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Abstract

We formulate and apply a modified Lagrangian mean curvature flow to
prescribe the Maslov form of a Lagrangian graph in flat cotangent bundles.
We prove longtime existence results based on a new energy estimate. In
addition we derive miscellaneous results both for the Lagrangian mean
curvature flow and the modified flow. Examples and counterexamples are
given.

1 Introduction

Let (T*L,g,J,o) be the cotangent bundle of a compact, orientable, flat, n-
dimensional Riemannian manifold L equipped with the flat metric g, the stan-
dard complex structure J and the standard symplectic structure o(V, W) :=
g(JV,W). A submanifold Ly C T*L is called Lagrangian if w := |, = 0. As-
sume Lg is a Lagrangian submanifold which in addition is a graph over the zero
section L in T* L. We study the evolution of Ly under the modified Lagrangian
mean curvature flow

%Ft =g (dif — Hi)vj, (1)
where F; : L — L; := F;(L) C T*L is a smooth family of diffeomorphisms,
H = H;dx' is the induced mean curvature one-form on L, df = d;fdx’ is the
differential of a fixed smooth function on L, v; = J (%) and g% is the pull-back
of the induced Riemannian metric.

By Bieberbach’s theorem (e.g. see [9] and [30]) we know that this is the same as
analyzing the modified mean curvature flow for Lagrangian graphs sitting in the
standard Euclidean space C" which can be written as graphs over a compact
fundamental domain L = 7" C R* C C" of a flat torus.

(1) is a coupled system of nonlinear parabolic equations and for compact initial
data always admits a smooth solution on a maximal time interval [0,7). By the
Codazzi equation it follows that the condition to be Lagrangian is preserved.
The property to be Lagrangian is an integrability condition. If one looks at



the induced evolution equations for the n different height functions uy then the
Lagrangian property together with the Codazzi equations imply the integrability
of (1). This yields the Monge-Ampeére type equation (65).

Remark: The evolution (1) becomes stationary if the mean curvature form
equals the differential of f. Hence the modified mean curvature flow is an at-
tempt to prescribe the form H by df. We will later see that there are certain
natural restrictions on the class of functions f for which (1) can have a longtime
solution. The mean curvature form (see below for the definition) of Lagrangian
graphs over the zero section in cotangent bundles is always exact.

Our main theorem can be stated as follows

Theorem 1.1 Let L be a compact flat n-dimensional Riemannian manifold of
diameter 0. Then there exists a constant B depending only on n and 6 such that
for all smooth functions f with

Ifllcs < B

we can find a Lagrangian submanifold in T*L (equipped with the standard sym-
plectic structure and flat metric) with mean curvature form H = df that can
be represented as a graph over the zero section in T*L. In particular the mod-
ified mean curvature flow with Lo being the zero section in T*L exists for all
t € [0,00) and the flow smoothly converges in the C°°-topology to a smooth
limiting Lagrangian graph over L with H = df .

Remark: From the proof of Theorem 1.1 it will become clear that one can take
any f for which

c C\2
c+1(1_7)

rnax{mLax |D2f|2,mLax |D3f]?} <

. __ 1
with ¢ := 5737 -

If Ly is a Lagrangian graph over the zero section in the cotangent bundle of
a compact, orientable flat Riemannian manifold L, then by the Lagrangian
condition the n different height functions uy all stem from one potential « that
can be globally defined on L. On the other hand all maps F' : L — T*L with
F(z) := (z,du(z)) are Lagrangian graphs.

The mean curvature flow for hypersurfaces has been studied extensively by
many authors (e.g. [1], (2], [4], [3], (6], (7], (10], [11], [12], [14], [15], [16], [17),
[21], [24], [25], [28], [29]). The mean curvature flow in higher codimension is an
extremely subtle problem. Almost nothing is known. One of the few results is
the existence theory for a weak formulation of the flow (see [4]) and results on
the curve shortening flow in R® [3]. In the Lagrangian category we are able to
prove the following stability result which is (as far as we know) the first stability
result in higher codimension:



Theorem 1.2 Let L be a compact flat n-dimensional Riemannian manifold of

diameter § and let ¢ := ﬁ. If for a smooth function u : L — R

F : L->T'L
F(z) = (z,du(x))

is a Lagrangian graph over L such that q := cSa + S3 with Sy := |D*u| satisfies

< c

q 50’

then this remains true under the mean curvature flow (f = 0) and (1) admits

an immortal solution such that the Lagrangian submanifolds L; converge in the
C-topology to the zero section L ast — oco.

For hypersurfaces in R"™! that can be written as graphs over R” it is well
known that the property to be a graph remains true (see [13]). Unfortunately
a corresponding result in higher codimension is not known and in general this
might be wrong. However in the Lagrangian case we will prove:

Theorem 1.3 Let M := T*L be the cotangent bundle of a compact, flat Rie-
mannian manifold L equipped with its standard complex structure and flat met-
ric. Further let Ly be a family of Lagrangian submanifolds in T*L defined by
closed 1-forms uy(x,t)dz* evolving from Lo by its mean curvature. If att = 0 all
eigenvalues A of the Hessian D;ju satisfy \* < 1 — € with a constant 0 < e < 1,
then this remains true on L.

In the case n = 1, i.e. for periodic graphs over R we will prove that (1) always
admits an immortal solution but that in most cases we do not get a convergence
result as described in Theorem 1.1. The reason is that the flow exists as long
as it stays a graph (see below for details) which is always true although the
slope might increase exponentially fast. On the other hand convergence of H
to df can only occur if osc(f) < m. One example of this phenomenon is given
in Figure 1. In contrast to this case we do have convergence in Figure 2.

