin� � �� cos�

�

 �����

By minimally coupling the SU��� potential ����� to the Dirac operator in the gravitational
�eld �

 Eq� ����
�	
 we obtain the Dirac operator

G � iT �t�t � �r
�
i
p
A�r �

i

r
�
p
A� ��� i

�

p
A
T �

T

�
� i���� � i����

�
�i

r
�w � �� ����� � �r� r� � r � �����

where ��j�j�t�r���� are
 in analogy to �����
 the Dirac matrices of Minkowski space in polar
coordinates
 where we work in the Dirac representation


�t �

�
�� �
� ���

�
� �� �

�
� ��
��� �

�

 ������






Notice that the Dirac operator ����� acts on ��component wave functions� this is because
the additional YM index doubles the number of components compared to usual Dirac
spinors� More precisely
 it is convenient to regard the wave functions as sections of

IC� � IC�
up�down � IC�

large�small � IC�
YM � ������

where IC�
up�down describes the two spin orientations
 IC�

large�small corresponds to the upper

and lower components of the Dirac spinor �i�e�
 usual Dirac spinors are sections of IC� �
IC�
up�down � IC�

large�small�
 and IC�
YM is acted upon by the SU��� gauge group� For clarity


we shall refer to the factors in ������ by separate indices
 i�e� we write a wave function �
as ���ua���u�a����
 where �
 u
 and a label the components of IC�

up�down
 IC�
large�small
 and

IC�
YM
 respectively� Thus the operators �� act on the index a
 the spin operators �S are given

by �S � �
� �� acting on the Greek indices
 and �t coincides with the matrix �t � diag������

acting on the index u
 i�e�

�t ��ua �

�
��ua if u � �
���ua if u � �




It is apparent in ����� that the Dirac operator commutes with the three operators

�J � �L � �S � �� � ������

where �L is angular momentum� It is very convenient to regard the operators �J as the total
angular momentum operators of the system� Since the total angular momentum operators
are the in�nitesimal generators of rotations �as explained for angular momentum in ��
 par�
��	�
 we can then interpret ������ as saying that the inclusion of the YM �eld in�uences
the representation of the rotation group on the spinors� The Dirac operator is invariant
under this group representation
 because the operators �J commute with G� this makes
spherical symmetry of the Dirac operator manifest�

Since ������ coincides with the formula for the addition of angular momentum �L to
two spin����operators �S and �� 
 it is clear that the operators �J have integer eigenvalues�
Thus we can expect that the operator J� has a nontrivial kernel� In this case
 the simplest
spherically symmetric ansatz for the Dirac particles would be to take one Dirac particle
whose wave function is in the kernel of J�� We now work out this ansatz in detail
 whereby
we consider �J as operators on the spinors ��a��� �� on S� �i�e� the ��a are sections of
IC� � IC�

up�down � IC�
YM�� Adding the two spin operators �S and �� 
 we can decompose

IC�
up�down � IC�

YM into the direct sum of one state of total spin zero and three states of
total spin one �see ��
 par� 
�	� these states are usually called the singlet and triplet states

respectively�� By subsequently adding the angular momentum �L according to the standard
rules for the addition of angular momentum ��
 par� 
�	
 one sees that the operator J� has
indeed a nontrivial kernel� More precisely
 the kernel of J� is two�dimensional
 spanned
by two vectors �� and �� with angular momentum zero and one
 respectively� The state
�� is �up to a phase� uniquely characterized by the conditions

�L �� � � � ��S � ��� �� and k��kS� � � 
 ����
�

Using ����
�
 we can write �� as

�� � �Sr �� � ��� r �� 
 ������

�



Namely
 representing Sr and � r in the form

Sr � �x�s and � r � �x�� �

and using the standard commutation relations between the components of �L
 �x
 and �S
�see ��
 pars� �� and ��	�
 we obtain that

�J �� � � � �J� Sr	 �� � � ��L� ��x�S�	 �� � � ��S � ��� ��x�S�	 ��

� ��i �x � �S �� � �i �x � �S �� � � ������

�where � is the wedge product in IR��
 and

k��k�S� �

Z
S�


�Sr��� �Sr��� d� � k��k�S� � � 


One can verify directly that �� has angular momentum one� namely

L� �� � �L� Sr �� � ��L ��L� Sr	 �� � ��i �L��x � �S� ��

� ��i ��L� ��x � �S�	 �� � � ��x�S� �� � l�l � �� ��

with l � �� Furthermore
 using the fact that ��Sr�� � � � ��� r�� and S� � �
� � ��
 we

obtain that

�� � �Sr �� � ��� r �� ������

�S�� ��
�����	

� ��S�S �� � �


�
�� ������

�S�� �� �
�

�
���S � ���� � S� � ��� ��

����
	
�

�

�
�L� � S� � ��� �� �

�

�
�� ������

�S�L �� � � ������

�S�L �� �
�

�
���S � �L�� � S� � L�� �� �

�

�
��� � S� � L�� �� � ��� 
 ������

Finally
 it is useful to observe that �cf� ��
 equation �
�
�	�

S��� � S��� � ��

r
Sr ��S�L� 
 ������

Using the relations ����
��������
 one can easily compute the Dirac operator ����� on the
invariant subspace J� � �� It turns out that we obtain a consistent ansatz for the Dirac
wave function by setting

