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SLINVARIANT HARMONIC MAPS FROM S* TO §?
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ABSTRACT. In this note, we show that a homotopy class of [S?,S?]
admits an S'-invariant harmonic map if and only if its Hopf invari-
ant is £k for some integer k, where S is the unit 3-sphere and S?

is a 2-sphere with an arbitrary metric.

1. INTRODUCTION

Let (M™, g) and (N, h) be two compact Riemannian manifolds with
dimension m,n > 2 respectively and C(M,N) = H' N C°(M,N). A
map f € C(M,N) is harmonic if it is a critical point of the energy

functional
1
E(f) =5 | e(f)dvol(ar)
in C(M, N), where e(f) is the energy density of f and dvol(M) is the
volume element of M. This means that, for any smooth family of maps
fs € C(M,N) with fo = f,

d
— E(fs)=0.
ds|s=0 ()
In local coordinates (z%) and (y®) on M and N, the energy density is

defined by

iy Yz Blx
(1)) = g9 (0 DT 5wy,

Due to a regularity result for Morrey [19], any harmonic maps in

C(M,N) is smooth. In this note, we are interested in the existence
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of harmonic maps. The existence problem for harmonic maps can be
formulated in the following way:

Does a given homotopy class of [M, N] admit a harmonic represen-
tative?

When N has non-positive curvature, in a celebrated paper [11], Eells
and Sampson showed that for any given homotopy class there is a
harmonic representative. When the curvature of N is not non-positive,
e.g. N = S? the existence problem of harmonic maps becomes more
delicate. There are a lot of existence and non-existence results, see
[6, 7] and [27]. Roughly speaking, there are basically three kinds of
existence results. One is when M has dimension two. In this case, the
energy functional E is conformally invariant and various variational
approaches were developed to study the existence and non-existence
of harmonic maps. We refer to [12, 18, 21, 2, 15, 16, 25]. Another
is reduction to a one dimensional problem, for example, the Smith
construction, the Hopf construction of harmonic maps (cf. [23, 3, 8,
9, 20, 26]). In this case, the harmonic map equation is reduced to an
ordinary differential equation. The third type results are obtained by
direct constructions, for example, the twistor method ([10]) and the
algebraic methods ([24] and [13]). We are not able to list all results
here. For the interested reader, we refer to two surveys [6] and [7] and
a very complete list of papers on harmonic maps [27].

Here we consider a simple case which is different from the three cases
mentioned above. Let S3 be the unit 3-sphere with the standard metric
go and S? the 2-sphere with an arbitrary metric hy. It is well-known
that [S?,S?] = m3(S?) = Z and to each class corresponds an integer—its
Hopf invariant. In [23], Smith gave examples of harmonic maps from
S? to S? of Hopf invariant k2, for any integer k, by means of the Hopf
fibration and posed the following problem (see also [7]):
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Which classes of [S?, S? have harmonic representatives?
Recently, Eells and Ratto [8] obtained the second kind of existence
result by considering the following special maps: For any two integers
k,l, let fr; : St x St — St be defined by f; (%, ™) = €K&+ - and

consider
¢k,l : 83 — 82
defined by
¢ (sin se', cos se') = (sin a(s) i, €%, cos a(s)e™),

where a(s) : [0, 7/2] — [0, 7] satisfies the boundary conditions a/(0) = 0
and «(7/2) = w. This is the a-Hopf construction. They showed that
such a map ¢y is a harmonic map for some « if and only if £ = £[. It
is easy to check that ¢, has the Hopf invariant kl. So if such a map
is harmonic, then its Hopf invariant is &k?. The method for obtaining
this result involves an ordinary differential equation for a. Several
vears ago, W. Y. Ding [4] conjectured that a homotopy class of [S?, S?|
admits a harmonic representative if and only if its Hopf invariant is
+k? for some integer k. A slightly stronger conjecture was proposed
by Eells in [28] : Is every harmonic map from S* — S? a harmonic
morphism? We remark that a homotopy class of [S3 S?| contains a
harmonic morphism if and only if its Hopf invariant is £k? for some
integer k. Thus, the latter implies the former.

Due to the result of [5], for any homotopy class of [S? S?], there is a
metric g on S? conformally equivalent to the standard metric such that
this class admits a harmonic representative from (S3, g) to S2 Thus,
the non-existence of harmonic maps from S? to S2 may be delicate.

In this note, we consider S'-invariant maps defined in section 2 below.

