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Abstract

The wave equation in the whole space IR3 is considered. The initial datum is
a random function with finite mean density of the energy which also fits the mixing
condition of Ibragimov-Linnik-Rosenblatt type. The random function converges to dif-
ferent space-homogeneous processes as x3 → ±∞ , with the distributions µ± . We
study the distribution µt of the random solution at the moments t ∈ IR . The main
result is the convergence of µt to an equilibrium Gaussian translation-invariant mea-
sure as t → ∞ . The application to the case of the Gibbs measures µ± = g± with two
different temperatures T± is given. Limiting mean energy current density formally
is −∞ · (0, 0, T+−T−) for the Gibbs measures, and it is finite −C(0, 0, T+−T−) with
C > 0 for the convolution with a nontrivial test function.
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1 Introduction

We consider the wave equation in IR3 with the initial conditions⎧⎪⎪⎨
⎪⎪⎩
ü(x, t) = ∆u(x, t), x ∈ IR3,

u
∣∣∣
t=0

= u0(x), u̇
∣∣∣
t=0

= v0(x).
(1.1)

Let us denote Y (t) = (Y 0(t), Y 1(t)) ≡ (u(·, t), u̇(·, t)) , Y0 = (Y 0
0 , Y

1
0 ) ≡ (u0, v0) . Then (1.1)

becomes
Ẏ (t) = F(Y (t)), t ∈ IR, Y (0) = Y0. (1.2)

We assume that the initial datum Y0 is a random function in the phase space H of the
solutions with a finite local energy. Denote by µt(dY ) , t ∈ IR , the measure in H , which
is a distribution of the random solution Y (t) to the Cauchy problem (1.2). We assume
that the initial correlation functions Qij

0 (x, y) ≡ EY i
0 (x)Y j

0 (y) , i, j = 0, 1 , and some of its
derivatives are continuous and decaying when |x− y| → ∞ . In particular, the initial mean
energy density is bounded,

E[|∇u0(x)|2 + |v0(x)|2] = [∇x · ∇yQ
00
0 (x, y)]|y=x +Q11

0 (x, x) ≤ C <∞, x ∈ IR3. (1.3)

Moreover, we assume that the correlation matrix (Qij
0 (x, y))i,j=0,1 has the form

Qij
0 (x, y) =

⎧⎪⎨
⎪⎩
qij−(x− y), x3, y3 <−a,

qij+(x− y), x3, y3 > a.

(1.4)

Here qij±(x − y) are the correlation functions of some Borel translation-invariant measures
µ± with zero mean value in H , x = (x1, x2, x3), y = (y1, y2, y3) ∈ IR3 , and a > 0 .
Therefore, the measure µ0 is not translation-invariant if qij− �= qij+ . At last, we assume
that the initial measure µ0 fits the mixing condition of Ibragimov-Linnik-Rosenblatt type.
Roughly speaking, the random values

Y0(x) and Y0(y) are asymptotically independent as |x− y| → ∞. (1.5)

Our main result is the convergence to the statistic equilibrium, i.e. a weak convergence of
the measures µt ,

µt ⇁ µ∞, t→ ∞, (1.6)

where µ∞ is a translation-invariant equilibrium Gaussian measure in the phase space H .
A similar convergence hold for negative t → −∞ since our system is time-reversible. We
give some optimal bounds for mixing coefficient of the initial measure µ0 . We construct
generic examples of the random initial datum satisfying all assumptions imposed. We get
the explicit formulas (2.13)-(2.15) for the correlation functions of the limit measure µ∞ .

We apply our results to the case of the Gibbs measures µ± = g± . Formally

g±(du0, dv0) =
1

Z±
e
−β±

∫
(|∇u0(x)|2 + |v0(x)|2)dx∏

x

du0(x)dv0(x), β± = T−1
± , (1.7)
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where T± > 0 are the corresponding absolute temperatures. We adjust the definition of
the Gibbs measures g± in Section 3. The Gibbs measures g± have singular correlation
functions and do not satisfy our assumptions (2.10). Respectively, our results can not be
applied directly to g± . We reduce the problem by a convolution with a smooth function
θ ∈ D ≡ C∞

0 (IR3) . We consider Gaussian processes u± corresponding to measures g± and
we define the “smoothed” measures gθ± as distributions of the convolutions u± ∗ θ . The
measures gθ± satisfy all our assumptions, and the convergence gθt ⇁ gθ∞ in H−ε follows from
our results. This implies a weak convergence of the measures gt ⇁ g∞ in some weighted
Sobolev space of distributions since θ is arbitrary. We show that the limit energy current
for g∞ is formally

j∞ = −∞ · (0, 0, T+ − T−),

which means the “ultraviolet divergence”. This relation is meaningful in the case of smoothed
measures gθ∞ ,

j
θ
∞ = −Cθ · (0, 0, T+ − T−),

if θ(x) is axially symmetric with respect to Ox3 ; Cθ > 0 if θ(x) �≡ 0 . This corresponds to
second law of thermodynamics.

We prove the convergence (1.6) by the strategy of [8, 11, 17, 18] in three steps.
I. The family of measures µt , t ≥ 0 , is compact in an appropriate Fréchet space.
II. The correlation functions converge,

Qij
t (x, y) ≡ EY i(x, t)Y j(y, t) → Qij

∞(x, y), t→ ∞. (1.8)

III. The characteristic functionals converge as t→ ∞ ,

µ̃t(Ψ) =
∫
ei<Y,Ψ>µt(dY ) → e−

1
2
<Q∞Ψ,Ψ>, ∀Ψ ∈ D, (1.9)

where Q∞ is the integral operator with the matrix-valued kernel (Qij
∞(x, y))i,j=0,1 .

The compactness I follows from the Prokhorov criterion by the method [21]. Namely,
we prove a uniform bound for the second moment functions of the measures µt , t ≥ 0 .
Then the Prokhorov condition follows from the Sobolev embedding theorem by Chebyshev’s
inequality. We deduce the uniform bound from the explicit expression for the correlation
functions Qij

t (x, y) . The expression follows from the Kirchhoff formula for the solutions to
(1.1). In particular, for the case u0(x) ≡ 0 , we have

u(x, t) =
1

4πt

∫
St(x)

v0(z)dS(z), (1.10)

where dS(z) is the Lebesgue measure on the sphere St(x) : |z − x| = t .
The convergence (1.8) also follows from explicit formulas for Qij

t (x, y) . The formula
(1.10) allows to express the correlation functions Qij

t (x, y) in terms of integrals over spheres
of radius t . In the limit, t → ∞ , the spheres become the planes. Respectively, Qij

∞(x, y)
is expressed in terms of integrals of the Radon transform of initial correlation functions
Qij

0 (x, y) . We reduce the integrals of the Radon transform to some convolutions.
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If µ0 is a Gaussian measure, the convergence (1.9) follows from (1.8). In the case when
the measure µ0 is non-Gaussian, the proof of the convergence (1.9) follows by the method
[8]. The method [8] is a development of S.N. Bernstein’s “room-corridors” method, and it
is suggested by the structure of the Kirchhoff formula (1.10). In [8] the convergence (1.9) is
proved for the case of translation invariant measure µ0 . The method uses the convergence
of the correlation functions (1.8) and a uniform bound on the moment functions of fourth
order. Let us emphasize, however, that the proof of the bound and of (1.9) in [8] do not use
explicitly the translation invariance of the measures µt .