��ua�t� r� �� �� � e�i�t
p
T �r�

r
���r� ��a

� ��� �� 	u�� � i��r� ��a
� ��� �� 	u��� ������

with real functions � and �
 where � � � is the energy of the Dirac particle
 and 	��� is the
Kronecker delta� For this ansatz
 the Dirac equation reduces to the system of ODEs

p
A �� �

w

r
� � �m � �T � � ����
�

p
A �� � ��m � �T � � � w

r
� 
 ������

�



The Dirac current j and Dirac energy�momentum tensor Tjk � Re ��G�jDk	�� corre�
sponding to the ansatz ������ are obtained by a straightforward computation similar to
that in �
	� The result is

j � ��T

r�
��

�
��

�

��
� �� csc���

�

��

�

T �
� �

�T �

r�
��� � ���

T �
� � ��T

�

r�
��� � ��� � �

T

r�
w �� �

mT

r�
��� � ���

T �
� � T �

� � � T

r�
w �� �

and all other components vanish� The normalization condition for the spinors is �as in �
	�
Z �

�
��� � ���

Tp
A

� � 
 ������

By substituting the formulas for the YM current and energy�momentum tensor into
the Einstein and YM equations
 we obtain the following system of ODEs


r A� � ��A � �

e�
��� w��

�

r�
� �� �T ���� � ��� � ��

e�
A w�� ������

�rA
T �

T
� �� � A �

�

e�
��� w��

�

r�
� �� mT ��� � ��� � �� � T ���� � ���

���
T

r
w �� � � �

e�
A w�� ������

r�A w�� � ���� w�� w � e� rT�� � r�
A� T � �A T �

�T
w� 
 ������

The Einstein equations are ������ and ������
 whereas ������ is the YM equation� Our
EDYM system is given by the �ve ODEs ����
�
 ������
 �������������
 together with the
normalization condition �������

We are interested here in bound states of the Dirac particles� Thus we want to �nd
particle�like solutions of our EDYM system
 i�e� solutions which are smooth and tend to
the vacuum solution as r ��� According to the explicit formulas �����������
 the energy�
momentum tensor of the YM �eld is regular at r � � only when jw���j � � and w���� � ��
Using the remaining gauge freedom
 we can assume that w��� � �
 and thus

w�r� � � � �

�
r� � O�r�� ������

with a real parameter �� Using this result
 a local Taylor expansion of the Einstein and
Dirac equations around r � � yields �just as in �
	� that

��r� � �� r � O�r�� � ��r� �
�

�
��T� �m� �� r

� � O�r�� ���
��

A�r� � � � O�r�� � T �r� � T� � O�r�� ���
��

with two parameters �� and T� � �� Furthermore
 we demand that our solution has �nite
ADM mass


�  � lim
r��

r

��
���A�r�� 
 � � ���
��

�



and goes asymptotically to the vacuum solution


lim
r��

T �r� � � � lim
r��

�w�r�� w��r�� � ���� �� � lim
r��

���r�� ��r�� � ��� �� 


���

�

� The Reciprocal Coupling Limit

Under all realistic conditions
 the coupling of Dirac particles to the YM �eld �describing
the weak or strong interactions� is much stronger than the coupling to the gravitational
�eld� Thus we are particularly interested in the case of weak gravitational coupling� In
preparation
 it is instructive to brie�y consider the case without gravitation� In this limit

the Dirac equations read

�� �
w

r
� � �m � �� � �
���

�� � ��m � �� � � w

r
� 
 �
���

For large r
 these equations go over to a linear system of ODEs with constant coe�cients

and the sign of m�� determines whether the solutions of these equations behave oscillatory
or exponentially� The normalization condition ������ excludes the oscillatory case �as in ��

Section �	� and thus m�� � � � In the case m�� � �
 the ��equation is independent of
�
 and the boundary conditions ���
�� imply that � � �� As a consequence
 ������ reduces
to the homogeneous YM equation

r� w�� � ���� w�� w 
 �
�
�

It is well�known ��	 that the only solution to this equation satisfying the boundary con�
ditions ������
���

� is the trivial solution w � �� But then the ��equation simpli�es
to

�� �
�

r
� �

whose solution � � ��r violates the normalization condition ������� In the case m�� � �

on the other hand
 the local Taylor expansion ���
�� yields that the ��� ���curve lies
for small r in the fourth quadrant
 i�e� ��r� 
 � 
 ��r� for small r� Using the Dirac
equations �
���
�
���
 one sees that the fourth quadrant is an invariant region
 and thus
��r� 
 � 
 ��r� for all r� But in the fourth quadrant
 both ��r� and ���r� are increasing
for large r �as one sees in �
���
�
��� taking into account that w�r � � for r � ��
 and
thus the normalization condition ������ will again be violated�

These considerations show that the gravitational �eld is essential for the formation of
bound states� Nevertheless
 for arbitrarily weak gravitational coupling
 we can hope to
�nd bound states� It is even conceivable that these bound state solutions might have a
well�de�ned limit when the gravitational coupling tends to zero
 if we let the YM coupling
go to in�nity at the same time� Our idea is that this limiting case might yield a system of
equations which is simpler than the full EDYM system
 and can thus serve as a physically
interesting starting point for the analysis of the coupled interactions described by the
EDYM equations� Expressed in dimensionless quantities
 we shall thus consider the limits

m�� � � and e� � � 
 �
���

�



Let us determine how the quantities of our EDYM system should behave in this limit�
Since we are considering weak gravitational coupling
 it is clear that the metric will be
close to the Minkowski metric
 i�e� A � � and T � �� Furthermore
 the YM potential
w should have a �nite limit� Similar to our �at space consideration at the beginning of
this section
 one sees that the normalization condition ������ can be satis�ed only if the
function m� �T �r� changes sign
 and thus � � m �but both m and � may go to zero or
in�nity in the limit �
����� Putting this information together
 we conclude that the Dirac
equations ����
� and ������ have a meaningful limit only under the assumptions that �
converges and that

m ��r� � !��r� � m� �T �r�� �� � � � m �� �m� � E �
���

with two real functions !�
 � and a real parameter E� Multiplying ������ with m and
taking the limits �
��� as well as A� T � �
 the Dirac equations become

�� �
w

r
� � � !� �
���

!�� � �E � �� � � w

r
!� 
 �
���

We next consider the YM equation ������� The last term in ������ drops out in the limit
of weak gravitational coupling �
���� The second summand converges only under the
assumption that

e�

m
� q �
���

with q a real parameter
 playing the role of an �e�ective� coupling constant� Together
with �
���
 this implies that m��� The YM equations thus have the limit

r� w�� � ���� w�� w � q r �!� 
 �
���

In order to get a well�de�ned and non�trivial limit of the Einstein equations ������
������

we need to assume that the parameter m�� has a �nite
 non�zero limit� Since this param�
eter has the dimension of inverse length
 we can arrange by a scaling of our coordinates
that

m�� � � 
 �
����

We di�erentiate the T �equation ������ with respect to r and substitute ������� Taking the
limits �
��� and �
����
 a straightforward calculation yields the equation

r� "� � ��� � �
����

where " � r���r�r
��r� is the radial Laplacian in Euclidean IR�� Indeed
 this equation

can be regarded as Newton�s equation with the Newtonian potential �� Thus our limiting
case �
���� for the gravitational �eld corresponds to taking the Newtonian limit� Finally

the normalization condition ������ reduces toZ �

�
��r�� dr � � 
 �
����

The boundary conditions ����������

� are transformed into

w�r� � � � �

�
r� � O�r�� � lim

r��
w�r� � �� �
��
�

��r� � �� r � O�r�� � !��r� � O�r�� �
����

��r� � �� � O�r�� � lim
r��

��r� 
 � �
����

�



with the three parameters �
 ��
 and ��� We point out that the limiting system contains
only one coupling constant q� According to �
��� and �
����
 q is in dimensionless form
given by

e� m�� � q 
 �
����

Hence in dimensionless quantities
 our limit �
��� describes the situation where the grav�
itational coupling goes to zero
 while the YM coupling constant goes to in�nity like
e� 	 �m������ Therefore
 we call our limiting case the reciprocal coupling limit� The
reciprocal coupling system is given by the equations �
���
 �
���
 �
���
 and �
���� together
with the normalization condition �
���� and the boundary conditions �
��
���
����� Ac�
cording to �
���
 the parameter E coincides up to a scaling factor with � �m
 and thus
has the interpretation as the �properly scaled� kinetic energy of the Dirac particle� As in
Newtonian mechanics
 the potential � is determined only up to a constant � 
 IR� namely

the reciprocal limit equations are invariant under the transformation

� � � � � � E � E � � 
 �
����

Let us consider how the ADM mass behaves in the reciprocal coupling limit� First of
all
 we can write the ADM mass as

�

m
� lim

r��

r

��m
���A�r�� �

�

m

Z �

�

�
r

��
���A�r��

��
dr 


After substituting the A�equation ������
 we can take the limits �
��� and �
��� and obtain
that

�

m
�

Z �

�
��r�� dr

�����	
� � 
 �
����

Thus the ADM mass coincides with the rest mass of the Dirac particle� this shows that
the total binding energy B  � ��m goes to zero in our limit� Indeed
 the behavior of the
total binding energy can be described in more detail as follows� For a solution of the full
EDYM system
 we can write the binding energy using the normalization condition ������

as

B �

Z �

�

��
r

��
���A�

��
�m ��� � ���

Tp
A

�
dr 


We again substitute the A�equation ������ and obtain

B �

Z �

�

�
�

�e�
��� w���

r�
�

�

e�
Aw�� � �wT

p
A�m�

Tp
A

��� � ���

�
dr 
 �
����

According to �
����
 it is obvious that the �rst two summands in �
���� have a �nite
limit after dividing by m��� In order to treat the last summand
 we �rst multiply the
T �equation ������ with m� and take the limits �
���
 �
���
 �
����


m� �A� �� � �r �� 


Using again �
����
 �
���
 and � � m
 T � �
 we obtain that

�

m��
��T

p
A�m� �

�

m��
m� �

p
A� �� T �

�

m��
m��T �m�

� r�� � �� � E� 


�



From this we conclude that the binding energy �
���� divided by m�� has a meaningful
limit� more precisely

