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Abstract

The solution of Schr�odinger�s equation leads to a high number N of independent variables� Further�
more� the restriction to �anti�symmetric functions implies some complications� We propose a sparse�
grid approximation which leads to a set of non�orthogonal basis� Due to the antisymmetry� scalar
products are expressed by sums of N �N �determinants� More precisely� we have to determine detK�A� ��P
��i��i����� �iK�N

det
�
a
���
i��i�

�
��������� �K

� where a
���
i��i�

are entries of the K matrices in A �� �A���� � � � � A�K���

We propose a method to evaluate this expression such that the computational cost amounts to O�N�� for
	xed K� while the storage requirements are O�N���

AMS�Classi�cation� ��F��� �����
Keywords� Schr	odinger equation� antisymmetric functions� sparse grids� evaluation of scalar products

� Introduction

The background of our considerations is the numerical treatment of Schr�odinger�s equation characterised by
the operator

H
 �� �
�

�

NX
i��

�xi

X

��i�j�N




jxi � xj j
�
X

��i�A
��j�N

Qi


j�i � xj j


X
��i�j�A

QiQj


j�i � �j j
� �����

Here� �i � R
� � � � i � A� are the �xed positions of A nuclei with charges Qi � N� The eigenfunction 
� one

is looking for� is a function in R�N � where N is the number of electrons� Because of the Pauli principle� the
eigenfunctions have to be found in the space of antisymmetric functions� i�e��


�x�� � � � � xi� � � � � xj � � � � xN � � �
�x�� � � � � xj � � � � � xi� � � � xN � for all i �� j� �����

The particular characteristics of this problem are

�� the high number of independent variables�

�� the subspace of antisymmetric functions�

Concerning Topic �� we propose to use sparse grids� It turns out that sparse grids are even much cheaper
when used for symmetric or antisymmetric functions�

The computational subspace of the Galerkin method will be of the form fsym � 
anti� where 
anti is a
�xed antisymmetric function� while fsym varies is a symmetrised sparse�grid space� Hence� fsym is spanned

by S�� where S is the symmetrisation operator explained in Subsection � and � is a product
QN

i�� �i�xi� of
sparse�grid basis functions� It is characteristic for Schr	odinger�s equation that already the computation of the
entries of the Galerkin matrix is nontrivial� In this paper we do not discuss the terms arising from the middle
sums in ������ but concentrate of the simple scalar product

�
S�I �
anti� S�

II �
anti

�
L��R�N�

arising from the

Gram matrix �mass matrix� in the eigenvalue problem� Here we mention that the �rst term
PN

i���xi
 leads
to a very similar expression �cf� Lemma ������ The di�culty in computing

�
S�I �
anti� S�

II �
anti

�
L��R�N�

is twofold� �a� Since the symmetrisation operator S involves all permutations� a large sum of single expressions
is obtained� �b� Each single expression is an N �N �determinant� The precise de�nition of the problem to be
solved is given in Subsection ����

The next Section starts with the notation of symmetric and antisymmetric functions� Then we discuss the
sparse�grid space used in our case �cf� x����� In x��� we describe the scalar products of simple product function�
Products of symmetric and antisymmetric functions together with their scalar products are discussed in x����

�



� Notations

��� Symmetric and Antisymmetric Functions

Let PN be the set of permutations of f�� � � � � Ng� A permutation � � PN can also viewed as an operator on
L��XN � de�ned by

� � f�x�� � � � � xN � �� f�x����� � � � � x��N�� �� ��f��x�� � � � � xN � for � � PN �

Here� X is a measurable set �for Schr	odinger�s equation� X � R
� is of particular interest� and L��XN � is the

set of square�integrable functions de�ned on XN �

De�nition ��� f � L��XN� is called symmetric �notation� f � L�
sym�X

N ��� if f � �f for all � � PN �

f � L��XN � is called antisymmetric �notation� f � L�
anti�X

N ��� if f � sign��� � �f for all � � PN �

The following operators produce symmetric and antisymmetric functions� respectively�

S ��
X
��PN

�� A ��
X
��PN

sign��� � �� �����

Scaling by the number N � � card�PN � of permutations� one obtains

S� ��
�

N �

X
��PN

�� A� ��
�

N �

X
��PN

sign��� � �� �����

Remark ��� S� � S�� is a projection onto the subspace L�
sym�X

N� and A� � A�� is a projection onto the

subspace L�
anti�X

N ��

��� Sparse Grids

����� Basic Spaces

Let fV�g��N� be a hierarchy of �nitely dimensional and nested subspaces de�ned on X �not XN�� In the case
of Schr	odinger�s equation and conforming discretisations we require

