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Abstract

Di�erent versions for de�ning Ashtekar�s generalized connections are investigated

depending on the chosen smoothness category for the paths and graphs � the label set

for the projective limit� Our de�nition covers the analytic case as well as the case of

webs�

Then the orbit types of the generalized connections are determined for compact

structure groups� The stabilizer of a connection is homeomorphic to the holonomy

centralizer� i�e� the centralizer of its holonomy group� and the homeomorphism class
of the gauge orbit is completely determined by the holonomy centralizer� Furthermore�

the stabilizers of two connections are conjugate in the gauge group if and only if their

holonomy centralizers are conjugate in the structure group� Finally� the gauge orbit

type of a connection is de�ned to be the conjugacy class of its holonomy centralizer

equivalently to the standard de�nition via stabilizers�
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� Introduction

For a few decades the quantization of Yang�Mills theories has been investigated extensively�
One of the most important approaches uses functional integration� Here one quantizes a
classical theory by introducing an appropriate measure on its con�guration space� In gauge
theories this space is given by A�G� Here� originally� G denoted the set of all �smooth� gauge
transforms acting on the space A of all �smooth� connections� That is why a lot of the e�orts
has been focussed on clarifying the structure of A�G� One typical property of A�G is that
there do not exist global gauge �xings� i�e� smooth sections in A �� A�G� � the so�called
Gribov problem� Other problems are caused by the very di	cult structure of A�G
 A�G is
non�linear� in�nite�dimensional and it is usually not a manifold� Thus� results concerningA�G
are quite scarce up to now� But� should one restrict oneself to the case of smooth connections�
Since in a quantization process smoothness is usually lost anyway� it is quite clear that one
has to admit also non�smooth connections� This way� about �
 years ago� several authors
started the consideration of Sobolev connections� For basic results we refer� e�g�� to ����� By
now� the structure� in particular� of the generic stratum of ASob�GSob is quite well�understood�
Nevertheless� measure theory did not become easier� Concerning that point� �rst convincing
successes have been gained through the introduction of generalized connections by Ashtekar
and Isham ���� Here one drops completely the �di�erential� conditions like smoothness or
Sobolev integrability and works with the algebraic structure of the space of connections only�
The main idea is as follows� A �smooth� connection is uniquely determined by its parallel
transports� i�e�� by a �smooth ����� homomorphism from the groupoid of paths to the structure
group G� A generalized connection is now simply such a homomorphism� but without the
smoothness condition� Analogously� a generalized gauge transform g � G is now a �usually
non�smooth� map from the base manifold M to G� and it acts purely algebraically on the
space A of generalized connections� One of the main advantages of A is that it is �for compact
G� compact and it possesses a natural kinematical measure� the induced Haar measure ����
Now� the perhaps most important question is how the standard smooth and the new Ashtekar
theory are related to each other � mathematically and physically� The �rst very nice answer
was the statement that A is dense in A ��
�� This result is usually expected when one
quantizes a theory� Then it has been proven that for the two�dimensional pure Yang�Mills
theory the Wilson loop expectation values are in fact the same in the classical as well as in
the Ashtekar framework ��� ���� Now� we are going to investigate the action of the generalized
gauge transforms on the space of generalized connections in comparison with its counterpart
in the Sobolev case described in detail in �����
The present paper is the �rst in a series of three papers�
In the �rst part of this paper we will give a quite detailed introduction into the algebraic
and topological de�nitions and properties of A� G and A�G� Here we closely follow Ashtekar
and Lewandowski ��� �� as well as Marolf and Mour�ao ����� The most important di�erence to
their de�nitions is that we do not restrict the paths to be �piecewise� analytic or smooth� For
our purpose it is su	cient to �x a category of smoothness from the beginning� This is Cr�
where r can be any positive natural number�� �smooth case� or � �analytical case�� We can
also consider the corresponding cases Cr�� of paths that are �piecewise� immersions� We will
show that in a certain sense the case ����� corresponds to the loop structures introduced by
Ashtekar and Lewandowski ��� and the case ����� corresponds to the webs introduced by
Baez and Sawin ����
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Now� the line of our papers rami�es� One branch� described in the second paper ��� of our
short series� investigates properties of the space A itself� There we will give a construction
method for new connections� Then� as a main result� we will show that an induced Haar
measure d�� can be de�ned for arbitrary smoothness conditions� For this� we introduce the
notion of a hyph that generalizes the notion of a web and a graph� We show that the paths
of a hyph are holonomically independent and that the set of all hyphs is directed� These two
properties yield the well�de�nedness of d���
The other branch is followed in the second part of the present paper� It is devoted to the
type of the gauge orbit� In the general theory of transformation groups the type of an orbit
�or� more precisely� an element of an orbit� is de�ned by the conjugacy class of its stabilizer
�see� e�g�� ����� Here� we will derive the explicit form of the stabilizer for every generalized
connection� As we will see� the stabilizer of a connection is homeomorphic to the centralizer
of its holonomy group� hence a �nite�dimensional Lie group� Since stabilizers are conjugate
in G if and only if these centralizers are conjugated in G� the type of an orbit is uniquely
determined by a certain equivalence class of a Howe subgroup of the structure group G� �A
Howe subgroup of G is a subgroup that can be written as the centralizer of some subset
V � G��
In the �nal paper ��
� of this short series we reunite the two branches� There we will see how
the results of Kondracki and Rogulski ���� can be extended from the Sobolev framework to the
generalized case �for compact G�� We will prove that there is a slice theorem for the action
of G on A� This means that for every connection A � A there is an open and G�invariant
neighbourhood that can be retracted equivariantly to the orbit A�G� Moreover� we prove that
the space A�G is topologically regularly strati�ed� But� two results for generalized connections
go beyond those for Sobolev ones� First� we can explicitly derive the set of all gauge orbit
types� This was not known until now for the Sobolev case� However� recently� Rudolph�
Schmidt and Volobuev ���� solved this problem for all SU�n��bundles over two�� three� and
four�dimensional manifolds� We show that in the Ashtekar framework �the conjugacy class
of� every Howe subgroup ofG occurs as a gauge orbit type� Second� we prove that the generic
stratum� i�e� the set of all connections whose holonomy centralizers equal the center of G�
has the induced Haar measure ��

In the following� M is always a connected and at least two�dimensional Cr�manifold with
r � N� � f�g� f�g being arbitrary� but �xed� Furthermore� m is an� as well� arbitrary� but
�xed point in M and G is a Lie group�

� Paths

In the classical approach a connection can be described by the corresponding parallel trans�
ports along paths in the base manifold� But� not every assignment of group elements to
the paths yields a connection� On the one hand� this map has to be a homomorphism� i�e��
products of paths have to lead to products of the parallel transports� and on the other hand�
it has to depend in a certain sense continuously on the paths� Moreover� additional topolog�
ical obstructions may occur� In the Ashtekar approach� however� the second �and the third�
condition is dropped� A connection is now simply a homomorphism from the set of paths to
the structure group G�
Up to now� it is not clear� whether there is an �optimal� de�nition for the structure of the
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groupoid P of paths� The �rst version was given by Ashtekar and Lewandowski ���� They
used piecewise analytical paths� The advantage of this approach was that any �nite set of
paths forms a �nite graph� Hence for two �nite graphs there is always a third graph containing
both of them� i�e� the set of all graphs forms a directed set� Using this it is easy to prove
independence theorems for loops and to de�ne then a natural measure on A and A�G� But�
the restriction to analyticity seems a little bit unsatisfactory� Since one has desired from the
very beginning to use A for describing quantum gravity� one comes into troubles with the
di�eomorphism invariance of this theory
 After applying a di�eomorphism a path need no
longer be analytical�
That is why Baez and Sawin ��� introduced so�called webs and tassels built by only smooth
paths ful�lling certain conditions� Any graph can be written as a web and for any �nite
number of webs there is a web containing all of them� So the directedness of the label set for
the de�nition of A remaines valid� and� consequently� one can generalize the construction of
the natural induced Haar measure and lots of things more�
In this paper we will introduce another de�nition for paths� Our de�nition will have the
advantage that it does not depend explicitly on the chosen smoothness category labelled by
r � N

