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STABILITY OF QUASICONVEX HULLS AND DEFORMATIONS WITH
FINITELY MANY GRADIENTS

BERND KIRCHHEIM

ABSTRACT. We answer a question by Kewei Zhang concerning the existence of sets with stable
quasiconvex hulls. As a consequence we confirm a conjecture by John M. Ball about the existence
of lipschitz maps using finitely many gradients without any rank-one connection. These functions
are obtained using a new argument which unifies the convex integration method and the present
Baire category approach to the existence of solutions of partial differential inclusions.

In this short note we address the question of existence of exact and stability of approximate
solutions for variational problems of the type

Fr(C) = inf{/ dist(K, Vf(z))dz ; f: QCR"™ — R" lipschitz and floqg = C € M”X’n} ,
Q

where K C M™™ is a compact set. In [12] the following question, concerning the set K¢ =
{C; Fk(C) = 0} of those boundary values which can be realized at arbitrarily small cost, was
asked. For which K is K9 stable under small pertubations, or in other words: what are the points
of continuity when we consider the map K — K9¢ mapping the space of compact sets equipped with
the Hausdorff metric into itself? As the map turns quite naturally out to be upper semicontinuous,
it is crucial to find sets K for which the so called quasiconvex hull (see [6] for a broader introduction
into this subject discussing the related Gradient Young Measures and the underlying duality with
quasiconvex functions) K9 does not suddenly decrease under small pertubations of K itself. Here
we we give the first general construction of nontrivial examples of this kind.

As finite sets are dense in the Hausdorff metric, we find in this way also generalized “Tartar
squares” (see [11] or below for more details stable under small pertubations in the full space
dimension. This new stability properties of our configurations allows us a more flexible reiteration
of the minimization procedure and in this way we obtain nonaffine lipschitz maps f satisfying
Vf(z) € K almost everywhere even for some finite sets K without rank-one connections. This
confirms a conjecture by John M.Ball, see [1], about the existence of such maps.

The other contribution of the paper concerns the way such exact solutions are actually con-
structed. Once our stability result is established, the map can be (and in fact was originally) ob-
tained using the Miiller-Sverék result on convex intergration via rank-one convex in-approximations
as given e.g. in Theorem 3.2. in [7]. However, we prefer to present also a new, simple, enlightening
and in the same time very flexible argument for the existence of solutions to differential inclusions.
It essentially shows that for most (in the topological sense) of the lipschitz functions with gradients
in a fixed bounded set U the gradient of the functions is stable under small L*°-pertubations of the
function itself. Therefore, the value of the gradient has to be in those parts of U where no rank-one
segments pass trough as they would allow to construct and add arbitrarily small “laminations”
with nonnegligible gradients. Our approach also shows that there is no basic difference between the
Baire category method (see e.g. [4]) and the “convex integration”-approach, e.g. as presented in
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its most flexible way in [8]. In fact, the most striking feature of the “convex integration”-approach
is the L'-convergence of the gradients along minimizing sequences. But from what we just said
it is clear that this phenomenon occurs also in the categorial framework - even if this simple fact
seemed to be overlooked until now, which unnecessarily reduced the flexibility of the Baire category
method.

Our approach to the stability result is in fact a rather geometrical one and uses the notion of
rank-one convexity instead of quasiconvexity. Therefore, a few words explaining their relations
are in place. It is quite easy to check that if K = {A, B} and rank(A — B) = 1 then each
Cel[A,B={)+(1-XB; X €|[0,1]} satisfies Fx(C) = 0, see e.g. the proof of Proposition
6 for the “lamination construction” of suitable f’s. Consequently, the lamination convex hull K
defined via

Lo(K) = K, Ly 1(K) = | J{[4,B]; A,B € Ly(K) and rank(A — B) <1}, K" = | J Li(K)
k>0

will certainly be contained in M9€. However, as rank-one connections are very fragile under pertuba-
tions, we will have to use the more robust “functional” hull defined by duality with rank-one convex
functions, i.e. f : M"™ — R such that £t € R — f(A +t- B) is convex whenever A, B € M™*"
and rank(B) = 1. Indeed, if we set

K™ ={AeM"™; f(A) <sup f(K) for all rank-one convex f : M"*™ — R},

then obviously K¢ C K"¢. But more interesting, we also have K¢ C K9%. Indeed, the already
mentioned lamination construction shows that Fg itself is rank-one convex (as a matter of fact
which we will not need here, it is just a multiple of the quasiconvexification of dist(K,-), see e.g.
[3]). The fact that K" can be nontrivial even if K = K¢ was first explicitely noticed in 1983,
compare the notes in [10] about the history, considering