Now we want to explain our motivation for this paper. First note that by the
Lagrangian condition the complex structure J maps normal vectors to tangent
vectors. Hence the mean curvature vector field H gets mapped to a vector field
tangent to L. Using the induced metric it is easy to see that this gives a one-
form on L. This one-form will be called mean curvature form H = H;dz’.
It is an easy consequence of the Codazzi equations (see below) that H is closed.
Let us now briefly recall the construction of the Maslov form for Lagrangian
immersions in R?". First consider the Grassmannian G(n,2n) of n-dimensional
oriented planes in R2” = R™ @ iR" and denote by LAG C G(n,2n) the subset
consisting of all Lagrangian planes. Since the unitary transformations U(n)
act transitively on LAG and the isotropy group at p = R* C R @ iR" is
given by SO(n) one observes that LAG can be identified with U(n)/SO(n). An
immersion in R?" is Lagrangian if and only if its Gauss map defines a section
in LAG. Given a Lagrangian immersion L in R*" we obtain the following map:

L — LAG = U(n)/SO(n) — S*
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Figure 1: A curve evolving under the modified mean curvature flow %F =
(Vif — H)v;. Here f(x) = 10sin(3z). The oscillation of f is bigger than w
and consequently the flow cannot converge to a smooth line with curvature form
H = df. Nevertheless we have longtime existence and the curves which evolve
from the real axis stay graphs over the initial curve for all times.

p— TpL— Ay — detc Ay

where A, is the element in U(n)/SO(n) determined by the identification of
LAG and U(n)/SO(n). Writing detA, as '™ with a multivalued function
one obtains that dvy is a well defined closed 1-form on L, the so called Maslov
form. It has been shown by Morvan [18] that dy = L1H. This relation is very
similar to the one which states that up to a constant factor 27 the Ricci form
on a Ké&hler manifold equals its first Chern form. It is often useful to compare
the Ricci flow % 9ij = —R;; and the mean curvature flow. In [8] Cao has shown
that a modified Ricci flow can be used to deform a given Kahler metric with first
Chern class ¢; to any other Kahler metric with the same Chern class. Assuming
that the Lagrangian immersion in C* evolves according to %F = —0#*yy, the
evolution equation for the mean curvature form (see (18)) is

d
—H =dd'f.

dt
If we now choose a closed 1-form m and set 8 := H — m, we obtain a flow that
will become stationary if and only if H = m. Moreover since m is fixed we

observe that

d
E(H —m) =dd' (H —m)
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Figure 2: A periodic graph over the real line in R® evolving under the modified
mean curvature flow %F = (Vif — HY)v; (as a model for the modified mean
curvature flow in the cotangent bundle of S' equipped with the flat metric of
a cylinder). The figure shows the space-time Lo x [0,T] with Ly = [—7, 7]
and T = 3. The curves evolve exponentially fast from the zero section (t = 0,
i.e. from the front line) to a curve with curvature form H = df, where f =

Toog log(1 + 1 sin(3x)).

and this implies that [H — m] does not change. The solution to the PDE

SF = —(H ), @
where m;dz? is a fixed closed 1-form on L will be called modified mean curvature
flow. For m = 0 we obtain the Lagrangian mean curvature flow. For cotangent
bundles we simply set m = df since H is always exact in these cases. Having
in mind the corresponding result for the Kihler-Ricci flow one is tempted to
conjecture that in the case [H — m] = 0 one can use the modified LMCF to
deform a given initial Lagrangian immersion with Maslov class m; to a new
Lagrangian immersion with prescribed Maslov form m in the same cohomology
class. That this in general is wrong, at least in the smooth setting, can be
easily seen by considering the Whitney spheres. These can be constructed in
the following way: Consider the map

f : R

1
m(ml, .. .,.Z’n,l’n+1$1, e ,.Z’n+137n)

and let
f= T\SncR"-H' (3)



Then f defines a Lagrangian immersion of S™ into C"*. This immersion is called
Whitney sphere and will be denoted by W™. Using the orthogonal projections
'/Tl('rlamzvylvyz) = ($2,y1,y2)

71,3(;1:1,:1:2,yl,yZ) = (2131,.’,132,312)

one can illustrate the shape of W? as shown in Figure 3.

Figure 3: The Whitney sphere

Here the mean curvature form is exact and hence the Maslov class vanishes.
But since there do not exist compact minimal submanifolds in R?>" we see that
the modified LMCF cannot always have a longtime solution in time for which
H tends to a fixed but arbitrary exact 1-form m.

The last example points out that there is a qualitative difference between the
modified Lagrangian mean curvature flow and the modified K&hler Ricci flow.

The theory of Lagrangian immersions in a given Calabi-Yau manifold is very



important. E.g. in the well-known paper by Strominger, Yau and Zaslow [26]
it has been conjectured that the moduli space of special Lagrangian (these are
minimal and Lagrangian) tori in a given Calabi-Yau manifold can be used to con-
struct its mirror partner. While several geometers studied minimal Lagrangian
immersions (e.g. see the article of [19] for an overview) the question which closed
1-forms m can be realized as the mean curvature form (or Maslov form) of a
Lagrangian immersion is widely open. It should be noted that this problem is
the Lagrangian analogue to the question arising in the theory of hypersurfaces
with prescribed mean curvature. For minimal Lagrangian immersions of com-
pact, orientable manifolds in hyperK&hler manifold we recently deduced [23]
that the second Betti number must be bigger than 1 and that they are Kahler
submanifolds (w.r.t. one of the other complex structures) if the second Betti
number is one.

The paper is organized as follows: In chapter 2 we introduce notations and
recall basic geometric identities for Lagrangian submanifolds. In section 3 we
will briefly discuss Lagrangian variations and then state the evolution equations
for various geometric quantities. In additition we state a useful representation
formula and show that the modified flow exists as long as the second fundamental
form stays bounded. The energy estimate which is a key ingredient to prove
our main theorem will be provided in section 3.1. In chapter 4 we control the
condition to be a graph and the paper ends with chapter 5 where we finally
prove longtime existence.

