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Abstract

Along the calculation of a perturbative S-matrix, created by Epstein
and Glaser and further developed by Scharf, an algebra for the involved
distributions is extracted. But its members turn out to be more singu-
lar than the distributions one has to split (causally) within the original
procedure. Moreover, an antipode is introduced and the properties for a
Hopf algebra are checked. That “rather unexpected” kind of formulating
perturbative QFT, only recently discovered by Kreimer for the BPHZ-
approach, is straightforwardly implemented. EGS’ causality, implying
locality, is substituted by time-reflection symmetry. The latter, being
a consequence of EGS’ assumption anyway, is motivated, here, starting
with unitarity. The achieved Hopf algebra establishes the (combinato-
rial) connection to BPHZ’s procedure, where time-reflections correspond
to counterterms.

Contents

1 Introduction

2 Preparation for the EGS-construction

3 The causal induction and the splitting

4 Realization of the splitting on distributions

5 Time-reflection symmetry instead of causality
6 Towards an algebra of distributions

7 Identification of a Hopf algebra

*Max-Planck-Institute for Mathematics In the Sciences

11

16

18

22



8 The solution and its connection with BPHZ 28

9 Conclusions 32

1 Introduction

Locality of perturbative QFT was proved by Epstein and Glaser in [7]. It was
done by developing a new renormalization procedure, exemplified for ¢*-theory,
different from the one commonly referred to as BPHZ [3, 8, 16]. The authors
called their result to be equivalent to the latter approach, which was men-
tioned in the abstract already, and has been repeated at the end of section 7
(on p. 258) wrapped in some context. But indeed, apart from the analytical
estimations concerning a single renormalization step in different so-called renor-
malization schemes, a proof which compares the combinatorial aspects (the
so-called renormalization procedures), i.e. their iteration with the successive
BPHZ-subtraction of counterterms, was not performed in any detail.

The pointed lack of language might have two reasons. Firstly, the two pro-
cedures do stand on different feet — expressed Feynman diagrammatically, EG is
based on vertices and BPHZ on loops. And secondly, a common language itself
has been missing. Starting to comment the latter, any choice for a mathemat-
ical formalism seams to be quite restricted now. Since Kreimer’s work there is
no doubt that a Hopf algebra describes BPHZ-renormalization (-combinatorics)
most appropriately. And in the present paper it will be shown that such a
statement somehow applies to EG’s approach as well. The problems involved
with the first discrepancy look better been investigated after having an adequate
Hopf algebra (language) at hand and therefore a detailed discussion is addressed
to forthcoming work. That means, at the end of the paper the correspondence
of the two procedures will be provided on a formal level (only), leaving aside
any graph or vertex structure. But anyway, EG’s renormalization induction
will be written in BPHZ fashion, even if the compensation of divergences by
producing counterterms is, at the first look, not at all an obvious exercise of the
Hopf algebra’s antipode in the EG(S)-approach. Because, it is found out, that
it serves as a realization of time-reflections there.

Additionally, the following chosen references would help arguing that EG’s
claim has not become unquestioned folklore in the physicists’ community. The
most convincing one belongs to Scharf (contributing the third letter), who is
developing EG’s method further, e.g. QED in [12]. And another is Kreimer’s
hope, expressed on p. 24 in [11], that “EG is reconciled with BPHZ” after hav-
ing (re-)discovered, now, how locality is (mathematical) encoded in the BPHZ-
procedure. By the way, he understands locality (referred to with the attribute
perturbative here) as the firmed production of suitable counterterms for the La-
grangian to render the theory finite, cf. p. 3 in [9]. But EG did use locality as
a synonym for microcausality. Therefore one might interpret the current result
as a realization of the latter (algebraic) locality within a BPHZ-renormalization
procedure.

The paper is organized as follows. It is started with an introduction to the
method of EGS. The (formal) perturbative expansion of the S-matrix, consist-
ing of the n-point functions, is defined. The assumed properties of causality for
the S-matrix are reformulated on the level of the n-point functions. In section



3 the (causal) construction of EGS is presented. The treatment of the operator
valued distributions, i.e. their reduction to scalar distributions, is explained.
Translation invariance is claimed to hold for whole the exposition. Under those
suppositions the heart of the EGS-construction, the distribution splitting, is
described in section 4. The assumption underlying all renormalization pre-
scriptions, in some way, is formulated. Therefore the degree of singularity is
introduced, this is done via powercounting.

In section 5 the EGS-procedure, applied here, gets another foundation.
Time-reflection symmetry, motivated by unitarity, is supposed to hold primary.
The splitting is recognized to be subordinated to a proper definition for the mul-
tiplication of the involved distributions, what is done in section 6 by the direct
product. Starting from distributions with singular point-support, representing
the propagators as motivated in section 3, all the distributions produced by the
EGS-construction are shown to form an algebra. That property still holds for
the operators built by those distributions.

Furthermore, in section 7 an antipode is introduced, which makes the struc-
ture underlying the operator valued distributions a Hopf algebra. The antipode,
here, corresponds to time-reflections whereas the antipode of Kreimer’s Hopf al-
gebra represents counterterms. That is emphasized in section 8, where the con-
nection to BPHZ’s approach is established identifying the common structure.
Based on the new foundation, an additional solution for the EGS-induction is
found, which enables one to write down a forest formula in the EGS-approach.

2 Preparation for the EGS-construction

The basic physical object of perturbative QFT is the S(cattering)-matrix, which
encodes the interaction of the considered particles. It maps a finite set of in-
coming to a finite set of outgoing free particle-fields, or, when they are described
by a Fock space, an initial ®; to a final state ®;. In the context of Feynman
diagrams it is referred to those as external particles or lines, respectively. Inter-
mediate states, however, will not be defined (neither on a Fock space), but one
might think of those when it is talked about internal lines.

To make a brief comment on its physical importance, in scattering experi-
ments the so-call cross-section is determined. The latter is proportional to the
scattering-probability p and formally given by the square of the modulus of the
dual bra-ket (in a physicist’s notation),

p(®i, ®p) = [(Df S| 23 (1)

However, the external particles are modeled by wave-packets (in practical cal-
culations) satisfying the free equation of motion belonging to its sort, e.g. a
spin-1/2 particle 9, living in (L?(R?))?%, by the Dirac equation. But therefore
the S-matrix S can be described to be “piecewise” defined for a certain number
of those free fields as an operator-valued distribution.

The EGS-method starts with an expansion of the S-matrix, which will
shortly reveal itself being used as a infrared regularized power expansion in the
coupling constant, e.g. the charge (divided by Planck’s constant) e for QED,

S(g) ::H+Z%/d:c1~-~/d:chn(:c1,...,:cn)g(:c1)...g(:cn). (2)



The T, are (the) operators on the free particle-fields, the so-called n-point func-
tions, are totally symmetric distributions. That means, the order of the argu-
ments z; € R'T¢ does not matter within a T, , and one can therefore write

To({z1,...,zn}) i=To(ze,. .., x0). (3)

Those arguments correspond to vertices in Feynman diagrams.

The T,-distributions are tested by an “adiabatic switching” function g €
S(R'*?), cutting off the long-range interaction by living in the Schwartzian
space of rapidly decreasing functions. The configuration space R'*? is a 1 +
d dimensional Minkowski space with signature (+,—,...,—), where the first
component plays the role of time.

Remark 1 Problems with infrared divergences do only appear when observable
quantities are calculated from the T, and the so-called adiabatic limit ¢ — e
has to be taken, i.e. choosing g € S(R'*?) with g.(0) = e and considering the
limit € — 0, for test functions g(x) := ge(ex), which would formally give

p(®i, @p) = lim | (B7]S(g) | B)[°. 4

Convention 2 To have compatibility with [12], the coupling constant will ap-
pear inside the n-point functions, i.e. let e := 1 in the adiabatic limit, above,
and keep the letter together with its meaning.

The bare physical interaction, plugged into 77, is the starting point, i.e. n =1,
of the iterative procedure, explained here.

Example 3 For QED, T} = j*A, =e: Pyt A, is the expression which
usually appears in the (formal action-) Lagrangian. The coupling constant e
reappears (linearly), which will make the T}, indicating its power exponent 7,
downstairs.

The method is based on supposing,

Assumption 4 that an inverse of S exists, and that it can analogously be
expressed,

S =1+3 / dy - - / dw Do, an)g(@y) .. g(wn).  (5)

The corresponding n-point functions in its expansion, also called inverse, are
denoted by a tilde.