!B  �
B

m��
�

Z �

�

�
�

�q

��� w���

r�
�

�

q
w�� � �� �E � � � r���

�
dr 
 �
����

We now describe our method for constructing numerical solutions of our reciprocal
limit system� Since it is di�cult to take into account the integral condition �
���� in the
numerics
 we discard this condition for the construction of the solution� it will be taken
care of later via a rescaling technique �see �
�
��
 �
�
���� This rescaling method requires
only that the normalization integral be �nite


� 
 ��  �

Z �

�
��r�� dr 
 � 
 �
����

According to �
���
 �
��� and �
��
�
 �
����
 the behavior of the Dirac spinors at in�nity is
either oscillatory or exponential� As a consequence
 the normalization integral in �
���� will
be �nite only if ��r� tends to zero for r ��� Furthermore
 we can use the transformation
�
���� to set ���� � �� Hence in the �rst construction step
 we want to �nd solutions of
the modi�ed system

�� �
w

r
� � � !� �
����

!�� � �E � �� � � w

r
!� �
��
�

r� w�� � ���� w�� w � q r �!� �
����

r� "��r� � ��� �
����

with the following conditions at the origin


w�r� � �� �r� �O�r�� � ��r� � �� r �O�r�� �
����

��r� � O�r�� � ��r� � O�r�� � �
����

together with the conditions at in�nity

lim
r��

w�r� � �� � lim
r��

��r� � � �
����

j��j  � j lim
r��

��r�j 
 � 
 �
����

For any given value of the coupling constant q
 we thus have two free parameters � and ��
to characterize the solutions near the origin r � �� Each solution has a unique extension
to larger values of r� Asymptotically for r ��
 we must satisfy the two conditions �
�����
Thus we have as many free parameters as asymptotic conditions
 and we therefore expect
for �xed q a discrete set of solutions satisfying �
����
 �
����
 and �
����� For each solution

we must then verify that the conditions �
���� and �
���� are also satis�ed�

For the construction of numerical solutions
 we enhanced the technique used in �

 �	
to a two�parameter shooting method� Since two�parameter problems are considerably
more di�cult than one�parameter problems
 we describe the method in some detail� For
clarity
 we �rst consider the simpli�ed situation where ��r� and w�r� have prescribed

��



boundary values for a given �nite r � r�� In this case
 one can apply the standard multi�
parameter shooting method as e�g� described in ��	� More precisely
 one can for given
initial data compute ��r�� and �w�r��� w��r��� numerically
 compare with the prescribed
boundary conditions
 and iteratively adjust the initial data until the boundary conditions
are satis�ed to su�cient accuracy� In our case
 the situation is more di�cult because
we have boundary values not for �nite r � r�
 but for r � �� In order to deal with
this problem
 we �rst choose a �nite r�� Using an ansatz for the asymptotic form of
the solution ��� !��w� �� at in�nity
 we approximately compute ��r�� and �w�r��� w��r���
and derive conditions between these functions� Taking these conditions as the boundary
conditions at r � r�
 we can apply the two�parameter shooting method on the �nite interval
��� r�	 as described above� The so�obtained solution on ��� r�	 gives
 in combination with
the asymptotic formulas on �r����
 an approximate solution for all r � �� Since our
asymptotic description becomes precise only in the limit r� � �
 we must
 in order to
attain the desired accuracy
 choose r� su�ciently large� In order to ensure that r� is
appropriately increased during the computation
 we modi�ed the two�parameter shooting
method in such a way that both the initial data and r� are adjusted in each iteration
step� The iteration is stopped when the numerics has stabilized and the accuracy no
longer improves� This modi�ed shooting method was implemented in the Mathematica
programming language using the standard ODE solver with a working precision of ��
digits� The initial data is adjusted in the iteration with a secant method
 and the step
size for incrementing r� is determined from the relative error of the numerical solution at
the upper boundary r�� After the iteration has been stopped and a numerical solution
has been found
 our program slightly changes the initial data and searches for a nearby
solution� In this way
 we can automatically trace a one�parameter family of solutions�
Finally
 we explain our method for describing the asymptotic behavior of the solutions
at in�nity� According to the asymptotics of the solutions of the ED and EYM equations
�

 �	
 we can expect that the spinors � and !� will decay exponentially fast at in�nity

whereas the potentials ��r� and w�r� for r � � will behave like rational functions�
Therefore it is a reasonable asymptotic approximation to set � and !� to zero for r � r��
In this approximation
 the potential � is harmonic according to �
����� The YM equation
�
����
 on the other hand
 reduces to the vacuum YM equation �
�
�� In the new variable
u � log r
 this equation becomes autonomous� namely ��	