V� 	 V� 	 � � � 	 V��� 	 V� 	 � � � 	 H��X�� �����

We assume that the dimension of V� increases by a �xed factor� For simplicity� we write

dimV� � b� �����

�b � � corresponds to halving the grid size in X � R
� �� The following remains true if we replace ����� by

dimV� � b�� allowing local re�nement�
The coarsest space V� �with dimension �� is spanned by the constant function only�

V� � span���� �����

����� Sparse Grids in XN

Let a level number L � N be given� where

L
 N

is assumed� The sparse�grid space V sg
L associated with L is

V sg
L �� span

�
V�� � V�� � � � �� V�N � �i � N� with

XN

i��
�i � L

�
�

The dimension of V�� � V�� � � � �� V�N is

dimV�� � dimV�� � � � � � dim V�N � b�� � � � � � b�N � b
PN

i�� �i � bL�

The number of N �tuples ���� � � � � �N � � NN� with
PN

i�� �i � L amounts to O�LN��� for L
 N�

�



Remark ��� Under the assumption ������ the sparse	grid dimension is bounded by dimV sg
L � O�bLLN����

Since L � O�log bL� is only the logarithm of the space dimension dimVL � bL� the bound behaves much
better than �dim VL�

N is the full�grid case� but for large N� the number LN�� becomes dangerous�
Concerning literature about sparse�grids� we refer to ��� and ���� Higher order approximations are discussed

in ����

����� Sparse Grids for Symmetric Functions in XN

In the following� we consider a sparse�grid space consisting only of symmetric functions� For this purpose� we
make use of the symmetrisation S �

V symm�sg
L �� SV sg

L � span

�
S�V�� � V�� � � � �� V�N � � �i � N� with

NX
i��

�i � L

�
�

Since after symmetrisation V�� � � � � � V�i � � � � � V�j � � � �� V�N and V�� � � � �� V�j � � � � � V�i � � � � � V�N
are identical� the ordering of the level numbers �i is irrelevant� Without loss of generality� one may order the
N �tuples ���� � � � � �N� by �� � �� � � � � � �N � Hence�

V symm�sg
L � span

�
S�V�� � V�� � � � �� V�N � � �i � N� with

NX
i��

�i � L and �� � �� � � � � � �N

�
�

The number of N �tuples ���� � � � � �N � with this properties is bounded by a constant cL for all N � as explained
below� This together with dimV symm�sg

L �
P

all admissible N�tuples ������� ��N � dim�V�� � V�� � � � �� V�N � yields

Remark ��� The symmetric sparse	grid space satis
es dim V symm�sg
L � cLb

L�

This remark shows that the symmetric sparse�grid functions are optimal for large N� The same holds for
antisymmetric functions� since dimV antisymm�sg

L � dimV symm�sg
L �

The constant cL can be determined as follows� Let ���� L� the number of all sequences �� � �� � � � � such
that

P
�i � L and �� � �� The induction with respect to L starts with ���� �� � � �only the zero sequence

exists�� The recursive de�nition of � is

���� L� �
�X

k��

��k� L� k��

The right�hand side corresponds to the fact that a sequences starting with �� � k can be followed by any of
the ��k� L� k� sequences �� � � � � with sum L� k and �� � k� For limited N we have

card

�
�� � �� � � � � � �N with

XN

i��
�i � L

�
� ��L�L��

The bounds ��L�L� are given in the table below� However� the estimates are too pessimistic� If it happens
that �� � �� � � � � � �N contains k identical members � �� �i�� � �i�� � � � � � �i�k� dimS�V k

� � is over�
estimated by dimV k

� � �dimV��
k� The exact bound is dimS�V k

� � � cardf�i�� i�� � � � � ik� � f�� � � � � dimV�gk �
i� � i� � � � � � ikg� which is approximately �dimV��

k�k�� Therefore� we should count the equal �non�zero�
members in the sequence and divide by the faculty�

w��� � �� � � � � � �N� ��

LY
���

�

k��
� where k� � cardfi � �i � 	g�

Instead of ��L�L�� we get the weighted cardinality

�w�L� ��
X

all admissible N�tuples ������� ��N�

w��� � �� � � � � � �N� � ��L�L��

L � � � � � � � � � �� �� ��
��L�L� � � � � � �� �� �� �� �� ��� ����
�w�L� � ��� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