In conclusion, we extend the main result to the equations with variable coefficients, which
are constant outside a finite region. The extension follows immediately from our result for
constant coefficients, using method [8]. The method is based on the scattering theory for
the solutions of infinite energy, which is constructed in [8].

Remarks i) The dynamics (1.1) is translation invariant, and its Fourier transform has a
very simple form. However, we cannot use the Fourier transform for the proof of (1.8) since
our main assumption (1.4) is stated in the coordinate space.
ii) Our general proof of the convergence (1.9) in Sections 5 and 6 does not allow a simplifi-
cation in the case of the Gibbs measure (1.7). This is related to the slow long-range decay
of the correlation function Q00

0 (x, y) ∼ |x− y|−1 , |x− y| → ∞ .
iii) All three steps I-III depend drastically on the mixing condition. Simple examples show
that all the assertions can fail if the mixing condition breaks down (see [8]).

In Section 2 we state our main result. We apply it to the Gibbs measure in Section 3.
We prove the compactness I and the convergence II in Sections 4 - 6. Section 7 completes
the proof of the main result, and Section 8 concerns the variable coefficients. Appendix
A concerns the Radon transform and convolution, and Appendix B concerns the Gaussian
measures in the weighted Sobolev spaces.

The convergence to statistic equilibrium (2.3) for the wave equation is established for the
first time in [8] (see also [11, 12, 17, 18]) in the case of translation-invariant initial measure µ0

with mixing. This corresponds to our result in the particular case when T− = T+ . Similar
result has been proved for the Klein-Gordon equation, [7, 11, 13, 14, 15]. The random
process Y (t) is ergodic and mixing (in time) if the initial measure µ0 coincides with one of
the equilibrium limit measures µ∞ , [3, 4, 5, 6].

Let us note that the equation (1.1) describes a continuous n -dimensional family of har-
monic oscillators. Therefore, our result is an extension of the results [1, 19] which concern
the infinite one-dimensional chains of harmonic oscillators.
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2 Main results

Let us describe our results more precisely.

2.1 Notations

We assume that the initial datum Y0 belongs to the phase space H.
Definition 2.1 H ≡ H1

loc(IR
3) ⊕ H0

loc(IR
3) is the Fréchet space of Y ≡ (u(x), v(x)) with

real valued functions u(x) , v(x) , which is endowed with the local energy seminorms

‖Y ‖2
R =

∫
|x|<R

(|u(x)|2 + |∇u(x)|2 + |v(x)|2)dx <∞, ∀R > 0. (2.1)

The following proposition is well-known [16].

Proposition 2.2 i) For any Y0 ∈ H there exists a unique solution Y (t) ∈ C(IR,H) to
Cauchy problem (1.2).
ii) The operator Ut : Y0 �→ Y (t) is continuous in H for any t ∈ IR .

Denote by Hs
loc(IR

3), s ∈ IR, the local Sobolev spaces, i.e. the Fréchet spaces of the
distributions u ∈ D′(IR3) with the finite seminorms

‖u‖s,R ≡ sup
‖ψ‖−s=1

| < u, ψ > |.

Here the sup is taken over all ψ ∈ D such that ψ(x) = 0 for |x| > R , and

‖ψ‖2
−s ≡

∫
IR3

(1 + |ξ|)−2s|ψ̃(ξ)|2dξ, ψ̃(ξ) = Fψ(ξ) =
∫
eiξ·xψ(x)dx.

The brackets < ·, · > denote the scalar product in L2(IR3) or in L2(IR3)⊕L2(IR3) or their
different extensions.

Definition 2.3 For ε > 0 we denote H−ε ≡ H1−ε
loc (IRn) ⊕H−ε

loc (IR
n).

Then H ⊂ H−ε for every ε > 0 , and the embedding H ⊂ H−ε is compact by the Sobolev
theorem.

2.2 Random solution

Now we assume that Y0 in (1.2) is a measurable random function with values in (H,B(H))
where B(H) is the Borel σ -algebra of subsets in H . We denote by µ0(dY0) a Borel
probability measure in H which is the distribution of the random function Y0 . Then
Y (t) = UtY0 is a measurable random function with values in (H,B(H)) due to Proposition
2.2.

Definition 2.4 µt is a Borel probability measure in H which is the distribution of Y (t) :

µt(B) = µ0(U
−1
t B), ∀B ∈ B(H), t ∈ IR. (2.2)
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Our main goal is to derive the convergence of the measures µt as t→ ∞ . We establish
the weak convergence of the measures µt in the Fréchet spaces H−ε with any ε > 0

µt
H−ε
−⇁ µ∞, t→ ∞, (2.3)

where µ∞ is a Borel probability measure in the space H . By definition this means the
convergence ∫

f(Y )µt(dY ) →
∫
f(Y )µ∞(dY ), t→ ∞ (2.4)

for any bounded continuous functional f(Y ) in the space H−ε .
For the simplicity we assume that Y0 = (u0, v0) is a unit random function in the proba-

bility space (H,B(H), µ0) and denote by E0 the corresponding mathematical expectation
operator.

Definition 2.5 The correlation functions of measure µt are the distributions

Qij
t (x, y) ≡ E0Y

i(x, t)Y j(y, t), i, j = 0, 1, (2.5)

where Y i(x, t) are the components of Y (t) = (Y 0(x, t), Y 1(x, t)) .

It means for any ϕ, ψ ∈ D

<Qij
t (x, y), ϕ(x)ψ(y)>= E0 <Y

i(x, t), ϕ(x)> <Y j(y, t), ψ(y)> . (2.6)

We will denote D = D ⊕D , and

< Y,Ψ >=< Y 0,Ψ0 > + < Y 1,Ψ1 >

for Y = (Y 0, Y 1) ∈ H, Ψ = (Ψ0,Ψ1) ∈ D . For a Borel probability measure µ in the space
H we denote by µ̃ the characteristic functional (Fourier transform)

µ̃(Ψ) ≡
∫

exp(i < Y,Ψ >)µ(dY ), ∀Ψ ∈ D.

The measure µ is called Gaussian (with zero expectation) if its characteristic functional has
the form

µ̃(Ψ) = e−
1
2
<QΨ,Ψ>, Ψ ∈ D,

where Q is a linear operator D → D′ . µ is called translation-invariant if ∀h ∈ IR3

µ(ĥB) = µ(B), ∀B ∈ B(H),

where ĥY (x) = Y (x+ h) .

2.3 Mixing condition

Let O(r) denote the set of all pairs of open subsets A,B ⊂ IR3 with ρ(A, B) ≥ r ; σiα(A)
is the σ -algebra of subsets in H , generated by all linear functionals of the form

Y � →< DαY i, ψ >=
∫

IR3

DαY i(x)ψ(x) dx, |α| ≤ 1 − i, i = 0, 1,
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where ψ ∈ D with suppψ ⊂ A . We define Ibragimov-Linnik mixing coefficients (see [9])
for |α| ≤ 1 − i, |β| ≤ 1 − j, i, j = 0, 1 , as

φiα,jβ(r) ≡ sup
(A,B)∈O(r)

sup
A ∈ σiα(A), B ∈ σjβ(B)

µ0(B) > 0

|µ0(A ∩ B) − µ0(A)µ0(B)|
µ0(B)

.