EGS do not make any primary assumptions for this tilde-operation. That means,
they do not connect the T}, with the T), directly. But giving the inverse a
representation, as it is done in section 5, this will turn out to be crucial for the
algebraization of the explained EGS-method. If one supposes unitarity to hold,
one can get the required connection in the shape of time-reflection symmetry.
However, the latter result is reproducible by applying EGS’ causality procedure

only.



Notation 5 Let N,, := {1,...,n} and let | - | :=card abbreviate the cardinality
of a set. The different arguments =y, = (29, z%,...,z¢) € R of the considered
distributions are abbreviated by its index k € N, the number of the belonging
vertex, if only the combinatorial aspects are important, but not the coordinate
of the point in space-time, e.g.,

T(Ny) = Tin, | (Np) := Ty(z1,. .., 25), where N, :=(z1,...,2,). (6)
By the way, the set-braces indicate the total symmetry of the T}, additionally.

Right from this setup some formal conclusions are drawn, including two ways
of expressing the n-point functions with tildes in terms of the ones without.
The inversion of I — S by a formal series, i.e. S™P =1+ Y 2 (I —S(g))*, and
multiplying out the k-powers leads to

T(N,) = (-1 > T(X1)...T(Xg), (7)
k=1 X;#0,1<i<k
Xlo...L.JXkGPk(Nn)

where P;(Z) denotes the set of partitions of a set Z into k disjointed subsets.
Another formulation, providing an inductive evaluation of the T},’s, is ob-
tained by multiplying out the identity

I = S(9S 'y

> 1
25 S0 D (o Py Py PRy P

n=1ni+nz=n

Tn1 (1131, - '7xn1)Tn2(y17 - '7yn2)g(x1) .- 'g('rTM)g(yl) . 'g(yn2)>a

which is equivalent to
=1 N
0= 5 Y [l [an 0Tt gl ®)
n=l " XUY€EPJ(N,)

PY(Z) denotes the partitions of Z in two sets again. The zero indicates that
empty sets are allowed, this is supposed to hold for other indices than two as
well. And, let

To(0) == 1 =: Tp(0). (9)

Having reached this point of the exposition, Scharf concludes on p. 162 in [12]
two (sets of) formulas. Later on it will become clear, that those constitute the
basis on which the EGS-construction rest upon (Hopf-) algebraically.

Theorem 6 The validity of the equations

Yoo TXTY) =0= >  TX)TY), (10)

XUY ePY(N,) XUYePY(N,)
for all 1 <n €N, is equivalent to those of SS™' =1 = S!S, respectively.

Proof. Starting with I = S!S, one immediately writes down the analog of (8)
providing the right hand side of (10), which was left over to show. O



From (10) two possibilities for the announced induction are read off, keeping
the equations’ side,

—T(N) - Y TXOTY) = TN = —T(N) = S TOTY). (1)
XUY EPy(N,) XUY€ePs(N,)

From the one-point function T3, which represents the interaction (Lagrangian)
of the considered theory, EGS calculate all T,, iteratively, cleverly exploiting
that

Assumption 7 the S-matrix is microcausal. That means, the latter is both,
causal, i.e.

supp(g1) < supp(g2) == S(g1+ g2) =S(92)S(g1), (12)

and anticausal, i.e.

supp(g1) > supp(g2) = S(g1 + g2) = S(91)S(g2), (13)

for any g1, 9> € S(R'*4). The relations, < and >, between the supports of the
test functions g1, g> denote the causal and the anticausal order, respectively.
They are defined for X,Y C R't? by

XY <= XN +c)=0 and

14
XpY <= Xnl¥+c)=0, with (14

elementwise addition and ¢< denoting the (time-like) future cone in Rt i.e.,
<= {(2% a2, ... 2?) e R | /(21)2 + ... (z4)2 < 2°} and ¢ := —c< defin-
ing the past cone.

Both these causal properties allow a special representation for the n-point func-
tions, which actually will be exploited.

Proposition 8 For causally ordered (finite) sets of space-time points, X <Y
(andY > X ), causality (anticausality, resp.) of S is equivalent to both,

T(XUY)=T{Y)T(X) and T(XUY)=T(X)T(Y). (15)

Proof. Take the definitions (and swap the variables X,Y’, resp.) and apply that
O

Lemma 9 the left hand side (sets of ) equations (15) are equivalent to (12) and
the right hand side (sets of) equations (15) are equivalent to (12)’s inversion,
i.e. S(g1+g2)"t = S(g1) *S(g2) ", for X = (zgs1,-..,2n) C supp(g1) and
Y = (21,...,2x) C supp(g2).

Proof. The addenda in the expansions of S(g1 + g2) and S(g2)S(g1), and their
inverses respectively, just correspond via the proposed equations. Therefore



compare

S(g1 + g2) i::%</d$1'"/dann(im,---,xn)
(02@) + (o) .- (o) + 22,))

i()(/dm [t

n=1 k:l

I
WE
:;IH

i %@ﬂmWWWMMHY4M%O and

S(g2)S(g1) = ii M </dm1 /d:chk T1,. .. k)

n%mﬂhmﬂqunmmuwmuﬁnmmum)

and do the same with the constituents of the inverted equation, provided by
Assumption 4. O

The section finishes with the remark that (algebraic) locality is fulfilled under
the assumptions here. The statements follow straight from the definitions and
Proposition 8.

Corollary 10 Microcausality implies local commutativity, i.e.

supp(g1) > supp(g2) = S(g1+ 92) = S(91)S(g2) = S(92)S(91),

for any g1, gs € S(R'T?), whereby (- > -) :< (- > -)A(- < -) denotes the relation
of being space-like separated. Local commutativity, also called locality simply,
can equivalently be expressed by

T(XUY)=T(X)T(Y) = T(Y)T(X) and

. . . - . 16
TXUY)=T(X)TY)=TY)T'(X), for X =Y. (16)
3 The causal induction and the splitting
The aim is to determine T,, from T4,...,T,,_1. Therefore the n-point function

is decomposed in retarded and advanced functions. Those are the basic objects
of EGS’ method.

Definition 11 Let

=R, (1,...,n)
T(N,) =: R(1,...,n) — > T(Y U {n})T(Xf (17)

XUY€eP:(N,_1)



denote the retarded and

— A, (1,...0m)

T(N,) =: A(1,...,n) — > T(X)T(Y U {n}) (18)
XUY€EP>(N,—1))

the advanced function, and call the primed versions auxiliary ones. The latter
are built by Ty,...,T,,_1, i.e. from the induction steps below. The difference of
the two,

D:=R-A=R - A, (19)

is the causal function, and it is referred to all of them as EGS-functions, abbre-
viated by J. In the next theorem it is expressed that the names are properly
given.

The EGS-induction does go straight over N, i.e. over the vertices. Therefore

the functions are defined by including the new vertex x,, after this was done for

"T1,...,&n—1" inductively.

Remark 12 Due to the proposed (total) symmetry, the 7,, do not depend on
chosen iteration sequence. But having always appended the latest x, at last
position, the just defined EGS-functions do, i.e. they are not totally symmetric.

Or, in other words, the induction sensibly depends on the chosen order of ver-
tices. Choosing a permutation of ”1,2,....n”, this results in different EGS-
functions.

Lemma 13 For any decomposition X UY =N,_;, with X NY =0, X £ 0,

YU{n}>X = R.(1,...,n)=-T(Y U{n}) T(X),

YU{n} <X = A (1,....n)=-T(X)T(Y U{nd). (20

Proof. One only needs to apply Proposition 8. However, the statements here
are those of Theorem 1.1 in [12], pp. 165 and they are proved there. O

Denotation 14 The generalization of the time-like future (or past) cone to n
points, built by the Cartesian product and with all the apexes at z € R,
C(z) == x}_; (¢ +{z}) (and C; (z) := x}_, (¢” +{x}), resp.) will be used.

Proposition 15 D has a causal support,
supp Dy, (1,...,n) C Cx(x,) UC, (x,), (21)
if causality is supposed. That is concluded from

supp R(1,...,n) C Cs(zn),

supp A(1,...,n) C C; (z,). (22)

Proof. For an indirect argument assume that the support properties (22) are
not satisfied. Therefore suppose

0 # Xg Csupp R(1,...,n), ie, Xg € Cy(z,), ie. {n} > Xg,
0 #Xa Csupp A(L,...,n), ie., Xa € C; (z,), le. {n} < Xa.