Table �� Bounds for the constant cL in dimV symm�sg
L � cL � bL

�



��� Separable Functions

The standard ansatz for function in L��XN � are linear combinations of products of the form f�x�� � � � � xN � ��Q
�i�xi� �� ���x��� � � ���N�xN �� where the basis functions �i belong to any of the spaces V�� Symmetrisation

yields

fsym � Sf �
X
��PN

NY
i��

�i�x��i�� �
X
��PN

NY
i��

���i��xi��

Similarly� the antisymmetrisation yields


 � Af �
X
��PN

sign��� �
NY
i��

�i�x��i�� �
X
��PN

sign��� �
NY
i��

���i��xi��

The latter is also called the Slater determinant


 � det

�
����

���x�� ���x�� � � � �N �x��
���x�� ���x�� � � � �N �x��

���
���

� � �
���

���xN � ���xN � � � � �N �xN �

	



� � �����

��� Scalar Products

The L��scalar product on XN is denoted by h�� �iN �

hf� giN ��

Z
XN

f�x�� � � � � xN � g�x�� � � � � xN � dx� � � � dxN �

An obvious result is stated in

Remark ��� A � A� is selfadjoint� i�e�� hAf� giN � hf�AgiN for all f� g � L��XN ��

Product functions � �
QN

i�� �i�xi� and 
 �
QN

i�� 
i�xi� satisfy h�� 
iN �
QN

i�� h�i� 
ii� � enabling
a reduction to one	dimensional integrals� In the case of A� and A
� one obtains a determinant of one�
dimensional expressions�

Lemma ��� Let � �
QN

i�� �i�xi� and 
 �
QN

i�� 
i�xi�� Then

hA��A
iN � N � det
�
h�i� 
ji�


i�j������ �N

� �����

The proof can be performed by induction over N using the induction hypothesis

h��A
iN � det
�
h�i� 
ji�


i�j������ �N

� �����

Corollary ��	 If the function systems f�ig and f
ig are biorthonormal �i�e�� h�i� 
ji� � �ij�� we have
hA��A
iN � N �� The function systems are in particular biorthonormal� if �i � 
i is an orthonormal system�

��� Composition of Symmetric and Antisymmetric Functions

Lemma ��
 a� If f � L�
sym�X

N� and g � L�
anti�X

N� then fg � L�
anti�X

N��

b� Let f � L��XN � and g � A�g � L�
anti�X

N �� Then A��fg� � �S�f�g is the antisymmetrised product�
c� Let f � L�

sym�X
N � and g � L��XN�� Then A��fg� �f�A�g� is the antisymmetrised product�

In the following� we shall deal with antisymmetric functions of the form

�S�� � �A
� with � �

NY
i��

�i�xi� and 
 �

NY
i��


i�xi��

�



Below the scalar product
D
�S�� � �A
�� A �


E
N
with �� 
 as above and �
 �

QN
i��

�
i�xi� will be characterised�

Due to A � N �A� and the projection property of A�� one obtainsD
�S�� � �A
�� A �


E
N
� N �

D
�S�� � �A
�� �


E
N
�

By de�nition of S�

D
�S�� � �A
�� �


E
N
� N �

X
��PN

�
NY
i��

���i��xi� � �A
��
NY
j��

�
j�xj�

�
N

� N �
X
��PN

�
A
�

NY
j��

�
���j��xj� � �
j�xj�

��
N

holds� Since the scalar products are of the form ������ it follows thatD
�S�� � �A
�� A �


E
N
� N �

X
��PN

det
�D


i� ���j� � �
j

E
�

�
i�j������ �N

�

Similarly�
D
�S�� � �A
�� �S ��� � �A�
�

E
N
� N �

D
�S�� � �A
�� �S ��� � �


E
N

is treated �cf� Lemma ���c�� Us�

ing
D
�S�� � �A
�� �S ��� � �


E
N

�
P

��PN

P
��PN

D
A
�

QN
j��

�
���j��xj� � ����j��xj� � �
j�xj�

�E
N
� one

proves

Lemma ���
D
�S�� � �A
�� �S ��� � �A �
�

E
N
� N �

P
��PN

P
��PN

det
�D


i� ���j� � ����j� � �
j

E
�

�
i�j������ �N

�

Finally� we mention the bilinear form associated with the �rst term �
PN

i���xi of Schr	odinger�s operator�

Lemma ��� De
ne r�i�j� �� � i� j � N� as the identity for i �� j while r�i�i� �� r is the gradient� Then