Definition 2.6 The measure µ0 fits strong uniform Ibragimov-Linnik mixing condition if

φiα,jβ(r) → 0, r → ∞ (2.7)

for |α| ≤ 1 − i, |β| ≤ 1 − j and i, j = 0, 1 .

We adjust below the rate of this decay.

2.4 Main theorem

Let νd ∈ C(0,∞) denote some nonnegative functions ( d = 0, 1, 2 ) with the finite integrals,

∞∫
0

(1 + r)d−1νd(r)dr = Id <∞. (2.8)

We also denote ν(r) = ν2(r) . We assume the following properties S0-S5 for the initial
measure µ0 .

S0 The measure µ0 has zero expectation value,

E0Y0(x) = 0, x ∈ IR3 (2.9)

in the sense of distributions, similarly to (2.6).
S1 µ0 is a Borel measure in the space H with the correlation functions of the form (1.4).
S2 The following derivatives are continuous and the bounds hold,

|Dα,β
x,yQ

ij
0 (x, y)| ≤

{
Cνd(|x− y|) if d = 0 or 1,
Cν2(|x− y|) if 2 ≤ d ≤ 4,

∣∣∣∣∣ d = i+ j + |α| + |β|. (2.10)

S3 The measure µ0 satisfies the strong uniform Ibragimov-Linnik mixing condition, and for
|α| ≤ 1 − i , |β| ≤ 1 − j , i, j = 0, 1

φiα,jβ(r) ≤ Cν2
d(r), d = i+ j + |α| + |β|. (2.11)

Remark 2.7 i) Condition S2 implies (1.3).
ii) The mixing condition S3 is weaker than in [8] where the tranlation-invariant case is
considered.
iii) The estimates (2.11) for d ≤ 1 also are weaker than in [8]. On the other hand, the
estimates are not required in [8] for d > 2 and agree with [8] for d = 2 .
iii) The conditions S2 and S3 allow various modifications. We choose the variant which
allow an application to the case of the Gibbs measures (1.7) (see next section).
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Define the matrix-valued function

Q∞(x, y) =
(
Qij

∞(x, y)
)
i,j=0,1

=
(
qij∞(x− y)

)
i,j=0,1

, (2.12)

where

q00
∞ =

1

4

[
q00
+ + q00

− − E ∗ (q11
+ + q11

− ) + P ∗ (q01
+ − q01

− − q10
+ + q10

− )
]
, (2.13)

q10
∞ = − q01

∞ =
1

4

[
q10
+ + q10

− − q01
+ − q01

− + P ∗ (q11
+ − q11

− − ∆q00
+ + ∆q00

− )
]
, (2.14)

q11
∞ = −∆q00

∞ =
1

4

[
q11
+ + q11

− − ∆(q00
+ + q00

− ) + P ∗ ∆(q10
+ − q10

− − q01
+ + q01

− )
]
. (2.15)

Here E(x) = − 1

4π|x| is the fundamental solution of the Laplacian, and P(x) = −iF−1
[sgn ξ3

|ξ|
]

where F−1 is the inverse Fourier transform. The definition of the convolutions with P in
formulas (2.13)–(2.15) is adjusted in Appendix A (formula (6.14)). Our main result is the
following theorem.

Theorem 2.8 Let S0-S3 hold. Then there exists a Gaussian Borel probability measure µ∞
in H such that
i) the convergence (2.3) holds for any ε > 0 .
ii) The measure µ∞ is translation invariant.
iii) Its characteristic functional has the form

µ̃∞(Ψ) = e−
1
2
<Q∞Ψ,Ψ>, Ψ ∈ D,

where Q∞ is the operator with the integral kernel Q∞(x, y) .

Remark 2.9 Theorem 2.8 holds for the Gaussian initial measures µ0 without the mixing
condition S3. This follows from Lemmas 4.1 and 5.1 below.

Theorem 2.8 follows from next Propositions 2.10 and 2.11 by the methods of [11, 17, 21].

Proposition 2.10 The family of the measures µt , t ≥ 0 , is compact in the space H−ε

with any ε > 0 .

Proposition 2.11 The characteristic functionals converge,

µ̃t(Ψ) → e−
1
2
<Q∞Ψ,Ψ>, t→ ∞, ∀Ψ ∈ D. (2.16)

We prove Proposition 2.10 in Section 4 for a simple particular case, and in Section 6 for
general case. We prove Proposition 2.11 in Sections 5, 6 for the Gaussian measures µ0 , and
in Sections 7 for general non-Gaussian µ0 .
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2.5 Examples

2.5.1 Gaussian measures

We construct the Gaussian initial measures µ0 satisfying S0–S2. Let us take the Gaussian
measures µ± in H with the correlation functions qij±(x− y) which are zero for i �= j , while
for i = 0, 1 ,

qii±(z) = F−1q̃ii±(ξ),

(1 + |ξ|)s∂γξ q̃ii±(ξ) ∈ L1(IR3), 0 ≤ d = 2i+ s ≤ 4, |γ| ≤ 1 + d,

q̃ii±(ξ) ≥ 0.

∣∣∣∣∣∣∣∣∣∣∣∣
(2.17)

Then µ± satisfy S0–S2 with the functions νd(r) = C(1 + r)−1−d for large enough C > 0 .
Let us take the functions ζ± ∈ C∞(IR) s.t.

ζ±(s) =

{
1, for ± s > a,
0, for ± s < −a.

Let us introduce (Y−, Y+) as a unit random function in probability space (H×H, µ−×µ+) .
Then Y± are the Gaussian independent functions in H . Define µ0 as a distribution of the
random function

Y0(x) = ζ−(x3)Y−(x) + ζ+(x3)Y+(x). (2.18)

Then correlation functions of the measure µ0 are

Qij
0 (x, y) = qij−(x− y)ζ−(x3)ζ−(y3) + qij+(x− y)ζ+(x3)ζ+(y3), i, j = 0, 1, (2.19)

where x = (x1, x2, x3) , y = (y1, y2, y3) ∈ IR3 , qij± are the correlation functions of the
measures µ± . Then S0 and S1 hold, and S2 follows for µ0 with the same functions νd(r)
as for µ± . Let us assume, in addition to (2.17), that

qii±(x) = 0, |x| ≥ r0. (2.20)

Then mixing (2.7) holds since φiα,jβ(r) = 0 , r ≥ r0 , and S3 follows. For instance, (2.17)
and (2.20) hold if q̃ii±(ξ) = f(ξ1)f(ξ2)f(ξ3) with

f(z) = ((1 − cos(r0z))/z
2)N , z ∈ IR,

where N ≥ 0 is an integer, 2N − s > 1 ( s = 4 − 2i ).