That just reproduces the prerequisites in Lemma 13, for appropriate Yg, Y}y,
ie. YRu{n} > Xrand Y4 U{n} < X4. Write down the definitions and apply
causality of T}, as well as the lemma,

T(YrU{n}) T(Xr), by (15) —T(YrU{n}) T(XRr), by (20)

A
7 N

R(1,...,n) = T,(XgrUYgrU{n}) + R'(1,...,n) =0,
A(L...,n) = Th(XaUYaU{n}) + A'(1,...,n) =0

T(XA)T(YAJ{H}% by (15)  —T(Xa)T(YaU{n}), by (20)

Hence, Xg ¢ supp R(1,...,n) and X4 ¢ supp A(1,...,n), what contradicts
the assumption. O

The induction is based on assuming causality only up to the (n — 1)*" order.

Theorem 16 Without supposing causality of T, but assuming causality for
Ty,...,T,—1, equation (21) does hold for n > 3, i.e., D,, has a causal support.

Proof. This is Theorem 1.4 in [12], proved on pp. 167 there. O

Induction 17 For k < n — 1 one knows how to compute D,, = R] — A} from
the T}, cf. Definition 11. By a so-called causal splitting 6<, or 6>, which
will be defined below, one recovers R, = <D, or A, = 0~ D, resp., from
D, = R, — A, using its support property (22). And therefore,

T, =6<D, - R, =6>D, — A’ . (23)

To “continue” the induction at the n'™ order, the T,, obtained that way, still
has to satisfy causality. Proof. Assume XpU X4 = N, and Xz < X4. Then
either n € Xy, i.e. Xg € C5(xy), ie R, =0, 1e. T, = —R!, orn € Xg, ie.
Xa € C;(xy), ie A, =0, i.e. T, = —A],. And hence, Lemma 13 proves the
claim in both of the cases, T,(N,) =T(X4) T(XR). O
Note that, due to the theorem, the induction only works, if

Assumption 18 D,, has a causal support for n = 1,2 as well.
Example 19 For QED, that is shown to be fulfilled in [12].

Remark 20 Note that, in addition to the splitting, the induction only requires
addition and single products.

Assumption 21 Having in mind to model a “Lagrangian theory”, cf. Example
3, the general form of bare interaction is supposed to be

# s*
Ti(z) =Y [I : [[ (@) : ti(z) €i’R, forz e R'F, (24)
q s=1 r=1

and “:-:” denoting the normal order.
t! is an essentially real function (in C®°(R'*¢), say), i.e. p € N, thus either
equal to its own real or imaginary part, which contains the coupling constant.



r is the running number for the occurrence of a particle ¢, of some sort s.
All together there are # different sorts of particles, and s# denotes the number
of a certain sort.

The product symbols, together with the variables, encode a certain order for
the multiplication of the particle fields, which is non-commutative in general.
However, to describe quantum particles one needs to introduce spin, i.e. a
certain geometrical structure.

It is assumed that one can, with the help of Wick’s theorem, cf. p. 184 in
[12], write the EGS-functions .J,, at the n'" order in the form of (24), i.e.

# s#
TnMNa) =" ] : I 6 (&sr)  G2(Na),  with an
q s=1 r=1
25
) (25)
injective & : Ny x N, = N,, Zs# =n,
s=1

for different (running) variables, and where the j% represent the scalar parts of
Jn- The map & assigns coordinates to the particle fields. That is, using the
Assumption 24 below, just the content of EG’s Theorem 0 in [7], pp. 229.

Therefore one can do analysis with the numerical interaction of the particles
only, i.e. with the scalar functions j, i.e. distributions, which come into the
game via Wick’s theorem, because of the propagators representing the (anti-)
commutator relations.

To consider singularities will be necessary. Not that much, as it is empha-
sized on p. 177 in [12], because of the splitting only, which can not be realized
by a multiplication with a C*°-function cutting out the required support, but by
a step-function, living in D’. But also, due to the fact that the propagators, i.e.
essentially jo, are singular for two equal arguments in general. Together with
the next Assumption 24, supposing translation invariance, those propagators
can therefore be represented by distributions with singular point-support. And
usually products of distributions require renormalization.

Example 22 QED satisfies that form, cf. p. 161 and p. 170 in [12].

Notation 23 For the analytical part, where the geometrical context does not
play any role, operators are represented by distributions, written in small letters.
In the operator-context, they are written in capital letters, and the order of the
composition gets important.

Anyway, the following restriction makes the presentation more transparent.

Assumption 24 Let S, and thus all the T},, be translation invariant.

Firstly, this implies that the ¢] are (essential real) constants.
Remark 25 In [4], for instance, it is investigated how translation invariance

can be dropped, what thus enables one to work on a curved background. The
therefore necessary equivalent for EG’s Theorem 0 is also given.

10



The assumption is exploited here by using the (resulting) invariance of the
j=t,d,r,a,r", a, at every order n, while performing the space-time translation

(T1,..,Tn) = (T1 — Zpye ooy, Tt — Ty, 0), e
zn(ml —Tny.ey Tp—1 — wn,()l: jn(mla cen 7$n)' (26)
= (]n *5zn)(wla"'7$n)

Convention 26 Hence, at every (single) occurrence one can substitute j, by
the convolution j, * €;,. One will need this substitution for the definition
of the splitting, to sent the singular point-support of the propagators j, to
0 € x%_,RI*4. Therefore it is thought to be performed, even if not indicated
explicitly.

4 Realization of the splitting on distributions

The step-functions which, being multiplied, perform the splitting on the occur-
ring distributions are introduced. They are defined as distributions as well.

Definition 27 For testfunctions f € S(x7_,R*4)
On: [ dxl---/ dxn_l/ dxy, f(x1,...,2,) and
(0,00) xR (0,00) xR R1+d

5n:fH/ d:cl---/ dmn_l/ dxy, f(x1, .-, Tn)
(=00,0) xR (—00,0) xR R1+d

denote distributions which define step functions on xzleHd in an a.e.-sense,
ie.

1 ~ 0
Hn(:cl,...,xn):{’ On(xl,...,xn):{o’ Vkﬁn—1{0<xk’ (28)

(27)

0, zf < 0.
Corollary 28 Obviously,

b+0=1:f+ d:cl/ dxy, f(x1,...,2,) and (29)
R1+d R1+d

0(f) =0(z1,...,x0) (fxi, .. xh)), O(f) =0(z1,...,2) (flai,...,a5)),

where zt = (—2°,...,2%), for z = (2°,...,27%) € R'*<,

To define products of distributions, especially for the splitting in this section,
one needs to recall a well known statement.

Lemma 29 A distribution 7 € D'(RATD™) with point-support, e.g. supp (1) =
{0}, is a tempered distribution, T € S'(RI*TD™) je. it is of finite order,
Ir>0,3¢>0 st |7(f)] <c sup (1+ ||z])7)F )], Vf e SREFD™).

la|<m
ceRI+dn

(31)

11



Call the infimum w, of those m, (fractal) order of 7. Thus, if 6'®) denotes the
(distributive) derivative of the delta distribution w.r.t. the multi-indez a, it can
be represented by

T= Z cad'®, where cq = T(z%h), (32)

lo| <w
for some h € D, with h(z) =1, Vz : ||z|| < 1.

Proof. Cf. section 3, 4 of §8 in [15], pp. 111, even if the (fractal) order has to
be in N. But that bit of generalization, here, only changes the “O(1/k)” on p.
113 into “O(k™ /kl"™*1)” what does not do any harm to the required behavior
for k — oo, there. O

Note, (31) is the characterization of 7 € S'(x%_,RU+D) which is due to
Schwartz. It also holds for a 7 restricted to any regular subset. The lemma
is used here in the following way.

Proposition 30 A distribution 7 € S'(RATD™) with singular support only at
the origin, i.e. sing supp(r) C {0} C RI+D" s represented by

T = T|R(1+d)n\{0} + Z caé(“),

lo| <w

7, on RU+dn\ H

(33)
with T|R(1+d)n\H = {0

being a density.
elsewhere, g y

Proof. Apply Lemma 29 on the difference 7 — 7|ga+a)n\ 03 € S'(RAFTD7)  which
has a point-support at the origin, in the worst case. O

The (fractal) order w corresponds to the scaling degree sd, defined in [4], on pp.
21. It is just equivalent to the so-called degree of singularity (divergence) w.r.t.
the origin in RO

wp = sd — # of (multi-)dimensions, (34)
where, as usual, “multi” refers to the multiple arguments.

Remark 31 A physicist might call (34) power counting, even if it is not spec-
ified for a certain theory, i.e. graph structure. Things are presenting more
generally here. Note that the EGS-procedure covers nonrenormalizable theories
as well.