NX
i��

D
rxi�S�� � �A
��rxi�S ��� � �A �
�

E
N

�����

� N �
X
��PN

X
��PN

NX
i��

det
�D
r�i��������� � 
k��r

�i���
�
������ � �
�

�E
�

�
k�������� �N

�

� Description of the Problem

��� De�nition of the Linear Space

The following data are given�

 An orthonormal system f��� � � � � �Ng 	 L��X� is given �e�g�� the solution of the Hartree�Fock equation��
Then


 �� A
YN

i��
�i�xi� �����

denotes the antisymmetric function generated by f��� � � � � �Ng�

 A family f�� � L��X� � 	 � J�g of basis functions of V� for � � � � L �cf� ������� The index sets J�
may be disjoint� however� in the case of a hierarchical basis J��� 	 J� holds� The basis functions may
be of standard �nite element type� but one may also think about wavelet basis functions� The union of
all index sets is

J ��
�L

���
J�� �����

�



Since 
 will be only a rough approximation of the �rst eigenfunction� we are looking for better approxi�
mations contained in the linear space

V 	
L �� f�Sf� �
 � f � V symm�sg

L g� �����

Obviously� the dimension of this space equals dimV symm�sg
L � which is characterised in Remark ����

In the case of Schr	odinger�s equation� a typical correction of 
 can be described by a factor Sf � where
f�x�� x�� � f�jx� � x�j� is a function of only two variables due to the interaction of two electrons� The
direct approximation of f by a f �

P
a��� as a function of x� � x� leads to the di�culty that scalar

products in L��XN � involving �Sf� � 
 cannot be reduced to the one�dimensional ones h�� �i� � Therefore�
f�x�� x�� � f�jx� � x�j� will be approximated by

f�x�� x�� �
X

����J�

f��� � ���x�� � ���x��  remainder� �����

Since ��� �� � V�� the sum in ����� belongs to the sparse�grid space V sg
L with L �� �� �formally we may add

the factors ���x�� �� � � � � �N �xN � �� � � V�� cf� ������� This argument gives an idea how large L should be�
The level � � L�� should be su�ciently high to yield a small enough remainder in ������

��� Galerkin Coe�cients

Using the Galerkin method in the space V 	
L � then already for the Gram matrix �and similarly for the Laplace

bilinear form� scalar products of the form

I��
�	 �� h�S����x�� � ���x��� �
� �S����x�� � �	�x��� �
iN

appear� where the index pairs �	� � and ��� �� correspond to di�erent terms from ������ Since products of
two basis functions as in ����� are only particular examples of sparse�grid basis functions� we next consider
the general case�

����� General Case

In general� scalar products of the form

I �� I������k 
������� ��

�
S

�
kY
i��

��i�xi�

�
�
� S

�
� �Y
j��

��j �xj�

�
A �


�
N

�����

occur� where � � k� � � N� The subscripts 	i� j � J are arbitrary indices from J � which are not necessarily
di�erent and may belong to di�erent levels� Due to Lemma ����

I������k 
������� � N �
X

����PN

det
��
�i� ����j� � ����j� � �j

�
�


i�j������ �N

�����

holds� where

��i ��

�
��i for � � i � k
� for k � i � N

�
� ��j ��

�
��j for � � i � �
� for � � i � N

�
� �����

����� The Case k � � � �

For the convenience of the reader� we discuss the simplest case k � � � � before the general problem is
presented in x������

For k � � � �� ��� � �� �	 � 	�� and ��� � �� � � �� holds� while ��j � ��j � � for j � �� The factors
����j� � ����j� in ����� take one of the following four values�

����j� � ����j� �

����
���

���� for ��j� � ��j� � ��
�� for ��j� � �� ��j� �� ��
�� for ��j� � �� ��j� �� ��
� otherwise�

�



This shows that the only interesting fact about the permutation � is the value ������� The set PN can be
decomposed into

PN � P
���
N � P

���
N � � � � � P

�N�
N � where P

�
�
N �� f� � PN � ���� � �g�

Remark ��� �P
�
�
N � �N � ��� for � � � � N�

The double sum
P

����PN
in ����� can be rewritten as

PN

����

P
��P

���
N

P
��P

���
N

� First we consider the

case � � �� Using Remark ���� we conclude that

I � �� N �

NX

��

X
����P

���
N

det

��
�i�

�
���� for j � �
� otherwise

�
� �j

�
�

�
i�j������ �N

� N ��N � ����
NX

��

det

��
�i�

�
���� for j � �
� for j �� �

�
� �j

�
�

�
i�j������ �N

�

Since the system f��� � � � � �Ng 	 L��X� is assumed to be orthonormal� the scalar products are h� � � i� � � for
j �� �� so that

