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Abstract

Properties of the space A of generalized connections in the Ashtekar framework are

investigated�

First a construction method for new connections is given� The new parallel trans�

ports di�er from the original ones only along paths that pass an initial segment of a

�xed path� This is closely related to a new notion of path independence� Although we

do not restrict ourselves to the immersive smooth or analytical case� any �nite set of

paths depends on a �nite set of independent paths� a so�called hyph� This generalizes
the well�known directedness of the set of smooth webs and that of analytical graphs�

respectively�

Due to these propositions� on the one hand� the projections from A to the lattice

gauge theory are surjective and open� On the other hand� an induced Haar measure

can be de�ned for every compact structure group irrespective of the used smoothness

category for the paths�
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� Introduction

One of the recent approaches to the quantization of gauge theories� in particular of gravity�
is the investigation of generalized connections introduced by Ashtekar et al� in a series of
papers� see� e�g�� ��� �� ��� Mathematically� there are two main ideas� First� every classical
�i�e� smooth	 connection is uniquely determined by its parallel transports� These are certain
elements of the structure group that are in a certain sense smoothly assigned to each path in
the �space
time	 manifold and that respect the concatenation of paths� Second� quantization
here means path integral quantization� Thus� forget � as suggested by the Wiener or Feynman
path integral � the smoothness of the connections being the con�guration variables� Alto

gether� a generalized connection is simply de�ned to be a homomorphism from the groupoid
of paths to the structure group�
At �rst glance this de�nition seems to be very rigid� But� is there a canonical choice for the
groupoid P of paths
 Do we want to restrict ourselves to piecewise analytic or immersive
smooth paths
 When shall two paths be equivalent
 There are lots of �optimal� choices
depending on the concrete problem being under consideration� For instance� for technical
reasons piecewise analyticity is beautiful� In this case it is� in particular� impossible that two
paths �maps from ��� �� to the manifold M	 have in�nitely many intersection points provided
they do not coincide along a whole interval� However� since one of the most important
features of gravity is the di�eomorphism invariance� one should admit at least smooth paths�
Otherwise� a di�eomorphism will no longer be a map in P� On the other hand� paths that
are equal up to the parametrization� i�e� up to a map between their domains ��� ��� should be
equivalent� But� which maps from ��� �� onto itself are reparametrizations
 As well� � � ���

are to be equal to the trivial path in the initial point of the path �� This is suggested by the
homomorphy property hA�� � ���	 � hA��	hA��	

�� � eG of the parallel transports� What
are the other purely algebraic relations that hA has to ful�ll

As just indicated� two di�erent de�nitions are on the market for a couple of years� Originally�
Ashtekar and Lewandowski had used the piecewise analyticity ���� and later on� Baez and
Sawin ��� extended their results to the smooth category� Recently� in a preceding paper ���
we considered a more general case� At the beginning� we only �xed the smoothness category
Cr� r � N� � f�g � f�g� and decided whether we consider only piecewise immersed paths
or not� Furthermore� we proposed two de�nitions for the equivalence of paths� The �rst
one was � in a certain sense � the minimal one� it identi�es � � ��� with the trivial path as
well as reparametrized paths� The second one identi�es in the immersive case paths that are
equal when parametrized w�r�t� the arc length� The main goal of our paper is a preliminary
discussion which results are insensitive to the chosen smoothness conditions and which are
not�
Foremost� can an induced Haar measure be de�ned on the space A of generalized connections
in the general case
 It is well
known that this is indeed possible in the analytic case using
graphs ��� and in the smooth case using webs ���� What common ideas of these cases can be
reused for our problem
 Looking at the de�nition A�r��� �� lim�� �A� and AWeb �� lim�� wAw we
see that the label sets f�g and fwg of the projective limit are in both cases not only projective
systems� but also directed systems� This means that� e�g�� for every two graphs there is a
third graph such that every path in one of the �rst two graphs is a product of paths �or their
inverses	 in the third graph� The analogous result holds for the webs� In the analytical case
this can be seen very easily ���� for the smooth one we refer to the paper ��� by Baez and
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Sawin� In ��� we de�ned A in general by A�r� �� lim�� �A� whereas� of course� here the graphs
are in the smoothness category Cr� This de�nition has the drawback that the projective label
set f�g is no longer directed� But� nevertheless� note that we have shown ��� in the immersive
smooth category that lim�� wAw and A��� � lim�� �A� are homeomorphic� Hence that we can
hope to �nd another appropriate label set for the case of arbitrary smoothness that generalizes
the notion of webs and that gives a de�nition of the space of generalized connections which
is equivalent to that using graphs�
In the �rst step we will investigate a condition for the independence of paths� When can one
assign parallel transports to paths independently
 As we will see� a �nite set f�ig of paths
is already independent when every path �i contains a point vi such that one of the subpaths
of �i starting in vi is non
equivalent to every subpath of the �j with j � i� Sets of paths
ful�lling this condition will be called hyph� Obviously� the edges of a graph are a hyph as
well as the curves of a web� The crucial point is now� For every two hyphs there is a hyph
containing them� In other words� the set of hyphs is directed as the set of graphs �r � �	
and that of webs �r ��	� This ensures the existence of an induced Haar measure in A�r� for
arbitrary r� Moreover� as a by
product we get an explicit construction for connections that
di�er from a given one only along paths that are not independent of an arbitrary� but �xed
path� This immediately leads to the surjectivity of the projections �� from the continuum to
the lattice theory as well as that of �w and �� projecting to the webs and hyphs� respectively�
Furthermore� we prove that �� is open� In Section � we extend the de�nition of the Ashtekar

Lewandowski measure to arbitrary smoothness categories� Finally� we discuss in which cases
the regular connections form a dense subset in A�r��

� Notations

In this section we shall recall the basic de�nitions and notations introduced in ���� For further�
detailed information we refer the reader to that article�
Let there be given a �nite
� but at least two
dimensional manifold M and a �not necessarily
compact	 Lie group G� Furthermore we �x an r � N� � f�g � f�g and decide whether we
work in the category of piecewise immersive maps or not� In the following we will usually say
simply Cr referring to these choices�
A path is a piecewise Cr
map from ��� �� to the manifold M � A graph consists of �nitely
many non
self
intersecting edges whose interiors are disjoint and contain no vertex� Paths in
graphs are called simple� and �nite products of simple paths are called �nite paths� Two �nite
paths are equivalent if they coincide up to piecewise Cr
reparametrizations or cancelling or
inserting retracings � � ���� The set of �equivalence classes of	 �nite paths is denoted by P�
In what follows� we say simply �path� instead of ��nite path� and simply �graph� instead of
�connected graph��
A generalized connection A � A is a homomorphism hA � P �� G� For every graph with
edges ei � E��	 and vertices vj � V��	 de�ne the projections