� � f�g � f�g� Moreover� it does not matter� whether we demand the paths to be
piecewise immersions �cases Cr��� or not� Therefore� in what follows suppose that we have
�xed the parameter r from the very beginning� Furthermore� we decide now whether we
additionally demand the paths to be piecewise immersions or not� Nevertheless� we write
always simply Cr�

��� General Case

In this subsection we consider all smoothness categories on one stroke�

De�nition ��� A path is a piecewise Cr�map � 
 �
� �� ��M ��

The initial point is ��
� and the terminal point �����
Two paths �� und �� can be multiplied i� the terminal point of �� and the
initial point of �� coincide� Then the product is given by

�����t� 
�

��
�����t� for 
 � t � �

�

����t� �� for �
�
� t � �

�

A path � is called trivial i� im � � ���
� ��� is a single point�

An important idea of the Ashtekar program is the assumption that the total information
about the continuum theory is encoded in the set of all subtheories on �nite lattices� Thus
we need the de�nition of paths and graphs� The set of all paths is hard to manage� That is
why we restrict ourselves to special paths�

De�nition ��� 	 A path � has no self�intersections i� from ����� � ����� follows that
� �� � �� or
� �� � 
 and �� � � or
� �� � � and �� � 
�

�If we consider piecewise immersed paths� we have to additionally de�ne all � � ��� �	 �� M that are
piecewise constant� i�e� � j�������
 fxg for some x �M � or immersive to be a path�

�



	 A path �� is called subpath of a path � i� there is an a	ne non�
decreasing map � 
 �
� �� � �
� �� with �� � � � �� I� additionally
��
� � 
 �or ���� � ��� �� is called initial path �or terminal path� of
��
We de�ne �t����� 
� ��t� ���� t�� for all t � �
� �� and �t����� 
� ���t�
for all t � �
� �� to be the outgoing and incoming subpath of � in t�
respectively�
If � is a path without self�intersections then set �x�� 
� �t�� for all
x � im � where t ful�lls ��t� � x� �We choose t � 
 in the ��case if
x � ��
�� Analogously for t � ���

	 A ��nite� graph � is a ��nite� union of paths ei without self�intersections
and of isolated points vj� The elements of V��� 
�

S
ifei�
�� ei���g �S

jfvjg are called vertices� that of E��� 
�
S
ifeig edges� A graph � is

called connected i� V��� � Se�E��� im e is connected�
	 A path in a graph � is a path in M � that equals a product of edges

in � and trivial paths �with values in V����� respectively� whereas the
product of two consecutive paths has to exist�
A path � in M is called simple i� there is a �nite graph � such that �
is a path in ��

	 A path � in M is called �nite i� � is up to the parametrization� equal
to a �nite product of simple paths�

	 Two �nite paths �� and �� are called equivalent i� there is a �nite
sequence of �nite paths �i with �� � �� and �n � �� such that for all
i � �� � � � � n
� �i and �i�� coincide up to the parametrization or
� �i arises from �i�� by inserting� a retracing or
� �i�� arises from �i by inserting a retracing�

	 The set of all classes of �nite paths is denoted by P� that of paths in �
by P�� Furthermore� we write Pxy for the set of all classes of �nite paths
from x to y� The set of all classes of �nite paths having base point m
forms the hoop group HG � Pmm�

We have immediately from the de�nitions

Proposition ��� The multiplication on P induced by the multiplication of paths is well�
de�ned and generates a groupoid structure on P��
The hoop group HG is a subgroup of P�

�Two paths �� and �� are equal up to the parametrization i� there is a bijective � � ��� �	 �� ��� �	 with
�
�� 
 � and �� 
 �� �� such that � and ��� are Cr�

�This means� there is a � � ��� �	 and a �nite path � such that

�i
t� 


�����
����
�i��


�
� t� for � � t � �

��

�
�
t� �
���� for �

�� � t � �
�� �

�
�

�
�
 ��� �
�
� � t�� for �

�� �
�
� � t � �

�� �
�
�

�i��

�
� t�

�
� � for �

�� �
�
� � t � �

�

In the following� we denote by a retracing of a path � a subpath of the form ���� with a certain �nite ��
�This means� roughly speaking� P possesses all properties of a group� associativity� existence of unit

elements and of the inverse� But� the product need not be de�ned for all paths�
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Remark �� One can de�ne an analogous equivalence relation on the set of paths in a �xed
graph
 Two paths would be ���equivalent�� i� they arise from each other by
reparametrizations or by inserting or cancelling of retracings contained in ��
Obviously� two paths in � are equivalent� if they are ��equivalent� On the
other hand� one can also prove that two paths contained in � are already
��equivalent if they are equivalent�
Consequently� we can identify P� and the set of all ��equivalence classes of
paths in �� In other words
 P� is the groupoid that is generated freely by the
set of all edges of ��

�� In what follows we usually say instead of ��nite connected graph� simply
�graph� and instead of ��nite path� only �path�� Moreover� by a path we
always mean � if not explicitly the converse is said � an equivalence class of
paths�

�� Finally� we identify two graphs if the �corresponding� edges are equivalent�
Since edges are per def� free of retracings� this simply means that the edges
are equal up to the parametrization�

�� Note that the paths ����� 
� � and ����� 
� � � in R�� R
n� are not equivalent�

This comes from the fact that � 
 � �� � � is Cr� but ��� 
 � �� p
� is not�

�As well� it is not possible to transform �� into �� successively inserting or
deleting retracings as in De�nition ����� Furthermore� one sees that �� ����� is
an example for a path with retracings that is not equivalent to a path without�

�� If we restricted ourselves to piecewise analytical paths� i�e� the smoothness
category ����� from the very beginning� every path would be �nite� ���

The main assumption quoted above suggests the usage of �nite graphs as an index set for
the subtheories� But� these theories are not �independent�� Roughly speaking� a subtheory
de�ned on a smaller lattice arises by projecting the theory de�ned on the bigger lattice�

De�nition ��� Let �� and �� be two graphs� �� is smaller or equal �� ��� � ��� i� each
edge of �� is �up to the parametrization� a product of edges of �� and the
vertex sets ful�ll V���� � V�����

Obviously� � is a partial ordering�

��� Immersive Case

In the case of piecewise immersed paths we can de�ne another equivalence relation for ��
nite paths� Here we use the fact that any piecewise immersed path can be parametrized
proportionally to the arc length


De�nition ��� We shortly call a path a pal�path i� it is parametrized proportionally to
the arc length�
Two �nite paths �� and �� are called equivalent i� there is a �nite sequence
of �nite paths �i with �� � �� and �n � �� such that for all i � �� � � � � n
	 �i and �i�� coincide when parametrized proportionally to the arc length	

or

�This de�nition seems to require a certain Riemannian structure on M � But� on the one hand� each
manifold can be given a Riemannian structure� On the other hand� the de�nition of equivalence does not
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	 �i arises from �i�� by inserting a retracing or
	 �i�� arises from �i by inserting a retracing�

Lemma ��� �� Two �nite paths �� and �� are equivalent if they can be obtained from each
other by a reparametrization�

�� Each nontrivial �nite path is equivalent to a pal�path without retracings�

Proof �� Clear�
�� We prove this inductively on the number n of simple paths �i that the �nite path

� is decomposed into� We will even prove that � is equivalent to a pal�path ��

that can be decomposed �up to the parametrization� into n� � n simple paths
and that has no retracings�
For n � � we have nothing to prove� Thus� let n 
 �� First free �� 
�

Qn��
i
� �i o�

the retracings using the induction hypothesis� We get a pal�path ��� �
Qn���

i
� ��i
with the desired properties and n� � n� Denote by �� the pal�path corresponding
to ����n� Obviously� �

� � �� Suppose� �� is not free of retracings� Let ���� be a
retracing� Then a part of the retracing ���� has to be in �n� Since �n is simple
�and w�l�o�g� non�trivial�� the terminal point of � cannot be in int �n� Since by
assumption ��� is free of retracings� the terminal point has to be the initial point of
�n� and thus ��� is �if necessary� after an appropriate �a	ne� reparametrization�
an initial path of �n� Assume now � to be maximal� i�e�� any � �containing�
terminal path �� of ��� that yields a retracing in �� is equal to ��� Now� cancel
out the retracing
 If � is not a �genuine� subpath of ��n��� �i�e�� �exceeds� or
equals it�� de�ne ��n to be the �remaining� part of �n �outside� ���n����

��� then

��� 
�
�Qn���

i
� ��i
�
� ��n � �� consists of at most n� � � � � 	 n �nite paths�

The induction hypothesis gives the assertion� Suppose now that � is a �genuine�

subpath of ��n���� Then de�ne the pal�path ��� by
�Qn���

i
� ��i
�
���n��� � ��n� where ��n

denotes the �remaining� part of �n outside of �
�� and ���n��� that of �

�
n��� outside

of �� By the maximality of �� ��� contains no retracings� ��� � �� � � yields the
assertion� qed

Most of the constructions in the following as well as most of those in the subsequent papers
��� �
� do actually not depend on the choice of the equivalence relation for the paths� But�
the second one can only be used for piecewise immersed paths� Therefore� in what follows�
we will use the general equivalence relation given in the last subsection�

� Gauge Theory on the Lattice

In this section we will transfer the lattice gauge theory given by Ashtekar and Lewandowski
��� �� to our case� The algebraic de�nitions for the connections� gauge transforms and the

depend on the chosen Riemannian metric� if two paths coincide w�r�t� to the arc length to the �rst metric
then they obviously coincide w�r�t� to the arc length of the other metric� Thus� this de�nition is indeed
completely determined by the manifold structure of M �

�Such a � exists� Assume that every pal�subpath ���� of �n corresponding to the parameter interval ��� � 	
with � � T yields a retracing� 
Such a T exists� because there exists some retracing�� By the continuity of
every path and the fact that the paths arising here and so all their subpaths are pal� also ���T has to yield a
retracing� Consequently� there is a maximal T �
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action of the latter ones follow these authors closely� In the last two subsections we will state
some assertions mainly on the basic properties of the action of the gauge transforms and the
projections onto smaller graphs�

��� Algebraic De�nition

We use the standard de�nition
 Globally connections are parallel transports� i�e� G�valued
homomorphisms of paths in M � and gauge transforms are G�valued functions over M � The
lattice versions now come from restricting the domain of de�nition to edges and vertices in a
graph�

De�nition ��� Let � be a graph� We de�ne
A� 
� Hom�P��G� � � � set of all connections on � and
G� 
� Maps�V����G� � � � set of all gauge transforms on ��
Here� Hom�P��G� denotes the set of all homomorphisms from the groupoid
P� freely generated by the edges of � into the structure group and
Maps�V����G� the set of all maps from the set of all vertices of � into
the structure group�

In the classical case the action of a gauge transform on a connection can be described by the
corresponding action on the parallel transports


hA��� ��� g������hA���g�����

By simply restricting onto the lattice we receive the action of G� on A� by
�� 
 A� 
 G� �� A�

�h�� g�� ��� h� � g�
with h� � g���� 
� g����
��

�� h���� g������� for all paths � in ��

De�nition ��� For each graph � we de�ne
A�G� 
� A��G� � � � set of all equivalence classes of connections in ��

��� Topological De�nition

It is obvious that the groupoid P� is always freely generated by the edges ei of �� Hence� the
set A� � Hom�P��G� can be identi�ed via h ���

�
h�e��� � � � � h�e�E����

�
with G�E��� and

can so be given a natural topology� Analogously� we use that naturally G� � Maps�V����G�
can be identi�ed via g ��� �g�x��x�V�G� with G�V���� So G� is by means of the pointwise
multiplication a topological group� We have immediately

Proposition ��� For all graphs � the action �� 
 A� 
 G� �� A� is continuous�

Proof �� as a map from G�E��� 
G�V��� to G�E��� is a concatenation of multiplications�
hence continuous� qed

Corollary ��� A�G� � A��G� is a Hausdor� space� A�G� is compact for compact G�

It is well�known that connections are dual to paths and equivalence classes of connections are
dual to closed paths� This is again con�rmed by
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Proposition ��� A�G� is isomorphic to Hom�HGx���G��Ad� hence isomorphic to
Gdim������Ad� for each graph � and for each vertex x in ��
Here HGx�� is the set of all �classes of� path�s� in � starting and ending
in x� and 
���� is the fundamental group of ��

Proof De�ne J 
 A�G� �� Hom�HGx���G��Ad�
�h� ��� �h jHGx���Ad

	 J is well�de�ned�
If h� � h�� � g� then h���� � g�x���h�����g�x� for all � � HGx��� i�e� h� jHGx���
h�� jHGx�� �Adg�x��

	 J is injective�
Let J�h�� � J�h���� i�e�� let there exist a g � G such that h���� � g��h�����g for
all � � HGx��� Choose for all vertices y �� x a path �y from x to y� set �x 
� �
and set g�y� 
� h����y�

�� g h���y� for all y� Now� h
� � h�� � �g�y��y�V��� is clear�

	 J is surjective�
Let �h� � Hom�HGx���G��Ad be given� Choose an h � �h� and as above for
all vertices y a path �y and some gy � G� For each � � P� set h���� 
�
g������ h��������

��
����� g����� We have J�h�� � �h��

Since HGx�� is isomorphic to 
����� hence a free group with dim
���� generators
���� ��� we have A�G� �� Gdim������Ad� qed

��� Relations between the Lattice Theories

If one constructs a global theory from its subtheories one has to guarantee that these subthe�
ories are �consistent�� This means� e�g�� that the projection of a connection onto a smaller
graph has to be already de�ned by its projection onto a bigger graph� So we need projections
onto the subtheories induced by the partial ordering on the set of graphs�

De�nition ��� Let �� � ���
We de�ne


���� 
 A�� �� A���
h ��� h jP��


���� 
 G�� �� G��
g ��� g jV����

and

���� 
 A�G�� �� A�G���

�h� ��� �h jP�� �
We denote all the three maps by one and the same symbol because it should be clear in the
following what map is meant�
Obviously� from h� � h�� � g on �� follows h� jP��� h�� jP�� �g jV���� on ��� i�e� 
���� is
well�de�ned� Furthermore� we have

Proposition ��� Let �� � �� � ��� Then 
����

��
�� � 
���� �

Finally� we write down the projections by operations on the structure group in order to see
topological properties�
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Let again �� � ��� First we decompose each edge ei of �� into edges fj of ��
 ei �
QKi

ki
�
f
��i�ki�
j�i�ki�

�
With this we get for the map between the connections �n 
� �E�����


���� 
 G�E���� �� G�E������
g�� � � � � g�E����

�
���

�QK�
k�
�

g
����k��
j���k��

� � � � �
QKn

kn
� g
��n�kn�
j�n�kn�

�
On the level of gauge transforms the description is very easy
 
���� projects �gv�v�V���� onto
those elements belonging to vertices in ��� For classes of connections an analogous formula
as for connections holds
 First choose two free generating systems � and � of HGx���� and
HGx����� respectively� and then a path � from x� to x� in the bigger graph ��� Thus we get

decompositions �i � ���
�QKi

ki
�
�
��i�ki�
j�i�ki�

�
�� Hence� �ni 
� dim
���i��


���� 
 Gn��Ad �� Gn��Ad��
g�� � � � � gn�

	
Ad

���
�QK�

k�
�
g
����k��
j���k��

� � � � �
QKn�

kn�
�
g
��n��kn� �

j�n��kn� �

	
Ad

Proposition ��� 
���� is continuous� open and surjective�

Proof The surjectivity is clear for all three cases�
The continuity is trivial for the �rst two cases and follows in the third because the
projections Gn �� Gn�Ad are open� continuous and surjective �see ���� and the map
from Gn� to Gn� corresponding to 
���� is obviously continuous�
The openness follows immediately in the case of gauge transforms because projections
onto factors of a direct product are open anyway� In the case of connections one
additionally needs the openness of the multiplication in G
 Each edge in �� is a
product of edges in ��� i�e�� after possibly renumbering we have ei � fi�� � � � fi�Ki

�
Thus� 
���� �g���� � � � � gn�Kn� � � � � � �g��� � � �g��K�� � � � � gn�� � � �gn�Kn�� Let nowW be open
in A�� � G�E����� Then W is a union of sets of the form W��� 
 � � � 
Wn�Kn 
 � � � �
i�e�� 
���� �W � is a union of sets of the form �W��� � � �W��K�� 
 � � � 
 �Wn�� � � �Wn�Kn��

But these are open� i�e�� 
���� is open� The openness of 

��
�� 
 A�G�� �� A�G�� follows

now because the map 
���� 
 A�� �� A�� is open and the projections A� �� A�G�
are continuous� open and surjective� qed

� Continuum Gauge Theory

For completeness in the �rst subsection we will brie y quote the de�nitions of A� G and A�G
from ��� and in the second we summarize the most important facts about these spaces� In the
last two subsections we will �rst investigate the topological properties of the action of G on
A and of the projections onto the lattice gauge theories and then prove that the connections
etc� are algebraically described exactly in the same form both for our de�nition of paths and
for that of Ashtekar and Lewandowski ����

��� De�nition of A� G and A�G

By means of the continuity of the projections 
���� the spaces �A���� �G��� and �A�G��� are
projective systems of topological spaces� This leads to the crucial ���

�




De�nition ��� Generalized Gauge Theories
	 A 
� lim�� � A� is the space of generalized connections�

The elements of A are usually denoted by A or hA�
	 G 
� lim�� � G� is the space of generalized gauge transforms�

The elements of G are usually denoted by g�
	 A�G 
� lim�� � A�G� is the space of generalized equivalence classes

of connections�

Explicitly this means
A � f�h��� ��

�
A� j 
���� h�� � h�� for all �� � ��g�

G � f�g��� ��
�
G� j 
���� g�� � g�� for all �� � ��g ���

as well as
A�G � f��h���� ��

�
A�G� j 
���� �h�� � � �h�� � for all �� � ��g�

We denote

� 
 A �� A��

�h����� ��� h�

� 
 G �� G�

�g����� ��� g�
and


� 
 A�G �� A�G��
��h�� ���� ��� �h��

��� Topological Characterization of A� G and A�G

We have ��� ���

Theorem ��� �� A� G and A�G are completely regular Hausdor� spaces and� for compact
G� compact�

�� For every principle �bre bundle over M with structure group G the reg�
ular connections �gauge transforms� equivalence classes of connections�
are also generalized connections �gauge transforms� equivalence classes
of generalized connections�� This means the maps A �� A� G �� G
and A�G �� A�G are embeddings�

�� Let X be a topological space�
A map f 
 X �� A is continuous i� 
� � f 
 X �� A� � G�E��� is
continuous for all graphs ��
The analogous assertion holds for maps from X to G and A�G� respec�
tively� as well�

�� 
� is continuous for all graphs ��
�� G is a topological group�

We shall postpone the discussion whether the space A is dense in A or not for several reasons�
This� in fact� depends crucially on the chosen smoothness category and equivalence relation
for the paths� It should be clear that � provided ����� 
� � and ����� 
� � � are seen to be
non�equivalent � the denseness is unlikely
 No classical smooth connection A can distinguish
between these paths� So we will discuss this a bit more in detail in the subsequent paper

��



���� As well� we will show there that 
� is also open and surjective� But all that requires
some technical e�orts that are absolutely not necessary for the actual goal of this paper � the
determination of the gauge orbit types�

Proof �� The property of being compact� Hausdor� or completely regular is maintained
by forming product spaces and by the transition to closed subsets� Thus the
assertion follows from the corresponding properties of the structure group G�

�� The embedding property follows from Giles! reconstruction theorem ���� and ����
�� See� e�g�� �����
�� Since id 
 A �� A etc� is continuous� this follows from the facts just proven�
�� The multiplication on G is de�ned by �g��� � �g���� � �g� � g����� With this G

is a group with unit �e��� and inverse
�
�g���

���
� �g��� ��� The multiplication

m 
 G 
 G �� G is continuous due to the continuity criterion above
 
� � m �
m� � �
� 
 
�� is continuous for all �� because the multiplication m� on G� is
continuous� qed

��� Action of Gauge Transforms on Connections

Because of the consistency of the actions of G� on A� one can also de�ne an action of G on
A� One simply sets ���

� 
 A
 G �� A��
�h���� �g���

�
��� �h� � g���

Theorem ��� �� The action � of G on A is continuous�
�� The maps

A 
 G �� A
g ��� A � g

and g 
 A �� A
A ��� A � g

are continuous�
�� The canonical projection 


A�G 
 A �� A�G is continuous and open and
for compact G also closed and proper�

�� The map 
� 
 A�G �� A��G�
��h����� � ��� �h��

is well�de�ned and

continuous�

Proof �� 
� �� � �� � �
� 
 
�� 
 A
 G �� A� as a concatenation of continuous maps
on the right�hand side is continuous for any graph �� By the continuity criterion
for maps to A in Theorem ���� � is continuous�

�� Follows from the continuity of ��
�� Follows because � is a continuous action of a �compact� topological group G on

the Hausdor� space A� ���
�� 
� is well�de�ned� Namely� let A

�
� A � g� i�e� �h������ � �h�� � g����� � thus

h��� � h�� � g�� for all graphs ��� Then �h��� � �h���
The continuity of 
� 
 A�G �� A��G� follows from the continuity of 
� 
 A ��
A� and 
A��G�

as well as from the continuity criterion for the quotient topology
because the diagram

��



A �
A�G
�A�G

A�

��

�
�
A��G�
�A��G�

��

�

is commutative� qed

We note that for a compact structure group G and for analytic paths A�G and A�G are even
homeomorphic �cf� ��� ����

��� Algebraic Characterization of A� G and A�G

In this subsection we will show that our choice of the de�nition of paths leads to the same
results as the de�nitions in ��� do�

Theorem ��� �� We have A �� Hom�P�G��


Here� Hom�P�G� is the set of all maps h 
 P �� G� that ful�ll h������ �
h����h���� for all multipliable paths ��� �� � P�

�� We have G ���x�M G � Maps�M�G��
The isomorphism is even a homeomorphism of topological groups�

�� The action of gauge transforms on the connections is given by

hA�g��� 
� g������ hA��� g���� for all � � P� ���

hA 
 P �� G is the homomorphism corresponding to A � A and gx the
component of the gauge transform g � G in x�

�� We have A�G �� Hom�HG�G��Ad�
Here� Hom�HG�G� is the set of all homomorphisms h 
 HG �� G�

Proof �� De�ne I 
 Hom�P�G� �� A�
h ��� �h jP���

	 I is injective�
From h� �� h� follows the existence of a � � P with h���� �� h����� Since �
equals

Q
�i with appropriate simple �i� we have

Q
h���i� �� Q

h���i�� hence
h���i� �� h���i� for some �i� Choose a �nite graph � such that �i is a path in ��
Here we have h� jP� ��i� � h���i� �� h���i� � h� jP� ��i�� i�e� I�h�� �� I�h���

	 I is surjective�
Let �h��� be given� We consider �rst not classes of paths� but the paths itself�
Construct for any simple � � P a graph � containing �� De�ne h��� 
� h�����
For general � � P de�ne h��� 
�

Q
h��i� according to some decomposition of

� into simple paths �i�
This construction is well�de�ned
 First one easily realizes that it is indepen�
dent of the decomposition of � into �nite paths �thus also of the parametriza�
tion��� Hence obviously� h is a homomorphism� Thus� also h����������� �

�This justi�es the notation hA for a connection A�
	Namely� let

Q
��i and

Q
���j be two decompositions of �� The terminal points of ��i and ���j correspond to

certain values of the parameters � �i and � �j � respectively� of the path �� Order these values to a sequence 
�k�

��



h������� etc�� i�e�� h is constant on equivalence classes of paths� Consequently�
h 
 P �� G is a well�de�ned homomorphism with I�h� � �h����

�� Set I 
 Maps�M�G� �� G�
�gx�x�M ���

�
�gx�x�V���

�
�

Obviously� I is bijective and a group homomorphism�
The topology on Maps�M�G� ��x�M G is generated by the preimages 
��y �U�
of open U � G� by which 
y 
 �gx�x�M ��� gy is continuous� Hence� 
� � I �

v�
� � �

v�V��� is continuous for all �� i�e�� I is continuous� Due to the continuity
criterion for maps into product spaces� also I�� is continuous because for all y
the map 
y � I�� � 
� �� consists only of the vertex y� is continuous�

�� This follows immediately from the preceding steps�
�� Use the map J 
 A�G �� Hom�HG�G��Ad

�h� ��� �h jHG�Ad
and repeat the steps of

the proof of Proposition ���� qed

In the following we will usually write a gauge transform in the form g � �gx�x�M � Furthermore
we have again by the continuity criterion for maps into product spaces

Corollary ��� Let X be a topological space�
A map f 
 X �� G is continuous i� 
x � f 
 X �� G is continuous for all
x �M �

x is continuous for all x � X�

Remark If we work in the ������category for the paths� i�e�� we only consider piecewise
analytical graphs� all the de�nitions and results coincide completely with those of
Ashtekar and Lewandowski in ��� �� ���

� Graphs vs� Webs

In this section we will compare the consequences of our de�nition of paths to that of webs
��� �� ���� Within this section we only consider the smooth category� ����� for paths� Note
that� within this section� a path is simply a piecewise immersive and C��map from �
� �� to
M � i�e� it is not an equivalence class� But it is still �nite as before�

and construct a decomposition of � into simple paths �k such that �k corresponds to the segment � j��k��k����
Now� on the one hand� � equals up to the parametrization

Q
�k� but� on the other hand� each ��i and ���j

equals up to the parametrization a product �� � ��
� � � � � � �� with certain �� ��

Now let e��i be that graph w�r�t� that ��i is simple� Construct hereof the graph ��i by inserting the terminal

points of all the ���j as vertices� Finally� let �k be the graph spanned by �k� Thus� �k� e��i � ��i� and we have

h
��i� 
 h
e��

i


��i�


 h��

i

��i�


 h��

i

�� � ��
� � � � � � ���


 h��

i

��� h��

i

��
�� � � � h��

i

���


 h��
��� h����
��
�� � � � h��
����

Using the analogous relation for ���j we have
Q
h
��i� 


Q
h�k 
�k� 


Q
h
���j �� Thus� h
�� does not depend

on the decomposition�
�Remember� the � means that all the paths are piecewise immersions�

��



Let us brie y quote the basic properties of webs� A web consists of a �nite number of so�
called tassels� A tassel T with base point p �M is a �nite� ordered set of curves ci �piecewise
immersive smooth maps�� from �
� �� to M� that ful�lls certain properties

�� ci�
� � p for all i �common initial point��
�� ci is an embedding �in particular� has no self�intersections��
�� There is a positive constant ki � R for each i such that ci�t� � cj�s� implies kit � kjs

�consistent parametrization��
�� De�ne Type�x� 
� fi � I j x � im cig for all x � X� Then� for all J � I the set

Type���fJg� is empty or has p as an accumulation point�
Thus� in our notation� each ci is a simple path� A web is now a �nite collection of tassels such
that no path of one tassel contains the base point of another tassel� The following theorem
on curves proven by Baez and Sawin ��� will be crucial


Theorem ��� Given a �nite set C of curves� Then there is a web w� such that every curve
c � C is equivalent to a �nite product of paths � � w and their inverses�

This� namely� leads immediately to the following

Proposition ��� Every curve is equivalent to a �nite path�

Thus� our restriction to �nite paths is actually no restriction�

Proof Let there be given an arbitrary curve � 
 �a� b� �� M � By the preceding theorem �
depends on some web W � i�e�� there is a family of curves ci being simple paths such
that � equals �modulo equivalence� i�e� up to reparametrizations� cf� ���� a �nite
product of the curves ci and their inverses� By De�nition ���� � is �nite� qed

This means� roughly speaking� the sets of paths the connections are based on are the same
for the webs and our case ������ But this yields the equality of our de�nition of A and that
of Baez and Sawin�

Theorem ��� Suppose G to be compact and semi�simple�
Then AWeb and A������ i�e� the spaces of generalized connections de�ned by
webs ��� and by De�nition ���� respectively� are homeomorphic�

Proof Using the proposition above we see analogously to the proof of Theorem ��� that
IWeb 
 Hom�P�G� �� AWeb

h ��� �h jw�w
is a bijection� Thus� I 
� IWeb �I�� 
 A����� �� AWeb is a bijection� too� We are left
with the proof that I is a homeomorphism� For this it is su	cient to prove that each
element of a subbase of the one topology has an open image in the other topology�
Possible subbases for A����� and AWeb are the families of all sets of the type 
��� �W��
and 
��w �Ww�� respectively� Hereby� w is a web and Ww � Gk� k being the number of
paths in w� open��� � is a graph and W� � G�E��� an element of a certain subbase�

�
Thus the notion of a curve coincides with our notion of a general� usually non��nite path�
��This is the point where we need the semi�simplicity and compactness ofG� because only for these assump�

tions it is proven ���	 up to now that the projection �w jA� AWeb � A �� G
k is surjective� i�e� Aw 
 Gk�

Otherwise� it would be possible that �w
A� is a non�open Lie subgroup of Gk� So the sets ���w 
Ww� do no
longer create a subbase�

��



e�g�� a set of typeW� �W�
� � �
W�E��� with openWi � G� Thus� we can take as a
subbase for A����� simply all sets 
��c �W � where c is a simple path� i�e� a graph� and
W � G is open� Since every web is a collection of a �nite number of simple paths� we
get completely analogously that the family of all 
��c �W � is a subbase for AWeb� The
only di�erence here is that c has to be simple with di�erent initial and terminal point�
We are therefore left with the proof that I�
��c �W �� is open in AWeb for all simple�
closed paths c and all open W � which is� however� quite easy� Decompose c into two
paths c� and c� �with di�erent initial and terminal points� which span the graph ��
Then I�
��c �W �� � I�
��� ��
�c �

���W ��� By the continuity of 
�c the set �
�c �
���W �

is open in G�� i�e� a union of sets of the type W�
W�� but I�
��� �W�
W�� is open
as discussed above� qed

Remark We note that the homeomorphy ofAWeb andA����� remains valid also for arbitrary
Lie groups G� But� for this proof we need the surjectivity of 
w for all webs
as mentioned in Footnote ��� This� on the other hand� will be discussed in a
subsequent paper ����

� Determination of the Gauge Orbit Types

Now we come to the main part of this paper� In contrast to the general theory above let
now G be a compact Lie group throughout this section� The goal of this section is the
classi�cation of the generalized connections by the type of their G�orbits� In contrast to the
theory of classical connections in principal �ber bundles� topological subtleties do not play
an important r"ole � a generalized connection is only an �algebraic� homomorphism from the
groupoid P of paths into the structure group G� and the generalized gauge transforms are
simply mappings from M to G� Thus� also the theory of generalized gauge orbits is governed
completely by the algebraic structure of the action of G on A


hA�g��� � g��x hA��� gy for all A � A� g � G� � � Pxy� ���

For each element g of the stabilizer B�A� of a connection A the following must be ful�lled


hA��� � hA�g��� � g��x hA��� gy for all � � Pxy� ���

hence� in particular�
	 hA��� � g��m hA��� gm for all � � HG � Pmm and
	 hA��x� � g��m hA��x� gx for all x �M � whereas �x is for any x some �xed path from m to

x�
Thanks any path � � Pxy can be written as ���x ��x��

��
y � �y� i�e� as a product of paths in HG

and f�xg� both conditions are even equivalent to ���� From the �rst condition follows that
gm has to commute with all holonomies hA���� i�e� gm is contained in the centralizer Z�HA�
of the holonomy group of A� Writing the second condition as

gx � hA��x�
�� gm hA��x� for all x �M� ���

we see that an element g of the stabilizer of A is already completely determined by its value in
the point m� i�e� by an element of the holonomy centralizer Z�HA�� From this the isomorphy
of B�A� and Z�HA� follows immediately�
Due to general theorems of the theory of transformation groups the gauge orbit A � G is
homeomorphic to the factor space B�A�nG� Since B�A� and Z�HA�

�� Z�HA� 
 feG�g are

��



homeomorphic��� we get for the moment heuristically

B�A�nG ��
�
Z�HA�
 feG�g

�
n
�
G
 G�

�
��
�
Z�HA�nG

�

 G��

We will prove that the left and the right space are indeed homeomorphic� i�e� the homeomor�
phism type of a gauge orbit is already determined by that of Z�HA�nG� Consequently� two
connections have homeomorphic gauge orbits� in particular� if the holonomy centralizers are
conjugate�
Finally� we can prove that the stabilizers of two connections are conjugate w�r�t� G i� the
corresponding holonomy centralizers are conjugate w�r�t� G� This allows us to de�ne the
type of a connection not only �as known from the general theory of transformation groups�
by the G�conjugacy class of its stabilizer B�A�� but equivalently by the G�conjugacy class of
its holonomy centralizer Z�HA��
After all� we again mention that in the following G is a compact Lie group� The purely
algebraic results� of course� are valid also without this assumption�

��� Stabilizer of a Connection

De�nition ��� Let be A � A� Then EA 
� A�G � fA� � A j �g � G 
 A
�
� A �gg is called

gauge orbit of A�

Obviously� two gauge orbits are equal or disjoint�
We need some notations�

De�nition ��� Let A � A be given�
�� The holonomy group HA of A is equal to hA�HG� � G�
�� The centralizer Z�HA� of the holonomy group� also called holonomy

centralizer of A� is the set of all elements in G that commute with all
elements in HA�

�� The base centralizer B�A� of A is the set of all elements g � �gx�x�M
in G such that hA��� � g��m hA��� gx for all x �M and all paths � from
m to x�

Note that for regular connections the holonomy group de�ned above is exactly the holonomy
group known from the classical theory� We get immediately from the de�nitions

Lemma ��� Let be A � A and g � G�
�� The holonomy group HA is a subgroup of G�
�� Z�HA� is a closed subgroup of G�
�� We have HA�g � g��m HA gm and Z�HA�g� � g��m Z�HA� gm�

�� We have g � B�A� i�
a� gm � Z�HA� and
b� for all x �M there is a path � from m to x with hA��� � g��m hA���gx�

Proof �� This is an obvious consequence of homomorphy property of hA 
 HG �� G�
�� Trivial�

��The subgroup G
 � G is de�ned by ���m 
eG�� This means� it contains all gauge transforms that are trivial
in m� Obviously� we have G 	
 G
 G
�

��



�� This follows immediately from hA�g��� � g��m hA���gm for all � � HG�
�� �� We have to prove only gm � Z�HA�� but this is clear because we have

hA��� � g��m hA���gm for all � � HG by assumption�
�� Let x � M be �xed and � be an arbitrary path from m to x� Choose a �

such that hA��� � g��m hA��� gx� Then � 
� ���� � HG and

g��m hA��� gx � g��m hA���� gx
� g��m hA��� hA��� gx
� hA��� g

��
m hA��� gx �since gm � Z�HA��

� hA��� hA��� �by the choice of ��

� hA����

qed

Now we can determine the stabilizer of a connection�

Proposition ��� For all A � A and all g � G we have
A � g � A�� g � B�A��

Proof Per def� we have

A � g � A�� �x� y �M� � � Pxy 
 hA��� � hA�g��� � g��x hA��� gy� ���

�� Let A � g � A� Due to ��� g��m hA��� gm � hA��� holds for all � � Pmm � HG�
i�e� gm � Z�HA�� Again by ��� we have hA��x� � g��m hA��x� gx for all x � M
and all � � Pmx� Thus� g � B�A��

�� Let g � B�A� and x� y �M be given� Choose some �x � Pmx� �y � Pmy� Then
for all � � Pxy the following holds


g��x hA���gy � g��x hA��
��
x �x��

��
y �y� gy

� g��x hA��
��
x � gm g��m hA��x��

��
y � gm g��m hA��y� gy

� �g��m hA��x� gx�
�� hA��x��

��
y � �g��m hA��y� gy�

�since �x��
��
y � HG and gm � Z�HA��

� hA��x�
�� hA��x��

��
y � hA��y�

� hA����

By ��� we have A � g � A� qed

Since for compact transformation groups every stabilizer is closed �see� e�g�� ����� we have
using the proposition above

Corollary ��� B�A� is a closed� hence compact subgroup of G�
Furthermore� by the lemma above we get A� g� � A� g� �� A� g� � g��� � A�� g� � g��� �
B�A�� i�e� we can identify EA and B�A�nG by

� 
 B�A�nG �� EA�

�g� ��� A � g
Again by the general theory of compact transformation groups we get ���

Proposition ��� � 
 B�A�nG �� EA is an equivariant isomorphism between compact
Hausdor� spaces�

��



��� Isomorphy of B�A� and Z�HA�

In the next subsection we shall determine the homeomorphism class of a gauge orbit EA� For
that purpose� we should use the base centralizer� But� this object seems � at least for the
�rst moment � to be quite inaccessible from the algebraic point of view� However� looking
carefully at its de�nition �Def� ���� one sees that for given A due to hA��� � g��m hA���gx
the value of gx is already determined by gm � Z�HA�� Therefore� the base centralizer is
completely determined by the holonomy centralizer�

Proposition ��� For any A � A the map
� 
 B�A� �� Z�HA�

g ��� gm
is an isomorphism of Lie groups�
�The topologies on B�A� and Z�HA� are the relative ones induced by G
and G� respectively��

Proof 	 Obviously� � is a homomorphism�
	 Surjectivity

Let g � Z�HA�� Choose for each x � M a path �x from m to x �w�l�o�g� �m is
the trivial path� and de�ne

gx 
� hA��x�
�� g hA��x�� ���

Obviously� g � �gx� � G and ��g� � g� By Lemma ���� �� we have g � B�A�
because
�� gm � hA��m�

�� g hA��m� � g � Z�HA� by the triviality of �m � HG and
�� hA��x� � g��m hA��x� gx for the �x chosen above�

	 Injectivity
Clear� because gx is uniquely determined by A and so gm is due to hA��x� �
g��m hA��x� gx�

	 Continuity of �
� is the restriction of 
m 
 G �� Gm � G to B�A�� The continuity of � is now a
consequence of the continuity of 
m�

	 Continuity of ���

� 
 B�A� �� Z�HA� is a continuous and bijective map of a compact space onto
a Hausdor� space� Therefore� ��� is continuous� qed

Finally� we note that obviously the isomorphism � does not depend on the special choice of
the paths �x�

��� Determination of the Homeomorphism Class

As we have seen in the last subsection B�A� and Z�HA�
feG�g are homeomorphic subgroups

of G� One could conjecture that consequently

B�A�nG and
�
Z�HA�
 feG�g

�
n
�
G
 G�

�
��
�
Z�HA�nG

�

 G�

are homeomorphic� But� this is not clear at all� For instance� �Z and �Z are isomorphic� but
Z��Z � f
� �g and Z��Z � f
� �� �g are not� Nevertheless� in our case the claimed relation
holds


��



Proposition ��� For any A � A there is a homeomorphism
#� 
 G� 
 Z�HA�nG �� B�A�nG�

Hence� the homeomorphism type of EA is not only determined by B�A�nG� but already by

Z�HA�nG�
Before we will prove this proposition� we shall motivate our choice of the homeomorphism�
First we again choose for each x � M a path �x from m to x where w�l�o�g� �m is the trivial
path� By equation ��� we get a homomorphism

�� 
 G �� G
g ���

�
hA��x�

�� g hA��x�
�
x�M

with ���Z�HA�� � B�A� and therefore a map from Z�HA�nG to B�A�nG� Furthermore� we

have ���G�G� � G �� ���G�
G� with g ���
�
���gm�� �

��gm�
��g

�
� Although there is no group

structure on B�A�nG � in general� B�A� is only a subgroup and not a normal subgroup of

G �� there is at least a canonical right action of G and G�� respectively� by �g� � g� 
� �g g���
Thus� �g� �g�� ��� ����g�� � g is a good candidate to become our desired homeomorphism�

Proof First we choose some path �x from m to x for each x � M where w�l�o�g� �m is
trivial� Now we de�ne

#� 
 G� 
 Z�HA�nG �� B�A�nG�
�gx�x�M � �g�

�
���

h
���g� �gx�x�M

i
with gm � eG�
�� #� is well�de�ned�

Let g� � g�� i�e� g� � zg� for some z � Z�HA�� De�ne g 
� �gx�x�M � G�� Then
we have

#�

�
�gx�x�M � �g��

�
�

h
���g�� g

i
�

h
���zg�� g

i
�

h
���z� ���g�� g

i
�Homomorphy property of ���

�
h
���g�� g

i
����Z�HA�� � B�A� by Proposition 	�
�

� #�

�
�gx�x�M � �g��

�
�

�� #� is injective�
Let #�

�
�g��x�x�M � �g��

�
� #�

�
�g��x�x�M � �g��

�
� Then there exists a z � B�A� with

���g��x g��x � zx �
��g��x g��x� i�e�

hA��x�
�� g� hA��x� g��x � zx hA��x�

�� g� hA��x� g��x
for all x �M � Thus�
	 for x � m
 g� � zmg�� i�e� �g�� � �g��� and
	 for x �� m


g��x � hA��x�
�� g��� hA��x� zx hA��x�

�� g� hA��x� g��x
� hA��x�

�� g��� zm g� hA��x� g��x
� hA��x�

�� hA��x� g��x
� g��x�

i�e� #� is injective�

�




�� #� is surjective�
Let �eg� � B�A�nG be given� De�ne gx 
� ����egm���eg�x for all x � M � Then we

have #�

�
�gx�x�M � �egm�� � �eg��

�� #��
� is continuous�

It is su	cient to prove that the projections pri � #��
� of #��

� to the factors G�
�i � �� and Z�HA�nG �i � �� are continuous�

a� pr� �#��
� is continuous�

For all x �M n fmg the map

G �mx��� G
G
mult����� G

g ��� �gm� gx� ��� �hA��x�
��g��m hA��x�gx�

is a composition of continuous maps and consequently continuous itself� Since


B�A� 
 G �� B�A�nG is open and surjective� we get the continuity of


x � pr� �#��
� for all x � M n fmg by 
x � �pr� �#��

� � � 

B�A� � mult� � 
mx�

For x � m the statement is trivial� Thus� pr� �#��
� is continuous�

b� pr� �#��
� is continuous�

We use 
Z�H
A
� �
m � �pr� �#��

� � �

B�A� 
 G �� Z�HA�nG� The statement

now follows because 

B�A� is an open and surjective map and 
Z�H

A
� and 
m

are continuous�
�� #� is a homeomorphism because #��

� is continuous and bijective� qed

Thus we get the following important result
 The homeomorphism class of a gauge orbit
of a connection is completely determined by its holonomy centralizer� Finally� we should
emphasize that� in general� the homeomorphism #� is not an equivariant map w�r�t� the
canonical action of G on G� 
 Z�HA�nG�

��� Criteria for the Homeomorphy of Gauge Orbits

It is well known that orbits of general transformation groups are classi�ed by the conjugacy
classes of their stabilizers� This would e�ect in our case that the gauge orbits are characterized
by the conjugacy class of their corresponding base centralizer w�r�t� G� As we have already
seen� the base centralizer of a connection A is isomorphic to the holonomy centralizer of A and
the homeomorphism type of the gauge orbit is completely determined by that of Z�HA�nG�

Now we are going to show that base centralizers are conjugate w�r�t� G if and only if the
corresponding holonomy centralizers are conjugate w�r�t� G� This will allow us to de�ne the
type of a gauge orbit EA to be the conjugacy class of Z�HA� w�r�t� G� The investigation of
the set of all these classes is much easier than in the case of classes in G�
We want to prove the following

Proposition ��	 Let A�� A� � A be two generalized connections� Then the following state�
ments are equivalent

�� Z�HA�

� and Z�HA�
� are conjugate in G�

�� B�A�� and B�A�� are conjugate in G�
It would be quite easy to prove this directly using Proposition ���� Nevertheless� we do not
want to do this� Instead� we shall �rst derive some concrete criteria for the homeomorphy of
two gauge orbits� Finally� the just claimed proposition will be a nice by�product�

��



Proposition ��
 Let A�� A� � A be two generalized connections� Furthermore� let there
exist an isomorphism # 
 G �� G of topological groups with #

�
B�A��

�
�

B�A���
Then the map

$ 
 EA�
�� EA�

A� � g ��� A� �#�g�
is a homeomorphism compatible with the action of G�

Proof 	 $ is well�de�ned�
Let A� � g � A� � g�� Then we have A� � �g � g���� � A�� i�e� g � g��� � B�A�� by
Proposition ���� By assumption we have #�g � g���� � #�g� � #�g���� � B�A���
i�e� A� �#�g� � A� �#�g���

	 Since # is a group isomorphism� $ is again an isomorphism that is compatible
with the action of G�

	 For the proof of the homeomorphy property of $ we consider the following com�
mutative diagram


EA�

� � EA�

B�A��nG

�� �


�
� �B�A��nG

�
 ���

A� � g � � A� � g

�g�
B�A��

��

�
� � �#�g��

B�A��

��

�
�

Since �� and �� are homeomorphisms� it is su	cient to prove the homeomorphy
property for %�
� % is well�de�ned and bijective due to % � �� � $ � ���� �
� % is continuous�

The map 

B�A� 
 G �� B�A�nG is an orbit space projection for all A � A and

consequently surjective� continuous and open� Using % � 

B�A��

� 

B�A��

� #
we see for any open U � B�A��nG that %���U� � 


B�A��
�#���
��

B�A��
�U��� �

B�A��nG is again open�

� %�� is continuous by the same reason as above�
Thus� % is a homeomorphism� qed

To simplify the speech in the following we state

De�nition ��� Let G be a Lie group �topological group� and let U� and U� be closed
subgroups of G�
U� and U� are called extendibly isomorphic �w�r�t� G� i� there is
an isomorphism 
 
 G �� G of Lie groups �topological groups� with

�U�� � U��

��

In Proposition ��� we compared gauge orbits w�r�t� their base centralizers� Now we will com�
pare them using their holonomy centralizers� In order to manage this we need an extendibility
lemma�
Let the holonomy centralizers of two connections be extendibly isomorphic� i�e� let there exist
a 
 
 G �� G with 
�Z�HA�

�� � Z�HA�
�� By # 
� ���� � 
 � �� the base centralizers are

isomorphic� Extending # to G we get

��If misunderstanding seems to be unlikely� we simply drop �w�r�t� G� and write �extendibly isomorphic��

��



Lemma ��
 Let A�� A� � A be two generalized connections� Then the following statement
holds

If Z�HA�

� and Z�HA�
� are extendibly isomorphic� then B�A�� and B�A�� are

also extendibly isomorphic�
We have explicitly
 Let 
 
 G �� G be an isomorphism of Lie groups with


�
Z�HA�

�
�
� Z�HA�

�� Furthermore� let �x be an arbitrary� but �xed path in
M for each x �M � Then we have

	 The map # 
 G �� G de�ned by

#�g�x 
� hA�
��x�

�� 

�
hA�

��x�gxhA�
��x�

��
�
hA�

��x� ���

is an isomorphism of topological groups�
	 # j

B�A��
is an isomorphism of Lie groups between B�A�� and B�A��� Fur�

thermore� # j
B�A��

is independent of the choice of the paths �x�

Proof Let Z�HA�
� and Z�HA�

� be extendibly isomorphic with the corresponding isomor�
phism 
�
	 Obviously� we have #�g� � G and # is a homomorphism of groups� Moreover� #

is bijective with the inverse

#���g�x � hA�
��x�

�� 
��
�
hA�

��x�gxhA�
��x�

��
�
hA�

��x�� ���

To prove the continuity of # it is su	cient to prove the continuity of 
x � # for
all x� Hence� let U � G be open� Then we have

�
x �#����U�
� fg � G j �
x �#��g� � #�g�x �

hA�
��x�

�� 

�
hA�

��x�gxhA�
��x�

��
�
hA�

��x� � Ug
� 
��x

�
hA�

��x�
�� 
���hA�

��x�� 

���U� 
���hA�

��x�
��� hA�

��x�
�
�

Since 
 is a homeomorphism and 
x is continuous� �
x �#����U� is open�
The continuity of # is now a consequence of Corollary ���� that of #�� is clear�

	 Let �i be the isomorphism for Ai �i � �� �� corresponding to Proposition ����
Then we have

# j
B�A��

� ���� � 
 � �� 
 B�A�� �� B�A���
Since ��� �� and 
 are Lie isomorphisms and� moreover� independent of the choice
of the �x� # j

B�A��
is again an isomorphism of Lie groups that is independent of

the choice of the �x�
Thus� B�A�� and B�A�� are extendibly isomorphic� qed

The next lemma is obvious�

Lemma ���� Let A�� A� � A be two generalized connections� Then Z�HA�
� and Z�HA�

�
are extendibly isomorphic provided they are conjugate w�r�t� G�

Now we can prove Proposition ����

Proof Proposition ��	
	 Let Z�HA�

� and Z�HA�
� be conjugate and thus also extendibly isomorphic� The

map # 
 G �� G from Lemma ��� ful�lls now
#�g�� �

�
�hA�

��x�
�� g hA�

��x��
�� g�x �hA�

��x�
�� g hA�

��x��
�
x�M

��



where g � G was chosen such that Z�HA�
� � �Ad g�Z�HA�

�� We de�ne g 
��
hA�

��x�
�� g hA�

��x�
�
x�M

� Hence� the map # 
 G �� G from Lemma ��� is

simply Ad g� Moreover� Ad g maps B�A�� isomorphically onto B�A��� Thus�
B�A�� � �Ad g�B�A���

	 Let B�A�� and B�A�� be conjugate� i�e� let there exist a g � G with B�A�� �
g��B�A��g� Then we obviously have Z�HA�

� � g��m Z�HA�
�gm� qed

Let us summarize


Theorem ���� Let A�� A� � A be two generalized onnections� Then the following implica�
tion chain holds


B�A�� and B�A�� are conjugate in G�
�� Z�HA�

� and Z�HA�
� are conjugate in G�

�� Z�HA�
� und Z�HA�

� are extendibly isomorphic�
�� B�A�� und B�A�� are extendibly isomorphic�
�� The gauge orbits EA�

and EA�
are homeomorphic�

This theorem has an interesting and perhaps a little bit surprising consequence
 Even after
projecting A down to A�G � Hom�HG�G��Ad the complete knowledge about the homeo�
morphism class of the corresponding gauge orbit is conserved� Naively one would suggest that
after projecting the total gauge orbit onto one single point this information should be lost�
But� the homeomorphism class is already determined by giving the holonomy centralizer�
that� the other way round� can be� up to a global conjugation� reconstructed from �A��

Proposition ���� For each �A� � A�G the homeomorphism class of the gauge orbit corre�
sponding to �A� can be reconstructed from �A��

� Discussion or How to De�ne the Gauge Orbit Type

If we ignored the usual de�nition of the type of an orbit in a general G�space� then Theorem
���� would open us several possibilities to de�ne the type of a gauge orbit� If the type should
characterize as �uniquely� as possible the homeomorphism class of the gauge orbit� then it
would be advisable to de�ne the base centralizer modulo extendible isomorphy to be the
type� But� even this choice would not guarantee that two gauge orbits with di�erent type
are in fact non�homeomorphic� Moreover� the base centralizers as subgroups of G are not so
easily controllable as centralizers in G are� Thus� we will take the holonomy centralizer for
the de�nition� It remains only the question� whether we should take the centralizer modulo
conjugation or modulo extendible isomorphy� We have to collect conjugate centralizers in
one type anyway in order to make points of one orbit be of the same type� �Note� that the
holonomy centralizers of two gauge equivalent connections are generally not equal but only
conjugate��
If we now include the general de�nition of an orbit type into our considerations again� it will
be clear that we shall use the centralizer modulo conjugation� But� since two connections
have one and the same �usual� orbit type i� their base centralizers are conjugate� i�e� i� their
holonomy centralizers are conjugate� we de�ne the gauge orbit type by

��



De�nition 	�� The type of a gauge orbit EA is the holonomy centralizer of A modulo
conjugation�

We emphasize that this de�nition of the type of the gauge orbit EA is � as mentioned above

� independent of the choice of the connection A
� � EA� In fact� if A

�
is gauge equivalent to A�

by Lemma ��� there is a g � G with Z�H
A
�� � g��Z�HA�g� Hence� the holonomy centralizers

of A and A
�
are conjugate� Thus� we can assign to each �A� � A�G a unique gauge orbit type�

Using Theorem ���� we get immediately

Corollary 	�� Two gauge orbits with the same type are homeomorphic�

Finally� we want to give a further justi�cation for our de�nition of the gauge orbit type� Let
us consider regular connections� In the literature there are two di�erent de�nitions for the
type of a �classical� gauge orbit
 On the one hand ����� one chooses the total stabilizer of
A � A in G� On the other hand ����� one sees �rst that the pointed gauge group G� �the set of
all gauge transforms that are the identity on a �xed �bre� is a normal and closed subgroup in
G� Obviously� G 
� G�G� can be identi�ed with the structure group G� Moreover� the action
of G� on A is free� proper and smooth� This way one gets an action of G� the �essential part�
of the gauge transforms� on the space A�G�� Now� the gauge orbit types are the conjugacy
classes of stabilizers being closed subgroups of G �� G� This de�nition corresponds to our
choice of the centralizer of the holonomy group� Due to the statements proven above these
two descriptions are equivalent if we consider generalized connections� but in general not if
we work in the classical framework� There it is under certain circumstances possible ���� that
two connections though have conjugate holonomy centralizers� but this conjugation cannot
be lifted to a conjugation of the base centralizers� The deeper reason behind this is that the
gauge transform g �

�
hA���x�

�� g hA���x�
�
x�M

�cf� proof of Proposition ���� generally is not

a classical gauge transform� i�e� it is not smooth� Nevertheless� in case of the de�nition using
the holonomy group we have

Corollary 	�� The gauge orbit type is conserved by the embedding A �� A�
But� note that this does not mean at all that the classical and the generalized gauge orbit of
a classical connection itself are equal or at least homeomorphic�
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