I � � N ��N � ����
NX

��

det

��
h�i� ���� � �ji� for j � �
�ij for j �� �

�
i�j������ �N

�

��ij � Kronecker symbol�� For �xed �� the matrix �� � � � is the identity matrix in which the �th column is replaced
by
�
h�i� ���� � �
i�


i������ �N

� Expanding the determinant with respect to this column �or elimination of the

column entries for i �� � by means of the ith column ��unit vector�� yields det �� � � � � h�
 � ���� � �
i��
hence�

I � � N ��N � ����
NX

��

h�
 � ���� � �
i� � �����

Remark ��� The evaluation of I � requires the computation of N one	dimensional scalar products�
The summation needs O�N� operations� If ��� �� are basis functions with disjoint support� I � � � holds�

Finally� we consider the remaining case � �� �� Then

I �� �� N �

NX

��

X
��f����� �Ngn


X
��P

���
N

X
��P

���
N

det

�
���i�

��
�

�� for j � �
�� for j � �
� otherwise

 !
" � �j

�
�

�
A
i�j������ �N

� N ��N � ����
X



X
� ��


det

�
�
�
�i�

��
�

�� for j � �
�� for j � �
� otherwise

 !
" � �j

�
�

�
A
i�j������ �N

� N ��N � ����
X



X
� ��


det

�
� h�i� �� � �
i� for j � �

h�i� �� � ��i� for j � �
�ij otherwise

�
A
i�j������ �N

�

The latter matrix is the identity matrix in which the �th column is replaced by �h�i� �� � �
i��i������ �N and the

�th column by �h�i� �� � ��i��i������ �N � Elimination by the jth columns �j �� f�� �g� reduces the determinant
to the �� ��determinant

det

�
h�
 � �� � �
i� h�
 � �� � ��i�
h��� �� � �
i� h��� �� � ��i�

�
� �����

if � � �� In the case � � �� the indices �� � are to be interchanged� but the determinant remains invariant�
Finally� the following remark enables a simpli�cation�

Remark ��� Since for � � � the determinant ����� contains identical rows� it vanishes and the summationP



P
���
 may be changed into

PN

�����

�



Hence� the part I �� takes the form

I �� � N ��N � ����
NX


����

det

�
h�
 � �� � �
i� h�
 � �� � ��i�
h��� �� � �
i� h��� �� � ��i�

�
� ������

Remark ��� The evaluation of I �� requires the computation of �N� one	dimensional scalar products
h�
 � �� � ��i� � h�
 � �� � ��i� � � � �� � � N � The summation needs O�N�� operations�

Together with the results about I � we obtain the following remark�

Remark ��� In the case of k � � � �� the computation of I�
� requires the computation of O�N�� one	
dimensional scalar products of the form h�
 � �� � ��i� � � � f	� g� and further O�N�� additions� The under	
lying representation of I�
� is

I�
� � N ��N � ����

�
NX

��

h�
 � ���� � �
i� 
NX


����

det

�
h�
 � �� � �
i� h�
 � �� � ��i�
h��� �� � �
i� h��� �� � ��i�

��
�

In the general case of k � � or � � �� we cannot obtain a O�N�� bound for the computational cost� Instead
we shall describe an O�N���algorithm�

����� Representation of the Scalar Product in the General Case

Let ��j � ��j as in ������ In the general case� the factor in ����� takes one of the following values�

�j �� ����j� � ����j� �

����
���

����j�����j� for � � ��j� � k� � � ��j� � ��

����j� for � � ��j� � k� ��j� � ��
����j� for ��j� � k� � � ��j� � ��

� for ��j� � k� ��j� � ��

������

Here� the important part of the permutation � is the k�tuple

TI �� ������ � � � � k� �� �������� � � � � ����k���

while TII �� ������ � � � � �� contains the essential properties of � � Correspondingly� we de�ne the subsets

PN �TI � k� �� f� � PN � ��TI� � ��� � � � � k�g� PN �TII � �� �� f� � PN � ��TII � � ��� � � � � ��g

of PN for all k�tuples TI 	 f�� � � � � Ngk and all ��tuples TII 	 f�� � � � � Ng�� The summation
P