The problem of the existence of Sl-invariant harmonic maps can be
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reduced to the existence of critical points of a functional defined on the

space of maps from a two dimensional orbifold to S?. We obtain

Theorem 1.1. Any homopoty class of [S®, S?| admits such S*-invariant
harmonic representatives if and only is its Hopf invariant is £k* for

some integer k.
In fact, such a harmonic map is a harmonic morphism.

2. S-INVARIANT MAPS AND THE HOPF INVARIANT

Let S? = {(2,w) € C x C||z]* + |w|* = 1} be the unit three dimen-
sional sphere in R* and S? the 2-sphere in R?. Given two relatively

prime integers k > [ > 1, define an isometric action of S* on S3
Tk,l : Sl — 180(83)

by
Tlf,l(wa Z) = (eikewa 62'192)
for any 6 € S' and (w,2) € S A continuous map f : S® — S?is

Sl-invariant under the action T if for any § € S! and (z,w) € S*

f(Tke,l(wa Z)) = f(wa Z)
For a smooth map f : S* — S2, its Hopf invariant is defined by

H(f) = SBdw/\w,
where w is a one-form on S? so that dw = f*(a) and « is a generator
of H}p(S?) (cf. [1]). We also can define the Hopf invariant for a

continuous map. If f is an S'-invariant map, then this Hopf invariant
H(f) = kin?,

for some integer n. This can be seen as follows. Define 7 : S* — S? by

w! 2k

m(w,z) = (QWW,

[wl* = []).
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7 is continuous, but is not smooth. It is easy to compute that H(r) =

kl. In fact, 7 is the composition of the following two maps o : S* — S3

and v : S? — S? defined by

w' P

o:(w,z) — (Wawﬁ)

and
v:(w,z) = (=2wz, |lw* — |2]?).

Here v is the Hopf map of Hopf invariant 1. We have that H(7) =
deg o H(v) (see e.g. [14]) and dego = kl. Let uy : Q — S? be defined
in the next section (see (3.2) below). Here @) is a topological sphere.

Clearly f = uyom. From [14],
H(f) = H(m)(deguys)?* = kin?
for some integer n. Now we restate our result as follows

Theorem 2.1. If f is a harmonic S'-map w.r.t. Ty,, then k =1. In
this case, the Hopf invariant of f, H(f) = k?n* for some integer n.

3. REDUCTION TO A 2-DIMENSIONAL CASE

Given two relatively prime integers k > [ > 1, Let T" = T}, ; be the

Sl-action defined in previous section. Let
C(S*, S ={f e H' nC°(S?* S?)] f is an S'-map w.r.t.T}.
First, we have

Lemma 3.1. Let f € C(S3,S*)T. Then f is harmonic if and only if f

i a critical point of Ejegsg2yr.

Proof: See V(1.4) in [9]. O
In fact, for such a harmonic map, we can characterize it as a critical

point of another functional as follows.
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Let @ = S*/T}, be the quotient space. When k > [, ) is an orbifold
with two conical singularities of angles 27” and 27” respectively. For the
definition of orbifold, see [22].

Let p : S* — @ be the projection map. Set I = {(6,7)|0 € [0,27),n €
[0,7]} and define the map ¢ : I — S* by ¥(6,n) = (0,6,n/2) in
the cylindrical coordinates on S3. Clearly, po v : I — @ serves as
a coordinate chart of @ and p : (S3¢0) — (Q,h) is a Riemannian
submersion (see [9]), where

k%sin®n

h= do* + dn? 3.1
k2 sin®(n/2) + (2 cos®(n/2) o (3:1)

in the coordinates 6,7. Note that @ = S? (up to homothety) if and
only if £ =[.

Using the metric h, we can define the Sobolev space H'(Q,S?). Let
C(Q,S?) = HY(Q,5%)NC°(Q,S2). We identify C(S?, 527 with C(Q, S?)
as follows. Let f € C(S?,S%). We define a map uy : Q — S? by

us(@) = F(r\(@)) (3.2)

for € Q. Since f is an S'-map, u; is well defined and continuous. It

is easy to check that
E(f) = /Q Vg2 Wdvol(h), (3.3)
where W : () — R is defined by
W (n,0) = (k*sin®(n/2) + 12 cos®(n/2))?.

We remark that W (n) is the length of S' orbit of the point (6, n).
Since 1 < I < W(n,0) < k, by (3.3) up € H(Q,S?. Therefore
up € C(Q,S?. On the other hand, for any u € C(Q,S?), by (3.3) it is
also easy to check that f, = uop € C(S? S?)?. From Lemma 3.1, we

now have the following
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Lemma 3.2. Let f be a smooth S*-map from S® to S%. The f is har-

monic if and only if us is a critical point of the following functional
J(u) = / IVul2 Wdvol(h) (3.4)
Q
in the space C(Q,S?).