2.5.2 Non-Gaussian measures

Let us choose some odd nonconstant functions f 0, f 1 ∈ C4(IRn× IRn) with bounded deriva-
tives. Let us define µ̂0 as the distribution of the random function (f 0(Y (x)), f 1(Y (x))),
where Y (x) is a random function with the Gaussian distribution µ0 from previous Exam-
ple. Then S0, S1 and S3 hold for µ̂0 with some appropiate functions νd since corresponding
mixing coefficients φ̂iα,jβ(r) = 0 for r ≥ r0 . Therefore, S0 implies for corresponding corre-

lation functions Q̂ij(x, y) = 0 for |x − y| ≥ r0 , so S2 also holds. The measure µ̂0 is not
Gaussian since the functions f 0 , f 1 are bounded and nonconstant.
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3 Application to Gibbs measures

We apply Theorem 2.8 to the case when µ± are the Gibbs measures (1.7) corresponding to
different positive temperatures T− �= T+ .

3.1 Gibbs measures

We will define the Gibbs measures g± as the Gaussian measures with the correlation func-
tions (cf. (1.7))

q00
± (x− y) = −T±E(x− y), q11

± (x− y) = T±δ(x− y), q01
± (x− y) = q10

± (x− y) = 0, (3.1)

where x, y ∈ IR3 . The correlation functions qij± do not satisfy condition S2 because of
singularity at x = y . The singularity means that the measures g± are not concentrated in
the space H . Let us introduce appropriate functional spaces for measures g± . First, let us
define the weighted Sobolev space with any s, α ∈ IR .

Definition 3.1 Hs,α(IR
3) is the Hilbert space of the distributions u ∈ S ′(IR3) with the finite

norm
‖u‖s,α ≡ ‖(1 + |x|)αΛsu‖L2(IR

3) <∞, Λsu ≡ F−1
[
(1 + |ξ|)sũ(ξ)

]
. (3.2)

Let us fix arbitrary s, α < −3/2 .

Definition 3.2 Gs,α is the Hilbert space Hs+1,α(IR
3) ⊕Hs,α(IR

3) , with the norm

‖Y ‖G ≡ ‖u‖s+1,α + ‖v‖s,α <∞, Y = (u, v).

Introduce Gaussian Borel probability measures g0
±(du) , g1

±(dv) in spaces Hs+1,α(IR
3)

and Hs,α(IR
3) , respectively, with characteristic functionals

g̃0
±(ψ) =

∫
ei<u,ψ>g0

±(du) = e
−<∆−1ψ,ψ>

2β±

g̃1
±(ψ) =

∫
ei<v,ψ>g1

±(dv) = e
−<ψ,ψ>

2β±

∣∣∣∣∣∣∣∣∣∣
ψ ∈ D.

By the Minlos theorem, [2], the Borel probability measures g0
± , g1

± exist in the spaces
Hs+1,α(IR

3) , Hs,α(IR
3) , respectively, because formally (see Appendix B)

∫
‖u‖2

s+1,αg
0
±(du) <∞,

∫
‖v‖2

s,αg
1
±(dv) <∞, s, α < −3/2. (3.3)

Finally, we define the Gibbs measures g±(dY ) as the Borel probability measures g0
±(du)×

g1
±(dv) in (Gs,α,B(Gs,α)) . Let g0(dY ) be the Borel probability measure in (Gs,α,B(Gs,α))

which is constructed as in Example of previous section with µ±(dY ) = g±(dY ) . It satisfies
S0 and S1 with qij± from (3.1). However, g0 does not satisfy S2. Therefore, Theorem 2.8
can’t be apllied directly to µ0 = g0 .

Standard methods of pseudodifferential operators imply the following lemma.

Lemma 3.3 The operators Ut : Y0 �→ Y (t) allow a continuous extention Gs,α �→ Gs,α .
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3.2 Convergence to equilibrium

Let Y0 be a random function with the distribution g0 . Denote by gt the distribution of
UtY0 .

Theorem 3.4 There exists a Gaussian Borel probability measure g∞ in Gs,α s.t.

gt
Gs,α−⇁ g∞, t→ ∞. (3.4)

Proof Denote by gθt the distribution of the random function (UtY0) ∗ θ with a θ ∈ D .
Obviously, (UtY0) ∗ θ = Ut(Y0 ∗ θ) . The distribution gθ0 of Y0 ∗ θ satisfies S0–S4 with the
functions νd(r) = C(1 + r)−1−d for large enough C > 0 . Therefore, Theorem 2.8 implies
the convergence (2.3) for µt = gθt by Remark 2.9:

gθt
H−ε
−⇁ gθ∞, t→ ∞, (3.5)

where gθ∞ is a Gaussian measure in H . Next, we prove the following Lemma on the
compactness.

Lemma 3.5 The family of measures gt , t ≥ 0 , is compact in the Hilbert space Gs,α with
any s, α < −3/2 .

Proof In the Fourier transform the solution to the problem (1.1) is the function ũ(ξ, t) =

ũ0(ξ) cos |ξ|t+ ṽ0(ξ)
sin |ξ|t
|ξ| . Then for Y (t) = (u(·, t), u̇(·, t)) we get similarly to (10.1)-(10.4)

∫
‖Y ‖2

Gs,αgt(dY ) =
∫
‖Y (t)‖2

Gs,αg0(dY0) ≤ C <∞, t ∈ IR (3.6)

for any s, α < −3/2 . Let us choose s > s and α > α . Then the embedding Gs,α ⊂ Gs,α is
compact by the Sobolev Theorem, and Lemma 3.5 follows from the Prokhorov criterion by
the method of [21]. �

The convergence (3.4) follows from Lemma 3.5 because the limit measure of any sequence
gtn with tn → ∞ does not depend on the sequence by (3.5). �

The limit measure g∞ is Gaussian with the correlation matrix Q∞ = (Qij
∞(x, y))i,j=0,1 ,

where

Q00
∞(x, y)≡ q00

∞(x− y) =−1

2
(T+ + T−)E(x− y), (3.7)

Q10
∞(x, y)=−Q01

∞(x, y)≡ q10
∞(x− y) =

1

2
(T+ − T−)P(x− y), (3.8)

Q11
∞(x, y)≡ q11

∞(x− y) =
1

2
(T+ + T−)δ(x− y). (3.9)

The identities (3.7)–(3.9) formally follow from (3.1) and (2.13)–(2.15). For the proof we
apply (2.13)–(2.15) to the initial measure gθ0 . �
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3.3 Limit energy current density

Let u(x, t) is the random solution to (3.1) with the initial measure µ0 satisfying S0–S3.
The mean energy current density is E0j(x, t) = −E0u̇(x, t)∇u(x, t) . Therefore, in the limit
t→ ∞ ,

E0j(x, t) → j∞ = ∇q10
∞(0).

Respectively, in the case of the “Gibbs” initial measure g0 , the expression (3.8) for the limit
correlation function implies formally that

j∞ =
T+ − T−

2
∇P(0),

where [∇P](z) = −F−1
[ξ sgn ξ3

|ξ|
]
(z) . Hence, formally we have the “ultraviolet diverging”

limit mean energy current density,

j∞ = −T+ − T−
2(2π)3

∫
IR3

ξ sgn ξ3
|ξ| dξ = −∞ · (0, 0, T+ − T−).