�� � A �� A� � G�E���

A ���
�
hA�e�	� � � � � hA�e�E���	

�
to the lattice gauge theory� The topology on A is induced using all the �� by the topology of
each G�E����
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� A Construction Method for New Connections

Note that in this section we mean by �path� usually not an equivalence class of paths� but a
�genuine� path�
The main goal of this section is to provide a method for constructing a connection A that
only minimally� but signi�cantly di�ers from a given A

�
� In detail� we want to de�ne a new

connection whose parallel transport along a given path e takes a given group element g� but
has the same parallel transports as the older one along the other paths� However� this is
obviously impossible� because the parallel transports have to obey the homomorphy rule�
How can we �nd the way out
 The idea goes as follows� The only condition a connection
has to ful�ll as a map from P to G is indeed the homomorphy property� Therefore it should
be possible to leave the parallel transports at least along those paths untouched that do not
pass any subpath of our given path e� Since the generalized connections need not ful�ll any
continuity condition it does not matter �where� in e the modi�cation should be placed� e�g��
whether in the �rst half or the second or perhaps in the initial point� Since we are looking
for minimal variation we try to place the modi�cation into one single point� say� the initial
point e��	� This way all paths that do not pass e��	 can keep their parallel transports� This
is even true for those paths that though start �or end	 in the point e��	� but start �or end	 in
�another direction� as e��	 does� Hence� we are now left with those paths that pass an initial
path of e� There we really have to change the parallel transports � we simply multiply the
corresponding factor that changes hA�e	 to g from the left �or its inverse from the right	 to
the transport of every path that starts �inversely	 as e� Using a certain decomposition of an
arbitrary path we get the desired construction method�

��� Hyphs

Before we state and prove the theorem we still need two crucial de�nitions and a decomposition
lemma�

De�nition ��� Let ��� �� � P�
We say that �� and �� have the same initial segment �shortly� �� 		 ��	 i�
there are non
trivial initial paths ��� and ��� of �� and ��� respectively� that
coincide up to the parametrization�
We say analogously that the �nal segment of �� coincides with the initial
segment of �� �shortly� �� 
	 ��	 i� ���� 		 ��� The de�nition of �� 	
 ��
and �� 

 �� should now be clear�
I� the corresponding relations are not ful�lled� we write �� 		 �� etc�

De�nition ��� Let � and �i� i � I� be a paths without self
intersections� � is called
independent of D �� f�i j i � Ig i�

� there is a � � ��� �	 with ���� 		 �������i and ���� 	
 �������i for all i � I
or

� there is a � � ��� �� with ���� 
	 �������i and ���� 

 �������i for all i � I
holds�� The point ���	 is then usually called free point of ��

����� is the subpath of � that corresponds to � j������ ���� that for � j���� �� Analogously� �x�� is the
subpath of � starting in x supposed x � im �� �See also ��	�
 If ���
 should not be contained in im � then the

corresponding relation ���� �� �
������
i etc� is de�ned to be ful�lled�
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A �nite set D � f�ig of paths without self
intersections is called hyph or
moderately independent i� �i is independent of Di � f�j j j � ig�

Lemma ��� Let � � P and x � M � Then ����fxg	 is a union of at most �nitely many
isolated points and �nitely many closed intervals in ��� ���

Proof Let � be �up to the parametrization	 equal
Q
�i with simple ��i � P� Since any ��i

equals �up to the parametrization	 a �nite product of edges in graphs and of trivial
paths� this is also true for � itself� Obviously� we can even assume w�l�o�g� that
� �

Q
�i with �i being edges in graphs or trivial paths� �Thus� the manner of writing

brackets in
Q
�i does not matter�	

The assertion of the lemma is obviously true for any �i because an edge in a graph
has just been de�ned as non
self
intersecting and ���i �fxg	 is in the case of a trivial
path either equal � or ��� ���
The case of a general � is now clear� qed

Corollary ��� Let x � M be a point� Any � � P can be written �up to parametrization	
as a product

Q
�i with �i � P� such that

� int �i 
 fxg � � or
� int �i � fxg�

Proof Mark on ��� �� the end points of the closed intervals and the isolated points of ����fxg	
outside these intervals� We get �nitely many intervals on ��� ��� Each one corresponds
to a subpath �i of �� Obviously�

Q
�i is the desired decomposition of �� qed

��� The Construction

How we can state the construction method�

Construction ��� Let A � A and e � P be a path without self
intersections� Furthermore�
let g � G�
We now de�ne h � P �� G�
� Let � � P be for the moment a path that does not contain the initial

point e��	 of e as an inner point� Explicitly we have int�
fe��	g � ��
De�ne

h��	 ��

�������
������

g hA�e	
�� hA��	 hA�e	 g

��� for � 		 e and � 
	 e

g hA�e	
�� hA��	 � for � 		 e and � 
	 e

hA��	 hA�e	 g
��� for � 		 e and � 
	 e

hA��	 � else

�

� For every trivial path � set h��	 � eG�
� Now� let � � P be an arbitrary path� Decompose � into a �nite

product
Q
�i due to Corollary ��� such that not any �i contains

the point e��	 in the interior supposed �i is not trivial� Here� set
h��	 ��

Q
h��i	�

Theorem ��� The map h � P �� G from Construction ��� is for all A� e and g a homo

morphism� i�e� corresponds to a connection A

�
� A�
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Here� P is the set of all equivalence classes of paths�

Proof �� h is a well
de�ned mapping from P to G�
� Obviously� h���	 � h����	 if �� and ��� coincide up to the parametrization�

Thus� we can drop the brackets in the following when we construct multiple
products of paths�

� Now� we show h��� � ���	 � h��� � � � ��� � ���	�
Decompose ��� ��� and � due to Corollary ����
� ���	 �� e��	� ���	 �� e��	 and e��	 � im �

Then the decomposition of �� � ��� is equal
�QI���

i�� ��i
�
�����
�QI��

i�� �
��
i

�
setting

����� �� ��I��
��
� � The decomposition of �� � � � ��� � ��� is

�I���Y
i��

��i
�
���
�I��Y
i��

�i
�
��
� �Y
i�I��

���i
�
����
� I��Y
i��

���i
�

with ��� �� ��I���� �� �� �I�
��
I and ���� �� ���� ���� � �In the third product the

index decreases�	
A simple calculation shows that the de�nition above indeed yields the
same parallel transport for both paths�

� The other cases can be proven completely analogously�
� We have as well h��� � � � ���	 � h���	 � h�� � ��� � ��	 for all �� and ��
� Since equivalent paths can be transformed into each other by a �nite number

of just described transformations� we get the well
de�nedness�
�� h is a homomorphism� i�e� h corresponds to a generalized connection�

Let � and � be two paths and
QI
i�� �i and

QJ
j�� �j� respectively� be their decom


positions as above� Then the decomposition of � � � equals
�QI��

i�� �i
�
��
�QJ

j�� �j
�

with �� �� �I�� supposed
� �I��	 � ����	 �� e��	 or
� �I��	 equals e��	 for all � and so does ����	�

Otherwise the decomposition is
�QI

i�� �i
��QJ

j�� �j
�
and the homomorphy is trivial

by the above de�nition of h on general paths�
In the �rst case we still have to prove h��I � ��	 � h��I	h���	� But� this can
be seen quickly using the homomorphy property of hA and the de�nition above�

qed

Remark � The theorem just proven is very well suited for the proof of the surjectivity
and the openness of �� � A �� A� �see below	� In a certain sense it is
a generalization of the proposition about the independence of loops in ��� ���
This says that �for compact Lie groups with exp�g	 � G	 the holonomies along
independent loops are even independent on the level of regular connections�
For instance� a set of loops is independent if each loop possesses a subpath
called free segment that is not passed by any other loop� The independence
proposition could be proven modifying suitably a given connection along those
free segments� such that the resulting holonomy becomes a certain �xed value�
In our case we do no longer need the restriction to regular connections� We
can instead modify a connection �pointwise�� e�g�� in the point e��	 in the
construction above�
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� In the compact case we will extensively use this theorem in a subsequent paper
��� when we prove a strati�cation theorem for A and A�G�

� The theorem is valid not only for compact� but also for arbitrary structure
groups G�

��� Consequences

In this subsection we collect some immediate implications given by the construction above�
First we consider the case of arbitrarily many paths ei � E that are� �rst� independent of
the corresponding remaining paths in E n feig and� second� whose end points form a �nite
set containing all the free points� Then the parallel transports can be chosen freely� More
precisely� we have

Proposition ��� Let A � A and I be a set� Let E �� fei j i � Ig � P be a set of paths
that ful�ll the following conditions�
�� ei is a path without self
intersections for all i�
�� ei 		 ej for all i �� j�
�� ei 	
 ej for all i� j�
�� The set V� �� fei��	 j i � Ig of all initial points is �nite�
�� V� 
 int ei � � for all i�
Finally� let there be given a gi � G for all i � I�
Then� there exists an A

�
� A such that

� h
A
��ei	 � gi for all i � I and

� h
A
���	 � hA��	 for all � that do not have a subpath �� that ful�lls

�� 		 ei or �
� 
	 ei for some i � I� Especially� this holds for all � with

im � 

�S

i�I int ei
�
� ��

Proof First we observe that it is impossible that � 		 ei and � 		 ej for i �� j� because this
would imply ei 		 ej� Analogously� � 
	 ei and � 
	 ej is impossible for i �� j�
Now we de�ne h � P �� G as in Construction ��� with some modi�cations� Let
� � P� We decompose � according to the ��nite number of	 passages of points in
V�� Then we set for every such subpath �again denoted by �	

h��	 ��

�������
������

gi hA�ei	
�� hA��	 hA�ej	 g

��
j � if �i � � 		 ei and �j � � 
	 ej

gi hA�ei	
�� hA��	 � if �i � � 		 ei and �j � � 
	 ej

hA��	 hA�ej	 g
��
j � if �i � � 		 ei and �j � � 
	 ej

hA��	 � else
and extend the de�nition by homomorphy�
As in Theorem ��� one easily proves that h is a well
de�ned homomorphism using
the observation in the beginning of the present proof� Hence� h � h

A
� with some

A
�
� A�

Finally� one sees immediately from the de�nition of h that h
A
��ei	 � gi for all i � I

and h
A
���	 � hA��	 for all � with the properties above� qed

The preceding proposition covers both the case of webs and of graphs�

Corollary ��� The assumptions of Proposition ��� are ful�lled if E is the set of all edges
of a graph or the set of all curves of a web�
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Proof For �nite graphs the proof is trivial� Let therefore be E the set of all curves of a web�
By de�nition� the conditions ��� �� and �� are ful�lled as one easily checks using the
de�nition of a web �cf� ���	�
To prove �� we assume that e� 		 e� for certain curves e�� e� � E� Then we know
that e���	 � e���	 �� p�� i�e�� e� and e� belong to one and the same tassel� Suppose
now im e� �� im e�� Then there is w�l�o�g� a p � M with p � im e� n im e�� Then� by
the de�nition of a tassel� in every neighbourhood of p� there is a p� � im e� n im e��
But this is a contradiction to e� 		 e�� Hence� im e� � im e�� Thus� since the el are
paths without self
intersections� there is a homeomorphism � � ��� �� �� ��� �� with
e� � e� �� and ���	 � �� Now� due to the consistent parametrization of curves of a
tassel we know that there is a positive constant k with ���	 � k� for all � � ��� ���
Because of ���	 � � we get k � � and � � id� Thus� e� � e��
Finally� condition �� is ful�lled� In fact� let ei 	
 ej� Then we have ei��	 � ej��	�
This is obviously impossible by the de�nition of tassels and webs� qed

From the proof we get immediately

Corollary ��� The curves of a web form a hyph�

Proof The free point of a curve c in the web is simply its initial point c��	� qed

Now� we come to the case of arbitrary independent paths leading to the hyphs themselves�

Proposition ��� Let A � A and C � P be a set of paths without self
intersections� Now�
let e � P be a path without self
intersections and g � G be arbitrary�
Furthermore� suppose that e is independent of C�
Then there is an A