2 Geometric identities

Assume that (y*)q=1,..2n are local coordinates for R?", that doubled greek
indices are summed from 1 to 2n, that 7 = 7, dy® @ 505 denotes the standard
complex structure on R?>" and that @ = (J-,-), where (") = Fopdy® ® dyf is
the standard inner product. Then

— B a < 8

Jo Iy = =0, (4)

=7 Y— = 7= —
Wapg = Joc g’yﬁ = _J,6’ Jya = —Wpa- (5)

Now assume that F : L — R?" is a Lagrangian immersion. If (m’)lzln are
local coordinates for L, then we set

OF -
e; 1= Ere ; v = Je;.
Note that by the Lagrangian condition v; is a normal vector for any i = 1,...,n.

The second fundamental form on L can then be defined as
hijk := —(Vi, Ve, €x)
and the mean curvature 1-form H;dz' is given by

H; = g"hi,



where ¢ is the inverse of the induced Riemannian metric gi; and we sum
doubled latin indices from 1 to n. Hence the inward pointing mean curvature
vector can be written as

ﬁ = —gZJHZ'l/j.
We also introduce
At = hyinh"y,
at = Al = H"hyw,
bkl = Aklli = hk Jhijl.

Let us denote the Christoffel symbols for the Levi-Civita connection V on R*»
by ng and let us also set

= 0
Y
]-—‘Otﬂ = Fa,@ —ay’y .

The Christoffel symbols for the induced Levi-Civita connection on L will be
written without a bar, i.e. in the form I‘;k To distinguish objects on the
ambient space from the corresponding induced objects on L we will often use a
bar for the ambient objects. Then we obtain the following equations:

hijk = hjir = hjr, (6)
_hjknyn = @ek —Then + fa,ge;?‘e’g, (7)
hjknen = wyk —Thvn + Tagej‘y,’f, (8)
a T e}
hije = —{z5€i+Tase; e, vi), 9)
Gauss equation : Ry = Aiji — Aujk, (10)
Codazzi equation :  V;hjp — Vil =0, (11)
traced Codazzi equation : Vi H, —V,H, =0. (12)

We also have the following Simons type identity:

Lemma 2.1
Ahn = ViVHy
+ aishsjk - bishsjk - bjshskz' - bkshsi]‘ + Zhinmhjmshksn. (13)

3 Variations of Lagrangian immersions

We mention that Oh [20] studied normal variations of an initial Lagrangian
immersion Lo in Kéhler manifolds. Let Fy : L x (—¢,e) — R2" be a smooth
family of Lagrangian immersions. The deformation vector field (or velocity) at
time ¢ = 0 is given by V := %lt:OFt. Since we assume that Ly is Lagrangian
we can write V in the form

V= —kak + )\kek.



Tangential variations do not alter the shape of an immersion L and merely
correspond to the diffeomorphism group acting on L but they are often useful
to reparametrize a given immersion. Hence without loss of generality we can
assume that A\ = 0. The induced metric g on Ly can be used to identify the
vector field Qka% with a 1-form on Lg, namely 8dz* = gp8'dz*. In the sequel
this form will be called deformation 1-form. One can then compute the evolution
equations for various geometric objects:

Proposition 3.1
d

dtu:ogj ! ()
a duy = —0'H;d (15)
dt\t:O re= i

R (16)
dt|t=0 v © Y

d
- hijk = i 0, — 0" Azn Ai'n? 1
dt |t=0 Jk ViV (Aijin + Akijn) (17)
d

dt|t=0 ( )

where dt6 is shorthand for V6;.

In view of equation (16) we see that the Lagrangian condition w;; = @(e;,e;) =0
is preserved only if 8 is closed. If 4 is exact, then this will be called a Hamiltonian
variation. In the case where § = H we can compute

Proposition 3.2
d

E’gij = —2aj, (19)
%du = —|Hi|*dp, (20)
%hijk = ViV;Hp — H"(Aijkn + Akijn), (21)
%H = dd'H. (22)

To rewrite equation (21) we use equation (13) and see that

Proposition 3.3

d

Thige = Mgt = R%haje = By haki = Rihiy = 2hi, by, hy "

where R;° :=a;° — b,° is the induced Ricci curvature.

In addition



Proposition 3.4

%Hi = AH; — R °H,. (23)

The evolution equation for A;;; is given by

Proposition 3.5

d
aAz‘k]’l = AAjji —2V™R" ;. Vi haji

R Agkji — Ry® Agiji — R} Astir, — By Agjin
+ 2bn5hnzkhs]l - 2Aitk5Ajlts - 2AjtlsAikts.

The proof of these equations is a straightforward computation. We also have

Proposition 3.6

d
Eaik = Aa,-k — Qthm'kvan — Risask — Rksasi
+ 2a™" (Azkmn - Aimnk): (24)
d
b = by — 2V VR

— R;°bsj — R;"bsi + 2(Aitkm — Aimrr) (4 tm A; Tk (25)

Let us also write A = hjjpdz! @ do? ® dz*. Then |A|? = |hiji|* = ¢"b;; and
|Hi|> = g% ai; imply

Proposition 3.7

d . . .
E|Hz|z A|HZ|Z —2|V¢Hj|2 +2|ai]‘|2, (26)

d . . . . .
E|hz’jk|2 = Alhiel* = 2|Vihju* + 20bi1* + 2| Aitkm — Aimra . (27)

From the evolution equation of the mean curvature form (18) under the modified
mean curvature flow we can deduce the following important result for the 1-form
H-—m:

Lemma 3.8 (Representation formula) Assume that Ly = F;(L) is compact,
orientable and evolves under the modified MCF (2) and let A; be the Laplace-
Beltrami operator at time t w.r.t. the induced metrics g;;(t). If (H —m)(0) is
exact, then there exists a unique smooth family of functions s on L such that

(H —m)(t) =day

d

—ap = A

ot tQ

min ag = 0.
L

10



Proof: Compare with Lemma 2.4 in [22]. o
The parabolic maximum principle implies

Corollary 3.9 Assume that L is a compact, orientable Lagrangian immersion
evolving by the modified MCF and that [H] = [m]. Let oy be the functions
defined as in Lemma 3.8. Then

minay <mina; < maxa; < maxag,
L L L L

oscay < 0S8cqy.

For hypersurfaces it is well known (see [16], Theorem 8.1) that the mean cur-
vature flow for closed initial data has a smooth solution as long as the norm of
the second fundamental form |A|* stays bounded. In other words a singularity
can only form if the curvature blows up somewhere. We will see that this also
holds in the Lagrangian setting.

Theorem 3.10 Assume that for t € [0,T) Ly is smooth family of Lagrangian
immersions in a Kihler-Einstein manifold M>™ evolving by its mean curvature,
that all ambient curvature quantities V'R are bounded by a constant C,. and that
lims,7 maxy, |A|2 1s bounded. Then there exists an € > 0 such that the mean
curvature flow admits a smooth solution on the extended time interval [0,T +€).

Proof:  We will prove this only in the euclidean case. The proof for the
general case is similar and repeatedly uses the equations of Gaufl, Weingarten
and Codazzi. Let us write any contraction of two tensors S and T by S T
and let ¢, be any constant depending only on r. We claim: For any r > 0 the
evolution equation for V" A can be expressed as

d T T k l m
EvA:AvA+crk+l§mv AxVIAx V™A, (28)

To prove (28) we observe that

d d d

where T is an arbitrary tensor and I' denotes the connection. Since

O = S0 (Vi a) + Vi) — Vil i) = ed = VA
we get
iVT: ViT—kcA*VA*T. (29)
dt dt
On the other hand
VAT = AVT + cAx AxVT +cAxVAxT (30)

11



as can be seen by applying the rule for interchanging derivatives twice and by
using the Gaufl equations. Consequently

(%—A)VT:V((%—A)T)+CA*A*VT+CA*VA*T. (31)

Now equation (3.3) tells us that

%A:AA+COA*A*A.

and using this together with equation (31) it follows by induction that (28)
holds. Let again T be any tensor. Then

%TP = cA*A*T*T+2<T,%T>
= A|T|2—2|VT|2+2<T,(%—A)T}+cA*A*T*T.

Applying this to T'= V" A we obtain

di|VTA|2 = AIVTAP =2V AP + 6,V Ax Y VFAxVIAxVTA
¢ k+l4+m=r
(32)

Now assume that |V*A4|? is uniformly bounded on the time interval [0,7") for
0 < k <r —1. Then the evolution equation (32) and Schwarz’ inequality show
that there exists a constant ¢ depending only on r and on the bounds for |V* 4|2
such that

d

VAP < AJVTAP 4V AP,

provided r > 1. Consequently |V"A|? can grow at most exponentially on [0, T),
proving a uniform bound for |[V" AJ? also. Thus a bound for |A|? implies bounds
for all higher derivatives |[V"A|? as well. This proves the theorem. ]

It is also well known that compact initial submanifolds in euclidean space can
only have a smooth mean curvature flow evolution on a finite maximal time
interval [0,7"). A point p € C" is called a blow-up point, if there exists a point
x € L™ such that lim;_,7 F;(z) = p and lim;_,7 |A|*(z) = co. The next Lemma
estimates the blow up rate from below:

Lemma 3.11 The function maxy, |A|? is Lipschitz continous and satisfies

1

AP > ——
max |41 > 57—

(33)

Proof: Recall that |A|]> = |h;jx|? and that by equation (27) we have

d
a|hijk|2 = Alhiji|* = 2|Vihjr)? + 2|bij | + 2| Aikm — Aimit]*-

12



Since b;; = hirh* j is a quadratic tensor and hence positive semidefinite and
since g¥b;; = |hiji|* = |A|?, we estimate

d .
E|hz’jk|2 < Alhijrl? + 2|A* + 2| Ajgom — Aimr |-
Now since
2| Aitkm — Aimrt > < 4 Aitkm|* = 4hinh" g B B = 4]0y < 4] A
we conclude that
i max|A|2 < 6(rna}<;|A|2)2
dt L. - L,
and integrating from ¢ to 7" implies the result. m]

Following a similar procedure as above we obtain:

Theorem 3.12 Let M be a complete Kdhler-FEinstein manifold with uniform
bounds on all curvature quantities. Further let Ly be a smooth family of La-
grangian immersions in M evolving by the modified mean curvature flow (2).
Assume that for t € [0,T) lim;_,r maxy, |A|? is bounded. Then there exists an
€ > 0 such that the modified mean curvature flow admits a smooth solution on
the extended time interval [0,T + €). If max|A|* stays uniformly bounded on the
mazimal time interval 0 < t < T, then all higher covariant derivatives |V*A|?
are uniformly bounded as well and the solution for the modified mean curvature
flow exists for all t € [0, 00).

To obtain a Lagrangian immersion with presribed mean curvature form H = m
using the modified mean curvature flow, we will have to prove two things: First,
in order to obtain longtime existence, we need uniform estimates for the norm
of the second fundamental form |A|?> = h;;,h¥%. In the next step we have to
show that the immersions converge in the C°*°-topology to a smooth limiting
Lagrangian immersion with H = m. To prove the latter we will need the results
in the following section.

3.1 An energy estimate

The next Harnack inequality is Theorem 2.1. in [8].

Proposition 3.13 Let L be a compact manifold of dimension n and let g;;(t)
be a family of Riemannian metrics on L with the following properties:

(@)  C1g:5(0) < g4j(t) < Cagi5(0),
) 12%1(1) < Cs50),
() Rij(t) > —Cagi;(0),

13



where Cy,Cy,C5,Cy are positive constants independent of t. If Ay denotes the
Laplace-Beltrami operator w.r.t. g;j(t) and f is a positive solution for the “heat”
equation

d

—f=A

CP=Af,
on L x [0,00), then for any a > 1 we have

C242 +( naCly
4(t2 — tl) 2(a — 1)

sup f(t1) < inf f(t2)(22)F eap(
L L 151

+ C2C3(’n + A))(tz — tl)),
where § is the diameter of L measured by g;;(0), A = sup|V?log f| and 0 <
t1 <ty < 0.

Gauf equations imply that the Ricci curvatures are given by R;; = a;; —b;;. The
evolution equation for the metric £g;; = —2(H™ — m™)hy;; then implies that
the conditions in Proposition 3.13 are satisfied if L; is a family of Lagrangian
immersions evolving by the modified mean curvature flow %F = (m" — H")y,
such that the second fundamental forms satisfy |A| < C uniformly in ¢ and such
that all metrics g;5(,t) are uniformly equivalent to g;;(z,0). On the other hand
the strong parabolic maximum principle implies that a chosen as in Theorem
3.8 is either identical zero or a positive solution of the heat equation. Similarly
as in [8] we obtain

Lemma 3.14 Let osc a(t) := sup a(t) — inf a(t) be the oscillation of o, where
« is the solution of the heat equation given by Theorem 3.8. If Ly is a family of
compact Lagrangian immersions in R®" evolving by the modified mean curvature
flow such that the norm of the second fundamental forms on L; are uniformly
bounded and all induced metrics g;j(t) are uniformly equivalent to g;;(0), then
there exist constants Cs,Cg independent of t such that

osc a(t) < Cse™ %t Vit € [0,00). (34)

Define the following energy

1
E(t) = §/k2d/.l,t,
where we set

_ fadﬂt
fdﬂt .

Lemma 3.15 Under the assumptions in Lemma 3.14 we have
E(t) < Cge™ 0! (35)

for positive constants Cy,C1g.

14



Proof: %d,u = —(H,H —m)du = —(H,da)dp and [ kdp = 0 give

%E = /k(Ak—}—f—fm/a(H,da)d,u— (fd%y/adu/(H,da)du)
1
—/k2<H,do¢>d,u
2
_/|Vk|2du— %/kQ(H,da)du

Now H = H —m +m =da + m and da = dk give

d p
Cp=- / IV k2dp — §/k2(|Vk|2 + (m, dRY)dp.

Using Schwarz’ inequality we conclude that for any € > 0 we obtain

—E< /|Vk| du+ = /kz VkPdu + /k2|m| du.

Let us now assume that L; is a family of compact Lagrangian immersions in
R?" that evolve by the modified mean curvature flow and which have uni-
formly bounded second fundamental form and uniformly equivalent metrics
9;5(t). Then conditions (a),(b) and (c) of Proposition 3.13 are all satisfied.
Consequently there exists a constant C7 independent of ¢ such that |m|? < Cy.
Since osc k = osc @ we conclude with Lemma 3.14

jES (05 —2Cst __ /|Vk|2d -f—QE

Since [kdpy = 0 and all metrics are uniformly equivalent we obtain from
Poincaré’s inequality that there exists a constant Cs > 0 independent of ¢ such

that
/|Vk|2d,u > C’g/kgd,u.

Choose € := g—? and let ¢y be such that %5—6720675 < %,Vt > to. Consequently
d 1 Cs
—E < —= [ |VkP*d 5 B V>
GE < =5 [IVkPdu+ SE ve> b
< —CsE+ ﬁE = —08E Vit > to.

This implies that there exist positive constants Cy, C1¢ such that

E(t) < Cge “1t,
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4 Lagrangian graphs over Lagrangian immersions

Let L be a compact smooth manifold of dimension n and assume that G : L —

(C*,.J) is a smooth Lagrangian immersion. For 4,j,k = 1,...,n let us define
oG
ti = -
ox?
n; = J(tl)
aij = (tisty), 0 = (o)™
Tkij = —(Vtitj,nk)
T = 0y,

where we have used the summation convention. Here z? are local coordinates
for L and J is the usual complex structure on C". Now assume that u;dz* is a
smooth 1-form on L and define a new map

F : L->L,=FLccC
F(x) = G(z)+u"(2)n(z),
i.e. L, is a graph over Ly = G(L). We introduce the symmetric tensor
Tz'j =04 + Tijkuk.

As usual let e; := %,w = 7(ei) and let g;;, hi;; denote the induced metric

and second fundamental form on L, = F(L). Then we get

e, = Tiltl + Diulnl,
v; = —Djuktk + Tjk’nk,
gi; = Tille + Diuleul, (36)

where here and in the following a raised index will always be raised with respect
to the metric ¥ and D will always denote the Levi-Civita connection w.r.t.
0;j. The only exception will be g%, denoting the inverse of gij. If Tj; is positive
definite, then F' is an immersion. F' is Lagrangian if and only if (e;,v;) =
0, Vi,j. A short computation shows that this is true if and only if the 1-form
s;dzt with

S; 1= u; + 17- uku! (37)

i- % 2 ikl

is closed. The GauB-Weingarten-Codazzi equations for Ly are

Dit; = -1y, (38)
Din; = 1", (39)
Ditjrg = DjTip- (40)
We have
D;sj = leD,-ul + %Dﬂjklukul. (41)
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In view of (40) we obtain that F'(L) is Lagrangian iff
DZ'S]' - DjSZ' = leDi’U,l - T/Djul =0. (42)

Throughout the rest of this paper we will assume that (42) is valid. Now assume
that we have a family F' of Lagrangian graphs over Ly such that

d
EF = _gmnem Up
with a family of closed 1-forms 6 on L (Recall that § must be closed to preserve
the Lagrangian condition). Then

d
F= —9™"0,,(T,,'ny — Dulty). (43)
On the other hand using (39)
d d
—F = = k
p” p” (G 4+ u"nyg)
dz’ du®
_ )
= Tz at t; + at Ng. (44)

Combining (43) and (44) we obtain

_gmnanTml = Ev (45)
dx’
g0, Dyt = T o (46)
Next we compute
dut  ou ldxi
- 7 al == 4
a o TP (47)
and
0 out
— 8 =Ty —. 4
otk T Tk (48)
But then
0 Oul
s = T —
at" N
du! dzt
= Tu(— — Diu'
w( Gy — Div )
mn l ldxi :
= —g HnTlem —TwD;u E , with (45)
mn l ldmi :
= -9 GnTlem —TileU di y with (42)
= —by , with (36) and (46). (49)

Our idea is to use the last equation together with the integrability condition
(42) to rewrite the evolution equation %F = —g™"0,Vy, in terms of smooth 1-
forms s;dz* on L equipped with the fixed background metric o;;. Observe that

17



for Lagrangian graphs over flat Lagrangian immersions the expressions simplify
enormously. Here we have that the two 1-forms s;dz’ and u;dz’ coincide. More-
over Ty, = 0, T3j = 04;. In the flat case the equations for the induced metric
and second fundamental form become

gij = o0ij +Diu*Djuy, (50)
hrij = —DiDjuy, (51)

and the 1-form u;dz’ is closed (Hence D;u; = Dju;). From now on we will only
consider the flat case and note that in the general case the previous constructions
and equations can be used to deduce the same as stated in Theorem 1.1 with
the exception that the constant B now depends also on maxy,, |A|? and that it
is crucial to make sure that the tensor Tj; is invertible.