On the other hand, for the convolution Ut(Y0 ∗ θ) corresponding limit mean current density
is finite,

j
θ
∞ = −T+ − T−

2(2π)3

∫
IR3

|θ̃(ξ)|2ξ sgn ξ3
|ξ| dξ = −Cθ · (0, 0, T+ − T−),

if θ(x) is axially symmetric with respect to Ox3 ; Cθ > 0 if θ(x) �≡ 0 .

4 Compactness

Proposition 2.10 follows from the estimate (4.1) below using the Prokhorov criterion [21,
Lemma 3.1] by the method of [21].

Lemma 4.1 Let S0–S2 hold. Then for any R > 1

sup
t≥0

E0‖UtY0‖2
R ≤ C(R) <∞. (4.1)

Proof UtY0(x) = (u(x, t), u̇(x, t)) , and by definition (2.1),

E0‖UtY0(x)‖2
R = E0

∫
|x|<R

|u(x, t)|2dx+ E0

∫
|x|<R

|∇u(x, t)|2dx+ E0

∫
|x|<R

|u̇(x, t)|2dx. (4.2)

We bound for example the first integral in the right hand side of (4.2) in the particular case
when u0 ≡ 0 almost sure. General case will be considered in Section 6 as well as the bounds
for two remaining integrals in (4.2).

Let St(x) = {z ∈ IR3 : |x−z| = t}. Let us assume for a moment that the function v0(z)
is continuous almost sure. Then the Kirchhoff formula (6.1) gives

u(x, t) =
1

4πt

∫
St(x)

v0(z)dS(z), (4.3)

11



where dS(z) is the Lebesgue measure on the sphere St(x) . Therefore,

E0|u(x, t)|2 =
1

(4πt)2

∫
St(x)×St(x)

Q11
0 (z, p)dS(z)dS(p). (4.4)

Let us assume for a moment, that

Qij
0 (x, y) = 0 for |x− y| > r0, i, j = 0, 1. (4.5)

Then (4.4) implies the uniform bound in t ∈ IR ,

E0|u(x, t)|2 ≤ C

t2

∫
St(x) × St(x)
|z − p| ≤ r0

dS(z)dS(p) ≤ I = C1r
2
0. (4.6)

Hence, the bound for the first integral follows,

E0

∫
|x|<R

|u(x, t)|2dx ≤ I
∫
|x|<R

dx, t ∈ IR. (4.7)

Next we remove the additional assumption (4.5) by the following known lemma on spherical
integral identity, [10].

Lemma 4.2 For any r0 > 0 and p ∈ St(x) the identity holds,∫
{z∈St(x): |z−p|≥r0}

ν(|z − p|)dS(z) = 2π
∫ 2t

r0
rν(r)dr. (4.8)

The lemma with r0 = 0 , and S2 with d = 2 imply,

E0|u(x, t)|2 ≤ 1

(4πt)2

∫
St(x)×St(x)

ν2(|z − p|)dS(z)dS(p) ≤ CI2. (4.9)

Then (4.7) follows without assumption (4.5). The assumption on the continuity almost sure
of v0(x) can be removed by a convolution with a function θ ∈ D . �

5 Convergence of correlation functions

Here we prove the convergence (1.8) of correlation functions Qij
t (x, y) , as t → ∞ . This

implies the convergence of the characteristic functionals µ̃t in the case of Gaussian measures
µ0 , µ± .

Lemma 5.1 Let S0–S2 hold. Then ∀i, j = 0, 1
i) For the derivatives in the sense of distributions,

∂αx ∂
β
yQ

ij
t (x, y) ∈ C(IR3 × IR3), i+ j + |α| + |β| ≤ 2, ∀t > 0. (5.1)

ii) For ∀x, y ∈ IR3

Qij
t (x, y) → Qij

∞(x, y), t→ ∞. (5.2)
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Proof We prove the lemma again for i = j = 0 in the particular case when u0 ≡ 0 almost
sure. General case is considered in Section 6.

i) Let us assume for a moment that the function v0(z) is continuous almost sure. Then
Kirchhoff formula (4.3) gives

Q00
t (x, y) = E0u(x, t)u(y, t) =

1

(4πt)2

∫
St(x)

dS(z)
∫

St(y)

Q11
0 (z, p)dS(p). (5.3)

This integral is a convolution of Q11
0 (x, y) in both variables x, y with a distribution of

compact support. The convolution of distributions with compact support is commutative.
Therefore, the assumption on the continuity almost sure of v0(x) can be removed by a convo-
lution with a function θ ∈ D . Further, the convolution commutes with the differentiations.
Therefore, (5.1) with i = j = 0 follows from (2.10) with i = j = 1 .

ii) Changing variables z = x+ ωt in the right hand side of (5.3), we get

1

(4πt)2

∫
St(x)

dS(z)
∫

St(y)

Q11
0 (z, p)dS(p)

=
1

(4π)2

∫
|ω|=1,ω3<0

dS(ω)
∫

St(y)

Q11
0 (x+ ωt, p)dS(p) +

1

(4π)2

∫
|ω|=1,ω3>0

dS(ω)
∫

St(y)

Q11
0 (x+ ωt, p)dS(p)

= I−(t, x, y) + I+(t, x, y). (5.4)

Let us recall that ν(r) ≡ ν2(r) .

Definition 5.2 Cν(IR
3) is the space of functions f(y) ∈ C(IR3) s.t. |f(y)| ≤ Cν(|y|) with

a constant C ∈ IR .

Let us define for f(y) ∈ Cν(IR
3)

Rf(v) ≡ 1

(4π)2

∫
|ω|=1,±ω3>0

dS(ω)
∫

p·ω=v·ω
f(p)d2p, v ∈ IR3. (5.5)

Here d2p is the Lebesgue measure on the plane p · ω = v · ω . Note, the integrals with
± are identical and converge due to (2.8). Hence, the operator R : Cν(IR

3) → Cb(IR
3)

is continuous. We deduce the convergence (5.2) for i = j = 0 from (5.3), (5.4) and next
lemmas.

Lemma 5.3 Let S2 hold. Then for x, y ∈ IR3 ,

I±(t, x, y) → Rq11
± (x− y), t→ ∞. (5.6)

Lemma 5.4 Let f(y) ∈ Cν(IR
3) . Then

Rf(v) = −1

4
(E ∗ f)(v), v ∈ IR3. (5.7)

13



The proof of Lemma 5.4 see in Appendix A.

Proof of Lemma 5.3. For a moment we assume additionally (4.5). Denote by I11 the
inner integral entering (5.4):

I11 ≡ I11(x, y, ω, t) =
∫

St(y)

Q11
0 (x+ ωt, p)dS(p).

Denote p ≡ y+ωt ∈ St(y) . Then (4.5) implies that Q11
0 (x+ωt, p) = 0 for |p−p| ≥ r0+2R ,

because |x− y| ≤ 2R . Denote

Op = {p ∈ St(y) : |p− p| ≤ r0 + 2R}.