�
� A such that

� h
A
��e	 � g and

� h
A
��c	 � hA�c	 for all c � C�

Proof Due to the independence of e w�r�t� C� we have e � e��� � e��� for some � � ��� ����

such that� w�l�o�g�� e� �� e��� is a non
trivial path such that for all subpaths c� of all
the c � C we have e� 		 c� and e� 	
 c�� Analogously to Proposition ��� above there
is now an A

�
� A such that with e� �� e���

� h
A
��e�	 � �hA�e

�		��g�
� h

A
��c	 � hA�c	 for all c and

� h
A
��e�	 � hA�e

�	�
The last line follows� because e is a path without self
intersections� i�e�� there can

not exist a subpath e� of e� that is 		 or 
	 to e�� Finally� we have h

A
��e	 �

h
A
��e�	h

A
��e�	 � g� qed

Corollary ��	 Let A � A be a generalized connection and 	 � fe�� � � � � eY g � P be a
hyph� Furthermore� let gi � G� i � �� � � � � Y � be arbitrary�
Then there is a connection A

�
� A such that h

A
��ei	 � gi for all i�

Proof Use inductively the preceding corollary� Let A� �� A� Then for all i choose an
Ai such that hAi

�ei	 � gi and hAi
�ej	 � hAi��

�ej	 for all j � i using the assumed

independence of ei w�r�t� fej j j � ig� Finally� set A
�
�� AY � A

�
has now the desired

property� qed

�If � � 
 let e��� be the trivial path and� analogously� e��� for � � ��

�



��� Surjectivity

Proposition ��
 �� � A �� A� is surjective for all graphs ��
�w � A �� Aw is surjective for all webs w�
�� � A �� A� is surjective for all hyphs 	�	

For Lie groups with exp�g	 � G the surjectivity of �� can also be proven analytically showing
that even �� jA� A �� A� is surjective� In the case of webs one additionally needs com

pactness and semi
simplicity of G� But� the proof given here has the advantage that it is
completely algebraic and needs no additional assumptions for G� Moreover� it uses the very
constructive proposition just proven and is valid also for hyphs�

Proof Let �g�� � � � � g�E���	 � G�E��� be given� Now let A � A be the trivial connection� i�e�

hA��	 � eG for all � � P� By Proposition ��� and Corollary ��� there is an A
�
� A

with h
A
��ei	 � gi for all i � �� � � � ��E��	�

The proof in the case of webs is completely analogous� the proof for hyphs uses
Corollary ���� qed

��� De�nition of A Using Hyphs

In a preceding paper ��� we proved that in the smooth case for a compact and semi
simple
structure group G the spaces A����� and AWeb of generalized connections used here and by
Baez and Sawin� respectively� are in fact homeomorphic� Now� we will translate that proof
to the case of hyphs�
First� we de�ne a partial ordering on the set of hyphs� 	� � 	� i� every e � 	� equals up to
the parametrization a �nite product of paths in 	� and their inverses� Then we can de�ne
A� �� Hom�P��G	 �P� being the subgroupoid of P generated by 		 and

����� � A�� �� A�� �
h ��� h jP��

for 	� � 	�� We topologize A� identifying it with G��� Obviously ����� is always continuous�
surjective and open� So we can de�neAHyph �� lim�� �A� as the space of generalized connections
with the canonical projections

�� � AHyph �� A��
�h��	�� ��� h�

Using the surjectivity of �� we get

Proposition ���� AHyph and A are homeomorphic in every smoothness category�

The proof is almost literally the same as for AWeb and A����� in ��� and is therefore dropped
here�

� Directedness of the Set of Hyphs

In this section we will prove the following

Theorem ��� The set of all hyphs is directed�

��� is simply the map A ��� �hA�e�
� � � � � hA�eY 

 � G
Y where ei are the paths in ��

�



This assertion follows immediately from the more general

Proposition ��� Let C � P be a �nite set of paths without self
intersections� Then there
is a hyph 	� such that every c � C equals up to the parametrization a
�nite product of paths �and their inverses	 in 	�


We will prove this theorem using induction on the number of paths in C� If a path c � C
would be independent of the complement C n fcg� there will be no problems� Therefore� we
�rst consider the other case�

��� Non�independent Paths

In the following we often decompose paths without self
intersections according to a �nite set
P of points in the manifold M � This means� given some path e we construct non
trivial
subpaths ei such that every ei starts and ends in P or e��	 or e��	� We obviously need only
�nitely many ei and get e �

Q
ei�

Lemma ��� Let e and cj� j � J � be �nitely many paths without self
intersections� such
that e is not independent of C �� fcj j j � Jg�
Then there are �i � ��� ��� i � �� � � � � I� with �� � � and �I � � such that the fol

lowing holds� After decomposing every e and cj into a product of edges

QI��
i�� ei

and
Q
c�k� respectively� according to the set fe��i	g� for every i � �� � � � � I � �

one of the following two assertions is true�
�� ei 		 c�k �� ei � c�k and

ei 	
 c�k �� ei � �c�k	
��

�� ei 
	 c
�
k �� �ei	

�� � c�k and
ei 

 c�k �� �ei	

�� � �c�k	
���

Note that here the �
sign indicates that� e�g� in the �rst case� ei and c�k are even equal up to
the parametrization�

Proof �� Let I����j� � � ��� ��� contain exactly � itself and those � � � ��� �� for that the
subpath of e from � to � � is up to the parametrization equal to some subpath of
cj or c

��
j � By assumption for all � � ��� �	 there is a j with I����j �� f�g�

Analogously� I����j� � � ��� ��� contains exactly � itself and those � � � ��� �	 for
that the subpath of e from � � to � is up to the parametrization equal to some
subpath of cj or c��j � Again� by assumption for all � � ��� �� there is a j with
I����j �� f�g�
Furthermore� I����j is everytime connected�
Now� de�ne

I��� ��
�
j�J

I����j ��f�g

I����j�

as well as I��� �� f�g and I��� �� f�g�
What is the interpretation of such an I���
 I���� e�g�� is that interval in �����
starting in � such that every subpath of cj �or c

��
j 	� that starts in e��	 as e does�

is even equal �up to the parametrization	 to this subpath of e at least from e��	
to e�� �	 for every � � � I���� However� note� that I��� need not be a closed interval�

	Consequently� for no c � C there is a path occuring twice in the product for c�

��



Observe� that I��� is in each case �except for I��� and I���	 an interval that
contains f�g as a proper subset�

�� Now� we construct a sequence ��i	 of numbers starting with �� �� � as follows for
all i � ��
a	 �i�� �� sup I�i���
b	 �i�� �� supf� � ��i��� �� j I�i�� 
 I��� �� �g
c	 �i���� is some number with

� �i�� � �i���� � �i���
� �i���� � I�i���� and
� I�i�� 
 I�i������ �� ��

d	 �i� �

�
is some number in I�i�� 
 I�i�������

e	 If �i�� � � then stop the procedure�
Observe�
a	 �i�� 
 �i� because I�i�� is a non
trivial interval�
b	 Since I�i�� 
 I�i���� �� � �by de�nition of �i��	� the set of all numbers � with

I�i�� 
 I��� �� � and � � �i�� non
empty� Consequently� it has a supremum
�i�� � �i���

c	 By choice of �i�� as such a supremum there is a � � � �i�� with � � � I�i����
and I�i�� 
 I� ��� �� �� Choose now �i���� �� � ��

d	 �i� �

�
exists obviously�

Thus� the construction above is possible�
Furthermore� we have �i � �i� �

�
� �i�� � �i���� � �i�� and �i � �i���

�� Now� assume that there is no N � N with �N � �� Then ��i	i�N is a strictly
increasing sequence with values in ��� �	� i�e� �i � � � ��� �� for i � �� and we
have �i � � for all i � N �
Let � � � I��� with � � � � � Then there is an n � N with � � � �n � � � Now we have
I�n�� 
 I��� �� �� because� e�g�� �n is contained in this set� But� from this we get
together the step ��b	 above� that � � �n��� This is a contradiction to � 
 �n���
Consequently� there is an N � N with �N � ��

�� Now� the desired parameter values are �i� �i� �

�
and �i���� for i � �� � � � � N � �

as well as �N � Divide the edges e and cj according to the set of all those e�����	�
We have �if two subsequent vertices e�����	 are equal� we drop the correspondent
�trivial	 subpaths e��� and c����	�
a	 ei 		 c�k �� ei � c�k and

ei 	
 c�k �� ei � �c�k	
���

b	 ei� �

�

	 c�k �� �ei� �

�
	�� � c�k and

ei� �

�


 c�k �� �ei� �

�
	�� � �c�k	

���

c	 ei���� 
	 c�k �� �ei����	
�� � c�k and

ei���� 

 c
�
k �� �ei����	

�� � �c�k	
���

We only show the �rst item� the two other ones can be proven analogously�
Let ei 		 c�k� Since c�k is a subpath of a cj� we have I�i���j �� f�ig� From I�i���j �
I�i�� � ��i� �i� �

�
� we get now ei equals �up to the parametrization	 a subpath of cj

starting in e��i	� But� since cj has no self
intersections and is divided according
to e��i	 and e��i� �

�
	 �and other vertices that are not contained in im ei	� we have

ei even equals c�k up to the parametrization�

��



In the case ei 	
 c�k we conclude analogously using ei 		 �c�k	
��� qed

��� Proof of Proposition ���

Proof Proposition ���

� First of all we decompose all ci according to the set V �� fci��	gi � fci��	gi of
all end points� Thus� we get a �nite set C � of paths without self
intersections�
whereas every c � C equals up to the parametrization a �nite product of paths
c� � C � and their inverses and where no end point of a path c� is contained in the
interior of another path in C ��
Consequently� we can w�l�o�g� assume that our set C in the proposition is of that
type�

� Now� we consider c� � C�
�� In the case that c� is already independent of fcj j j 
 �g we need not decom


pose c�� we simply set ci�� �� ci and Ii �� � for all i�
�� In the other case we use Lemma ��� and get certain paths ek �w�l�o�g� such

that c� � e� � � � � � eI�	 such that every cj is a product of the ek �and their
inverses	 and such that the ek� k � ��� I��� are independent of the remaining
paths� Now� we set c��k �� ek for all k � ��� I��� Analogously� we de�ne ci�l for
i 
 � being that ek that �or whose inverse	 is used at the lth position in the
product for ci� after we cancelled all ek occuring in c�� and denote the number
of factors left by Ii�

�

Per constructionem� c��l is independent of fci�l� j i 
 � or l �� l�g� Note� moreover�
that the set of end points of the ci�l is again disjoint to the interiors of these paths�
Finally� we set C� �� fci�l j i 
 �g�

� Now� we decompose the paths c��l � C� �if I� �� �	�
We start with c���� If it is not independent of the fci�l � C� j i 
 � or l �� �g� then
decompose it again by Lemma ��� by certain independent paths e�k� We get as
before c��� � c����� � � � � � c����I��� and a certain set C��� that collects all paths used
for the decomposition of ci�l with i 
 �� But� note that c��l is not decomposed for
l �� � by that procedure�
Afterwards� we decompose c��� �w�r�t� C���	 and so on�
Summa summarum� we get paths c��l�ml

with c��l �
Q
ml
c��l�ml

and a set C� �� C��I�

collecting all the paths that ci�l with i 
 � is decomposed into� but that are not
used in the decomposition of c��l� By the construction� c��l�ml

is independent of
fc��l��m�

l�
j l �� l� or ml �� m�

l�g � C��
� In the next step� we �rst collect all paths in C� that are used for the decomposition

of c	� After renumbering these paths by c	��� � � � � c	�I� we can again apply the
previous step�

� Inductively� we get an ordered set
C� � fcN����� � � � � cN�IN �MN�IN

� � � � � � � � c������ � � � � c��I��M��I�
� c���� � � � � c��I�g

of paths that is by construction moderately independent� consequently a hyph�
and that admits a factorization of every ci � C into a product of paths in C� of
the desired type� qed


Example� c� � e�e�e�� c� � e��
� e	e�e

��

 and c� � e��

� � Then we have I� � �� I� � �� I� � 
 and c��� � e��
c��� � e�� c��� � e�� c��� � e	 and c��� � e
�

��



��� Open Problem

In contrast to the case of graphs or webs we need for the de�nition of the independence in
the case of hyphs an ordering among the paths collected in a hyph� Thus� it would be � at
least for technical reasons � desirable to solve the following open problem� Does there exist
for every given �nite set C of paths a set E of strongly independent paths� such that every
path in C is a product of paths in E and their inverses
 Strongly independent means here
that every path in C is independent of the remaining paths in C� We indicate the problems
that arised when we tried to prove the following answers�
�Yes�� The induction used for the proof of Proposition ��� cannot be reused� The problem

is the following� Suppose we have decomposed the �rst path c� in C w�r�t� to the
remaining paths as above� Then we decompose �the subpaths of	 the second path c�
in C w�r�t� the others� Now� it is possible that vertices used in this procedure for the
division of c� lie on c� again� Thus� c� would now be divided once more � with the
e�ect that sometimes subpaths of c� are created that do not ful�ll the independence
condition� �Remember that independence means existence of one point in a path with
the independence
of
germs condition above�	 Hence� we have to divide the respective
path again� But� now we could end up in a never
ending procedure that creates an
in�nite number of subpaths�

�No�� It would be enough to present one counterexample� But� up to now� none of the
examples we checked lead to a contradiction�

� Openness of ��

Proposition ��� �� � A �� A� is open for all graphs ��

Proof We have to show� ���V 	 is open for all elements V of a basis of A� i�e�� ����
��
��
�

�W�	


� � �
�����
I
�WI		 is open for all graphs ��i and all elementsWi of a basis ofA��i

� G�E���i��

But� a basis hereof is given by all sets of the type Wi�� � � � � �Wi��E���i�
with open

Wi�ni � G� Now we have

����
��
��
�

�W�	 
 � � � 
 �����
I
�WI		 � ��

� I�
i��

�E���i��
ji��

���ei�ji �Wi�ji	
�
�

�W�l�o�g� we assumed that none of the ��i consists of a single vertex�	
Let us therefore prove the openness of all sets of the type

��
� J�
j��

���cj �Wj	
�

with edges cj and open Wj � G�
Let us denote the edges of � by ei and set E �� feig and C �� fcjg�
�� Suppose �rst that there is an e � E that is independent of C� Then it is obviously

independent of C � �E��	 n feg	� We will show that

��
� J�
j��

���cj �Wj	
�
� ��nfeg

� J�
j��

���cj �Wj	
�
�G�

��� Trivial�
��� Let ��g� g	 � ��nfeg

�TJ
j�� �

��
cj
�Wj	

�
�G�

Hence� there is an A �
TJ
j�� �

��
cj
�Wj	 with ��nfeg�A	 � �g�

��



Due to Proposition ��� there is an A
�
� A ful�lling

� h
A
��ei	 � hA�ei	 for all ei �� e� i�e� �g � ��nfeg�A	 � ��nfeg�A

�
	�

� h
A
��cj	 � hA�cj	 for all j � �� � � � � J � i�e� A

�
� ���cj �Wj	 for all j� and

� h
A
��e	 � g�

With this we have ���A
�
	 �

�
��nfeg�A

�
	� �e�A

�
	
�
� ��g� g	� i�e�

��g� g	 � ��
� J�
j��

���cj �Wj	
�
�

�� Successively applying the preceding step we get

��
� J�
j��

���cj �Wj	
�
� ���

� J�
j��

���cj �Wj	
�
�Gn�

Here n denotes the number of edges e of � that are independent of C� �� denotes
that graph that arises from � by removing all such edges�

�� Since every edge e in �� is not independent of C� we can divide e� and the cj � C
as in Lemma ��� and get paths e���� � � � � e��n� and cj��� � � � � cj�mj

� We collect the
c��� into C� � P� Since the ei are edges of one and the same graph� ei �for i 
 �	
is still not independent of C�� We again use Lemma ���� now for decomposing
e� and the paths in C�� We get paths e���� � � � � e��n� and a C� � P� Successively�
we decompose all ei and Ci�� getting ek�ik and c�l � C � � P� such that for every
i and ki one of the following two assertions is true�
a	 ei�ki 		 c

�
l �� ei�ki � c�l and

ei�ki 	
 c
�
l �� ei�ki � �c�l	

��

b	 ei�ki 
	 c
�
l �� �ei�ki	

�� � c�l and
ei�ki 

 c

�
l �� �ei�ki	

�� � �c�l	
���

To reduce the technical e�orts we �rst invert all ei�ki that ful�ll the second asser

tion� Afterwards� we invert c�l if it is equivalent to an �ei�ki	

��� This is possible�
because there is at most one such edge e����
It is clear� that the ei�ki span a graph �� � ��� and we know from the construction
that no int c�l contains a vertex of ��� Furthermore� every cj is equivalent to a
�nite product of c�l �or its inverse	� The factors used for cj �again denoted by cj�lj	

span a graph �j� as well� Thus� we have ��� � ��
�

����� and ���cj � ����j ��
�j
cj 	

���

Finally� ��
�j
cj 	

���Wj	 is open in Gmj by continuity� i�e�� a union of sets of the

type Wj���� � ��Wj�mj
� Thus� ���

�TJ
j�� �

��
cj

�Wj	
�
is the union of sets of the type

��
�

�����
�TJ

j��

Tmj

lj��
���cj�lj

�Wj�lj	
�
�

�� Due to the openness of ��
�

��
�see ���	 it is su�cient to prove the openness of

���
�TL

l�� �
��
cl
�Wl	

�
whenever the following holds�

a	 �� is a graph and C � � fclg is a �nite set of paths without self
intersections�
b	 int cl 
V���	 � ��
c	 �e 		 cl �� e � cl	 and e 	
 cl for all l and for every edge e of the graph ��

and
d	 Wl � G is open for all l�
We will prove for non
empty left hand side

���
� L�
l��

���cl �Wl	
�
� �

ek�E����

� �
cl�C�ek�

Wl

�
� ��	

��



where C�ek	 � C � contains exactly those cl � C � that are �up to the parametriza

tion	 equal to ek or e

��
k � Since the right hand side is obviously open� the openness

is proven if ��	 is�

��� Let �g � ���
�TL

l�� �
��
cl
�Wl	

�
� i�e�� there is an A � A with �ek�A	 � gk for

all k and �cl�A	 � Wl for all cl � C �� From this follows gk � Wl for all

cl � C�ek	 and so �g ��ek�E����

�T
cl�C�ek�Wl

�
�

��� Let �g ��ek�E����

�T
cl�C�ek�Wl

�
� Choose an A� � A with �cl�A�	 � Wl for

all cl� By assumption every ek is independent of C � n �
S
k C�ek		 and so by

Proposition ��� there exists an A � A such that
� �ek�A	 � gk for all k and
� �cl�A	 � �cl�A�	 for all cl that are not equal �up to the parametrization	

an ek�
Thus� we have �cl�A	 � Wl for all cl � C�ek	� Consequently� �g �

���
�TL

l�� �
��
cl

�Wl	
�
� qed

� Induced Haar Measure

In this section we will show that thanks to the directedness of the set of hyphs an induced Haar
measure can be de�ned for arbitrary smoothness assumption for the paths� Our de�nition
covers that of Ashtekar and Lewandowski for graphs in the analytic category ��� as well as
that of Baez and Sawin for webs in the smooth category ����
Throughout this section� G is a compact Lie group�

��� Cylindrical Functions

In this subsection we will investigate the algebra of continuous functions on A� Particulary
nice is the dense subalgebra of the so
called cylindrical functions ��� ��� These are functions
depending only on the parallel transports along a �nite number of paths�

De�nition ��� A function f � C�A	 is called genuine cylindrical function on A i�
there is a graph � and a continuous function f� � C�A�	 with f � f� � ���
The set of all genuine cylindrical functions is denoted by Cyl��A	�

Obviously� Cyl��A	 is �
invariant� But� since for two �nite graphs there need not exist a third
one containing both� the sum as well as the product of two cylindrical functions is no longer
a cylindrical function in general� Therefore we enlarge the de�nition above to hyphs�

De�nition ��� A function f � C�A	 is called cylindrical function on A i� there is a
hyph 	 and a continuous function f� � C�A�	 with f � f� � ��� The set of
all cylindrical functions is denoted by Cyl�A	�

Lemma ��� Cyl�A	 is a normed �
algebra containing Cyl��A	�

Proof Cyl�A	 is obviously closed w�r�t� scalar multiplication and involution� It remains to
prove that it is closed w�r�t� to addition and multiplication�
Let f � � f ������� and f

�� � f ���������� � By Theorem ��� there is a hyph 	 with 	 � 	�� 	���
Thus we have f ��f �� � f �����

�
������f

��
�����

�
������ � �f �����

�
���f

��
�����

�
���	��� � Cyl�A	�

Analogously� f � � f �� � Cyl�A	� qed

��



Proposition ��� Cyl�A	 is dense in C�A	�

Proof The assertion follows from the Stone
Weierstra� theorem�
� � � Cyl�A	� whereas � � A �� C is the function ��A	 �� ��
� Cyl�A	 seperates the points of A��

Let A�� A� � A with A� �� A�� Thus� there is a graph � with ���A�	 �� ���A�	�
Since A� � G�E��� is a manifold� hence completely regular� the continuous func

tions on A� separate the points of A� ���� This means there is an f� � C�A�	
with f�����A�		 �� f�����A�		�
Due to f� � �� � Cyl�A	� Cyl�A	 separates the points of A� qed

��� The Induced Haar Measure on A

According to the Riesz
Markow theorem measures on a compact Hausdor� space are in one

to
one correspondence to linear� continuous� positive functionals on the function algebra over
that space� We get

Proposition ��� For every linear� continuous� positive functional F on C�A	 there is a
unique regular Borel measure � on A� such that

F � C�A	 �� C �
f ���

R
A f d�

Due to the denseness of Cyl�A	 in C�A	 it is su�cient to de�ne an appropriate functional on
Cyl�A	 and to extend this continuously to a functional on C�A	� One possibility is to replace
the integration of functions f� � �� over A by the integration of f� over A� � G��� But� on
G�� there is a �canonical� measure� the Haar measure� Hence� we de�ne �cf� ���	�

De�nition ��� Let f � Cyl�A	� De�ne F��f	 ��
R
A�

f� d�Haar� if f� � �� � f � and extend

F� continuously to a functional F on C�A	�

Proposition ��� F � C�A	 �� C is a well
de�ned� linear� continuous� positive functional
on C�A	�
Furthermore� there is a unique Borel measure �� on A with F �f	 �R
A f d�� for all f � C�A	�

De�nition ��� The measure �� of the preceding proposition is called induced Haar mea�

sure or Ashtekar�Lewandowski measure on A�

Proof � F� ist well
de�ned�
Let f be cylindrical w�r�t� 	� and 	��� Then f is again cylindrical w�r�t� 	� if 	
is some hyph containing 	� and 	��� The existence of such an 	 is guaranteed by
Theorem ���� Hence� it is su�cient to prove

R
A�

f� d�Haar �
R
A��

f�� d�Haar for all
	 � 	��
Let now 	 � 	�� Then every path e�i of 	

� can be written as a product
Q
ki e

��
j�ki�i�

of
paths in 	 �and their inverses	� By the moderate independence of hyphs there is
a path eK�i� for every i� such that eK�i� occurs exactly once in the decomposition

�We prove even Cyl��A
 seperates the points of A�

��



of e�i and does not occur in that of e�i� with i� � i� Now we have �n �� �	 and
n� �� �	�	Z

A�

f� d�Haar

�
Z
Gn

f��g�� � � � � gn	 d�Haar

�
Z
Gn

f��
�Y
k�

g��j�k����� � � � �
Y
kn�

g��j�kn� �n��

� Y
d�Haar

�f� � f�� � �
�
�� and decomposition of e�i�

�
Z
G

� � �
Z
G

f���� � � g
��
K��� � � � � � � � � � � �g

��
K�n�� � � � 	 d�Haar�� � � �d�Haar�n

�The dots in � � � g��K�l� � � � denote always a product of g��j with

j �� K�l�� for all l� � l��

�
Z
G

� � �
Z
G

f���g�� � � � � gn�	 d�Haar�� � � �d�Haar�n�

�Translation and inversion invariance� normalization of the Haar measure�

�
Z
A��

f�� d�Haar�

� F� is continuous due to jF��f	j �k f� k�k f k� The last equality follows from the
surjectivity of ��� see Proposition ����

� F� is obviously linear and positive�
� Hence� F is a well
de�ned� linear� continuous� positive functional on C�A	�
� Due to the Riesz
Markow theorem there is a unique Borel measure �� on A with

F �f	 �
R
A f d���

� F is strictly positive�
Let f � C�A	� f �� �� and k �� f �f � C�A	� Then U �� k�����

�
k k k��		 is

open and non
empty� Thus� there is a hyph 	 and an open� non
empty U� with
���� �U�	 � U � Since every open non
empty subset of a compact Lie group has
non
vanishing Haar measure�
 we have

F �f �f	 �
Z
A
k d�� �

Z
U

�

�
k k k d��

�
�

�
k k k

Z
���� �U��

� d�� �
�

�
k k k

Z
U�

� d�Haar

�
�

�
k k k �Haar�U�	 
 ��

qed

�Let U � G be open� non�empty� Then fUg j g � Gg is a covering of G� Since G is compact� there are
only �nitely many gi� such that

Sn
i
� Ugi � G� Due to the translation invariance of the Haar measure we

have ��U
 � �
n

P
��Ugi
 �

�
n
��G
 � 
�

��



� Discussion

In this paper we investigated for some examples how the theory of generalized connections
depends on the chosen smoothness category for the paths used in the construction of A� The
most important theorem yields that in every case an induced Haar measure can be de�ned�
But� there are some problems that depend very crucially on the smoothness of the paths� So
let us resume the discussion of the beginning of this paper� What could be a good choice of
smoothness conditions

One decisive point is the denseness of the classical �smooth	 connections in the space A�r��
In the case of compact structure groups G the denseness has been proven for the immersive
smooth ��� ��� and piecewise analytic category ����� However� in the �rst case ��� the space
AWeb was de�ned not by lim�� wAw� but by lim�� wAw where Aw �being a Lie subgroup of G�w	
denotes the image of the space A of regular connections under the map �w � hc� � � � �� hcW �
Thus� the denseness follows immediately by the directedness of the set of webs �cf� Appendix
B	� Supposed� G is in addition semi
simple� Lewandowski and Thiemann ���� proved that
Aw � Aw � G�w which implies that A is also dense in our A������ Up to now� we do
not know whether this is true for arbitrary Lie groups� However� A is de�nitely not dense
in the space A�r� for non
immersed paths� Let� e�g�� � be an immersed path without self

intersections and ����	 �� ��� �	� Then �� is not equivalent to � �cf� ���	 and not an immersion�
But� obviously h��A	 � h���A	 for all A � A� Consider now two elements g� g� � G and
corresponding disjoint open neighbourhoods U� U � � G� We see that 	 �� f�� ��g is a hyph
and so ���� �U	 
 ����� �U

�	 � ���� �U � U �	 is non
empty and open� but contains no regular A�

So A is not dense in A�r��
Since this is� in fact� very unsatisfactory� we should look for other possibilities for the de�nition
of the set P for non
immersive paths� The probably easiest way should be to rede�ne the
equivalence relation between paths� Why should non
self
intersecting paths � and �� only be
equivalent if they coincide up to a piecewise Cr
transformation
 Perhaps we should use a
de�nition of the following kind� � � �� i� hA��	 � hA��

�	 for all A � A � maybe at least
provided im � � im ��� This one is quite similar to that used originally in ��� ��� On the one
hand� we expect that all the constructions made in this paper and its predecessor ��� will still
go through� But� on the other hand� even for that de�nition we do not see that it saves the
desired density property in more cases than described above�
What other questions discussed in the Ashtekar framework could be touched by the choice of
P
 One area we mentioned above � the di�eomorphism invariance of quantum gravity� Here�
obviously� we have to admit at least smooth paths� Another problem is quantum geometry�
For instance� the de�nition of the area operator ��� enforced the usage of at most the analytic
category� There one has to calculate sums over intersection points of spin networks with
surfaces� But� since there can exist in�nitely many such points when working with smooth
paths� these sums can be in�nite� This problem could be solved if there would exist for every
�xed surface S inM a basis of L��A� ��	� such that every base element has only �nitely many
intersection points with S� But this seems very unlikely�
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Appendix

A Additional Results for A�G

In this appendix we give three corollaries about assertions that can be proven not only for A�
but also for A�G� For the de�nition of A�G and the used notation we refer to ����

Corollary A�� �� � A�G �� A�G� and �� � A�G �� A�G� are surjective for all graphs
��

Proof Let �h�� � A�G� � A��G�� From Proposition ��� follows the existence of an h � A

with ���h	 � h�� Then�
�
�����h	�

�
��
� A�G with ��

�
������h	�	��

�
� ����h	� � �h���

Analogously ����h�	 � �h�� holds for �h� �� �A�G�h	 � A�G� whereas �A�G � A ��

A�G is the canonical projection� qed

Corollary A�� �� � A�G �� A��G� � A�G� is open for all graphs ��

Proof This assertion comes from the surjectivity and the continuity of �A�G� from the open


ness of �� � A �� A� and �A��G�
as well as from the commutativity of the following

diagram�

A
�
A�G
�A�G

A�

��




�
A��G�
�A��G�

��




�

qed

Every measure on a compact A induces a measure on A�G via

De�nition A�� Let � be a Borel measure on A�
De�ne �G�U	 �� �����

A�G
�U		 for all Borel sets U on A�G�

Proposition A�� �G is a Borel measure on A�G for all Borel measures � on A�

Especially� the induced Haar measure can be transferred from A to A�G�

B Denseness Lemma for Projective Limits

Lemma B�� Let A be a set� Xa be a topological space for each a � A and � be a partial
ordering on A� Let �a�a� � Xa� �� Xa� for all a� � a� be a continuous and
surjective map with �a�a� � �

a�
a� � �a�a� if a� � a� � a	� Furthermore� let �a �

lim�� a��AXa� �� Xa be the usual projection on the a
component and X be
some subset of lim�� a�AXa�
Then X is dense in lim�� a�AXa if

��



�� A is directed� i�e� for any two a�� a�� � A there is an a � A with a�� a�� � a�
and

�� �a�X	 is dense in Xa for all a � A�

Beweis Let U � lim�� aXa be open and non
empty� i�e� U �
T
i �

��
ai
�Vi	 �� � with open

Vi � Xai and �nitely many ai � A� Since A is directed� there is an a � A with ai � a

for all i and thus U � ���a
�T

i��
a
ai
	���Vi	

�
with non
empty V ��

T
i��

a
ai
	���Vi	 � Xa�

V is open because �aai is continuous� Since �a�X	 is dense in Xa for all a� there is
an x � X with �a�x	 � V and so �ai�x	 � Vi for all i� hence x � U � qed
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