If 2y € L is a fixed point and w = w* 8‘% an arbitrary vector in Ty, Lo, then the
fact that Lg is a flat torus implies that we can extend w uniquely to a parallel

vector field on Lg. We define the function
F) = ukwy,. (52)
We will also denote the second fundamental form w.r.t. w by A®) i.e.
A(w)ij = h;“-jwk. (53)

If we choose an orthonormal basis Ei, ..., E, such that D;u* becomes diago-
nal, i.e. Db = diag(A1,...,A\,), then we see from (50) that g;; = diag(l +
A, 14+ 02) and g¥ = diag(ﬁ, . ﬁ) This proves that ¢¥ and Du*
commute, i.e. we have

g9 Dju* = gk Djul. (54)
Using (51) we also obtain
Dif™ = Dy, (55)
DiDjf(w) = —hk,-jwk = —A(w)ij (56)
D2 = AP, (57)

If L is a Lagrangian graph over Ly, then we obtain two metrics on Ly namely
0;; and the pullback metric of L to Lo which is given by g;;. Consequently we
can measure the length of a vector w € T, L w.r.t. 0;; and g;;. To destinguish
them we label expressions with o resp. g, e.g.

|w]3 oijw'n’,
|w|§ = gyw'w.
We compute
|Df(w)|i = aijviukwkvjulwl
= aikviujwkvjulwl
= 52@ (gi — Jz'l)wkwl
= |wlj = |wl;. (58)

18



Moreover if w is an eigenvector of D;u* with respect to an eigenvalue A, then
DS = N Jwl;. (59)

Now a family of Lagrangian immersions evolving in R?" will maintain the prop-
erty to be a graph over Lg if and only if all eigenvalues of the quadratic matrix
D;u*Djuy, stay bounded. By (59) this is equivalent to require

IDF]2 < oo
for all w € T'Ly.

It is desirable to derive uniform bounds for the eigenvalues of Dju;.

Proof of Theorem 1.3: We need the evolution equation for |Df(*)|2. Since
m = df = 0 we compute

% IDF)P = 2D* N ADR ™) + DigV DiD; f)
= £|Df(w)|2 _ Zg”Dkaf(w)DjDkf(“’)
_ 4gknglmDiDmusDnuSDif(w)Dlef(w)

which directly followed from
b ~
Z p(w) — A flw)
e f

where A = g D;Dj is the normalized Laplacian. At a fixed point (zo,%o) let
w be an eigenvector of Dyu* with respect to an eigenvalue A. Choose normal
coordinates (mi)izl n around zo such that D; u® becomes diagonal. After
rotating the coordinate system if necessary we can assume that w = 8‘21 Then

—~ 4g’“"g“”D4DmusDnuSD"f<w>Dlef<w>

AN
- 4§ Ak (DD, f®)?
1+ 22 1+Ag)( kD)

T+ X

k,l=1
A "
< 4 D D (w)y2
< mI?X|1+/\i|kzl:1+)‘2 kD1 f1)
<22 5 (DgDy f))? = 29" D; Dy, f*) D; D* ()
k,l=1

provided all eigenvalues A, Ay, satisfy |[A| < 1. Consequently we must have
0\ prwp < Xip )
E|Df |” < AID ]

as long as all eigenvalues A satisfy \> < 1. Then the parabolic maximum
principle proves that |D f (w) |? remains uniformly bounded in ¢ and consequently
by (59) A? stays bounded by the initial bound 1 — e. o
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5 Longtime existence

The evolution equation for the closed 1-forms s = u = ugdz®* (49) with § =
H — df = do implies that the cohomology class of updz® is fixed for all ¢.
Consequently there exists a smooth family of functions 3 such that

w = [ul+ds,

0
=B = 60

8t a? ( )
where as usual we abbreviated the harmonic part of u by [u]. We define the
normalized function

fL /@dﬂo
Judno

where dyy denotes the induced initial volume element on L. Let us assume that
all third order derivatives of v are uniformly bounded. Since [wvduy = 0 we see
that this implies uniform bounds on all lower order derivatives and then also
uniform bounds on all derivatives of ugdxz* up to second order. Then as in [§]
we conclude

vi=0— (61)

Proposition 5.1 Let u = s be the solution of (49) with 8 = da = H — df on
the mazimal time interval 0 < t < T. Further let v be the normalization of u as
defined in (61). Assume that the second fundamental forms of the Lagrangian
graphs corresponding to the gemerating 1-forms u are uniformly bounded in t.
Then the C*™-norm of v is uniformly bounded for all t € [0,T) and consequently
T = oco. Moreover there exists a time sequence t, — oo such that v(z,t,)
converges in the C*-topology to a smooth function ve(z) on L as n — oo.

Hence we see that the solution for the modified mean curvature flow in flat
cotangent bundles exists for ¢ € [0,00) if |A]? is uniformly bounded and that
under this assumption a subsequence of the normalized function v converges in
the C*°-topology to a smooth limit function v.,. We will now use Lemma 3.14
together with our energy estimate 3.15 to investigate this in more detail.