Proposition 32 If renormalization is required for a 7 € S'(RMD) je. if
w(t) >0, and sing supp(r) = {0},

w(T) = wp(7), if sd(7) > dimensions = (1 4+ d)n, here. (35)

Proof. Changing variables, i.e. introducing a scaling parameter, A > 0, in (31),
this leads to

IT(FA)| <e sup (L4 [Jal)T|AT O N )]

la|<m
seR(I+dn

12



Thus, w is just the infimum for all the 7 satisfying

AR \=(td)n 2 (A1) | 200, ie, sd=w+ (1+dn.

Corollary 33 Hence, in (33) one can substitute w := wy.
Definition 34 One says, the usual renormalization assumption is made, if

wp(T) = wp(7_|R(1+d)n\H), ie. w(r)= wp(ThR(ler)n\H), for H = sing supp(7).
(36)

Definition 35 To satisfy the required support properties (22) one realizes the
causal splitting (23) as a multiplication by 6 and 6, resp.,
(0<d)(z) := 0(x) d(x), to ensure that supp (§<d)C C<,

(0>d)(x) := 0(z) d(z), to ensure that supp (#~d) C C, (37)

which still has to be defined. But therefore the singular support of the d,, could
only be the cone’s apex, i.e.,

sing supp (d,,) C {0}. (38)

This fact dictates the form of the multiplication. Demanding the splittings
to result in the tempered distributions, i.e. in S'(x}_;R'™%), and demanding
their densities to agree with the pointwise multiplication on the non-singular
(supported) points, i.e.

supp (9n(1') dn () — 0, () dn(m)|x;:1R1+d\{0}) c{0},

supp (én(m) dn(z) — én(m) dn(m)|x;:1R1+d\{0}) c {0},

according to Lemma 30, one is forced to set

0n(z) dn(z) 1= O (z) dn($)|><::1R1+d\{0} + Z Ca 5 (z),

lor|<w

(@) dn (@) p_ m1a o} + D Ea 0 (2),

|| <@

(39)

eyl
3
—
8
N
IS
S
—
8
N
Il
eyl

for z € x2_ R, Due to Assumption 21, only the scalar part d of the causal
function D is considered. Therefore the notation is chosen to be the same as, if
the splitting were applied to (whole the) operator.

Remark 36 Try to imagine (39) applied on testfunctions, together with the
representation for the constants, in (33), or Fourier transformed into momentum
space, cf. [12], pp. 177, where this is written out. That certainly reminds one
of the T-operation in the BPHZ-procedure, which performs a Taylor expansion
(around zero in space and momentum, resp.) and picks out the terms up to
order w, cf. [5], on p. 102.

13



So far, only conclusions were drawn, but no real definitions were made. Actually,
one would have to set the singular order w and the constants c,, which in
accordance with the first statement (29) in Corollary 28 should satisfy,

w=0o and ¢4 =—Cq, toensurethat d(z)=60(z)d(z)+0(z)d(z). (40)

But, for the constants, that has to be done by extra physical assumptions, called
normalization conditions. Those can be reasoned on the ground of symmetries
(Ward identities). This will not be discussed here, cf. section 3.6 in [12], pp.
206, but also section 3.7, pp. 213, and section 3.13, pp. 258. However, to have
a unique splitting the constants are assumed to be fixed.

Remark 37 By choosing the ¢, adequately Lorentz invariance of the theory
can be assured. How this is to be done is explained in section 4.5 of [12], pp.
282, in general terms, not for QED only.

The (fractal) order, instead, can be determined from d, just by power counting.
Therefore, as usual, the following renormalization assumption has to be made,

w(8(2) d(@)) = w(0(2) d@)|_ mren g0y )
ie., =w(d) (e.9., = wp(d) ).

Applying the splitting a couple of times, this does not change the degree of
singularity in (39), i.e. the splitting is idempotent.

(41)

Corollary 38 In multiplicative terms, 2d = 6d and 62d = 4d.

This finishes Definition 35.

Remark 39 According to the fact that supp (d) is in a cone (in the time-like
one), and that the neighborhood around the singular point zero is of importance
only, Scharf chooses the concept of the quasiasymptotics, cf. [14]. One says,
that d,(z) € S'(x2_,R1*9) has a quasiasymptotics q(z) € S'(x1_ R*4) at
0=z € x}_;RI*? wr.t. a positive continuous function p, if

lim D7 p(e)d,, (ex) = q(z) in S'(xP_ R7F). (42)

e—0

One exploits the power-counting function p of the quasiasymptotics, which is
regular varying, i.e.

im plre) =r¥, Vr>0, (43)
e—0 p(e)

where w, defines the singular order of the quasiasymptotics. Thus, one is
equipped with an order, w := [w,]. The integer part is in accordance with
the remark in the “Proof” of Proposition 30.

Example 40 In spite of the presentation of the Schwinger model in [2], by (9),

kuk,,) 4m?sgn(k°)O(k* — 4m?)

S B 3
d; (k) = (g;w 2 mk? 1 — a2 2 4m2/k2 )

14



there is not any discrepancy to obtain, between simple powercounting and using
the quasiasymptotics. Applying the powercounting formula (34) for the singu-
lar order (in a symmetric case), noting that there is only a single argument,
according to (26),
power of the reciprocal dimensions of
wp:( ocal ! ):2—2:0,
momentum, kK — oo, in d;, space-time

this rather verifies the agreement with the singular order of the quasiasymp-
totics, w, = 0, there. And the discontinuity, sgn(k°), does not matter either,
not even that it is in the time-like cone.

Remark 41 According to the Assumption 24 an inductively obtained 7}, has
to be translation invariant as well. But this invariance is not destroyed by the
splitting. And, due to the fact that the splitting is unique, total symmetry in
the arguments is provided, cf. Remark 12. Hence, indeed, the Induction 17
works properly with the concretely defined splitting.

Example 42 The method immediately leads to a general expression for the
retarded and advanced function, and Wick’s theorem transforms the non-com-
mutative product into the form (25),

Ré(mmml) = Ty (x1)T1(z2) = A)(w1,22)

s Pa (@)Y te ()« Ay(e) e ¢c(9€2)%d¢d($2) Ay (22)
(@) (@ e () a(@2) < g DF (@1, 22) )

by (21)e(2) 2 Ay (1) Ay (m2) 1 S xg,xl )

:Pa(21)Ya(22) - ZS{SC (»"ﬂlawz)ng(Jr)(ﬂfl;wz))

_ 2 W v
=1e r}/abr}/cd{

}, where the index 0 refers to m = 0, and
i

S (z,y) =

+ .
/ d3pﬁ—me¢“’”*y> =: (i§ + m)D*(=z,y),

(27)3 2F

(44)

where m is the mass and E the energy. Every parenthesized addend corresponds
to a possible Feynman graph, cf. [12], pp. 185 for the full expression.

That, practically, corresponds to defining a graph in the EGS-approach. And,
while calculating a certain graph a lot of products of 7’s within the induction
procedure disappear finally, in the adiabatic limit, cf. [1].

Remark 43 Note, that applying Wick’s theorem implements the (anti-)com-
mutation relations, i.e. the quantum, into the field theory. For the foregoing
Example 42, i.e. for QED, one equips the EGS-scalar-functions by the following
propagators, where all of them have a singularity at the origin

{0 @), 0 ()} = =S (@), (0 @), 08 (v)} = —iSL, ) (y, ),

[AEL*)(m),Afj) (y)] = igHVD(()+) (xz,y), where the (parenthesized) sign

(45)

indicates the usual restriction on the corresponding part of the spectrum. Proper
distributions (already) appear at the second order, especially for loops, when
the propagators have to be multiplied, as in the third addend of (44), above.

15



5 Time-reflection symmetry instead of causality

Some consequences of causality are formulated, which will be crucial for the
exposition. But it is started with some heuristics, whereby it is supposed, that

Assumption 44 the S-matrix, is unitary, i.e., S~' = ST, or T, = T, applied
on ¢; := @i particles and @5 := P¢ particles, ¢ + f = n arbitrarily chosen particles,

(07| Tul 6i) = (67 | T, | 63) = (T | 64), (46)
having defined the formal adjoined 7'} by the right hand side equation, as usual.

Remark 45 For some particle sectors EGS can conclude (physical) unitarity
directly from the causal procedure, cf. section 4.7 in [12].