K = {diag(1, —3), diag(3, 1), diag(—1, 3), diag(—3, —1)} € M**2,

The example was independently discovered at several other occassions, references can be found in
[6]. However, it was folklore that for this set Vf € K a.e. implies f affine because K" is too
small in M?*2 to allow a gradual moving of gradients into this set. (Nevertheless, an elementary
calculation using some special symmetries of this particular set K shows that K% is stable under
small pertubations even in the full M?*? dimensions. It seems that the author of [12] overlooked
this fact when formulating Remark 3.2 there, but a variant of it was extensively used in [7].) In [2] it
will be shown that also in general there is no 4-point configuration K without rank-one connection
that allows nonconstant Vf(z) € K a.e. On the contrary, in [5] we will present a special possible
5-point configuration and also some particularly simple (i.e. countably piecewise affine) functions
of this kind - however, using more than five gradients.

We set B(M,r) = {z ; dist(z, M) < r} and B(z,r) = B({z},r). The oridinary convex hull of
K is denoted K¢ and |M]| is the Lebesgue measure of M.

Our first argument provides some lamination convex hull with nonvoid interior.

Lemma 1. Let X € M" ™ be of rank one. Then for any € positive there is a set Mx C B(X,e)N
{Y ; rank(Y) = 1} consisting of at most 4nm points such that X € int(M5) and ({0} U Mx)¢ =
({0} U M5)¢ = ({0} U M5 ). Moreover, for each f: M"*™ — R rank-one conver we have

fY) <max f(M%) if f(0) < f(Y) and ¥ € ({0} U Mx)"\ M. (1)

Proof. After a suitable transformation using pre- and postmultiplication we can reduce the
problem to the case when X = e; ® e;. Let the € > 0 be given, we fix a positive § < 1,e/4nm Our
set M x will consist of the following points. Gradually, we take all (i,7) € {1,...,n} x {1,...,m},
and in case that 1 =1 or 5 =1 we add Mi’fj =X + (=1)F6%; ® ej for k = 1,2 to our set. Else we
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put for k =1,2 and [ = 1,2 Mzkj’l =X + (-1)*0%¢; ® ej + (—=1)'0(e1 ® ej + (—1)*e; ® e;) into our
set and finally we obtain M. It is clear that My C B(X,e) N{Y ; rank(Y) = 1} and as for any
(i, j) both points X =+ d%¢; ® e; belong to M, we also have X € int(MS) C B(X,e).

Finally, we have to verify the remaining inclusion and the estimate for f. For this purpose we
proceed by induction with respect to the length of the convex combination involved. It is clear
that, for any Z € U,¢p 1) tMS = ({0} UMx)¢ we can choose a shortest representation of the kind

Z= Y ApP where Mz C Mx,Ap>0and Y Ap <1.
PeMy My

Arguing by contradiction, we choose among all Z € ({0} UM y)¢ such that either Z ¢ ({0} UM )%
or that (1) fails one matrix, denoted by Zy, which minimizes the cardinality of M. Obviously,
card(Mz,) > 0 since Zy # 0. Hence, we can find Py € My, and set p = Ap, /(1 = > pp Ap). 1t
is easy to check that

Zo=pZ1+ (1= p)Zy with Zy = (1— Y Ap)Po+ > ApPand Zo = »_ ApP.
P#Py P#Py P#Py
Checking the sum of the weights one easily verifies that Z; is contained in M. By minimality of
card(Mz,) we know Zy € ({0} U (M%))! and f(Z2) < max f(MS) or f(Zs) < f(0). Since Z1, Z,
differ only by the rank-one matrix (1 — > p_ 5 Ap)Fh, we conclude that their convex combination
Zy belongs to ({0} UMS )% as well. Because Z; — Zg, Zo — Z2 # 0, rank-one convexity of f implies
that f(Zp) < max f(M%) if f(Zo) > f(0). This contradiction shows that we are done. O

Theorem 2. Let U C M™™™ be open and bounded. Then for any compact set C in U there is a
positive € such that C C M" whenever the set M fulfills OU C B(M,¢).