��PN

P
��PN

can be replaced by
P

TI

P
TII

P
��PN �TI 
k�

P
��PN�TII 
��

� where the �rst two sums run over all tuples de�ned
above�

While TI and TII describe tuples �for which the ordering of the components is essential�� the corresponding
sets are denoted by M�TI� and M�TII��

M�TI� �� fi
 � � � �� � � � � kg for TI � �i�� � � � � ik��

For a complete description� we have to consider all possible intersections of M�TI� and M�TII�� The
dimension of the arising determinants is the largest when M�TI� �M�TII� � �� Therefore� we �rst discuss
this case�

Case ofM�TI��M�TII� � �� Under the conditionM�TI��M�TII� � �� the �rst case in ������ cannot appear�
while the second �third� one occurs for j �M�TI� �j �M�TII��� The fourth case holds for j ��M�TI��M�TII��
For �xed TI � TII � we de�ne the �pairwise di�erent� indices

j���� � � � � j�k�� j�k  ��� � � � � j�k  ��

by the concatenating the k�tuple TI � �j���� � � � � j�k�� and the ��tuple TII � �j�k��� � � � � j�k ���� Again� the
determinant in ����� is the identity matrix in which all columns corresponding to the indices j���� � � � � k��
are replaced by

��
�i� �� � �j���

�
�


i������ �N

with �� � ������ ���� ��

�
	� for � � � � k
��k for k  � � � � k  �

� ������

�



where the properties ��j���� � � and ��j���� � �� k are used�
As in x������ the N �N �determinant can be reduced to the format �k  ��� �k  �� �

det
��
�j��� �� � �j���

�
�


�������� �k��

� ������

Remark ��� The ordering of j���� � � � � j�k�� j�k��� � � � � j�k�� or the order in which the indices �� � in �����
take the values �� � � � � k  � is arbitrary� since a simultaneous permutation of the rows and columns does not
change the determinant�

The summation
P

TI

P
TII

P
��PN �TI 
k�

P
��PN �TII 
��

can be replaced by

�N � k���N � ���
X

�j����j������� �j�k����

�

where the summation is performed over all pairwise di�erent ��  k��tuples �j���� j���� � � � � j�k  ��� �
f�� � � � � Ngk��� For �xed TI � �j���� � � � � j�k��� the determinant does not depend on � � PN �TI � k�� hence�
the summation over � � PN �TI � k� can be replaced by the factor �N � k�� � �PN �TI � k�� Analogously� the
PN �TII � ���summation yields the factor �N � ��� � �PN �TII � ���

As in Remark ���� we observe that the determinant ������ vanishes if �j���� j���� � � � � j�k  ��� contains at
least two equal entries� This allows us to include also tuples which are not pairwise di�erent and proves the
following lemma�

Lemma ��	 Let �� be de
ned as in ������ The part of I������k 
������� corresponding to M�TI� �M�TII� � �
�i�e�� the sum ����� taken over all �� � � PN with ������ �� ������ for all � � f�� � � � � kg� � � f�� � � � � �g�
is of the form

N ��N � k���N � ���

NX
j����j������� �j�k�����

det
��
�j��� �� � �j���

�
�


�������� �k��

� ������

Case of ��M�TI� �M�TII�� � �� The sets M�TI� and M�TII� are assumed to overlap by exactly one
index� which we denote by b�� Let TI � �j����� � � � � j��k��� TII � �j������ � � � � j������ and b� �� j����� � j������ for
some �� � f�� � � � � kg and �� � f�� � � � � �g� We order the k  �� � elements of M�TI� �M�TII� by

�j���� � � � � j�k  �� ���

�� �b�� j����� � � � � j���� � ��� j����  ��� � � � � j��k�� j������ � � � � j����� � ��� j�����  ��� � � � � j������

�note that by Remark ��� the ordering is not essential��
The summation

P
TI

P
TII

P
��PN �TI 
k�

P
��PN�TII 
��

under the side condition � �M�TI� �M�TII�� � �
can be written as

�N � k���N � ���

kX
����

�X
���

X
�j����j������� �j�k������

�

where the summations over PN �TI � k� and PN �TII � k� are replaced by the factors �N � k�� and �N � ����
The summation over �j���� � � � � j�k  �� ��� involves all pairwise disjoint tuples from f�� � � � � Ngk����� The
determinants det

��
�j�a�� �b����� � �j�b�

�
�


a�b������ �k����

to be summed have the factors

�b����� �

������
�����

���� � ���� for b � �
��b�� for � � b � ��

��b for ��  � � b � k
��b�k for k  � � b � k  �� � �
��b�k�� for k  �� � b � k  �� �

� ������

The dependence of the factors � on ��� �� is obvious in the case of b � �� Furthermore� the meaning of
j���� � � � � j�k  �� �� depends on ��� ��� as seen from the distinction of the cases b � �� and b � �� as well as
b � k  �� � � and b � k  �� � ��

Using again the argument of Remark ���� we can also allow tuples �j���� j���� � � � � j�k  � � ��� which are
not pairwise disjoint� This leads to the following result�

�



Lemma ��
 Let �b����� be de
ned as in ������ The part of I������k 
������� corresponding to tuples TI � TII
with ��M�TI� �M�TII�� � � is given by the sum

N ��N � k���N � ���
kX

����

�X
���

X
�j����j������� �j�k������

det
��
�j�a�� �b����� � �j�b�

�
�


a�b������ �k����

� ������

Case of ��M�TI� �M�TII�� � �� If �M�TI� �M�TII� � �� one obtains similar expression as in ������ or
������� The determinant is of the format �k  ��m�� �k  ��m� � where m �� � �M�TI� �M�TII�� �

� Reformulated Problem

The expressions ������ and ���� as well as those arising from ����� are of the following form�

��� Basic Problem

Problem ��� Let N �N	matrices A��� � �a
���
ij ���i�j�N be given for � � �� � � � �K� where K � N is a natural

number� We abbreviate the N 	tuple of matrices by A �� �A���� � � � � A�K��� The number to be computed is

detK�A� ��
X

��i��i����� �iK�N

det
�
a
���
i��i�

�
��������� �K

� �����

Note that the K�K�determinant involves columns from di�erent matrices A���� It may happen that some
of the matrices A���� � � � � A�K� coincide� but we will not exploit this fact�

Remark ��� �a� If for some term in ���� at least two indices i� coincide �i�e�� i� � i�� for  �� � �
f�� � � � �Kg�� the determinant has two identical rows �	 � � �� and vanishes so that ���� can also formulated
as

detK�A� �
X

�i��i����� �iK�

det
�
a
���
i��i�

�
��������� �K

� �����

where the sum is taken over all pairwise di�erent K	tuples �i�� i�� � � � � iK� � f�� � � � � NgK�

�b� For a
���
i��i�

��
�
�j���� �� � �j���

�
�
�i� � j�	�� i� � j���� ����� coincide with ������

�c� For a
���
i��i�

��
�
�j���� ������� � �j���

�
�
�i� � j�	�� i� � j��� with 
xed ��� ��� we obtain the sum from

������ X
�j����j������� �j�k������

det
��
�j�a�� �b����� � �j�b�

�
�


a�b������ �k����

�

We always assume that K is small compared with N � The idea is that K remains �xed� while N � ��
The expression O��� is understood in this sense�

Since the number of the input data is KN� ����number of output data�� we conclude part a� of

Remark ��� a� The lower bound for the complexity of any algorithm computing detK is O�N���
b� The direct evaluation of the right	hand side in ���� leads to the complexity O�NK��

Proof� b� By assumption on K� the cost for the evaluation of det�a
���
i��j�

���������� �K is O���� while the number

of indices � � i�� i�� � � � � iK � N amounts to NK �

��� Auxiliary Problems A�B

The following auxiliary problem arises� Let I be the set of k�tuples

I � f��� � � � � �kg 	 f�� � � � �Kgk with �� � � � � � �k for arbitrary k � f�� � � � �Kg�

��



Except the �rst component� the k�tuples I � I are ordered with respect to the size of their components�
Finally� let I� be the subset of the completely ordered k�tuples� i�e��

I� �� fI � I � �� � ��� if k � card�I� � �g�

The Basic Problem ��� will occur for the k�tuples A�I� �� �A����� � � � � A��k��� i�e�� detk�A�I�� is to be
computed� This de�nes the �rst auxiliary problem�

Problem ��� �Problem A� Let I � I� and k � card�I�� Compute

detk�I� ��
X

��i��i����� �ik�N

det�a
����
i��i�

���������� �k� �����

Besides Problem A we have the following auxiliary task�

Problem ��� �Problem B� �a� Let I � I and � � k � card�I� � K � �� Further� two indices i�� j� �
f�� � � � � Ng are given� Compute

detk�I � i�� j�� ��
X

��i����� �ik�N

det�a
����
i��j�

���������� �k � where j� �� i� for  � �� � � � � k� �����

�b� Compute detk�I � i�� j�� for all i�� j� � f�� � � � � Ng and all I � I with card�I� � k�

Note that the summation in ����� involves the k � � indices i�� � � � � ik but not i�� The connection of both
problems is explained in

Remark ��� �a� The Basic Problem �� is the special case detK���� � � � �K�� of Problem A for I � ��� � � � �K�
and k � K�

�b� detk�I� �
P

��i��N
detk�I � i�� i���

��� Simultaneous Solution of Problems A and B

We start the induction at k � �� i�e�� with pairs I� The sum in det��I � i�� j�� is taken only over i� � f�� � � � � Ng
and therefore needs O�N� operations per i�� j� � f�� � � � � Ng� The computation for all i�� j� requires O�N��
operations� Due to the relation mentioned in Remark ���b� det��I� can be obtained by further O�N� opera�
tions� This proves the following induction hypothesis for k � ��

Problems A and Bb �for induction variable k� require O�N�� operations� �����

The computed quantities det��I � i�� j�� should be stored for all i�� j� � f�� � � � � Ng together with det��I��
Obviously� this leads to the second hypothesis�

Problems A and Bb require O�N�� storage size� �����

Since K is a constant is� the assertions ����� and ����� hold also� if the Problems A�B are posed for all k�tuples
from I� Since the number of quantities to be computed is O�N��� the storage size ����� follows�

By induction we want to show� If ����� holds for k � � � K� then the assertion hold also for k� By
Remark ���b� the solution of Problem A is a O�N��problem as soon as Problem Bb is solved� Therefore� only

Problem B is to be discussed� Consider the determinant det�a
����
i��j�

���������� �k� which is one of the terms in

������ Expansion by the �rst column yields

det�a
����
i��j�

���������� �k �
X

������� �k

�������a
����
i��j�

� det�a
����
ia�j�

�a������ ������������ �k
 ������� �k� �����

Case 	 � �� The summands on the right�hand side have the form �������a
����
i��j�

� det�a
����
ia�j�

�a�������� �k �

a
����
i��j�

� det�a
����
ia�i�

�a�������� �k� since i� � j� for 	 � �� � � � � k� The summation
P

��i����� �ik�N
from ����� leads to

a
����
i��j�

�
X

��i����� �ik�N

det�a
����
ia�i�

�a�������� �k � a
����
i��j�

� detk���I�� with I� � ����������� �k� �����

��



where by induction detk���I�� is already computed and stored�

Case 	 � �� In the following we exploit i� � j�� The �indices in det�a
����
ia�i�

�a������ ������������ �k
 ������� �k

must be reordered� In the sequence f�� � � � � kg of the �values the index 	 is placed at the top position�
f	� �� � � � � 	 � �� 	  �� � � � � kg� This rearrangement of the columns corresponds to a permutation with sign
�������� Hence�

������� det�a
����
ia�i�

�a������ ������������ �k
 ������� �k � det�a
��b�
ia�ib

�a������ ������������ �k
 b�������� ������������ �k� �����

After the rearrangement the index tuples �ia�a������ ������������ �k and �ib�b�������� ������������ �k coincide up to the
�rst component� The �k � ���tuple I� �� ��b�b�������� ������������ �k belongs to I� If we omit in

P
��i����� �ik�N

the summation over i�� we obtain the value detk���I�� i�� i�� which by induction is already determined as a
part of Problem Bb�

Combining ������ ����� and ������ we are led to

detk�I � i�� j�� �
X

��i����� �ik�N

det�a
����
i��j�

���������� �k

� a
����
i��j�

� detk���I�� 
X

������� �k

X
��i��N

a
����
i��j�

� detk���I�� i�� i���

Obviously� the latter row of this equality can be determined by O�N� operations� Computing these expressions
for all i�� j� � f�� � � � � Ng� the total cost amounts to O�N��� Hence� the assertion ����� is proved by induction�

References

��� H��J� Bungartz� An adaptive Poisson solver using hierarchical bases and sparse grids� Iterative methods
in linear algebra �P� de Groen and R� Beauwens� eds��� Elsevier� Amsterdam ����� pp� ��������

��� � Finite elements of higher order on sparse grids� Habilitationsschrift �Informatik� TU M	unchen��
Shaker Verlag� Aachen �����

��� W� Hackbusch �ed��� Parallel Algorithms for PDEs� Notes on Numerical Fluid Mechanics ��� Vieweg�
Verlag� Braunschweig ����� �Kiel� Jan� ������

��� C� Zenger� Sparse grids� In Hackbusch ����

��


