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Abstract

We formulate and apply a modi�ed Lagrangian mean curvature �ow to

prescribe the Maslov form of a Lagrangian graph in �at cotangent bundles�

We prove longtime existence results based on a new energy estimate� In

addition we derive miscellaneous results both for the Lagrangian mean

curvature �ow and the modi�ed �ow� Examples and counterexamples are

given�

� Introduction

Let �T �L� 
g� 
J� 
�� be the cotangent bundle of a compact� orientable� �at� n�
dimensional Riemannian manifold L equipped with the �at metric 
g� the stan�
dard complex structure 
J and the standard symplectic structure 
��V�W � �


g� 
JV�W �� A submanifold L� � T �L is called Lagrangian if � �
 
�jL�


 �� As�
sume L� is a Lagrangian submanifold which in addition is a graph over the zero
section L in T �L� We study the evolution of L� under the modi�ed Lagrangian
mean curvature �ow

d

dt
Ft 
 gij�dif �Hi��j � ���

where Ft � L � Lt �
 Ft�L� � T �L is a smooth family of di�eomorphisms�
H 
 Hidx

i is the induced mean curvature one�form on L� df 
 difdx
i is the

di�erential of a �xed smooth function on L� �j 
 J� �F
�xj

� and gij is the pull�back
of the induced Riemannian metric�

By Bieberbach�s theorem �e�g� see ��� and ����� we know that this is the same as
analyzing the modi�ed mean curvature �ow for Lagrangian graphs sitting in the
standard Euclidean space C n which can be written as graphs over a compact
fundamental domain L 
 Tn � Rn � C n of a �at torus�

��� is a coupled system of nonlinear parabolic equations and for compact initial
data always admits a smooth solution on a maximal time interval ��� T �� By the
Codazzi equation it follows that the condition to be Lagrangian is preserved�
The property to be Lagrangian is an integrability condition� If one looks at

�



the induced evolution equations for the n di�erent height functions uk then the
Lagrangian property together with the Codazzi equations imply the integrability
of ���� This yields the Monge�Amp�ere type equation �����

Remark� The evolution ��� becomes stationary if the mean curvature form
equals the di�erential of f � Hence the modi�ed mean curvature �ow is an at�
tempt to prescribe the form H by df � We will later see that there are certain
natural restrictions on the class of functions f for which ��� can have a longtime
solution� The mean curvature form �see below for the de�nition� of Lagrangian
graphs over the zero section in cotangent bundles is always exact�

Our main theorem can be stated as follows

Theorem ��� Let L be a compact �at n�dimensional Riemannian manifold of
diameter �� Then there exists a constant B depending only on n and � such that
for all smooth functions f with

kfkC� � B

we can �nd a Lagrangian submanifold in T �L �equipped with the standard sym�
plectic structure and �at metric� with mean curvature form H 
 df that can
be represented as a graph over the zero section in T �L� In particular the mod�
i�ed mean curvature �ow with L� being the zero section in T �L exists for all
t � ����� and the �ow smoothly converges in the C��topology to a smooth
limiting Lagrangian graph over L with H 
 df �

Remark� From the proof of Theorem ��� it will become clear that one can take
any f for which

maxfmax
L

jD�f j��max
L

jD�f j�g � c

c� �

� c
��

��
with c �
 �

�n�� �

If L� is a Lagrangian graph over the zero section in the cotangent bundle of
a compact� orientable �at Riemannian manifold L� then by the Lagrangian
condition the n di�erent height functions uk all stem from one potential u that
can be globally de�ned on L� On the other hand all maps F � L � T �L with
F �x� �
 �x� du�x�� are Lagrangian graphs�

The mean curvature �ow for hypersurfaces has been studied extensively by
many authors �e�g� ���� �	�� ���� ���� ���� ���� ����� ����� ��	�� ����� ����� ����� �����
�	��� �	��� �	��� �	��� �	���� The mean curvature �ow in higher codimension is an
extremely subtle problem� Almost nothing is known� One of the few results is
the existence theory for a weak formulation of the �ow �see ���� and results on
the curve shortening �ow in R� ���� In the Lagrangian category we are able to
prove the following stability result which is �as far as we know� the �rst stability
result in higher codimension�

	



Theorem ��� Let L be a compact �at n�dimensional Riemannian manifold of
diameter � and let c �
 �

�n�� � If for a smooth function u � L� R

F � L� T �L

F �x� �
 �x� du�x��

is a Lagrangian graph over L such that q �
 cS��S� with Sk �
 jDkuj satis�es

q �
c

��
�

then this remains true under the mean curvature �ow �f 
 �� and ��� admits
an immortal solution such that the Lagrangian submanifolds Lt converge in the
C��topology to the zero section L as t���

For hypersurfaces in Rn�� that can be written as graphs over Rn it is well
known that the property to be a graph remains true �see ������ Unfortunately
a corresponding result in higher codimension is not known and in general this
might be wrong� However in the Lagrangian case we will prove�

Theorem ��� Let M �
 T �L be the cotangent bundle of a compact� �at Rie�
mannian manifold L equipped with its standard complex structure and �at met�
ric� Further let Lt be a family of Lagrangian submanifolds in T �L de�ned by
closed ��forms uk�x� t�dx

k evolving from L� by its mean curvature� If at t 
 � all
eigenvalues � of the Hessian Diju satisfy �� � �� � with a constant � � � � ��
then this remains true on Lt�

In the case n 
 �� i�e� for periodic graphs over R we will prove that ��� always
admits an immortal solution but that in most cases we do not get a convergence
result as described in Theorem ���� The reason is that the �ow exists as long
as it stays a graph �see below for details� which is always true although the
slope might increase exponentially fast� On the other hand convergence of H
to df can only occur if osc�f� � �� One example of this phenomenon is given
in Figure �� In contrast to this case we do have convergence in Figure 	�

Now we want to explain our motivation for this paper� First note that by the
Lagrangian condition the complex structure J maps normal vectors to tangent
vectors� Hence the mean curvature vector �eld