Definition 46 To exploit the assumption it will be useful to denote time-
reflection, with L¢ on particle fields ¢, i.e. satisfying

(Lop) ()] o [(Loa) () = (il o [5), (47)
where “ 17 denotes the componentwise time-reflection z+ = (—2°,...,2%) on
the belonging configuration space elements x = (z°,...,2%) € R'*¢. Using
ztt =g,

(D @n_pyeeyzn) | Tl oo zn) | di(Ty, . .o 25))
= (Tn(z1,. .., 20) 05 (@n—y,-. ., &n) | Gi(T1,...,2;))
=(¢i(x1,...,x) | Tn(@1, ..., Tn)Pf(@Tn_y,...,Tn))
= ((Log) (@i at) [ Talmr, - swn) [ (Ldi) (@ po o)
=pf(@petyeo oy @p) | LTV (2t . o) L] i@, ... 24)).

To go on here, one needs the scalar instances to be essentially real, i.e. either
being equal to its own real or to its own imaginary part. Therefore one would
have

Tn(:cl, c oy @) = Xifn 1t Tn(mf, .. .,xi)J_, with  xin = +1,-1, (48)

depending on whether having to complex-conjugate +1 or £i, resp. However,
the external field are modeled essentially real. And one actually assumes to
consider (Lagrangian) theories, where the interaction 7T} is an essentially real
scalar, cf. Assumption 21. This implies, that all the T}, and T), are essentially
real. Therefore note, on one hand, that starting with a truly real interaction
T (= —Tl), the n-point functions 7}, and 7T},, obtained with the causal proce-
dure, are real as well. Products, sums, and causal splitting do not do any harm
to reality. And on the other hand,

Lemma 47 consider the EGS-theory where the starting interaction is multiplied
by an arbitrary z € C, i.e. substituted by Ty — zTy. This implies the following
change of the other n-point functions,

T, — z"T, and Ty 2" T, (49)

Proof. Plug the z simply into the coupling g, against Convention 2, and pull it
out again, at the n*" order being in the n*® power, and the job is done. O
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Thus, one can thus chose x;fn := 1, w.lo.g., and

Corollary 48 it was shown so far, that unitarity implies time-refiection sym-
metry, i.e. S™1 =8t = (I71SL)(-1),

Tp(xy,... zn) = L T (21, .. xt) L = (UM, L) (21, ..., o), (50)
and therefore yielding the identity, when the tilde is applied twice,
T, =~0T,=172T,1% (51)

One can conclude, 12 = +1, cf. [12], (4.4.24) on p. 277. Applying Lemma 9
the forgoing characterization can be extended on products of (inverse) n-point
functions T, T, ,

~o (T,Ty) =TT, = NI ()L T ()L = (ST T L)), (52)

Example 49 Considering a graph in QED for instance, with [ internal lines
(=n — f —1, above), then for a double time-reflection it holds, cf. [12] and [1],

(53)

12 +id if [ is even,
] -id  else.

This obviously encodes information about the general structure of the interac-
tion.

Leaving aside unitarity, the time-reflection symmetry can be obtained by only
applying the causal induction.

Proposition 50 If only microcausality is supposed, equation (50) holds.
Proof. This is done on pp. 280 in [12], in general terms, not only for QED.

Assumption 51 Drop both the assumptions, unitarity and causality, and only
suppose to hold time-reflection symmetry, (50) and (52), from now on.

This has to be completed by an extension of the Definition 35 for the (causal)
splitting, (37) and (39),

6<(T!)=6T. and 6>(T.) =0T, (54)
represented as a multiplication of operator T}, here, with 6 and 6 (in the space

of distributions).

This will astonishingly be enough in the end, being applied as follows.
Proposition 52 The multiplication of 8 and 6 with the inverse n-point function
T, provides the connection to Ty,

0T, = (1707, L)(-1)  and 6T, = (1710, L)(-1). (55)
Proof. Exploit Corollary 28,

OT)(x1,. .. 20) = 0(x1,...,2,) (LT, L) (21, .. zh)

. o) T (2, x) L
= (70T, L)(xf,. .., zh),

’Yn

and analog for 6. O



6 Towards an algebra of distributions

In accordance with Assumption 21 the product for the involved distributions be-
ing obtained by EGS’ construction, cf. Induction 17, will (actually) be defined.
That does supplementary give a proper meaning to any formal usage before.

Definition 53 The (operator) product T} T is represented by the direct prod-
uct, i.e. the composition

(tntm) (F) =t (tn (), for f e S(xfL R, (56)

of the distributions ¢/, € S'(x2_,R'*?) and ¢!, € S'(x™/R'*4), which is well-
defined in &'(xPL"R*4), of. §8.5 in [15]. This product is associative and
commutative. But the latter property does by no means imply, that the operator
product is commutative.

Example 54 For delta-distributions the direct product yields,

(0 (@)8P () (f(,y)) = 6 (f7(2,0))) = f217(0,0) = 6°F (2, y) f(x,y),
ie., 5§ = o8 with adequate multi-indices a, 3.
(57)

It is started to investigate products of distributions, whose form is given in
Proposition 32.

Lemma 55 The degree of singularity of the direct product of the distributions
is just the sum of the factors’ degree of singularity,

wp(t't") = wp(t') + wy (). (58)

Proof. A rather implicit version of it is done by citing the additivity of the
scaling degree, sd(t' t") = sd(¢') + sd(¢"), c¢f. Lemma 5.1(b) in [4], p. 22, and
recalling the additivity of the dimension, (1 +d)(n+m) = (1 +d)n+ (1 +d)m,
remembering the definition in Proposition 32.

The explicit estimations for the proof are written down in the case, that
t' and t" have its singular support at the origin, i.e. sing supp (¢') = {0} and
sing supp (t”) = {0}. Then, using the characterization (31) of Schwartz, 0 <
wp(t') = infuw', s.t.

@< sup (L[N ()@, and further,
o |<w’
zlleR‘(T+d)n

0 <wp(t") =infw”, s.t.

] 7 a'+
< 22"+ (14T’ [+l2"]])

H' @ () <" sup (L4 2D (L [l D@, 2",
|O/‘§u)l7 z/€R(1+d)n
‘a”lsw”v .Z‘”ER(Ier)m

for any f € S(xPE"RA+), This results in w(t' ") = w(t') + w(t"). O
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Lemma 56 The direct product t't" € S'(x[T"R7F4) of t' € S'(RI+D™) and
t" € S"(RUFTD™) with sing supp (t') = {0} and sing supp (t") = {0}, has the
following form,

) @,9) = @ W grppean + D )6 (@y)  (59)
la|Swp(t)+wp ()

+ 3 )5 @) (W) mira o)

a|<wp (t
e n ] (a) (60)
+ Z ca(t") (t'(2)]xn_ m1tayjoy) 0V (y),
la| <wp (t")
Ca(t't) = D car(t)ean(t"), (61)
o' +ao' =a
lo'|<w(t')
la” |[<w(t")

denoted as being applied on testfunctions f: x;T"R*F4 3 (z,y) = f(z,y) € S
and with H = {0} x RI+Im L RU+dn 5 fo}

Proof. Use t' and t" in the form written out in (33), and straightforwardly do
the multiplication by applying Example 54. O

Those products have to be built by the EGS-procedure, e.g. the auxiliary EGS-
distributions 7/, a’, cf. Definition 11. But they do not have a singular point
support any more.

From the foregoing Lemma 56 one concludes the general form of products
here, called special, obtained by multiplying distributions, starting from those
with singular point support. The latter are characterized in Proposition 32, and
they do enter the EGS-induction with Wick’s theorem at the second order cf.
Example 42 and Remark 43, actually, when loops do appear in the Feynman
graphs. Apply Convention 26 now.

Corollary 57 The distribution #, € S'(x?_,R'™¢), in the case of n arguments,
is supposed to be such a product of special form. Then

AR SEND UL L EID VIR NCALL I
XUY=N, |a|<wp(t},) lee|Swp(t7,)
XY\ {n}#0
with t')‘g‘ depending on the multi-index a and being a function with |X| argu-
ments, characterized by the special combination X of arguments, where the
latter are, according to Notation 5, abbreviated by X as well. Note, that ¢ ¢ is
build by the same factors, i.e. functions with a lower number of arguments, as
t{n|><2:1R1+d\H;+d is made of,

t s a factor of t,ln|><Z:1R1+d\Hi+d, where tJ(HP) =0.  (63)

Analog to the constants ¢, in Lemma 56, t,¢ is specified for ¢/, = 't with
n = [+ m, and a reasonable usage of notation,

Ia L //al/ " ///a//l "
)= 3 e e (e, (64)
1"" " 1" "
X U)Ig =X a”—i-a =a
IX71<UT o |<w(t”)
|XIII|§m |all/|§w(tlll)
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According to the Convention 26,

sing supp(t)) C HFd .= {(z1,...,2,_1,0) € x7_, R |3k < n,z;, = 0}.
(65)

Even if the singular support is not any more the origin, what is exploited by the
causal splitting in the original EGS-induction, the degree of singularity is still
determined by t’n|xg Ri+aypyi+a alone.