��uw � �uw � ���� w�� w 
 �
�
��

This autonomous equation allows us to derive boundary conditions for w as follows� We
set

x � w and y � �uw 
 �
�
��

Then the YM orbits in the �x� y� plane are described by the following di�erential equation


y��x� �
��uw

�uw

�����	
� �� ��� x�� x

y

 �
�
��

According to the boundary conditions �
���� and the di�erential equation �
�
��
 the
variables x and y must behave in the limit r � � like either x � �
 y � � or x � ��

y � �� In both of these cases
 there is a unique YM orbit y�x�
 which can be easily
calculated numerically by integrating �
�
��� By transforming �
�
�� back to the variable
r
 we obtain the following mixed boundary conditions for w�r� at r � r�


w��r�� �
�

r�
y�w�r��� 
 �
�

�

��



We next describe our rescaling method needed to arrange the normalization condition
�
����� Suppose that we have a solution of the modi�ed system �
������
���� with �nite
normalization integral
 �
����� A direct calculation shows that the transformed functions

#��r� � ��� �����r� �
#!��r� � ��� �����r� �
�
��

#��r� � ���
�
�����r�� ��

�
� #w�r� � w����r� �
�
��

solve our original reciprocal limit system �
���
 �
���
 �
���
 �
����
 and �
���� with bound�
ary conditions �
��
���
����
 if one replaces the energy E and coupling constant q by

#E � ��� �E � ��� and #q � �� q 
 �
�
��

We point out that only the rescaled solutions �
�
��
�
�
�� and rescaled parameters �
�
��
have a physical meaning� Therefore
 we will in what follows consider only the rescaled
tilde solutions� for ease in notation
 the tilde will be omitted�

In the remainder of this section
 we describe our numerical solutions of the reciprocal
limit equations� Just as in the case for the ED and EYM equations �

 �	
 there are
solutions for di�erent rotation numbers of the spinors in the ��� ���plane and for the YM
potential in the �w�w���plane� For simplicity
 we restricted attention to solutions with
rotation number zero for the spinors �as for the ground state solutions in �
	�� For the YM
potential
 we consider only the cases where the �w�w���curve either makes a half rotation
joining the points ��� �� and ���� ��
 or makes a full rotation
 ending at its starting point
��� ��� A typical example for a solution of each type is shown in Figures � and �� Because of
the similarity of the YM potential to the BM ground state and the BM �rst excited state

we refer to these two types in what follows as the ground states and the �rst excited states

respectively� Notice that the curves in the �w�w���plane are not plotted all the way to their
rest points at ��� �� or ������
 respectively� The reason is that we plot only the numerical
solution on the interval ��� r�	� One sees that the spinors have become practically zero
for r � r�
 and it is thus an admissible approximation to smoothly join the �w�w���curve
with a vacuum YM solution by using the boundary conditions �
�

�� We �rst discuss
the ground state solutions� In Figure 

 the main characteristics of the solutions are
plotted versus the coupling constant q� As explained above
 E has the interpretation of
the �appropriately scaled� kinetic energy of the Dirac particle� Since E is positive
 the
Dirac particle has gained energy by forming the bound state� The parameter !B
 �
����

gives the total binding energy
 i�e� the amount of energy which is set free when the binding
is broken up� Since !B is negative
 we can expect that solutions of the full EDYM system

which are close to the solutions of the reciprocal coupling equations
 should be stable�
Finally
 rw and r� are the characteristic length scales of the solutions� more precisely
 rw
is the radius where w changes sign
 and r� is the radius where � has its maximum


w�rw� � � and ���r�� � � 
 �
�
��

The characteristic radii are interesting because they give information about the �size� of
the solutions as functions of r� i�e� they tell whether the �elds are spread out in space

or whether they are localized close to the origin� It is also worth considering both radii
because rw and r� can behave quite di�erently �cf� Figure 
��

The plots in Figure 
 have a turning point at q � �
��� Similar to the situation de�
scribed for the spiral in �
	
 this is a bifurcation point which comes about as a consequence

��



of our rescalings� One branch of solutions can be extended up to q � ��
�� For solutions
close to this end point
 the potential w leaves the interval ���� �	 as shown in Figure ��
Since rw and r� both go to zero in this limit
 the spinors and YM �eld are both con�ned
to a smaller and smaller neighborhood of the origin� At the same time
 the kinetic energy
and binding energy become in�nite� The other branch of solutions ends near q � �
���
For solutions near this end point
 the �w�w���curve comes very close to the origin before
running into the rest point at ���� ��
 see Figure �� This makes the numerics rather deli�
cate
 and we therefore have not yet analyzed this regime in much detail� It is interesting
that r� is bounded near this end point
 whereas rw seems to become in�nite� This shows
that
 while the Dirac particle stays in a bounded region of space
 the YM �eld becomes
more and more spread out�

For the �rst excited state
 the energy spectrum and characteristic radii are shown in
Figure �� Since in general w never equals zero for the �rst excited state
 we de�ne rw via
the minimum of w
 i�e�

w��rw� � � and ���r�� � � 
 �
�
��

In contrast to the ground state
 the solutions can now be extended up to q � �� In
this regime
 the YM potential stays close to w � �� see Figure �� The solutions have a
bifurcation point at q � �
���� The branch coming out at the bifurcation point for larger
values of E is di�cult to study numerically because the �w�w���curve comes close to the
origin
 see Figure ��

It is interesting that for the ground state solutions in Figure 

 the parameter q stays
bounded away from zero
 whereas the plots for the �rst excited state in Figure � could
be extended up to q � �� Let us consider how this can be understood directly from the
equations� The parameter q enters only the YM equation �
���� In the limit q � �
 this
equation goes over to the vacuum YM equation
 which has only the trivial solution w � ��
Hence if we assume that the spinors have a �nite limit for q � �
 then w�r� must go
uniformly in r to one� This shows that the solutions can be regular for q � � only if
w satis�es the boundary condition limr��w�r� � ��� In particular
 our ground state
solutions cannot be regular in this limit� We next consider the limit q � � for the �rst
excited state in more detail� Since w converges uniformly in r to one
 the reciprocal limit
equations �
���
 �
���
 and �
���� go over to the Dirac�Newton equations

�� �
�

r
� � � !� �
�
��

!�� � �E � �� � � �

r
!� �
����

r� "��r� � ��� 
 �
����

These equations are obtained by taking the nonrelativistic limit of the ED equations �
	

and according to the results obtained in that paper
 the equations �
�
����
���� together
with the normalization integral �
���� have a countable number of solutions
 characterized
by the rotation number of the spinors �called the ground state
 the �rst excited state
 etc���
We thus expect that the functions ��� !�� �� corresponding to solutions of the reciprocal
limit equations should for q � �
 go over to a solution of the Dirac�Newton equations� The
behavior of the YM potential w can now be analyzed in more detail by taking the solution
��� !�� �� of the Dirac�Newton equations as a given inhomogeneity in the YM equation
�
��� and performing a perturbation calculation for small q� More precisely
 the ansatz

�




w�r� � � � q u�r� to �rst order in q
 leads to the linear equation

r� u�� � �u � r �!� �

which can be solved by integration� Fixing the integration constants with our boundary
conditions u��� � u��� � � and u���� � �
 we obtain the unique solution

u�r� � r�
Z r

�

ds

s�

Z s

�
t ��t� !��t� dt � r�




Z �

�

�

t�
��t� !��t� dt 
 �
����

This consideration shows that for q � �
 the rotation number of w is uniquely determined
by the rotation number of the spinors� Furthermore
 one sees that in the limit q � �
 the
Dirac wave function is determined by the Dirac�Newton equations �
�
����
����� Thus only
the gravitational attraction is responsible for the formation of the bound state
 whereas
the YM �eld has no in�uence on the spinors�

� Solutions of the EDYM Equations

In this section
 we shall construct numerical solutions of the full EDYM equations and
discuss their properties� Our method is to �rst �nd special solutions which are small
perturbations of either the BM solutions ��	 or solutions to the reciprocal limit equations of
the previous section� We then trace these solutions while gradually changing the coupling
constants� This yields one�parameter families of solutions which can be extended even
to regions in parameter space where the solutions are far from all of the known limiting
cases�

In order to simplify the connection between the EDYM equations and the reciprocal
limit equations of Section 

 it is useful to introduce a parameter � � � in such a way that
the reciprocal limit equations are obtained when �� �� To this end
 we parametrize the
EDYM equations in terms of the new variables ��� q� E� as follows


� � ��q�
�

� � e� �

r
q

�

m �
�p
�q

� � �
�p
�q

�
p
�q E 


Since the EDYM equations involve three dimensionless parameters �namely m��
 ��m

and e��
 introducing ��� q� E� is merely a transformation to new independent parameters

prescribing at the same time the gravitational constant �this means that we give up the
freedom to rescale r by �xing our length scale�� In the limit �� �
 both q and E go over
to the corresponding parameters of the reciprocal limit system �see �
��� and �
����� Also

it is easy to check that the limits �
���
 �
����
 and �
���� are satis�ed if we let �� � and
keep �q�E� �xed� The parameters � and q can be written in dimensionless form as

� �
m��

e�
� q � m�� e� 
 �����

Thus � describes the relative strength of gravity versus the YM interaction
 whereas q
is the product of the gravitational and YM coupling constants� Up to a scale factor

E � � �m� Since � is the relativistic kinetic energy and m the rest mass of the Dirac
particle
 E can
 exactly as in the previous section
 be interpreted as the kinetic energy

��



of the Dirac particle� Finally
 we also describe the binding energy by a parameter which
corresponds to our notation for the reciprocal limit system �
���� and set

!B �
��mp

�q



For the construction of numerical solutions
 we use a two�parameter shooting algorithm
combined with a rescaling method� Since this technique is quite similar to that described
for the reciprocal limit equations in the previous section
 we shall merely outline our
procedure� In the �rst step of the construction
 we consider the EDYM equations ����
�

������ and ������������� with the side conditions

� 
 ��  �

Z �

�
��� � ���

Tp
A
dr 
 � �����

� 
 �  � lim
r��

T �r� 
 � ���
�

lim
r��

w�r� � �� � �����

together with the following expansions near r � �


��r� � �� r � O�r�� � ��r� � O�r��

A�r� � � � O�r�� � T �r� � � � O�r�� 


For �xed � and q
 we thus have the two parameters �� and E to characterize a solution
of this modi�ed EDYM system near the origin r � �� On the other hand
 we must satisfy
two conditions at in�nity� namely
 w must converge to ��
 �����
 and the spinors must go
asymptotically to zero in order for the normalization integral to be �nite ������ Hence
 we
can apply a two�parameter shooting method as described in Section 
� In order to have
optimal boundary conditions at the upper end point r � r�
 we again match this with the
solution of the autonomous vacuum YM equation �see �
�
�� and �
�

��� The shooting
method was again implemented in Mathematica
 using an accuracy of 
� digits� For each
solution constructed in this way
 we verify that ���
� is satis�ed and that the ADM mass
is �nite ���
��� Once we have found a solution of the modi�ed equations
 we rescale the
solution according to

#��r� �
p
� ��� �����r� � #��r� �

p
� ��� �����r� �����

#A�r� � A����r� � #T �r� � ��� T ����r� � �����

and transform the parameters �m��� �� e�� as follows


#m � ��� m � #� � � ��� � �����

#� � �� � � #e� � �� e� 
 �����

A straightforward calculation shows that the so�rescaled solution satis�es the EDYM equa�
tions ����
�
 ������ and ������������� together with the original side conditions ������ and
���
������

�� The parameters ��� q� E� transform under the rescalings as

#� � � � #q � �� q � #E � ��� �E � �� � �� m�� 
 �����

In the limit � � �
 these transformations coincide with the rescalings of the reciprocal
limit equations �
�
����
�
��� However
 we remark that for the ED equations �
	 a much

��



di�erent rescaling is used� Namely
 in order to get a better correspondence to the reciprocal
limit equations
 we here scale the gravitational constant �
 whereas in �
	 � is �xed to be
� throughout� Clearly
 only the rescaled solutions have physical signi�cance� Therefore

in what follows we will consider only the rescaled solutions and again omit the tilde�

In a realistic physical situation
 the gravitational coupling is very weak
 whereas the
YM coupling constant is of order one
 i�e� m��
 � and e� 	 �� Hence
 according to �����

we will here only investigate the parameter range �
 �
 and we are particularly interested
in the situation for small q� In the limit � � �
 there are known solutions of our EDYM
system
 namely the BM solutions �which more precisely are solutions in the limits �� �
and e��� � ��
 and the solutions of the reciprocal limit system constructed in Section 
�
We take these special solutions as the starting point for the numerics� By varying the
parameters � and q and tracing the solutions with our shooting and rescaling methods

we obtain a two�parameter family of solutions� In order to reduce the computational
workload
 we did not step systematically through the two�parameter space
 but always
kept one parameter �xed while varying the other parameter� Since � remains unchanged
under the rescaling �see ������
 it is most convenient to construct one�parameter families
of solutions for di�erent
 �xed values of ��

We now describe the solutions we found� Exactly as for the reciprocal limit system in
Section 

 we restricted attention to solutions with rotation number zero for the spinors
and a rotation angle of � or �� for the YM potential� We again refer to these types of
solutions as the �ground state� and the ��rst excited state
� respectively� For the ground
state solutions
 the energy spectrum and the characteristic radii are in Figures � and ��
plotted for di�erent values of the parameter � �the characteristic radii are again de�ned
by �
�
���� The curves A for � � � coincide with the plots for the reciprocal limit system in
Figure 
� For small values of the parameter �
 there are solutions for the EDYM equations
which are close to the solutions of the reciprocal limit equations �compare the curves A
and B in Figure ��� In this parameter regime
 the EDYM solutions look typically as shown
in Figure ��� The metric functions A and T are both close to one� thus the gravitational
interaction is weak
 in agreement with our considerations after �
���� The spinors and
the YM potential look very similar to the solution of the reciprocal limit equations in
Figure �� We conclude that the reciprocal limit system of Section � indeed describes a

signi�cant limiting case of the EDYM equations� However
 one also sees that even for
small �
 not all the solutions of the EDYM equations are close to the reciprocal limit
solutions� More precisely
 curve B leaves the vicinity of curve A at q � �� �see Figure ����
If one follows curve B after it branches o� from curve A
 the parameter q �rst increases
up to a turning point
 and then decreases to q � �� If � gets large
 the solution curves no
longer come so close to the reciprocal limit solutions �see curves C and D�� The maximum
of q decreases �see curve C� and �nally disappears �see curve D�� Figure �� shows a typical
solution for small q� We note that in this parameter region
 the metric functions A and
T are not near one� this explains why the reciprocal limit equations are no longer a good
approximation� Indeed
 the potentials w
 A
 and T now resemble a BM solution of the
EYM equations ��	
 and the spinors look like the solution of the Dirac equation in the BM
background� Hence q � � corresponds to the limit of weakly coupled spinors� i�e� spinors
in a �xed BM background� Notice that the characteristic radii go to zero and the energies
go to in�nity in the limit q � � �see Figure ��� This can be understood from our rescalings�
Namely
 for the �unscaled� solutions of our modi�ed EDYM system
 the BM solutions are
easily obtained by taking the limit �� � � �in which the spinors go uniformly in r to zero��
In this limit
 the normalization integral ����� tends to zero
 and thus the rescalings ������

��



����� lead to a singular behavior of the rescaled solutions for q � �� To summarize
 there
is a one�parameter family of solutions �obtained by continuously changing the coupling
constants�
 connecting the BM solutions to our reciprocal limit solutions