��
H gets mapped to a vector �eld

tangent to L� Using the induced metric it is easy to see that this gives a one�
form on L� This one�form will be called mean curvature form H 
 Hidx

i�
It is an easy consequence of the Codazzi equations �see below� that H is closed�
Let us now brie�y recall the construction of the Maslov form for Lagrangian
immersions in R�n � First consider the Grassmannian G�n� 	n� of n�dimensional
oriented planes in R�n 
 Rn � iRn and denote by LAG � G�n� 	n� the subset
consisting of all Lagrangian planes� Since the unitary transformations U�n�
act transitively on LAG and the isotropy group at p 
 Rn � Rn � iRn is
given by SO�n� one observes that LAG can be identi�ed with U�n��SO�n�� An
immersion in R�n is Lagrangian if and only if its Gauss map de�nes a section
in LAG� Given a Lagrangian immersion L in R�n we obtain the following map�

L� LAG� U�n��SO�n�� S�

�
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Figure �� A curve evolving under the modi�ed mean curvature �ow d
dt
F 


�rif � H i��i� Here f�x� 
 �� sin��x�� The oscillation of f is bigger than �
and consequently the �ow cannot converge to a smooth line with curvature form
H 
 df � Nevertheless we have longtime existence and the curves which evolve
from the real axis stay graphs over the initial curve for all times�

p �� TpL �� Ap �� detCAp

where Ap is the element in U�n��SO�n� determined by the identi�cation of
LAG and U�n��SO�n�� Writing detAp as ei�� with a multivalued function 	
one obtains that d	 is a well de�ned closed ��form on L� the so called Maslov
form� It has been shown by Morvan ���� that d	 
 �

�
H � This relation is very

similar to the one which states that up to a constant factor 	� the Ricci form
on a K�ahler manifold equals its �rst Chern form� It is often useful to compare
the Ricci �ow d

dt
gij 
 �Rij and the mean curvature �ow� In ��� Cao has shown

that a modi�ed Ricci �ow can be used to deform a given K�ahler metric with �rst
Chern class c� to any other K�ahler metric with the same Chern class� Assuming
that the Lagrangian immersion in C n evolves according to d

dt
F 
 �
k�k� the

evolution equation for the mean curvature form �see ����� is

d

dt
H 
 ddy
�

If we now choose a closed ��form m and set 
 �
 H �m� we obtain a �ow that
will become stationary if and only if H 
 m� Moreover since m is �xed we
observe that

d

dt
�H �m� 
 ddy�H �m�

�
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Figure 	� A periodic graph over the real line in R� evolving under the modi�ed
mean curvature �ow d

dt
F 
 �rif � H i��i �as a model for the modi�ed mean

curvature �ow in the cotangent bundle of S� equipped with the �at metric of
a cylinder�� The �gure shows the space�time L� � ��� T � with L� 
 ���� ��
and T 
 �� The curves evolve exponentially fast from the zero section �t 
 ��
i�e� from the front line� to a curve with curvature form H 
 df � where f 

�

���� log�� �
�
� sin��x���

and this implies that �H �m� does not change� The solution to the PDE

d

dt
Ft 
 ��Hk �mk��k� �	�

wheremidx
i is a �xed closed ��form on L will be called modi�ed mean curvature

�ow� For m 
 � we obtain the Lagrangian mean curvature �ow� For cotangent
bundles we simply set m 
 df since H is always exact in these cases� Having
in mind the corresponding result for the K�ahler�Ricci �ow one is tempted to
conjecture that in the case �H � m� 
 � one can use the modi�ed LMCF to
deform a given initial Lagrangian immersion with Maslov class m� to a new
Lagrangian immersion with prescribed Maslov form m in the same cohomology
class� That this in general is wrong� at least in the smooth setting� can be
easily seen by considering the Whitney spheres� These can be constructed in
the following way� Consider the map

f � R
n�� � C

n

f�x�� � � � � xn��� �

�

� � �xn����
�x�� � � � � xn� xn��x�� � � � � xn��xn�

and let

f �
 f jSn�Rn��� ���

�



Then f de�nes a Lagrangian immersion of Sn into C n � This immersion is called
Whitney sphere and will be denoted byWn� Using the orthogonal projections

���x
�� x�� y�� y�� �
 �x�� y�� y��

���x
�� x�� y�� y�� �
 �x�� x�� y��

one can illustrate the shape of W � as shown in Figure ��

Figure �� The Whitney sphere

Here the mean curvature form is exact and hence the Maslov class vanishes�
But since there do not exist compact minimal submanifolds in R�n we see that
the modi�ed LMCF cannot always have a longtime solution in time for which
H tends to a �xed but arbitrary exact ��form m�

The last example points out that there is a qualitative di�erence between the
modi�ed Lagrangian mean curvature �ow and the modi�ed K�ahler Ricci �ow�

The theory of Lagrangian immersions in a given Calabi�Yau manifold is very

�



important� E�g� in the well�known paper by Strominger� Yau and Zaslow �	��
it has been conjectured that the moduli space of special Lagrangian �these are
minimal and Lagrangian� tori in a given Calabi�Yau manifold can be used to con�
struct its mirror partner� While several geometers studied minimal Lagrangian
immersions �e�g� see the article of ���� for an overview� the question which closed
��forms m can be realized as the mean curvature form �or Maslov form� of a
Lagrangian immersion is widely open� It should be noted that this problem is
the Lagrangian analogue to the question arising in the theory of hypersurfaces
with prescribed mean curvature� For minimal Lagrangian immersions of com�
pact� orientable manifolds in hyperK�ahler manifold we recently deduced �	��
that the second Betti number must be bigger than � and that they are K�ahler
submanifolds �w�r�t� one of the other complex structures� if the second Betti
number is one�

The paper is organized as follows� In chapter 	 we introduce notations and
recall basic geometric identities for Lagrangian submanifolds� In section � we
will brie�y discuss Lagrangian variations and then state the evolution equations
for various geometric quantities� In additition we state a useful representation
formula and show that the modi�ed �ow exists as long as the second fundamental
form stays bounded� The energy estimate which is a key ingredient to prove
our main theorem will be provided in section ���� In chapter � we control the
condition to be a graph and the paper ends with chapter � where we �nally
prove longtime existence�

� Geometric identities

Assume that �y�����������n are local coordinates for R�n � that doubled greek

indices are summed from � to 	n� that J 
 J
�

� dy�	 �
�y�

denotes the standard

complex structure on R�n and that � 
 hJ 
� 
i� where h
� 
i 
 g��dy
� 	 dy� is

the standard inner product� Then

J
�

� J
�

� 
 �� �

� � ���

��� 
 J
�

� g�� 
 �J �

� g�� 
 ����� ���

Now assume that F � L � R�n is a Lagrangian immersion� If �xi�i�������n are
local coordinates for L� then we set

ei �

�F

�xi
� �i �
 Jei�

Note that by the Lagrangian condition �i is a normal vector for any i 
 �� � � � � n�
The second fundamental form on L can then be de�ned as

hijk �
 �h�i�rejeki

and the mean curvature ��form Hidx
i is given by

Hi �
 gklhikl�

�



where gij is the inverse of the induced Riemannian metric gij and we sum
doubled latin indices from � to n� Hence the inward pointing mean curvature
vector