=1 n

Lemma 58 The renormalization assumption (41) does survive the operation of
direct multiplication of distributions in special form, i.e.

wp(tln) = wp(t;1|xg=1R1+d\H;+d): (66)
if that property holds for any factor constituting t,.

Proof. Therefore one only has to show the property to hold for a single product

t,, =t/ tI, say. Apply (58) of Lemma 55 twice, i.e. for t), and (t{n|xz=1R1+d\Hi+d),

) + ( III)

|>< 1R1+d\H1+d) + wp(t;'{ xm R1+d\H1+d) = wP(t;l|><::1R1+d\H}fd)'
O

‘Up(tln): (ti'
= wy(ty'

The special form (62) is stable under addition, the analog to Lemma 55 is given.

Corollary 59 For ¢/, tI! € S'(x%_;R**?) in special form (62), the degree of

n» ’n
singularity after addition can be expressed by

wp(ty, + t,) = max{wy(t;,), wp(ty) }, (67)
where the functions t')? and the constants ¢, do simply add, i.e.
(#' +1")% =62 +1x% calty + 1) = calth) + calty)- (68)
The splitting also does not change the special form.

Corollary 60 Multiplying ¢, in special form, with § and é, then in accordance
with (66), this yields

Onty, = Onthl,n wivayurra + > S Ot + 3 ealt)d ),

XUY=N, |a|<wp(t,) lo|<ws(t,)
XY \{n}#0
éntln = éntHXZ:lRl‘*'d\H}fd + Z Z é‘X| tl)? 6@ 4 Z (~2a(t;1)(5(a)
XUY=N, |a|<wp(t,) lo|<ws(t,)
X, Y\{n}#0

(69)

Applying the renormalization assumption (41), @p(t),) = wp(t),) is already im-
plemented. The other part of (40) still requires

Ca(ty) = —calty), (70)

where, again, this constants have been chosen in accordance with adequate
normalization conditions based on some extra physical ground.
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Remark 61 The relation (61) between those constants does not restrict the
normalization conditions. However, there are new constants appearing at every
order, coming from the propagators which are introduced by applying Wick’s
theorem, reproducing the form (25).

One recognizes the splitting to be idempotent again, cf. Corollary 38, and
furthermore,

Corollary 62 for t/, € x?_ R'™ and ¢/, € xR in special form (62),
Ontmtnte, = Opth Optir . (71)

But the analog equation, for §, does not hold. According to (70), there is the
following discrepancy between (61) and the version with the tilde,

Ca(t't") = —ca(t't") == Y car(tean(t’) == Y Ear(t)ear(t"). (72)

Oé’JrOt”:Oé Oé’+0(”:0(
lo|<w(t') lo'[<w(t')
[ |<w(t”) [ |<w(t")
Hence,
Onsmtyti, = Ot Ot + > 2c(t)th)60). (73)

lee|Swp(t15,)

Remark 63 One observes that the degree of singularity does not depend on
any splitting which has been performed to build #/,. The the degree of singularity
is obtained additively from the distributions regular part, i.e. where the origin
is excluded from the domain. In other words, 8 and 8 do not multiply with (%)
within the inductive procedure. One does only multiply the latter ones, the
deltas.

Proposition 64 The (direct) multiplication of the distribution in special form
(62) and the addition satisfy the following distributivity law,

Hotl 1 = (8}, + 1)1 (74)

- n 1+d " m 1+d
fort, t, € xp_ R and t € X RT,

Proof. Using the special form (64) and applying Lemma 55 and Corollary 59,
the problem is easily reduced to the associativity of numbers and functions,
which do multiply pointwise. To check the constants c,, use (61),

caltntm) +caltntn) = D cat)ean(tn)+ D canltn)cam (ty)
ﬁl + alll =« ﬁl! + alll =«
18] < w(ts) 8] < w(t)
o] < wld) o] < wld)
= > el tcan(ty) = cal(th +in)tn),
ﬂ + a”’ =«
18] < max{w(t,). w(t)}
o | < w(t2)
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and to check the functions ¢, use (64),
(tltlll)gy( + (tlltlll)%

D S SR G L S R S

YUX/”:X 6/+a//1:a YUXI”:X Bll+a//1:a
Visn g |<w(t,) [Y|<n 5" |<w()
|X///|Sm \a'”\<w(t'”) \X”/\Sm |o/”|<w(t”’)
13! "o s a
= mnr =
ty +t7 )t t+ "),
Sn g <max{w(t,)w(t,)}
[ X" <m la""|<w(t!")
having dropped the arguments, for a better reading.
’ O

Induction 65 The general form of all the distributions which have to be calcu-
lated within the EGS-procedure, i.e. by addition, multiplication and splitting,
cf. Definition 11, Induction 17, is represented by the special form (62). And it
is shown so far, that those distributions constitute an (commutative) algebra.

Remark 66 This algebra is not a differential algebra, therefore the no-go the-
orem of Schwartz, cf. [13], is not violated.

7 Identification of a Hopf algebra

There is an algebra to extract, which describes the operations with the n-point
functions T,, of the previous sections.

Definition 67 Let 7 := {X = Tix|(X)|X € F(N)} be the set of all map-
ping of symbols 7|x| on finite subsets of N, i.e. F(N) := {X|X C N finite},
representing the physical operator-valued distributions, possessing only a finite
number of arguments. Caution, the index at the T’s might be suppressed some-
times.

The multiplication is the composition of the operator-valued distributions, which
in general is non-commutative. The concrete form is encoded by the (geometry
of the) considered theory, i.e. by T} finally, cf. Example 3. But remember As-
sumption 21. The foregoing section does provide the realization of the product
in the space of distributions, one has to consider. Through whole this section
and without having it mentioned any further one applies that those distribu-
tions, of special form, constitute an algebra.

Definition 68 Based on the operator-composition, one inductively defines the
space of formal products II7T of elements in T,

T > m(Ty @ Tly )(XUY) := T'(X)T"(Y),

firstly with elements 7", 7" € T, and secondly with elements 7", 7" in both,
T and IIT7. The second ones are, due to their construction, indexed by the
cardinality of its set of arguments as well, which does simply add.

Expressed differently, it was just defined a multiplication m on IIT, i.e.

m: AT @ UT = 0T, Tl @ Ty = Tix Ty = m(Tx), Tjy)-
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Remark 69 Consider the multiplication as being abstractly given now, en-
riched with some geometry. And note again, thinking in the abstraction of
Assumption 21, i.e. on the level of distributions, and remembering Definition
53, i.e. the multiplication to correspond with the direct product of distributions,
the arguments of the factors have to be disjoint. This setting is reasonable from
a physical point of view as well, because it excludes tadpoles.

Lemma 70 m is associative, and E := To(()) serves to be a unit.

Proof. Associativity can be concluded from the corresponding property of the
operator-composition, i.e. by dropping brackets between the 7"s,

m(m(T @ T8) @ 1)) (X UY U Z) = T2 T (V)TP (x)

= m(T(l)

S emTy eTZ))(Xuy uz),

Y] 12|

for T*) € TIT and nonempty (and disjoint) X,Y,Z € F(N). If only one of
X,Y, Z were empty, there would not be any associativity to show.

Use the setting, To() = 1, of (9) in the more general way introduced below?,
of. (75),

m(T(X)®E) =T(X)=m(E®T(X)), VX e F(N),
this proves E to be a unit. O

Using associativity, Lemma 9 and the left hand side equations of (15) can
naturally be extended to II7. An arbitrary element 7' = [[; Tx, € IIT of
noncommutative factors Tjx,| € 7 corresponds to S(3_; g;) = [[;S(g:) with
X; C supp(g;) for all i (in the required finite set). The index at 7", i.e. the
number of its arguments, is ;| X;|. This will be denoted by T" € II'Ts~ | x,|-

Definition 71 Let II7, := {7, € IIT } denote the subset of IIT with elements
having the same number n € N of arguments, this introduces a N-graduation
on II7. Define the following addition on it,

(T, + T,))(X) := T, (X) + T,/(X).

With this Abelian addition on the projections of the Cartesian product x5 (117,
one has just defined an Abelian addition on the direct sum

H = @;z.ozonﬁla

denoted by @. Equipping H with the usual (two sided) multiplication of complex
scalars, which identifies

COHZH=H®C (75)

by the isomorphisms 1 ® T +— T and T ® 1 — T, that defines H to be a vector
space on C.