Proof. Obviously, the result follows once we know that it is true for C' being any closed ball
B(Xy,R) C U. For later use in the proof of Proposition 6, we will more specifically show the
existence of an ¢ > 0 such that for each set M satisfying OU C B(M,¢) there is S C M of the
following kind. If X € §, then there exists a set M x such that

(i) Mx —X C{Y ; rank(Y) =1},

(i) Mx is a subset of B(Xy, R) of cardinality at most 4nm
(iii) ({X}UMx)®=({X} UM%, and
(iv) Uxegint({X} UMx)¢ D IB(Xo, R).
For this purpose, we fix any Y € 0B (Xj, R). Since Y — X is the sum of rank-one matrices, we find
Dy of rank one such that (Y — Xg, Dy') > 0. We define Y; = Y+t Dy, then Y; ¢ B(X,, R) whenever
t is positive. We choose tg > 0 such that Xy =Y}, € OU and select Py =Y;, € B(Xy, R) for some
t; negative but sufficiently close to zero. Finally, we fix ry > 0 such that B(Py,3ry) C B(zg, R).
Now, Lemma 1 ensures the existence of 0y € (0,ry) and Mx, C B(Py,ry) fulfilling the properties
(1),(ii), (iii) from above and such that B(Y,2dy) C ({Xy} UMg(Y)lc. By compactness of 0B(Xy, R)
we find

N
Yi,...,Yy € 0B(Xo, R) such that | B(Y;,dy,) D 0B(Xo, R).
i=1
We also select the desired positive ¢ < dist(B(Xp, R), M**™ \ U), min; dy;.

Now we take any set M satisfying B(M,e) D OU. Then for each i < N we find X; € M such
that Xy, € B(X;,¢) and set S = {X; ; i < N}. We claim that B(X, R) C S™ and, moreover, that
puting My, = Mx,. + (X; — Xy;) we obtain the sets fulfilling (i), ... ,(iv) from above.

Indeed, (i),(ii), (iii) are clearly satisfied and, as concerns (iv) it is easily verified using the way
the Y;’s were choosen and the fact that for each 1 < N

B(Yi,8y,) C B(Y;. 20v) + (X; — Xy,) C int({Xy,} UMS, )" + (X; — Xy,) = inb({X;} UMS,)"
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Finally, if B(Xo,R) would not be contained in S7¢ then there would be a rank-one convex
function f : M™*™ — [0, 00) vanishing on S but attaining value 1 in some Zy € B(Xp, R). We can
of course even assume 1 = max(f(B(Xy, R))) and that Z; € dB(X,, R). Hence due to (iv), we find
i < N such that Zy € int({X;} U Mg(l_)lc. Moreover, because M C B(Py;,2ry;) C B(Xo, R —
Ty;), we have Zy ¢ MS. . Since f(Zo) > f(X;) we get from (1) that f(Zo) < max f(M,) <

max(f(B(Xo, R))). This contradiction finishes our proof. O

Corollary 3. If X,Y € M"*™ and rank(X —Y') = 1 then, for any € > 0, the set B({X,Y},e) is
stable, i.e K — K9 is continuous at B({X,Y },¢€).

Corollary 4. For any compact set C C M"*™  9(C9) is stable.

This settles two questions from [12]. Finally, we want to apply the stability results just obtained
to construct nonaffine lipschitz mappings using only finitely many gradients without any rank-one
connection among them. But first we develop the new existence result, which conversely would
allow to prove the originally used in-approximation result in [7].

Theorem 5. Let U, K be bounded sets in M"*™ U open and K compact. Assume that for each
e > 0 there is a 0 = §; > 0 such that for all A € U\ B(K,¢) there exists a lipschitz and countably
piecewise affine 4 : R™ — R® with bounded support which satisfies

e A+Vypa(z) €U forae z

o [IVpa(x)| > d]spt(p)]-
Given any A € U and Q C R™ bounded open, let & be the space of all countably piecewise affine
lipschitz f : Q@ — R* with flago = A and Vf(z) € U almost everywhere. Then typical f € @Lm,

which means all f except those from a set of first Baire category (also called a meager set) in ?L(X’,
satisfies Vf(z) € K.

— Lo . . . . . :
Proof. As & consists of functions with a uniform lipschitz constant, the map V: f — Vf

maps the complete metric space (&2 Lm, |- lso) into L (£2). Moreover, considering naturally defined

difference quotients it is clear that V is the pointwise limit of continuous functions from & P into
L'(£2). Such a map is called a Baire-one function and it is well known, see e.g. Chapter 7 of [9]
for a proof which works in any complete metric space, that a Baire-one function is continuous in
residually many points. So it remains to show that Vf(z) € K a.e. if f is a point of continuity of

V restricted to @Lw. But else, we would find a compact set C C  and an ¢ > 0 such that
¢ |C] >, V¢ is continuous, and
o dist(Vf(z),K) > e forall z € C.