��
H can be written as

��
H 
 �gijHi�j �

We also introduce

Aijkl �
 hijnh
n
kl�

akl �
 A i
i kl 
 Hnhnkl�

bkl �
 A i
k li 
 h ij

k hijl�

Let us denote the Christo�el symbols for the Levi�Civita connection r on R�n

by �
�

�� and let us also set

��� �
 �
�

��

�

�y�
�

The Christo�el symbols for the induced Levi�Civita connection on L will be
written without a bar� i�e� in the form �ijk � To distinguish objects on the
ambient space from the corresponding induced objects on L we will often use a
bar for the ambient objects� Then we obtain the following equations�

hijk 
 hjik 
 hjki� ���

�h n
jk �n 


�

�xj
ek � �njken � ���e

�
j e

�
k � ���

h n
jk en 


�

�xj
�k � �njk�n � ���e

�
j �

�
k � ���

hijk 
 �h �

�xj
ei � ���e

�
i e

�
j � �ki� ���

Gauss equation � Rijkl 
 Aikjl � Ailjk � ����

Codazzi equation � rihjkl �rjhikl 
 �� ����

traced Codazzi equation � rkHl �rlHk 
 �� ��	�

We also have the following Simons type identity�

Lemma ���

�hijk 
 rirjHk

� a s
i hsjk � b s

i hsjk � b s
j hski � b s

k hsij � 	h m
in h s

jm h n
ks � ����

� Variations of Lagrangian immersions

We mention that Oh �	�� studied normal variations of an initial Lagrangian
immersion L� in K�ahler manifolds� Let Ft � L � ���� �� � R�n be a smooth
family of Lagrangian immersions� The deformation vector �eld �or velocity� at
time t 
 � is given by V �
 d

dt jt��
Ft� Since we assume that L� is Lagrangian

we can write V in the form

V 
 �
k�k � �kek�

�



Tangential variations do not alter the shape of an immersion L and merely
correspond to the di�eomorphism group acting on L but they are often useful
to reparametrize a given immersion� Hence without loss of generality we can
assume that �k 
 �� The induced metric g on L� can be used to identify the
vector �eld 
k �

�xk
with a ��form on L�� namely 
kdx

k 
 gkl

ldxk� In the sequel

this form will be called deformation ��form� One can then compute the evolution
equations for various geometric objects�

Proposition ���

d

dt jt��
gij 
 �	
nhnij � ����

d

dt jt��
d
 
 �
iHid
� ����

d

dt jt��
�ij 
 ri
j �rj
i� ����

d

dt jt��
hijk 
 rirj
k � 
n�Aijkn �Akijn�� ����

d

dt jt��
Hi 
 rid

y
� ����

where dy
 is shorthand for ri
i�

In view of equation ���� we see that the Lagrangian condition �ij 
 ��ei� ej� 
 �
is preserved only if 
 is closed� If 
 is exact� then this will be called a Hamiltonian
variation� In the case where 
 
 H we can compute

Proposition ���

d

dt
gij 
 �	aij � ����

d

dt
d
 
 �jHij�d
� �	��

d

dt
hijk 
 rirjHk �Hn�Aijkn �Akijn�� �	��

d

dt
H 
 ddyH� �		�

To rewrite equation �	�� we use equation ���� and see that

Proposition ���

d

dt
hijk 
 �hijk �R s

i hsjk �R s
j hski �R s

k hsij � 	h m
in h s

jm h n
ks �

where R s
i �
 a s

i � b s
i is the induced Ricci curvature�

In addition

�



Proposition ���

d

dt
Hi 
 �Hi �R s

i Hs� �	��

The evolution equation for Aikjl is given by

Proposition ���

d

dt
Aikjl 
 �Aikjl � 	rmhnikrmhnjl

� R s
i Askjl �R s

k Asijl �R s
j Aslik �R s

l Asjik

� 	bnsh
n
ikh

s
jl � 	AitksA

ts
jl � 	AjtlsA

ts
ik �

The proof of these equations is a straightforward computation� We also have

Proposition ���

d

dt
aik 
 �aik � 	rmhnikrmHn �R s

i ask �R s
k asi

� 	amn�Aikmn �Aimnk�� �	��

d

dt
bij 
 �bij � 	rihklmrjh

klm

� R s
i bsj � R s

j bsi � 	�Ailkm �Aimkl��A
lkm

j �A mkl
j �� �	��

Let us also write A 
 hijkdx
i 	 dxj 	 dxk � Then jAj� 
 jhijk j� 
 gijbij and

jHij� 
 gijaij imply

Proposition ���

d

dt
jHij� 
 �jHij� � 	jriHj j� � 	jaij j�� �	��

d

dt
jhijk j� 
 �jhijk j� � 	jrihjklj� � 	jbij j� � 	jAilkm �Aimklj�� �	��

From the evolution equation of the mean curvature form ���� under the modi�ed
mean curvature �ow we can deduce the following important result for the ��form
H �m�

Lemma ��	 
Representation formula� Assume that Lt 
 Ft�L� is compact�
orientable and evolves under the modi�ed MCF �	� and let �t be the Laplace�
Beltrami operator at time t w�r�t� the induced metrics gij�t�� If �H �m���� is
exact� then there exists a unique smooth family of functions �t on L such that

�H �m��t� 
 d�t

d

dt
�t 
 �t�t

min
L

�� 
 ��

��



Proof� Compare with Lemma 	�� in �		��

The parabolic maximum principle implies

Corollary ��� Assume that L is a compact� orientable Lagrangian immersion
evolving by the modi�ed MCF and that �H � 
 �m�� Let �t be the functions
de�ned as in Lemma 
��� Then

min
L

�� � min
L

�t � max
L

�t � max
L

���

osc�t � osc���

For hypersurfaces it is well known �see ����� Theorem ���� that the mean cur�
vature �ow for closed initial data has a smooth solution as long as the norm of
the second fundamental form jAj� stays bounded� In other words a singularity
can only form if the curvature blows up somewhere� We will see that this also
holds in the Lagrangian setting�

Theorem ���
 Assume that for t � ��� T � Lt is smooth family of Lagrangian
immersions in a K�ahler�Einstein manifold M�n evolving by its mean curvature�
that all ambient curvature quantities rr

R are bounded by a constant Cr and that
limt�T maxLt

jAj� is bounded� Then there exists an � � � such that the mean
curvature �ow admits a smooth solution on the extended time interval ��� T ����

Proof� We will prove this only in the euclidean case� The proof for the
general case is similar and repeatedly uses the equations of Gau�� Weingarten
and Codazzi� Let us write any contraction of two tensors S and T by S � T
and let cr be any constant depending only on r� We claim� For any r � � the
evolution equation for rrA can be expressed as

d

dt
rrA 
 �rrA� cr

X
k�l�m�r

rkA � rlA � rmA� �	��

To prove �	�� we observe that

d

dt
rT 
 r d

dt
T � c

d

dt
� � T�

where T is an arbitrary tensor and � denotes the connection� Since

d

dt
�kij 


�

	
gkl�ri�

d

dt
gjl� �rj�

d

dt
gil��rl�

d

dt
gij�� 
 cA � rA

we get

d

dt
rT 
 r d

dt
T � cA � rA � T� �	��

On the other hand

r�T 
 �rT � cA �A � rT � cA � rA � T ����

��



as can be seen by applying the rule for interchanging derivatives twice and by
using the Gau� equations� Consequently

�
d

dt
���rT 
 r�� d

dt
���T � � cA �A � rT � cA � rA � T� ����

Now equation ����� tells us that

d

dt
A 
 �A� c�A �A �A�

and using this together with equation ���� it follows by induction that �	��
holds� Let again T be any tensor� Then

d

dt
jT j� 
 cA �A � T � T � 	hT� d

dt
T i


 �jT j� � 	jrT j� � 	hT� � d
dt
���T i� cA �A � T � T�

Applying this to T 
 rrA we obtain

d

dt
jrrAj� 
 �jrrAj� � 	jrr��Aj� � crrrA �

X
k�l�m�r

rkA � rlA � rmA�

��	�

Now assume that jrkAj� is uniformly bounded on the time interval ��� T � for
� � k � r � �� Then the evolution equation ��	� and Schwarz� inequality show
that there exists a constant c depending only on r and on the bounds for jrkAj�
such that

d

dt
jrrAj� � �jrrAj� � cjrrAj��

provided r � �� Consequently jrrAj� can grow at most exponentially on ��� T ��
proving a uniform bound for jrrAj� also� Thus a bound for jAj� implies bounds
for all higher derivatives jrrAj� as well� This proves the theorem�

It is also well known that compact initial submanifolds in euclidean space can
only have a smooth mean curvature �ow evolution on a �nite maximal time
interval ��� T �� A point p � C n is called a blow�up point� if there exists a point
x � Ln such that limt�T Ft�x� 
 p and limt�T jAj��x� 
�� The next Lemma
estimates the blow up rate from below�

Lemma ���� The function maxLt
jAj� is Lipschitz continous and satis�es

max
Lt

jAj� � �

��T � t�
� ����

Proof� Recall that jAj� 
 jhijk j� and that by equation �	�� we have

d

dt
jhijk j� 
 �jhijk j� � 	jrihjklj� � 	jbij j� � 	jAilkm �Aimklj��

�	



Since bij 
 hiklh
kl
j is a quadratic tensor and hence positive semide�nite and

since gijbij 
 jhijk j� 
 jAj�� we estimate

d

dt
jhijk j� � �jhijk j� � 	jAj� � 	jAilkm �Aimklj��

Now since

	jAilkm �Aimklj� � �jAilkmj� 
 �hilnh
n
kmh

il
sh

skm 
 �jbij j� � �jAj�

we conclude that

d

dt
max
Lt

jAj� � ��max
Lt

jAj���

and integrating from t to T implies the result�

Following a similar procedure as above we obtain�

Theorem ���� Let M be a complete K�ahler�Einstein manifold with uniform
bounds on all curvature quantities� Further let Lt be a smooth family of La�
grangian immersions in M evolving by the modi�ed mean curvature �ow �	��
Assume that for t � ��� T � limt�T maxLt

jAj� is bounded� Then there exists an
� � � such that the modi�ed mean curvature �ow admits a smooth solution on
the extended time interval ��� T � ��� If maxjAj� stays uniformly bounded on the
maximal time interval � � t � T � then all higher covariant derivatives jrkAj�
are uniformly bounded as well and the solution for the modi�ed mean curvature
�ow exists for all t � ������

To obtain a Lagrangian immersion with presribed mean curvature form H 
 m
using the modi�ed mean curvature �ow� we will have to prove two things� First�
in order to obtain longtime existence� we need uniform estimates for the norm
of the second fundamental form jAj� 
 hijkh

ijk � In the next step we have to
show that the immersions converge in the C��topology to a smooth limiting
Lagrangian immersion with H 
 m� To prove the latter we will need the results
in the following section�

��� An energy estimate

The next Harnack inequality is Theorem 	��� in ����

Proposition ���� Let L be a compact manifold of dimension n and let gij�t�
be a family of Riemannian metrics on L with the following properties


�a� C�gij��� � gij�t� � C�gij����

�b� j�gij
�t

j�t� � C�gij����

�c� Rij�t� � �C�gij����

��



where C�� C�� C�� C� are positive constants independent of t� If �t denotes the
Laplace�Beltrami operator w�r�t� gij�t� and f is a positive solution for the �heat�
equation

d

dt
f 
 �f�

on L� ������ then for any � � � we have

sup
L

f�t�� � inf
L
f�t���

t�
t�
�
n
� exp�

C�
��

�

��t� � t��
� �

n�C�

	��� ��
� C�C��n�A���t� � t����

where � is the diameter of L measured by gij���� A 
 sup jr� log f j and � �
t� � t� ���

Gau� equations imply that the Ricci curvatures are given by Rij 
 aij�bij � The
evolution equation for the metric d

dt
gij 
 �	�Hn �mn�hnij then implies that

the conditions in Proposition ���� are satis�ed if Lt is a family of Lagrangian
immersions evolving by the modi�ed mean curvature �ow d

dt
F 
 �mn �Hn��n

such that the second fundamental forms satisfy jAj � C uniformly in t and such
that all metrics gij�x� t� are uniformly equivalent to gij�x� ��� On the other hand
the strong parabolic maximum principle implies that � chosen as in Theorem
��� is either identical zero or a positive solution of the heat equation� Similarly
as in ��� we obtain