Denote by Tp a tangent plane to the sphere St(y) at the point p . Let Bp denote the
orthogonal projection of the domain Op onto Tp . For t > r0 + 2R the domain Op is the
image of the map St : Bp → IR3 defined by

τ → St(τ) = p+ τ − st(τ)ω ≡ y + ωt+ τ − st(τ)ω

where st(τ) = t−
√
t2 − |τ |2 . Changing the variables we get for large t ,

I11 =
∫
Bp

Q11
0

(
x+ ωt, y + ωt+ τ − st(τ)ω

)√
1 + |∇st(τ)|2d2τ. (5.8)

At last, we compute the limit of this integral as t → ∞ . Uniformly in τ ∈ Bp (and in
|ω| = 1 ), we have

⎧⎪⎪⎨
⎪⎪⎩
st(τ) → 0,

√
1 + |∇st(τ)|2 = (1 − |τ/t|2)−1/2 → 1,

∣∣∣∣∣∣∣∣
t→ +∞. (5.9)

Consider the case ω3 < 0 and ω3 > 0 separately. For ω3 < 0 and for large enough t > t(ω) ,

x3 + ω3t < −a, y3 + ω3t− st(τ)ω3 < −a, τ ∈ Bp.

Therefore, (5.8) implies due to S1 and (5.9),

lim
t→∞ I11 =

∫
Bp

q11
− (x− y − τ)d2τ =

∫
τ ·ω=0

q11
− (x− y − τ)d2τ.

Introducing new variable p = x− y − τ , we obtain the inner integral in the right hand side
of (5.5) with f = q11

− and v = x − y . Similarly for ω3 > 0 . Lemma 5.3 is proved with
additional assumption (4.5). At last, Lemma 4.2 and S4 give a uniform smallness of integral
(5.3) over |z − p| ≥ r0 with large r0 . �
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6 Correlation functions in general case

We prove Lemmas 4.1 and 5.1 for general case. Let us assume for a moment that u0 ∈ C1(IR3)
and v0 ∈ C(IR3) almost sure. Then we apply the Kirchhoff formula for solution u(x, t) to
the Cauchy problem (1.1),

u(x, t) =
1

4πt

∫
St(x)

(
v0(z) +

1

t
u0(z) + ∇u0(z)

z − x

t

)
dS(z). (6.1)

It implies similarly to (5.3),

Q00
t (x, y) =

1

(4πt)2

∫
St(x)

dS(z)
∫

St(y)

([
Q11

0 (z, p) + ∇p(∇zQ
00
0 (z, p) · z − x

t
) · p− y

t

]

+
1

t

[
Q10

0 (z, p) +Q01
0 (z, p) + ∇pQ

00
0 (z, p) · p− y

t
+ ∇zQ

00
0 (z, p) · z − x

t
+

1

t
Q00

0 (z, p)
]

+
[
∇zQ

01
0 (z, p) · z − x

t
+ ∇pQ

10
0 (z, p) · p− y

t

])
dS(p). (6.2)

Q01
t (x, y) =

1

(4πt)2

∫
St(x)

dS(z)
∫

St(y)

([
∆pQ

10
0 (z, p) + ∇p(∇zQ

01
0 (z, p) · z − x

t
) · p− y

t

]

+
1

t

[
∆pQ

00
0 (z, p) +Q11

0 (z, p) + ∇pQ
01
0 (z, p) · p− y

t
+ ∇zQ

01
0 (z, p) · z − x

t
+

1

t
Q01

0 (z, p)
]

+
[
∇pQ

11
0 (z, p) · p− y

t
+ ∇z∆pQ

00
0 (z, p) · z − x

t

])
dS(p). (6.3)

Q11
t (x, y) =

1

(4πt)2

∫
St(x)

dS(z)
∫

St(y)

([
∆z∆pQ

00
0 (z, p) + ∇p(∇zQ

11
0 (z, p) · z − x

t
) · p− y

t

]

+
1

t

[
∆zQ

01
0 (z, p) + ∆pQ

10
0 (z, p) + ∇pQ

11
0 (z, p) · p− y

t
+ ∇zQ

11
0 (z, p) · z − x

t
+

1

t
Q11

0 (z, p)
]

+
[
∇z∆pQ

10
0 (z, p) · z − x

t
+ ∇p∆zQ

01
0 (z, p) · p− y

t

])
dS(p). (6.4)

Proof of Lemma 4.1 for general case Step 1 Any integral entering (6.2)-(6.4) is a con-
volution of a derivative Dα,β

x,yQ
kl
0 (x, y) in both variables x, y , with a distribution of compact

support, k + l + |α| + |β| ≤ 4 . Therefore, (5.1) follows from (6.2)-(6.4) and S2. The as-
sumption on the C1 -continuity almost sure of u0(x) and continuity almost sure of v0(x)
can be removed in the same way as in previous section.

Step 2 Now (4.2) implies

E0‖UtY0(x)‖2
R =

∫
|x|<R

Q00
t (x, x)dx+

∫
|x|<R

∇x ·∇yQ
00
t (x, y)|y=xdx+

∫
|x|<R

Q11
t (x, x)dx. (6.5)
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(6.2) gives similar expression for ∇x·∇yQ
00
t (x, y) . Then correlation functions ∇x·∇yQ

00
t (x, y)

and Q11
t (x, x) can be estimated just by method of the proof of Lemma 4.1 in Section 4,

applying S2 and Lemma 6.1 to all entering integrals. Main observation is that any integral
there involves Dα,β

x,yQ
kl
0 (x, y) only with k + l + |α| + |β| = 2, 3, 4 .

Step 3 Q00
t (x, y) requires a particular attention due to the presence of the terms Dα,β

x,yQ
kl
0 (x, y)

with k + l + |α| + |β| = 0, 1 . Corresponding contribution is

I00
t (x, y)

=
1

(4πt)2

∫
St(x)

dS(z)
∫

St(y)

1

t

[
∇pQ

00
0 (z, p) · p− y

t
+ ∇zQ

00
0 (z, p) · z − x

t
+

1

t
Q00

0 (z, p)
]
dS(p).

Lemma 6.1 The integral I00
t (x, y) converges to zero as t→ ∞ .

Proof The assumption S2 implies

|I00
t (x, y)| ≤ 1

(4πt)2

∫
St(x)

dS(z)
∫

St(y)

1

t

[
2ν1(|z − p|) +

1

t
ν0(|z − p|)

]
dS(p). (6.6)

Therefore, Lemma 4.2 implies

|I00
t (x, y)| ≤ 1

(4πt)2

∫
St(x)

dS(z)
1

t

[∫ 2t

0
(2rν1(r) +

1

t
rν0(r))dr

]

≤ C
∫ 2t

0
(
r

t
ν1(r) +

r

t2
ν0(r))dr. (6.7)

Now (2.8) implies the convergence to zero by the Lebesgue theorem. �

Lemma 4.1 is proved for general case. �

Proof of Lemma 5.1 for general case Step 1 In the convolutions of Dα,β
x,yQ

kl
0 (x, y) with

k+ l+ |α|+ |β| = 2, 3, 4 , entering (6.2)-(6.4), the convergence follows just by method of the
proof of Lemma 5.1 in Section 5.

Step 2 Convolutions with k + l + |α| + |β| ≤ 1 enter only (6.2) and converge to zero by
Lemma 6.1.