Remark 72 Even if not mentioned any further, the definitions (and proofs),
formulated for elements of an arbitrary IT7;, only, are (can be, resp.) understood
as naturally extended to the whole vector space ‘H by linear continuation.

IThere is no circle, logic-freaks simply do the unit afterwards.
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Definition 73 Use the associativity of the multiplication by letting

7@

(15 e TR) 1Y) = TR IS & TH 1Y)

X| X1 )7z T WX 2 IWI=IX|7 2]

for T(*) € IIT and W, X,Z € F(N). This ensures the distributivity of #, cf.
Proposition 64.

All the presented structure is summarized in,

Proposition 74 (H,m, E) is a unital algebra, with the unity map n: C — H,
z—n(z):=zE.
Proof. To get the unity map 75, apply its defining equation,

m(n®id) =id = m(id ® n), (76)

respectively on z ® F and E ® z, for any z € C, and use (75). O

Remark 75 At this stage Corollary 62 can be restated in the operator notation,
i.e. in capital letters (and caring about the order of those) and with a tiny
little change. For T, ,T) € H the splitting on its product yields the following
(regularized) multiplication rules

OT.T" = 6T, 0T", (77)

g1" 61" + Y 5<a>> E, (78)
|| <wp (T3,131)

T T
with ¢, representing the constants which are fixed by normalization conditions.
Recalling the splitting of Induction 17 in the current language,

T, =0(R,, — A) — R, = —0A], — R}, (79)

one observes the occurrence of renormalizing delta-polynomials to be necessary,
cf. Remark 36.

To discover the promised Hopf algebra, finally, some notations have to be intro-
duced, and some coalgebraic as well as some bialgebraic properties have to be
revealed, at first.

Definition 76 Let A : H — H ® H be a linear map, given on T, by

AT(Z):= Y TX)@T(), foranyZe F(N), (80)
XUY€eP)(Z)

and for any T' = [[; Tz, € 1Ty, |z,| defined by AT" := [[; AT|z,-
Let € : H — C be the linear map, given on T, by

1, if X =0,

for any X € F(N), (81)
0, else,

ie., e(zE) := z, for z € C, and therefore being well-defined on #.
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Example 77 Note that, A(zT" @ T") = zAT' & AT", for z € C, according to
Remark 72.

Let 0 : T"®@T" — T" @ T' denote the flip operator. And one immediately gets
from the definition that

Corollary 78 A is cocommutative, i.e. 0o A = A.

Proposition 79 The vector space H, together with the coproduct A and counit
€, constitutes a cocommutative coalgebra, i.e. /\ is coassociative,

(A®id)o A= (id® A)o A, (82)
and the following counit properly holds,
(e®id)oA=1id=(id®e)o A. (83)

Proof. One checks, having T\IV| =[I;Tjv;) € IIT, and V := U;V},

(id® D)o AT'(V) = (id® A) o (H AT(V,-))

=11 ( Y TX)e AT(W))

i NXUWEPY(V:)

=H< oo TX)e > T(Y)®T(Z)>

i N XUWePY(Vi) YUZeP)(W)

H( > T(X)®T(Y) ®T(Z)>
i XUYUZeP(V;)

= ... =(A®id)o AT'(V), and

(idoe) o AT'(V)=]] ( > TWX) ®5(T(Y))> =[[ (@) ®1)

i NXUYEPQ(Vi) i
- W)
= ... =(e®id) o AT(V), for any V' € F(N).
O

Proposition 80 #, already proved to be an algebra and a coalgebra, is also a
bialgebra, i.e. further it holds, for T',T" € H,

ANT'T"y = A(THYN(T"), NE)=E®E,
e(T'T") = e(T")e(T"), e(E) =1.
Proof. Use E = T(()), then the second equation in the second line was given by

the definition already, and the equation above follows from the first one. The
latter (i.e. the 1st one in the 1st line) is obtained by the following calculation,
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i.e., for T‘U| [ T\v.» T\I)I(I =[I;T\x, € Ty, and disjoint U;, X; € F(N),

(AT AT ) VU X) = G]Aﬂm)WKHAUkMNM
J
( ﬂV®TWO@U< > Ty®ﬂz>ﬂw
ij S VOWePY(Uy) YUZEPY(X;)

Y @vTy)(VUY) @ (TiwT)z)(W U Z))

VuWeP (Us) YUZ€EPY(X;)

/\

( (T Ty )(V UY) @ (T Tz (W U Z))
(VUY) U(WUZ)GPO(UluX )

= HA Tw, Tyx;) (Ui U X;) = ATy Ty )(U U X).

]
The equation, left over to prove, reduces to e(T'T") = 0 = ¢(T")e(T"), for
T £E#T". O
Definition 81 Let S : H — H be a linear map, given by
S{T):=T, forTeT, (84)
and defined for T‘Z| [1;T\x, € IIT,, by an extension of (10) and (52), i.e
I( ¥ rosom)=o=I[( ¥ somrm). o)
i SXUYEPY(Z:) i NXUYeP(Z:)

using the defining equation (84) already. Hence, all the brackets have to vanish.
Thus, S(T") can be expressed iteratively, by either

[I(-Tz)- > TX)SOE))=5T)2) o
i XUY€EP:(Z;) J
nS@@) (36)
I1( > sm)T)),
@ XUY€EP(Z;)

—S(T)(2:)

having applied the inverse order of the product, denoted by a “~” upstairs. Re-
member (11). One can recognize the two definitions to be equivalent. Therefore
watch the expressions at the braces, they follow (85).

The inverted multiplication-order ensures, that

Proposition 82 S is an anti-homomorphism, with S(E) = E.

Proof. In accordance with Lemma 70 and setting (9), S(E) = S(T'(0)) = E. It
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is still necessary to show, that the property of being an anti-homomorphism is
fulfilled for 7' € 7. But this follows from Lemma 9 by recognizing

S(rY)T(X)) =ST(XVUY)) =TXVY)=TX)T{Y) = S(T(X))S(T(Y)),

with the help of (15), and using the notation there. O

Another property, which, due to cocommutativity, would follow after the next
theorem in the formal context (of Hopf algebras) anyway, is

Proposition 83 S? = id.

Proof. But it offers the opportunity to emphasize, that it is only based on
S2T =T in T,ie. (51), ~2 oT = T, cf. Corollary 48. Use this fact after
having applied S on both sides of the equations (86). On the way, remember
the fulfilled properties, anti-homomorphism and linearity. Take advantage of
(85) (analogously, i.e. at the braces), the two equations (86) turn into

[[7(2)=1'2) = $*@)(2) and $HT)(2) =T'(2) = [[T(2.

O

Theorem 84 The bialgebra H is a Hopf algebra, and S defines the antipode,
i.€.

mo(id®S)oA=noe=mo(S®id) oA. (87)
Proof. First of all, check that noe : II7, — II7, is determined by

E, ifX=0

88
0, else. (88)

(noe)T'(X) = {

Hence, there are two cases to consider. The first one, X = (), reproduces (87),
(d®S)A(E)=E®S(E)=E®E=SE)®E=(S®id)A(E).
The other case requires
mo (id®S)o AT'(Z) =0=mo (S®id) o AT'(Z) (89)

to be fulfilled, for T, = [[,; T|x,| € 117, and Z € F(N), as always. But those,
m0H< > T(X) ®S(T)(Y)> =0 and

i N XUYePY(Zi)
0=mo[[ ( > S(IX) ®T(Y)>,
i N XUYePY(Z)
are just the defining equations (85) of .S, when the multiplication m has been

applied to each factor and to each addend, afterwards. O
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8 The solution and its connection with BPHZ

The following decomposition of the coalgebraic expressions of the left and right
hand side of (89) illuminates again what EGS’ procedure is based on.

Definition 85 Writing out the left and the right hand side of the antipode
condition, surprisingly, one can identify analog coalgebraic expressions for the
advanced and retarded functions, being underlined,

(id ® S) 0 AT, (N,)
—E, (N.)

~

= TNDEE + Y Tga(XU{n}) e STy (Y)

Y40
XUY€EPI(N,_1)

-~ (90)
=, (N,)
=R (Ny)
+ Y Tx(X) ® STy41(Y U{n}) + E® ST,(N,),
X A0
XUY€EP)(Np—1)
and for the flipped version,
(S ®id) o AT, (N,)
=A,(Na)
= E®T,(N.) + > STy (V) @ Tix 11 (X U {n})
Y;S(D
XUY€eP)(N, _
X 2 ( 1) . . (91)

=:4;, (N)
=4, (Nn)

A
s ~N

+ Z STiy|+1(Y U{n}) @ Tix|(X) + STh(N,) ® E,

X#£0
XUY€EPI(N,_1)

where D, := R] — A, is the analog of the causal function. Call those EGS-
functions generalized.