Lemma ���� Let osc ��t� �
 sup��t� � inf ��t� be the oscillation of �� where
� is the solution of the heat equation given by Theorem 
��� If Lt is a family of
compact Lagrangian immersions in R�n evolving by the modi�ed mean curvature
�ow such that the norm of the second fundamental forms on Lt are uniformly
bounded and all induced metrics gij�t� are uniformly equivalent to gij���� then
there exist constants C�� C� independent of t such that

osc ��t� � C�e
�C�t� 
t � ������ ����

De�ne the following energy

E�t� �

�

	

Z
k�d
t�

where we set

k �
 ��
R
�d
tR
d
t

�

Lemma ���� Under the assumptions in Lemma 
��� we have

E�t� � C	e
�C��t ����

for positive constants C	� C���

��



Proof� d
dt
d
 
 �hH�H �mid
 
 �hH� d�id
 and

R
kd
 
 � give

d

dt
E 


Z
k
�
�k �

�R
d


Z
�hH� d�id
 � �

�
R
d
��

Z
�d


Z
hH� d�id
�

� �

	

Z
k�hH� d�id



 �
Z
jrkj�d
� �

	

Z
k�hH� d�id
�

Now H 
 H �m�m 
 d��m and d� 
 dk give

d

dt
E 
 �

Z
jrkj�d
� �

	

Z
k��jrkj� � hm� dki�d
�

Using Schwarz� inequality we conclude that for any � � � we obtain

d

dt
E � �

Z
jrkj�d
� �

��

Z
k�jrkj�d
� �

�

Z
k�jmj�d
�

Let us now assume that Lt is a family of compact Lagrangian immersions in
R
�n that evolve by the modi�ed mean curvature �ow and which have uni�

formly bounded second fundamental form and uniformly equivalent metrics
gij�t�� Then conditions �a�� �b� and �c� of Proposition ���� are all satis�ed�
Consequently there exists a constant C
 independent of t such that jmj� � C
�
Since osc k 
 osc � we conclude with Lemma ����

d

dt
E � �

C�
�

��
e��C�t � ��

Z
jrkj�d
� �C


	
E�

Since
R
kd
 
 � and all metrics are uniformly equivalent we obtain from

Poincar�e�s inequality that there exists a constant C� � � independent of t such
that Z

jrkj�d
 � C�

Z
k�d
�

Choose � �
 C�

C�
and let t� be such that

C�
�

�� e
��C�t � �

� �
t � t�� Consequently

d

dt
E � ��

	

Z
jrkj�d
� C�

	
E� 
t � t�

� �C�E �
C�

	
E 
 �C�

	
E� 
t � t��

This implies that there exist positive constants C	� C�� such that

E�t� � C	e
�C��t�

��



� Lagrangian graphs over Lagrangian immersions

Let L be a compact smooth manifold of dimension n and assume that G � L�
�C n � J� is a smooth Lagrangian immersion� For i� j� k 
 �� � � � � n let us de�ne

ti �

�G

�xi

ni �
 J�ti�

�ij �
 hti� tji� �ij 
 ��ij�
��

�kij �
 �hrtitj � nki
�k �
 �ij�kij �

where we have used the summation convention� Here xi are local coordinates
for L and J is the usual complex structure on C n � Now assume that uidx

i is a
smooth ��form on L and de�ne a new map

F � L� Lu �
 F �L� � C
n

F �x� �
 G�x� � uk�x�nk�x��

i�e� Lu is a graph over L� 
 G�L�� We introduce the symmetric tensor

Tij �
 �ij � �ijku
k�

As usual let ei �

�F
�xi

� �i �
 J�ei� and let gij � hkij denote the induced metric
and second fundamental form on Lu 
 F �L�� Then we get

ei 
 T l
i tl �Diu

lnl�

�j 
 �Dju
ktk � T k

j nk�

gij 
 T l
i Tjl �Diu

lDjul� ����

where here and in the following a raised index will always be raised with respect
to the metric �ij and D will always denote the Levi�Civita connection w�r�t�
�ij � The only exception will be gij � denoting the inverse of gij � If Tij is positive
de�nite� then F is an immersion� F is Lagrangian if and only if hei� �ji 

�� 
i� j� A short computation shows that this is true if and only if the ��form
sidx

i with

si �
 ui �
�

	
�iklu

kul ����

is closed� The Gau��Weingarten�Codazzi equations for L� are

Ditj 
 �� k
ij nk� ����

Dinj 
 � k
ij tk� ����

Di�jkl 
 Dj�ikl� ����

We have

Disj 
 T l
j Diul �

�

	
Di�jklu

kul� ����

��



In view of ���� we obtain that F �L� is Lagrangian i�

Disj �Djsi 
 T l
j Diul � T l

i Djul 
 �� ��	�

Throughout the rest of this paper we will assume that ��	� is valid� Now assume
that we have a family F of Lagrangian graphs over L� such that

d

dt
F 
 �gmn
m�n

with a family of closed ��forms 
 on L �Recall that 
 must be closed to preserve
the Lagrangian condition�� Then

d

dt
F 
 �gmn
n�T

l
m nl �Dmu

ltl�� ����

On the other hand using ����

d

dt
F 


d

dt
�G� uknk�


 T l
i

dxi

dt
tl �

duk

dt
nk� ����

Combining ���� and ���� we obtain

�gmn
nT
l

m 

dul

dt
� ����

gmn
nDmu
l 
 T l

i

dxi

dt
� ����

Next we compute

dul

dt



�ul

�t
�Diu

l dx
i

dt
����

and

�

�t
sk 
 Tkl

�ul

�t
� ����

But then

�

�t
sk 
 Tkl

�ul

�t


 Tkl�
dul

dt
�Diu

l dx
i

dt
�


 �gmn
nTklT
l

m � TklDiu
l dx

i

dt
� with ����


 �gmn
nTklT
l

m � TilDku
l dx

i

dt
� with ��	�


 �
k � with ���� and ����� ����

Our idea is to use the last equation together with the integrability condition
��	� to rewrite the evolution equation d