Step 3 Let us define for the functions f ∈ C1
ν = {f ∈ L1

loc(IR
3) : |∇f(z)| ∈ Cν(IR

3)} , the
operator

Pf(v) =
1

(4π)2

∫
|ω|=1,ω3>0

dS(ω)
∫

v·ω=p·ω
∇f(p) · ω d2p, v ∈ IR3. (6.8)

For instance, the operator P can be applied to Dαqkl± with k + l + |α| = 1, 2, 3 since then
qkl± ∈ C1

ν (IR
3) by S2. Similarly, the operator R can be applied to Dαqkl± with k+ l+ |α| =

2, 3, 4 since then qkl± ∈ Cν(IR
3) .

Lemma 6.1 implies that the integrals of the expression
1

t
[. . .] entering (6.2) vanish in

the limit t → ∞ . The same holds obviously for all similar expressions entering (6.3)-
(6.4). Therefore, the convergence (5.2) follows with limit correlation functions Qij

∞(x, y) =
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q̂ij∞(x− y) where

q̂00
∞ = R

[
q11
+ + q11

− − ∆(q00
+ + q00

− )
]

+P
[
q01
+ − q01

− − q10
+ + q10

−
]
, (6.9)

q̂10
∞ = −q̂01

∞ = R
[
∆(q01

+ + q01
− − q10

+ − q10
− )

]
+P

[
q11
+ − q11

− − ∆(q00
+ − q00

− )
]
, (6.10)

q̂11
∞ = R

[
∆(∆(q00

+ + q00
+ ) − q11

+ − q11
− )

]
+P

[
∆(q10

+ − q10
− − q01

+ + q01
− )

]
. (6.11)

Step 4 It remains to prove q̂ij∞ = qij∞ . First, let us consider the terms with R entering
(6.9)–(6.11). For example, let us prove that R∆q00

+ = q00
+ . Indeed, ∆(R∆q00

+ ) = ∆q00
+ in

the sense of distributions, hence f(x) ≡ R∆q00
+ − q00

+ is a smooth harmonic function in IR3 .
On the other hand, ∆q00

+ ∈ Cν(IR
3) by S2. Hence, g(x) ≡ R∆q00

+ ∈ Cb(IR
3) , and moreover,

g(x) → 0, |x| → ∞. (6.12)

Indeed,

|
∫

p·ω=x·ω
∆q00

+ (p)d2p| ≤
∫

p·ω=x·ω
ν(|p|)d2p = 2π

∞∫
x·ω

rν(r)dr (6.13)

according to (4.8) with t = ∞ . This integral is bounded uniformly in |ω| = 1 and it
converges to zero if |x| → ∞ and x = |x|θ with θ · ω �= 0 . Therefore, (6.12) follows from
(5.5) by the Lebesgue theorem.

Further, |f(x)| ≤ |g(x)| + ν0(|x|) again by S2. ν0(rn) → 0 for some sequence rn → ∞
due to (2.8). Finally, maximum principle and (6.12) imply for any fixed x ∈ IR3 ,

|f(x)| ≤ max
|y|=rn

|g(y)|+ ν0(rn) → 0, n→ ∞.

Therefore, f(x) ≡ 0 and q̂ij∞ = qij∞ .

Step 5 Further, let us consider the terms with P entering (6.9)–(6.11). Obviously, Pf
is a convolution. We prove the next lemma in Appendix B. Let us recall that P(x) =

−iF−1
[sgn ξ3

|ξ|
]
.

Lemma 6.2 For f ∈ D we have

Pf(z) =
1

4
P ∗ f(z), ∀z ∈ IR3. (6.14)

Let us assume for a moment that all correlation functions qkl± (z) are smooth and decay
rapidly as |z| → ∞ . Then (6.9)–(6.11) coincide with (2.13)–(2.15) by Lemmas 5.4, 6.2. For
general case we assume the formula (6.14) as definition of the convolutions with P , entering
(2.13)–(2.15). Lemma 5.1 is proved for general case. �
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7 Convergence to equilibrium

Proof of Theorem 2.8 Theorem 2.8 follows from Propositions 2.10 and 2.11. Proposition
2.10 has been proved in Section 4. Proposition 2.11 follows by a development of the “rooms-
corridors” method of [8, Section 6 and Appendix A]. The method is based on the Lindeberg
Central Limit Theorem and uses as the ingredients the convergence of the correlation func-
tions of the measures µt , the mixing condition and the derivation of the Lindeberg condition
from the estimates of fourth order moment functions for the measures µt . The convergence
of the correlation functions is proved in Lemma 5.1. On the other hand, the mixing condi-
tion S3 is weaker than in [8] though S2 is more strong (see Remark 2.7). Respectively, the
method [8] requires a suitable modification for the proof of Proposition 2.11. For instance,
the Lemma 6.1 is used.
Remark Let us emphasize that the reasons of Section 6 and Appendix A in [8] do not use
explicitly the translation invariance of the measures µt .

8 Variable coefficients

We extend all results of previous sections to the case of the wave equations with variable
coefficients. We consider the wave equations in IRn with the initial conditions

⎧⎪⎨
⎪⎩
ü(x, t) =

n∑
j,k=1

∂j(ajk(x)∂ku(x, t)) − a0(x) u(x, t), x ∈ IRn, t ∈ IR

u|t=0 = u0(x), u̇|t=0 = v0(x),
(8.1)

where ∂j ≡ ∂

∂xj
. We assume the following properties E1–E3 of the equation (8.1).

E1 ajk(x) = δjk + âjk(x) , where âjk(x) ∈ D ; also a0(x) ∈ D .

E2 a0(x) ≥ 0 , and the hyperbolicity condition holds: ∃α > 0

H(x, ξ) ≡ 1

2

n∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2, x, ξ ∈ IRn. (8.2)

E3 Non-trapping condition holds, [20]: for (x(0), ξ(0)) ∈ IRn × IRn with ξ(0) �= 0

|x(t)| → ∞, t→ ∞, (8.3)

where (x(t), ξ(t)) is a solution to the following Hamiltonian system

ẋ(t) = Hξ(x(t), ξ(t)), ξ̇(t) =−Hx(x(t), ξ(t)).

Example. E1-E3 hold for the case of constant coefficients, ajk(x) ≡ δij . For instance, E3
follows because ξ̇(t) ≡ 0 ⇒ x(t) ≡ ξ(0)t+ x(0) .

We denote as above, Y (t) ≡ (u(·, t), u̇(·, t)) , Y0 ≡ (u0, v0) . Then (8.1) becomes

Ẏ (t) = F∗(Y (t)), t ∈ IR, Y (0) = Y0. (8.4)
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Proposition 2.2 holds for the solutions to the Cauchy problem (8.4) as well as for (1.2).
Let Y0 in (8.4) be a measurable random function with values in (H, B(H)) , and µ0 its
distribution, as above. Denote by µt the distribution of the solution Y (t) to the problem
(8.4). Let us state the extension of main Theorem 2.8. We introduce the appropriate Hilbert
spaces of initial datum of the infinite energy. Let δ be an arbitrary positive number.