We remark that our plots of the curves B have a small gap at q � �
�� The reason
is that in this region the numerics become unstable
 and could not be carried out with
our methods� But we were able to construct two branches of solutions which approach
the problematic region from both sides� We suspect that the instability of the numerics
is merely an artifact of our rescaling method
 but it might well be an indication for a
possible bifurcation point in this region� For the other curves C and D
 we analyzed only
the branch of solutions which extends towards smaller values of q�

For the �rst excited state
 the energy spectrum and characteristic radii are plotted
in Figures �
 and �� �the characteristic radii are again de�ned by �
�
���� The curves
A for � � � correspond to the solutions of the reciprocal limit equations in Figure �� In
contrast to the situation for the ground state
 the solutions for small � are all close to the
reciprocal limit solutions �compare the curves A and B�� Figure �� shows a typical solution
for large q� one sees that the spinors and YM potential look similar to those in Figure ��
The form of the energy spectrum and the characteristic radii gradually change when � is
increased� for example
 the cusp in the �q� rw��plot becomes smooth �see curve D�� It is
interesting that for q � �
 the curves converge independent of � to a single limit point
�see Figure �
�� This limit point was already described at the end of Section 
 as the case
when the spinors form a bound state due to their gravitational attraction
 and the spinors
generate a YM �eld �see �
�
����
������ This picture is in agreement with our numerics

since the spinors and metric functions
 for a solution near this limit point
 look similar to
the ED solutions �
	 in the Newtonian limit
 and w � � �see Figure ���� The fact that
this limit point is independent of � follows
 because as explained at the end of Section 


for q � �
 the YM equation decouples from the ED equations� For clarity
 we point out
that it would not be correct to say that the gravitational interaction dominates the YM
interaction in the limit q � �� Namely
 according to �����
 the ratio of the gravitational
and YM coupling constants is kept �xed
 and thus q � � corresponds to the limit where
both coupling constants go to zero at the same rate� Nevertheless
 the YM �eld has for
q � � no in�uence on the energy spectrum and the characteristic radii�

A main qualitative di�erence between the ground state and the �rst excited state
is that for the �rst excited state
 we could not continuously join the solutions of the
reciprocal limit equations with a BM solution� In order to see how this comes about
 we
did numerical calculations starting with a Dirac particle in the BM background �similar to
that shown in Figure ��� and gradually increased the coupling of the spinors to gravity and
to the YM �eld� For these �deformations of the �rst excited BM state
� the curves of the
energy spectrum and the characteristic radii have spirals
 whose size and shape drastically
changes when � is increased
 see Figures �� and ��� In the parameter regime where the
energy plots spiral around
 the spinors have self�intersections similar as observed for the
ED solutions �
	
 see Figure ���

We now discuss the stability of our solutions� The relevant parameter for the stability
analysis is the total binding energy !B� Namely
 if !B is negative and smaller than the total
energies of all other states
 then energy is needed to break up the binding or to make
a transition to any of the other states
 and therefore for physical reasons the solution
must be stable� Clearly
 this energy argument does not provide a rigorous stability proof

and it also cannot replace the numerical analysis of linear stability �like e�g� in ��	 or �


Section �	�
 but it gives a strong indication for stability and is therefore commonly used

��



�see e�g� ��	�� Let us �rst apply this energy argument to the ground state solutions of
Figures � and ��� One sees that the total energy becomes negative for large q� For the
curves B and C
 this region is plotted in more detail in Figure ��� For the solutions on
branch b
 the total binding energy is minimal
 and thus this branch is stable� Applying
Conley index methods with q as the bifurcation parameter �see ���	�
 we obtain
 as in
�
	
 that the two other branches a and c are unstable� Indeed
 the instability of branch c
follows also from the continuity of the Conley index and the fact that in the limit q � �

this branch goes over to the ground state BM solution which is known to be unstable
��	� When � is increased �see curve D
 Figures � and ���
 only one branch of solutions
remains
 which comprises the BM solutions as a limiting case and is therefore unstable�
More precisely
 the one�parameter family has in this case no bifurcation points
 and in
the limit q � � the solutions tend to an unstable BM solution� Thus using Conley index
techniques
 it follows that the entire one�parameter family is unstable� We conclude that
for small �� there is a stable branch of ground state solutions for which q lies in a �nite

interval away from q � �� all other ground state solutions are unstable� For the stability
of the �rst excited state
 we consider the plots of Figures �
 and ��� Since for q � �

the spinors and metric functions go over to the Newtonian limit of the ED solutions
 we
conclude from �
	 that the branch of solutions starting at q � � should be stable� This is
in agreement with our above energy argument
 because on this branch the total binding
energy !B is negative
 and is smaller than the total binding energy of the second branch of
solutions
 which comes out of the bifurcation point located at the maximum of q� Again

Conley index theory yields that this second branch is unstable� For the deformations of
the �rst excited BM state
 the total binding energy is positive �see Figures �� and ���

and hence these solutions should be unstable� Indeed
 for the branch of solutions which
extends up to q � � �i�e� before the �rst bifurcation point�
 this also follows from the
continuity of the Conley index and the instability of the �rst excited BM solution�

��
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