dt
F 
 �gmn
n�m in terms of smooth ��

forms sidx
i on L equipped with the �xed background metric �ij � Observe that

��



for Lagrangian graphs over �at Lagrangian immersions the expressions simplify
enormously� Here we have that the two ��forms sidx

i and uidx
i coincide� More�

over �ijk 
 �� Tij 
 �ij � In the �at case the equations for the induced metric
and second fundamental form become

gij 
 �ij �Diu
kDjuk� ����

hkij 
 �DiDjuk� ����

and the ��form uidx
i is closed �Hence Diuj 
 Djui�� From now on we will only

consider the �at case and note that in the general case the previous constructions
and equations can be used to deduce the same as stated in Theorem ��� with
the exception that the constant B now depends also on maxL�

jAj� and that it
is crucial to make sure that the tensor Tij is invertible�

If x� � L is a �xed point and w 
 wk �
�xk

an arbitrary vector in Tx�L�� then the
fact that L� is a �at torus implies that we can extend w uniquely to a parallel
vector �eld on L�� We de�ne the function

f �w
 �
 ukwk� ��	�

We will also denote the second fundamental form w�r�t� w by A�w
� i�e�

A�w

ij �
 hkijw

k� ����

If we choose an orthonormal basis E�� � � � � En such that Diu
k becomes diago�

nal� i�e� Diu
k 
 diag���� � � � � �n�� then we see from ���� that gij 
 diag�� �

���� � � � � � � ��n� and gij 
 diag� �
��	�

�

� � � � � �
��	�n

�� This proves that gij and Diu
k

commute� i�e� we have

gijDju
k 
 gkjDju

i� ����

Using ���� we also obtain

Dif
�w
 
 Diu

kwk� ����

DiDjf
�w
 
 �hkijwk 
 �A�w


ij ����

jD�f �w
j� 
 jA�w
j�� ����

If L is a Lagrangian graph over L�� then we obtain two metrics on L� namely
�ij and the pullback metric of L to L� which is given by gij � Consequently we
can measure the length of a vector w � Tx�L w�r�t� �ij and gij � To destinguish
them we label expressions with � resp� g� e�g�

jwj�
 �
 �ijw
iwj �

jwj�g �
 gijw
iwj �

We compute

jDf �w
j�
 
 �ijriukw
krjulw

l


 �ikriujw
krjulw

l


 �ik�gil � �il�w
kwl


 jwj�g � jwj�
 � ����

��



Moreover if w is an eigenvector of Diu
k with respect to an eigenvalue �� then

jDf �w
j�
 
 ��jwj�
 � ����

Now a family of Lagrangian immersions evolving in R�n will maintain the prop�
erty to be a graph over L� if and only if all eigenvalues of the quadratic matrix
Diu

kDjuk stay bounded� By ���� this is equivalent to require

jDf �w
j�
 ��

for all w � TL��

It is desirable to derive uniform bounds for the eigenvalues of Djui�

Proof of Theorem ���� We need the evolution equation for jDf �w
j�
 � Since
m 
 df 
 � we compute

�

�t
jDf �w
j� 
 	Dkf �w
�e�Dkf

�w
 �Dkg
ijDiDjf

�w
�


 e�jDf �w
j� � 	gijDiDkf
�w
DjD

kf �w


� �gknglmDiDmusDnu
sDif �w
DkDlf

�w


which directly followed from

�

�t
f �w
 
 e�f �w
�

where e� 
 gijDiDj is the normalized Laplacian� At a �xed point �x�� t�� let
w be an eigenvector of Dlu

k with respect to an eigenvalue �� Choose normal
coordinates �xi�i�������n around x� such that Diu

k becomes diagonal� After
rotating the coordinate system if necessary we can assume that w 
 �

�x�
� Then

� �gknglmDiDmusDnu
sDif �w
DkDlf

�w



 ��
nX

k�l��

��k
�� � ��l ��� � ��k�

�DkDlf
�w
��

� �max
k

j ��k
� � ��k

j
nX

k�l��

�

� � ��l
�DkDlf

�w
��

� 	

nX
k�l��

�

� � ��l
�DkDlf

�w
�� 
 	gijDiDkf
�w
DjD

kf �w


provided all eigenvalues �� �k satisfy j�j � �� Consequently we must have

�

�t
jDf �w
j� � e�jDf �w
j�

as long as all eigenvalues � satisfy �� � �� Then the parabolic maximum
principle proves that jDf �w
j� remains uniformly bounded in t and consequently
by ���� �� stays bounded by the initial bound �� ��

��



� Longtime existence

The evolution equation for the closed ��forms s 
 u 
 ukdx
k ���� with 
 


H � df 
 d� implies that the cohomology class of ukdx
k is �xed for all t�

Consequently there exists a smooth family of functions � such that

u 
 �u� � d��

�

�t
� 
 �� ����

where as usual we abbreviated the harmonic part of u by �u�� We de�ne the
normalized function

v �
 � �
R
L
�d
�R

L
d
�

� ����

where d
� denotes the induced initial volume element on L� Let us assume that
all third order derivatives of v are uniformly bounded� Since

R
vd
� 
 � we see

that this implies uniform bounds on all lower order derivatives and then also
uniform bounds on all derivatives of ukdx

k up to second order� Then as in ���
we conclude

Proposition ��� Let u 
 s be the solution of ���� with 
 
 d� 
 H � df on
the maximal time interval � � t � T � Further let v be the normalization of u as
de�ned in ����� Assume that the second fundamental forms of the Lagrangian
graphs corresponding to the generating ��forms u are uniformly bounded in t�
Then the C��norm of v is uniformly bounded for all t � ��� T � and consequently
T 
 �� Moreover there exists a time sequence tn � � such that v�x� tn�
converges in the C��topology to a smooth function v��x� on L as n���

Hence we see that the solution for the modi�ed mean curvature �ow in �at
cotangent bundles exists for t � ����� if jAj� is uniformly bounded and that
under this assumption a subsequence of the normalized function v converges in
the C��topology to a smooth limit function v�� We will now use Lemma ����
together with our energy estimate ���� to investigate this in more detail�

Theorem ��� Make the same assumptions as in Proposition ���� Then the
normalized function v converges in the C��topology to a smooth limit func�
tion v� such that the Maslov form Midx

i of the Lagrangian immersion in R�n

induced by v� is given by �
�
df �

Proof� We want to control the L��norm of v� For t � s we computeZ
L

jv�x� t�� v�x� s�jd
� 


Z
L

j
Z t

s

�v

��
�x� ��d� jd
�

�
Z
L

Z t

s

j�v
��

�x� ��jd�d
�




Z t

s

Z
L

j��
��

�
R

��
��
d
�R

d
�
jd
�d��

	�



By equation ���� we have ��
��
�x� �� 
 ��x� ��� Therefore

��

��
�
R

��
��
d
�R

d
�

 ��

R
�d
�R
d
�

and thenZ
L

jv�x� t� � v�x� s�jd
� �
Z t

s

Z
L

j��
R
�d
�R
d
�

jd
�d�

�
Z t

s

Z
L

jkj� j
R
�d
tR
d
t

�
R
�d
�R
d
�

jd
�d��

Since for all �� t

inf
x�L

��x� �� �
R
��x� ��d
tR

d
t
� sup

x�L
��x� ���

we must have

j
R
�d
tR
d
t

�
R
�d
�R
d
�

j � osc ��

From H�older�s inequality we obtainZ
L

jv�x� t� � v�x� s�jd
� � �

Z
d
��

�
�

Z �

s

�

Z
L

k�d
��
�
� d� �

Z
d
�

Z �

s

osc �d��

Since all metrics are uniformly equivalent and L is compact we can �nd a positive
constant C�� such thatZ

k�d
� � C��

Z
k�d
t 
 	C��E�

Then equations ���� and ���� imply the existence of two positive constants
C��� C�� such thatZ

L

jv�x� t� � v�x� s�jd
� � C��

Z �

s

e�C���d��

This shows that v is a Cauchy sequence in L�� Since we have already shown in
Proposition ��� that one can extract a subsequence that converges in the C��
topology to a smooth limit function v� it follows by standard arguments �e�g�
see ���� that v converges to v� in C�� Using the estimate for the oscillation
of � and the fact that d� 
 H � df we see that � converges to a constant and
H � df tends to zero� Since the Maslov form Midx

i is given by Mi 

�
�
Hi we

obtain the theorem�

Now we introduce these quantities

S� �
 DlukD
luk 
 jDlukj��

S� �
 DlDmukD
lDmuk 
 jDlDmukj��

	�



From equation ���� we obtain

�

�t
du 
 �d��

where � is the function de�ned as in Theorem ����

If ��� � � � � �n are the n eigenvalues of Dlu
k then we set

	k �
 �arctan�k 
 �arg�� � i�k��

De�ne

a �
 Im�detC ��
k
l � iDkul���

b �
 Re�detC ��
k
l � iDkul���

Di�erentiating arctan�a
b
� and using equations ���� and ���� we conclude that

the Lagrangian angle 	� i�e� the potential for H � is given by

	 
 	� � 
 
 
� 	n 
 � arctan�
a

b
�� ��	�

The evolution equation ���� can be viewed as a parabolic equation of Monge�
Amp�ere type in the following way� a and b are the imaginary and real parts of
detC ��

k
l � iDkul� and a� � b� 
 detR��

kjgjl�� Thus

detC ��
k
l � iDkul�p

detR��kjgjl�



b� iap
a� � b�


 e�i� �

Consequently

	 
 i log�
detC ��

k
l � iDkul�p

detR��kjgjl�
�� ����

Moreover d� 
 d	 � df �

Remark� It is actually not a restriction to assume that ukdx
k is exact� To

see this observe that the harmonic ��forms on L are exactly those forms of the
form cidx

i� where ci are constants� Using the Hodge decomposition theorem we
�nd that ukdx

k can be decomposed into eukdxk� ckdx
k� where eukdxk is exact on

L� By letting

eu�x� t� �
 u�x� t�� cix
i

we obtain

euk 
 uk � ck�eukl 
 ukl�

�

�t
eu 


�

�t
u�

Consequently eu is also a solution of ����� Choosing the right constants ck we can
assume that eukdxk is exact� This transformation corresponds to an isometry �a
translation� since the height function uk gets transformed into the new height
function euk 
 uk � ck�

		



In view of the last remark we will now assume w�l�o�g� that ukdx
k 
 du is exact

�on the torus L��� Integrating equation ���� then implies that we can �nd a
smooth family of functions ��t� depending only on t such that

�

�t
u 
 arctan

�a
b

�
� f � �� ����

On the other hand if ��t� is a smooth family of functions for which ���� admits a
solution u� then the Lagrangian graphs generated by du solve the modi�ed mean
curvature �ow� We can therefore choose � 
 �� The modi�ed mean curvature
�ow then boils down to solve the nonlinear parabolic PDE�

�

�t
u�x� t� 
 arctan

�a
b

�
� f� ����

u�x� �� 
 u��x��

where u��x� denotes the initial generating function� Corollary ��� implies

Lemma ��� If u is a smooth family of functions solving ����� then

min
L

�

�t
uj� � min

L

�

�t
ujt � max

L

�

�t
ujt � max

L

�

�t
uj��

osc
�

�t
ujt � osc

�

�t
uj��

We obtain the following evolution equations

�

�t
uk 
 e�uk � fk�

�

�t
S� 
 e�S� � �gisgjtuklu r

t usrluijk ����

� 	gijukljukli � 	uklfkl�

�

�t
S� 
 e�S� � 	gisT jkp

s Tijkp

� ��gjngkmgstu r
n u q

m u l
sr upklu

a
tq upja

� �gisgjtu rp
t u l

sr u
k

ij upkl

� �gisgjngtbuabu
r
t u

ap
n usrluijku

kl
p

� �	gisgjngtbuanu
r
t ubapusrluijku

pkl

� 	upklfpkl� ����

where for simplicity we have set fkl 
 DkDlf� ukl 
 Dkul� uklj 
 DkDluj etc�
and

Tsjkp �
 usjkp � ��ijg
itutru

rl
s upkl

We can estimate

��gjngkmgstu r
n u q

m u l
sr upklu

a
tq upja � ��S�S

�
�

	�



and similarly

��gisgjtu rp
t u l

sr u
k

ij upkl � �S�
� �

�gisgjngtbuabu
r
t u

ap
n usrluijku

kl
p � �S�S

�
� �

�	gisgjngtbuanu
r
t ubapusrluijku

pkl � �	S�S
�
� �

�	giju kl
i ujkl � �	 S�

� � S�
�

Using Schwarz� inequality and the previous estimates together with the evolution
equations for S� and S� we get the following inequality for q �
 cS� � S� with
a constant c to be determined later