Theorem 5.2 Make the same assumptions as in Proposition 5.1. Then the
normalized function v converges in the C°°-topology to a smooth limit func-
tion Voo such that the Maslov form M;dx® of the Lagrangian immersion in R2"
induced by vo, s given by %df.

Proof: We want to control the L'-norm of v. For ¢ > s we compute

/ / (z,7)dr|dpo
/ / |52 ()
- //|a,@ /s d'u0|du0d7.
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By equation (60) we have %(mﬁ) = a(z,7). Therefore

98 _ [ Frdmo _ [ aduo
or fd,uo [ duo
and then
t
d
[ bty vt sdwe < [ [ 1= Laduo i
L s JL S duo
¢ d d,
: / /Ikl+|f‘“ b _ Lot
s L Jdpe [ dpo
Since for all 7,
d
inf a(z,7) < M < supa(z,T),
zel fdﬂt z€L
we must have
d d
|fa e _ Jo M0| < osc a.

J dpe J duo

From Hélder’s inequality we obtain

o0
/ |v(z,t) —v(z,s)|duy < /d,uo %/ /kzdﬂo)%dT+/dﬂ0/ osc adr.
L s

Since all metrics are uniformly equivalent and L is compact we can find a positive
constant C71 such that

/k2d/L0 S Cll /kzdut = QCllE.

Then equations (34) and (35) imply the existence of two positive constants
Clg, 613 such that

o0
/ [v(z,t) — v(z,s)|du < 012/ o—C137 g
L s

This shows that v is a Cauchy sequence in L'. Since we have already shown in
Proposition 5.1 that one can extract a subsequence that converges in the C'*°-
topology to a smooth limit function vy, it follows by standard arguments (e.g.
see [8]) that v converges to vy, in C°. Using the estimate for the oscillation
of a and the fact that da = H — df we see that a converges to a constant and
H — df tends to zero. Since the Maslov form M;dx’ is given by M; = %H, we
obtain the theorem. ]

Now we introduce these quantities

So Dlule k= |Dluk|27
S3 = DleukD D™my* |Dleuk|
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From equation (49) we obtain

%du = —da,

where « is the function defined as in Theorem 3.8.
If A1,..., A\, are the n eigenvalues of D;u* then we set
i := —arctan), = —arg(l + i\g).
Define
a := TIm(detc (6%, +iD*wy)),
b := Re(detc (5%, +iD*uy)).

Differentiating arctan(y) and using equations (50) and (51) we conclude that
the Lagrangian angle v, i.e. the potential for H, is given by

7:71+~-~+7n:—arctan(%), (62)

The evolution equation (49) can be viewed as a parabolic equation of Monge-
Ampere type in the following way. a and b are the imaginary and real parts of
detc (0%, + iD*u) and a? + b? = detg (6*7gj;). Thus

detc (0%, +iD"y)  b+ia

= = e
detR (O'kjgjl) Vv a? + b2

—iy

Consequently

detc (o*, + iD%uy)
detR (Ukj gjl)

v = ilog(

Moreover da = dy — df .

Remark: It is actually not a restriction to assume that updz® is exact. To
see this observe that the harmonic 1-forms on L are exactly those forms of the
form c;dz?, where c; are constants. Using the Hodge decomposition theorem we
find that updz® can be decomposed into updz® + crdx®, where updz® is exact on
L. By letting

u(x,t) == u(z, t) — ciz’

we obtain
Up = U — Ck,
Uk = Uk,
0 - 0
-0 = —=u.
ot ot

Consequently  is also a solution of (49). Choosing the right constants cj, we can
assume that updz® is evact. This transformation corresponds to an isometry (a
translation) since the height function uy gets transformed into the new height
function uy = ug + cx.
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In view of the last remark we will now assume w.l.o.g. that updz* = du is exact
(on the torus Lg). Integrating equation (49) then implies that we can find a
smooth family of functions ¢(t) depending only on ¢ such that

0
= arctan(%) +f+ 6. (64)
On the other hand if ¢(¢) is a smooth family of functions for which (64) admits a
solution u, then the Lagrangian graphs generated by du solve the modified mean
curvature flow. We can therefore choose ¢ = 0. The modified mean curvature
flow then boils down to solve the nonlinear parabolic PDE:

0 a
gu(m, t) arctan(g) + f, (65)
u(z,0) = wug(x).

where ug(z) denotes the initial generating function. Corollary 3.9 implies

Lemma 5.3 If u is a smooth family of functions solving (65), then

min —~ujp < min — < max up < max
L - L - L

ot gttt = MpX oy a0

oscgu“ < oscgum.

We obtain the following evolution equations

9 -
= ur = Aug + fi.

ot
0 A is jt, kl, r
ES} = AS; —4¢" ¢ u"u, usriusjr (66)
297 uM jupg; + 2uM fr,
0 A isq jkp
553 - AS3 - 2g Ts Tijkp
+ 189jngkmgstunrumqusrlupklutqaupja

- 4gisgjtutrpusrluijkupkl

+ 4gisgj"gtbuabutrunapusrlUz‘jkupkl

+ 12gisgjngtbuanutrubapusrluijkupkl

+ 2upklfpkl, (67)

where for simplicity we have set fi; = DD f,ug = Dy, upj = Dy Dyuj etc.
and

— it rl
Tsjkp = Ugjkp — 30ijg UtrUg Upkl

We can estimate

in km st r l a, p 2
18g7" g™ g" w, " u,y, Mg, upriuy u”, < 185553
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and similarly

is jt, TP l k 2
=49 9" uy Pug, gt up <0453,
is jn  tb T a kl 2
49° 7" g uapu, "y Puspuigru,” < 45253,
]-ZQZSangtbuanutrubapusrluijk: upk:l S 125253%7
o S3
—2¢u My, < — .
@ - 1+ 5,

Using Schwarz’ inequality and the previous estimates together with the evolution
equations for Sy and S3 we get the following inequality for ¢ := ¢Sy + S3 with
a constant ¢ to be determined later

S3

0 ~
—q< Aq+4gS; —2
q < Aq+49S3 ‘T 5

ot

where M3 is defined as

M; := max{sup| D Dy fI*, sup [ DDy Dy f*}.