Proof: First, Lemma 3.1 implies that a harmonic map f € C(S3 ST
satisfies

d

T EH) =0 (35)

for any smooth family of maps f; € C(S? ST with fy = f. From the
discussion above, we know that any smooth family of f, € C(S3, S?)7
with fo = f corresponds to a smooth family of maps u; € C(Q,S?) with
ug = uy. Therefore, in view of (3.3) we know that (3.5) is equivalent
to

%nzo‘](”t) =0, (3.6)
for any smooth family of maps u; € C(Q, S?) with ug = uy. This proves
the Lemma. O
Remark. When k = [, Q = S? (up to homothety), u; is smooth and W
is a constant. In this case, f is a smooth harmonic map if and only if
uy is a harmonic map from S? to S% Hence, there are many harmonic

maps from S? to S? of Hopf invariant k2. Moreover, in this case, all

such harmonic maps are harmonic morphisms.

4. PROOF OF THEOREM 2.1

Proof of Theorem 2.1. Let f : S* — S? be a smooth harmonic S*-map
and uwy = uy. To prove the Theorem, we first claim that there is a
family of diffeomorphisms «; : [0, 7] — [0, 7] such that

(a) ap = id,
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(b) as(0) =0 and ay(m) =,

(c) a(n) :== %=(n) > 0in [0, 7] and o’ (0) = o/(7) =1,
(

)

) o : s
d) e (n)el,(n) = E2 in (0, 7),

(e)

js\s Oas(n) =1
If this is done, we define ¢, : I — I by

¢s(0,m) = (0, 5(n)).

Let us = ugod, : Q — S?. First, by (a), (b) and (¢) it is easy to see that

us € C(Q,S?) with ug = uy, i.e. u, is a deformation of uy. We then

claim that {¢,} is a family of conformal diffeomorphisms. Namely, for

any s,
¢5(h) = |o|*h.

In fact, from (d) we have

0 0
¢:(h)(%7%) = (¢s* 7¢s* )
_ k?*sin as(n) 2k sin®n
= Wea,m) g
, 0 0
a |h(89 80)
T Y o 0
12
ol Phl o)
and
9 9 12 9

(4.1)
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Due to the conformal invariance of the energy functional, [, |Vus|} dvol(h)

is independent of s. Furthermore, we have
J(u,) = / IV, |2 Wdvol(h)
Q
- / Vg2 Wo g, dvol(h). (4.2)
Q

By Lemma 3.2, (4.2), (a) and (e), we have

d
0=

d
= — s) = Vus>—~  (Wog¢™h) dvol(h
= — [ 1VuPW (2 — P (sin oy ()L dt) sy dvol(h)
Q s

- —/ IV [2W L (k? — 12) sing dvol(h).
Q

It follows that k = [, which proves Theorem 2.1.
Hence, to prove Theorem 2.1, we only need to show the existence of

such ag. Set
n W(t)
P = [ W04
() r/2 sint

Recall that W (t) = (k%sin®(n/2) + [2cos?(n/2))2. Clearly, F'(n) =
Wi(n)/sinn > 0 in [0, 7], lim, o F(n) = —oo and lim,_,, F(n) = +o0.

In fact, we have the following asymptotic behavior of F.
F(n) —llogn = 0(1) asn — 0
and
F(n) + klog(m —n) = 0O(1) as n — .

Define a : [0, 7] — [0, 7] by

By definition, we have

o/(n) = W(n) sina(n)

sinn W(as(n)

) sin a (7).
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Now it is easy to check that «; satisfies conditions (a)-(e). This com-
pletes the proof of the Theorem. O
Remark. Our result is motivated by the Pohozaev identity for semilin-
ear equations and the Kazdan-Warner condition [KW] in the problem
of prescribing Gauss curvature.

We can also generalize the Theorem as follows. Let E(a,b) be the

ellipsoid defined by

w2

Given two relatively prime integers k > [ > 1, we define an S'-action
Ty, on E(a,b) by

T,f’l(w, z) = (we“w, zeiw).

Clearly, we can also define S'-map from FE(a, b) to S? as before. By the

same argument, we have

Theorem 4.1. There is a harmonic S*-map from E(a,b) to S? if and

only if
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