�

�t
q � e�q � �qS� � 	c

S�
� � S�

� ��S�S
�
� � c�q �

c� �

c�
M�� ����

where M� is de�ned as

M� �
 maxfsup
L

jDkDpf j�� sup
L

jDkDqDpf j�g�

and � � � is arbitrary� We will need the next Lemma�

Lemma ��� Let � be a closed smooth ��form on a compact orientable connected
Riemannian manifold �L� �ij� of diameter �� If ��� denotes the harmonic part
of � then for any x� � L we obtain the inequality

j�j�x�� � max
L

j���j� �max
L

jD�j� ����

Proof� Dj�j exists whenever j�j � �� If j�j�x�� 
 � we are done� Otherwise
we destinguish two cases� If j�j�x� �
 �� 
x � L� then we use the decomposition
theorem to split � into a harmonic part and an exact part� i�e� � 
 ��� � d�
with a smooth function �� Let x be a point where � assumes its minimum
and choose a smooth curve 	 of length smaller than � connecting x� and x�
Integration gives

j�j�x�� 
 j�j�x� �
Z
�

dj�j

� j���j�x� � �max
L

jDj�jj
� max

L
j���j� �max

L
jD�j�

where we used that

jDj�jj� 
 �

j�j�Dj�i�
jDk�

i�k � Dj�iD
j�i 
 jD�j��

If j�j�x� 
 � somewhere on L we can �nd a smooth curve 	 of length smaller
than � connecting x� and a point x � L with j�j�x� 
 � in such a way that
j�j�y� �
 � for all points y �
 x on 	� Integrating gives

j�j�x�� 
 j�j�x� �
Z
�

dj�j

� �max
L

jDj�jj
� max

L
j���j� �max

L
jD�j�
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Theorem ��� Let L be a compact �at n�dimensional Riemannian manifold
of diameter � and let c �
 �

�n�� � Assume that ukdx
k is a smooth family of

��forms generating Lagrangian graphs F �x� 
 �x� u��x�� � � � � un�x��� x � L in
the cotangent bundle �with induced �at metric� of L that evolve according to the
modi�ed mean curvature �ow d

dt
F 
 gij�dif�Hi��j � where df is the di�erential

of a �xed smooth function f on L with

M� � c

c� �
�
c

��
���

and M� is de�ned as

M� �
 maxfsup
L

jDkDpf j�� sup
L

jDkDqDpf j�g�

If q �
 cS� � S� satis�es

q �
c

��
� at t 
 ��

then

q �
c

��
� 
t�

In particular the modi�ed mean curvature �ow exists for all t � ����� and the
smooth ��form du 
 ukdx

k converges in the C��topology to a smooth limit ��
form du� such that the mean curvature form Hidx

i of the Lagrangian graph
generated by du� is given by the ��form df �

Proof� Let us assume that �x�� t�� � L� � ��� t�� with t� � � is a point where
q�x�� t�� 


c
�� 
 maxL�����t�� q� Let h��
� � � � � h�n
 be a set of n harmonic and

even parallel ��forms on L� such that

nX
w��

h�w
ih�w
j 
 �ij ����

�Here we assume that �xi� are normal coordinates�� For each w 
 �� � � � � n de�ne
the function

f�w
 �
 uih�w
i�

We apply Lemma ����� to f�w
 and sum over w to obtain

S� 


nX
w��

Diujh�w
jDiu
lh�w
l 


nX
w��

jDf�w
j�

� ��
nX

w��

max
L

jD�f�w
j� � n��max
L

nX
w��

jD�f�w
j�

� n��max
L

S��
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Consequently

q�x�� 
 cS��x�� � S��x�� � cn��max
L

S� � S��x�� � cn��q�x�� � S��x�� ����

from which we conclude that at �x�� t��

S��x�� � ��� cn���q � q

	
�

Then inequality ���� implies with � 
 �
�

� � �

�t
q � �qS� � 	c

S�
� � S�

� ��S�S
�
� � c�q �

c� �

c�
M�

�

� �q� � 	c���� cn���
q

c� q
�

��

c
q� �

c

	
q � 	

c� �

c
M�

�


 c��
�

	��
� �

��
�

��

��� 
 	� �
�

���
� � 	

c� �

c
M�

�

� c��
�

	��
� �

��
�

��

��� 
 	� �
�

���
�

	

���
�

� ��

This contradiction proves that q � c
�� for all t� But this proves that jAj� is

uniformly bounded for all t and that the Lagrangian submanifolds stay graphs
over the zero section� Then the theorem follows from Theorem ��	�

Proof of Theorem ���� This is now an easy consequence of Theorem ����
Assume f is chosen such that

maxfsup
L

jDkDpf j�� sup
L

jDkDqDpf j�g � c

c� �
�
c

��
���

Choose the zero section in T �L as the initial Lagrangian graph� Since the ��
forms ukdx

k evolve by an exact form it follows that ukdx
k stays exact�

Proof of Theorem ���� Again we use Theorem ���� The evolution equation
for uk in the case f 
 � is given by

�

�t
uk 
 e�uk�

Applying the Harnack inequality ���� we can derive the estimate

osc�uk� � ce�	t�

for two positive constants ��C� This proves that uk converges to a constant and
therefore du� 
 ��

Let us end this article with a last observation� In the special case n 
 � the
metric can be written as g 
 � � �u����� Let � �
 u��� Then S� 
 �� and the
evolution equation ���� reduces to

�

�t
�� 
 e��� � 	���� � ��

�����

�� � ����
� 	�f �� � e��� � 	�f ���
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Since f �� is �xed in t and therefore bounded we can conclude that �� can grow at
most exponentially in t� i�e� there exist constants k� l depending only on max f ��

such that �� � kelt� In particular �� is bounded on any �nite time interval� This
proves that a periodic curve over R evolving by the modi�ed mean curvature
�ow must stay a graph over R and it also proves longtime existence for the
�ow� Although the modi�ed �ow for periodic graphs over R always admits a
longtime solution it does not necessarily converge to a smooth limiting graph
with H 
 df � An example is illustrated in Figure �� One can see that the height
increases exponentially fast� On the other hand the �ow cannot converge since
the Lagrangian angle for a periodic graph over the real axis in R� �this serves
as a model for the cotangent bundle of S�� must lie between ��

� and �
� � This

is not the case for the given function f �
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