Definition 8.1 Hδ is the Hilbert space of the functions Y = (u, v) ∈ H with the finite
norm

|||Y |||2δ =
∫
e−2δ|x|(|u(x)|2 + |∇u(x)|2 + |v(x)|2) dx <∞.

Theorem 8.2 Let n ≥ 3 be odd, and E1–E3, S0–S3 hold. Then
i) the convergence (2.3) holds for any ε > 0 .
ii) The limit measure µ∞ is a Gaussian measure on H .
iii) The limit characteristic functional has the form

µ̃∞(ψ) = exp (−1

2
< Q∞ΩΨ, ΩΨ >), Ψ ∈ D.

Here Ω : D → H′
δ is a linear continuous operator for sufficiently small δ > 0 , and Q∞ :

H′
δ → Hδ is a linear continuous operator with the integral kernel (2.12).

Theorem 8.2 follows immediately from Theorem 2.8, using the method [8]. The method
is based on the scattering theory for the solutions of infinite energy, which is constructed in
[8].

9 Appendix A. Radon transform

Proof of Lemma 5.4. Since
∫

p·ω=z·ω
f(p)d2p is even function with respect to ω , it suffices

to prove next lemma.

Lemma 9.1 Let (2.8) hold, and f ∈ Cν(IR
3) . Then

1

(4π)2

∫
|ω|=1

dS(ω)
∫

p·ω=z·ω
f(p)d2p = −1

2
E ∗ f(z), ∀z ∈ IR3. (9.1)

Proof. Both sides of (9.1) define the continuous operators Cν(IR
3) �→ Cb(IR

3) . Therefore,
it suffices to consider f ∈ D . Applying the Fourier transform, we obtain with ρ = |ξ| ,

(E ∗ f)(z) =
1

(2π)3

∫
Ẽ(ξ)f̃(ξ)e−iz·ξd3ξ =

1

(2π)3

∫
|ω|=1

dS(ω)

+∞∫
0

ρ2e−iρz·ωẼ(ρω)f̃(ρω)dρ. (9.2)

We substitute Ẽ(ρω) = − 1

ρ2
in the right hand side of (9.2) and get

(E ∗ f)(z) = − 1

(2π)3

∫
|ω|=1

dS(ω)

+∞∫
0

e−iρz·ωf̃(ρω)dρ. (9.3)
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Note, that

f̃(ρω) =

+∞∫
−∞

eiρhf (h, ω)dh, where f (h, ω) ≡
∫

y·ω=h

f(y)d2y. (9.4)

Then from (9.3), (9.4) we have

(E ∗ f)(z) = − 1

(2π)3

∫
|ω|=1

dS(ω)
1

2

+∞∫
−∞

e−iyz·ωdy
+∞∫

−∞
eiρhf (h, ω)dh

= − 1

8π2

∫
|ω|=1

dS(ω)F−1
y→(z·ω)Fh→yf

(h, ω) = − 1

8π2

∫
|ω|=1

f (z · ω, ω)dS(ω).

Lemma 9.1 is proved. �

Proof of Lemma 6.2. Since F [P](ξ) = − i

|ξ| sgn ξ3 , we have

(P ∗ f)(z) =
1

(2π)3

∫
P̃(ξ)f̃(ξ)e−iz·ξd3ξ = − i

(2π)3

∫
|ω|=1

dS(ω)

+∞∫
0

ρe−iρz·ω sgn(ω3)f̃(ρω)dρ

= − i

(2π)3

∫
|ω|=1,ω3>0

dS(ω)

+∞∫
0

ρe−iρz·ωf̃(ρω)dρ+
i

(2π)3

∫
|ω|=1,ω3<0

dS(ω)

+∞∫
0

ρe−iρz·ωf̃(ρω)dρ. (9.5)

In the last integral we change the variables ω → −ω , ρ→ −ρ , then apply (9.4) and get

(P ∗ f)(z) = − i

(2π)3

∫
|ω|=1,ω3>0

dS(ω)

+∞∫
−∞

ρe−iρz·ωf̃(ρω)dρ

= − i

(2π)3

∫
|ω|=1,ω3>0

dS(ω)

+∞∫
−∞

e−iρz·ω ρdρ
+∞∫

−∞
eiρhf (h, ω)dh. (9.6)

Note, that

ρ

+∞∫
−∞

eiρhf (h, ω)dh = i

+∞∫
−∞

eiρh(∇f)(h, ω) · ω dh, ρ ∈ IR. (9.7)

Indeed, applying (9.4) in the both sides of

F [∇f ](ρω) · ω = −iρF [f ](ρω),

we obtain (9.7). Finally, from (9.7) and (9.6) we get

(P ∗ f)(z) =
1

(2π)3

∫
|ω|=1,ω3>0

dS(ω)

+∞∫
−∞

e−iρz·ωdρ
+∞∫

−∞
eiρh(∇f)(h, ω) · ω dh
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=
1

4π2

∫
|ω|=1,ω3>0

F−1
ρ→z·ωFh→ρ(∇f)(h, ω) · ω dS(ω)

=
1

4π2

∫
|ω|=1,ω3>0

(∇f)(z · ω, ω) · ω dS(ω)

= 4Pf(z). (9.8)

Lemma 6.2 is proved. �

10 Apendix B. Gaussian measures in Sobolev’s spaces

We verify (3.3). Definition (3.2) implies for u ∈ Hs,α ,

‖u‖2
s,α =

∫
(1 + |x|)2α

( ∫
e−ix(ξ−η)(1 + |ξ|)s(1 + |η|)sũ(ξ)ũ(η) dξ dη

)
dx. (10.1)

Let µ(du) be a Gaussian translation invariant measure in Hs,α with a correlation function
Q(x, y) = q(x− y) . Let us introduce the following correlation function

C(ξ, η) ≡
∫
ũ(ξ)ũ(η)µ(du) (10.2)

in the sense of distributions. Using that u(x) is real, we get

C(ξ, η) = Fx→ξFy→−ηQ(x, y) = Cnδ(ξ − η)q̃(ξ). (10.3)

Then, integrating (10.1) with respect to the measure µ(du) , we get the expression

∫
‖u‖2

s,αµ(du) = Cn

∫
(1 + |x|)2αdx

∫
(1 + |ξ|)2sq̃(ξ) dξ. (10.4)

Applying it to q̃(ξ) = 1 and to q̃(ξ) = |ξ|−2 , we get (3.3). �
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Dunod, Paris, 1968.

[17] N.E. Ratanov, Stabilization of statistic solutions of second order hyperbolic equations,
Russian Mathematical Surveys 39 (1984), no.1, 179–180.

[18] N.E. Ratanov, Asymptotic normality of statistical solutions of the wave equation, Mosc.
Univ. Math. Bull. 40 (1985), no.4, 77-79.

[19] H. Spohn, J. Lebowitz, Stationary non-equilibrium states of infinite harmonic systems.
Comm. Math. Phys. 54 (1977), no. 2, 97-120.

[20] B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon
and Breach, New York, 1989.

[21] M.I. Vishik, A.V. Fursikov, Mathematical Problems of Statistical Hydromechanics,
Kluwer Academic Publishers, Dordrecht, 1988.

22