Remark 86 Applying the multiplication one recovers the EGS-functions.
Jr=moJy, and hence S(J;)=moooS(J,), (92)

where S := S ® S and “x” serves as a joker for a certain number (including
zero) of primes.

Having put that at the beginning, a couple consequences can be stated.

Corollary 87 From the decompositions (90) and (91) one reads off,

A =0oR". (93)
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Therefore the following (redundantly listed) properties hold,

SR, = A, = ooR;, = 00854,

(94)
SR, = A, = ooR, = ocoSA/,

from which one can read off S2 = id :=id®id and 00 S = So 0. Applying the
multiplication m, one recovers S? = id and
S(Ry) =Ry, A, =S5(4y),

95
SR =R, A, = S(A"). (95)

And again, straight from the definitions,
D,=R,—-A,+E®T,-T,®E, ie. D,=moD,=R,—A4,, (96)

and one, indeed, reproduces EGS’ definition for the causal function with the
underlined version.
Rewriting the Hopf algebra property (89) this results in

Ry, + S(R,) =0= A4, + S(4,), (97)
i.e. for non-empty primed EGS-functions J},
0=T,+J,+S(J; +T,). (98)

The EGS-induction obviously solves the latter equation (98) for T),. Before this
is alternatively done here, the time-reflection has to be formulated algebraically.
Therefore the characterization of time-reflection symmetry in Corollary 48 is
applied.

Lemma 88 Let J;: denote all EGS-functions again, then
(L) () =mo ST = S(mogo ). (99)

Proof. Check this addendwise, with the help of (52), applying the inverted
sequence of equations. Note, that

Il moJ)L=mo (L J:1), where L:=1® 1. (100)

And then, apply (50) on each factor of the tensorproduct. Using (51), this leads
to

L' =8

— T

L (101)
and thus the left hand side equation is shown. And, the right hand side equation
is just the right hand side of (92). O

Remark 89 Hence, in the EGS-approach, the antipode of the Hopf algebra
corresponds to time-reflections. Therefore, obviously, the Hopf algebra of EGS
takes care of the proper time direction during the renormalization procedure.
The latter is of course hidden by the proper construction of the multiplication
for the occurring distributions.
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And one will need the following argument.

Lemma 90 For F,,,G, € H, with n arguments and singular support in H. T4,
0=F,+((1*'G,L)(-H) implies (102)
0F, =0=0G, and OF,=0=0G, on xp_, R\ H*4  (103)
Proof. Multiply the premise (102) with 6 and afterwards with 6,
0=0F, + (170G, 1)(-*) and 0=40F, + (170G, L)(-1),

to obtain the two conclusions, by considering the disjoint domains. O

Proposition 91 The n-point function T, can inductively be obtained by the
following two solutions of (98) on x7_, R\ Hl+d
T, = —6R!, —0A’,, (= 6D,—R,= 6D,—A.) (104)
T, = —6R! —0A'. (=—-6D,— A =—6D,—R) (105)
Proof. Write down the condition for the antipode (98) with the help of Lemma
88 and with (94) and (95), i.e., for J := R},
0="T,+ R}, + (L (A, + T,)L)( ). (106)
Applying the foregoing Lemma 90 now, this leads to
0T, +0R,, = 0=0A, +60T, and 6T,+0R,=0=0A, +6T,. (107

The left hand side equations yield (105), after addition, and the right hand side
equations do yield (104).

Check, that another choice, J := Al R!" A" does produce the same solu-
tions, but no further ones. O

The right hand side equations, straightforwardly obtained by the definition of
D,,, are written down to compare the result with the EGS-induction. The first
equation just agrees with EGS’ result, but the second one constitutes an extra
solution.

Corollary 92 Subtracting the equation (104) from (105), this implies that the
causal function D,, vanishes on x7_, RI*d\ Hl+d,

Example 93 Thus, Dy(z,0) = 0, for all = ¢ {0} = HY™* ¢ R'*?. Note, D, is
not the Jordan-Pauli function defined in section 2.3 of [12].

Theorem 94 Supposing the renormalization assumption (36), the n-point func-
tion T, is (inductively) determined on whole the x}?_ R4 by

1
T, = —5(Ry + 4,), (108)
applying the direct multiplication for all the involved distributions.

Proof. Adding the two equations (104) and (105) of the last Proposition 91,
one obtains —(R], + A!,)/2, for x?_ R4\ Hl+4 This result does not contain
any multiplication with @ or 8. Therefore it can straightforwardly be extended
to xzleHd by applying the direct multiplication under the renormalization
assumption, as explained in section 6, for all the occurring distributions. O
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With the help of Kreimer’s achievements, one can establish a connection to
BPHZ’s approach, where the renormalization procedure is organized by so-called
counterterms. Kreimer has shown in [10] that the latter are representable by
the antipode of a Hopf algebra.

Identification 95 The n-point function 7), is assumed to correspond to the
full n-vertex graph I';, := N,,, which is the sum of all graphs of lower order in
the considered theory. To ensure generality, the forest F(I',,), i.e. the set of all
subgraphs v C I',, is taken to be the power set of all the n vertices,

F(Ty) =={y|y<CN,}, with the reduced graph TI',,/v:=T,\vy. (109)

However, on p. 16 in [6], vertices, internal lines I, and loops L = I —n+ 1, each
of them is considered as a natural grading.

According to strictly proceeding with distributions and applying the renor-
malization assumption, one chooses the trivial renormalization map, R = id.
Hence, cf. [10], the characterization for the antipode yields exactly zero,

0 = m((S ®id)A[L]] = R(TW) + C(T,), (110)
and, cf. p. 29 in [6], one obtains the correct value R(I'),) for I'y, by
R(Ly) =U(Ly) + C(Ty), (111)

where U(T',,) is the so-called unrenormalized value of the graph I',,. Continuing
with [6], especially with their notation, which agrees with the one in Collins’
textbook [5], the R operation of BPH is represented by

R(I,) =UT)+ Y, COUT\7). (112)
0#yCly
C(v) denotes the counterterm belonging to <y, which is represented by the an-
tipode S in Kreimer’s Hopf algebra.

Corollary 96 Using the above identifications, the recursive version (111) of
BPH(Z)’s forest formula yields a version of (BPH)Z’s explicit one,

R(Tn)=— Y CHUTL\7). (113)
0#yCly

Writing down the solution (108) for EGS, again, only in terms of the n-point
functions,

1 1

L) =-3 Y TGUmNST -1 ¥ STO)TE U {n)).
- #0 v#£0
YUy €P;(Np—1) YUy €PF(Nn—1)

(114)

this turns out to be a straightforward (non-commutative) generalization with
the obvious structural identifications,

Tn(No) = R(I'n), Tipj1(Y' U{n}) =U(' U{n}), ST}y (7) =C(v). (115)

Therefore, the time-reflections in the EGS-approach, with their special imple-
mentation by Corollary 48, are the substitutions for the counterterms in the
BPHZ-approach.
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9 Conclusions

Locality (the algebraic one, provided by microcausality) is implemented in the
EGS-method of perturbative QFT. Their induction is found to be writable in
the form of BPHZ’s forest formulas, and hence, the EGS-procedure reappears in
the framework of BPHZ’s renormalization. This is (formally) done for a general
graph with the finest subgraph structure, using the vertices for the grading (and
one will, therefore, still have to take a closer look at this).

However, that implies (perturbative) locality, which affirms the production of
the required counterterms in the Lagrangian, using the perturbative renormal-
ization method. Therefore causality is substituted by time-reflection symmetry,
which realizes an inversion of the S-matrix. This is different from the original
treatment, but turns out to be crucial for the algebraization. The belonging
time-reflections correspond to the counterterms in a BPHZ-setting. Both in-
stances are mathematically modeled by the antipode of a Hopf algebra.

Constructing a Hopf algebra for the EGS-procedure, this requires a different
analysis compared to the original version. The structure of singularities, one
has to take care of, is more complicated. Hence, it is not enough to consider
distributions with a singular point support only.

Using the EGS-model, the physical role of the counterterms (of the corre-
sponding BPHZ-formulation) is cleared up. They simply arrange the correct
time-direction through whole the perturbation procedure. One might conjec-
ture, that also generally, the counterterms allow the implementation of a time
ordering, rather than, that they poorly solve the renormalization problem, what
naturally appears when distributions are multiplied.
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