. 1
+ 345552 + ceq + %Mg, (68)

and € > 0 is arbitrary. We will need the next Lemma.

Lemma 5.4 Letn be a closed smooth 1-form on a compact orientable connected
Riemannian manifold (L,o0;;) of diameter 6. If [n] denotes the harmonic part
of m then for any xg € L we obtain the inequality

[nl(0) < max|[n]| + & max|Dn|. (69)

Proof: D|n| exists whenever || > 0. If |n|(z9) = 0 we are done. Otherwise
we destinguish two cases. If |n|(z) # 0, Vz € L, then we use the decomposition
theorem to split 7 into a harmonic part and an exact part, i.e. n =[] + dp
with a smooth function 8. Let z be a point where § assumes its minimum
and choose a smooth curve v of length smaller than § connecting zy and =z.
Integration gives

(o) = Inl(x) + / djn|

|[n]l(2) + 6 max|Dlzl]

IN

IN

max|[n]| + & max|Dn,
where we used that
1 . . .
|D|77||2 = WDjnm]Dknlnk < Dij]nl = |D17|2.

If |n|(z) = 0 somewhere on L we can find a smooth curve v of length smaller
than 6 connecting zo and a point ¢ € L with |n|(z) = 0 in such a way that
[nl(y) # 0 for all points y # x on 7. Integrating gives

() = |nl@)+ / |
:
o max|D|n]]

IN

IN

max [n]] + § max | Dn].
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Theorem 5.5 Let L be a compact flat n-dimensional Riemannian manifold
of diameter § and let ¢ = ﬁ. Assume that upde® is a smooth family of
1-forms generating Lagrangian graphs F(z) = (z,u1(x),...,uy(z)),x € L in
the cotangent bundle (with induced flat metric) of L that evolve according to the
modified mean curvature flow %F = ¢ (d; f — H;)v;, where df is the differential
of a fized smooth function f on L with

C C

€\
c+ 1(17) ’

M; <
and M3 is defined as

M; = max{stzp |DkDpf|2, s%p |DquDpf|2}.

If q := ¢Sy + S5 satisfies

g< < att=0,

50’
then

c
< —, Vit
1550
In particular the modified mean curvature flow exists for all t € [0,00) and the
smooth 1-form du = udz® converges in the C™-topology to a smooth limit 1-
form duss such that the mean curvature form H;dz' of the Lagrangian graph
generated by du, is given by the 1-form df .

Proof: Let us assume that (xo,t9) € Lo x [0,tp] with ¢o > 0 is a point where
q(zo,t0) = 55 = maxp, o] q- Let hay, ..., ) be a set of n harmonic and
even parallel 1-forms on L such that

> hawyihw); = o3 (70)
w=1
(Here we assume that (z°) are normal coordinates). For each w = 1,. .., n define

the function

few) = t'h(w);

We apply Lemma (5.4) to f(,,) and sum over w to obtain

Sy = Z Diujh(w)jDiulh(w)l = Z |Df(w)|2
w=1 w=1
2 2 2 2 2 2
<

né? max S3.
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Consequently

q(x0) = ¢Sa(x0) + S3(xg) < cnd® max Ss 4+ S3(xg) < end®q(zo) + Ss(xo) (71)
from which we conclude that at (xo,to)

S3(x0) > (1 — cnd®)g >

N[

Then inequality (68) implies with ¢ = %

3

0 S . c+1 .
0< =g < 4¢S;—2 345,52 M2
_8tq < 4953 01+52+ 203 + ceq + e 3
. . . 34 c c+1
< 42 =221 —end) -1 L P 4 Sp 2t 2
< 4q ( cné)c+q+ cq +2q+ c 3
o1 1 17 1 c+1 .
= A==+ ——+—)+2 M?2
(5 5eas Ti0) 3
cz(i_i+ 17 _}.L_}_i)
= %952 T 51 T 50225 T 100 T 172
< 0.

This contradiction proves that ¢ < =% for all . But this proves that |A[* is
uniformly bounded for all ¢ and that the Lagrangian submanifolds stay graphs

over the zero section. Then the theorem follows from Theorem 5.2. m]

Proof of Theorem 1.1: This is now an easy consequence of Theorem 5.5.
Assume f is chosen such that

c (i
c+1°17

max{sgp|DkDpf|2,s%p|DquDpf|2} < )2.

Choose the zero section in T*L as the initial Lagrangian graph. Since the 1-
forms updz® evolve by an exact form it follows that udz”* stays exact. D

Proof of Theorem 1.2: Again we use Theorem 5.5. The evolution equation
for u* in the case f = 0 is given by

—uk = Ak
ot
Applying the Harnack inequality 3.13 we can derive the estimate

osc(u¥) < ce™,
for two positive constants A, C. This proves that u* converges to a constant and
therefore duo, = 0. |

Let us end this article with a last observation. In the special case n = 1 the
metric can be written as g = 1 + (u”)?. Let X := u”. Then Sy = A\? and the
evolution equation (66) reduces to

0 2 A\ 2 2 (/\I)Z " A2 "
2\ = - +1) Ly < + ,
at)\ AN —2(3) 1)(1 )2 2Af" < AN 4+ 2)\f
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Since f" is fixed in ¢ and therefore bounded we can conclude that A? can grow at
most exponentially in ¢, i.e. there exist constants k,! depending only on max f”
such that A\? < ke't. In particular A2 is bounded on any finite time interval. This
proves that a periodic curve over R evolving by the modified mean curvature
flow must stay a graph over R and it also proves longtime existence for the
flow. Although the modified flow for periodic graphs over R always admits a
longtime solution it does not necessarily converge to a smooth limiting graph
with H = df. An example is illustrated in Figure 1. One can see that the height
increases exponentially fast. On the other hand the flow cannot converge since
the Lagrangian angle for a periodic graph over the real axis in R? (this serves
as a model for the cotangent bundle of S') must lie between —% and %. This
is not the case for the given function f.
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