We pick an 1 > 0 such that ||V f — Vg1 < €d./4 whenever g € Boo(f,n) no"=. By definition

of P there is a sequence of fr € & with fr = f and hence, due to the choice of f, satisfying
V fe(z) = Vf(z) a.e. Consequently, we find kg € N and another compact C' C Q with |C| > ¢ and
dist(V fi, (x), K) > € for all z € C. Of course, we can also assume that ||f — frolloo < 7/2. As fr
is countably piecewise affine, there are disjoint open subsets {G;}° of 2 such that |Q\ [JG;| =0
and fi |, 1s affine with gradient A4; € U. According to our assumption we pick for each 7 a function
@4,;- Rescaling this function in both domain and image by the same rate, we do not change the
(distribution of the) gradient. Using many such rescaled copies, whose disjoint supports exhaust
almost all of G;, we obtain the following. For each ¢ there is a countably piecewise affine lipschitz
map ¢; : G; — B(0,7/2; R") with fGi \Voi(z)|dz > 0:|Gi|, wia6, = 0 and A; + Vyi(z) € U ae.
in G;. Then it is clear that g = fr, + ), i belongs to Boo(f,n) N & and the same is true for fy,
itself. However, we have ||V (fi, —9)||11 > €0., and this contradiction to the choice of 7 shows that
Vf(z) € K a.e. indeed. O
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Proposition 6. For any n,m > 2 we can find a finite number of matrices Ay,..., Ay € MP*™
and an € > 0 such that the following holds. If B; € B(A;,¢) for each i < N then
i) rank(B; — Bj) = min(m,n) fori # j,
ii) there exists a lipschitz map f : (0,1)™ — R™ which is nonaffine (but has affine boundary data)
and fulfills
Vf(z) € {Bi,...,By} a.e. in (0,1)".

Proof. We consider the open unit ball B(0, 1) in M"*™ and the compact subball C' = B(0,1/2).
In this situation, we fix an £; > 0 whose existence is stated in the begin of the proof of Theorem 2.

Now we start by choosing any finite set Ay C 0B(0,1) with B(Ag,e1/2) D 0B(0,1). As for
any minor M of order min(n,m) and any X € M"*™ the set {Y ; M(X —Y) # 0} is open and
dense in M"*™ we can certainly find a set A; with card(A;) = card(Ay), Ao C B(Ay,¢1/8) and
rank(A; —A;) = min(m,n) if A;, A; € A, are different. Since we have to consider only finitely many
pairs, rank(B; — Bj) = min(m,n) is preserved provided g9 > 0 is small enough and B; € B(A;,¢€2)
for all i. Finally, we claim that (A;,¢), where ¢ = min(eg,£1/8) is the promised pair.

Indeed, if we fix arbitrary B; € B(A;,¢) then (i) was already verified. Put M = {B; ; i <
card(A;)}, then 0B(0,1) C B(Ay,5e1/8) C B(M,e1). So, by the choice of £; we find S C M which
has for B(Xy, R) = B(0,1/2) all properties (i), ... ,(iv) stated in the proof of Theorem 2. We set
U = B(0,1/2) UUyegint(Cx), where Cx = ({X} UM = ({X}UMx)¢, K = S and finish
the proof by showing that the assumptions of Theorem 5 are satisfied. As 0 € U we would then of
course obtain f with Vf(z) € K a.e. but with zero boundary data and hence nonaffine.

To verify the assumptions, we first recall the following well-known lamination construction,
compare e.g. with the proof of Lemma 4.3 in [6]. Whenever the segment [A, B] C M™*™ has a
rank-one direction, then for C = (A + B)/2 and any n > 0 there is a lipschitz piecewise affine
po : R — R" with bounded support which satisfies

e C+Vpc(x) e {A,B}UB(C,n) for a.e.

o [IVpa(@)] > 14 - Bllspi(0)i/3.

In fact, it is quite clear that we can without loss of generality assume that C' = 0, and after a
suitable transformation using pre- and postmultiplication that A = —B = e; ® e;. For fixed k > 2
we consider P = [—k,k|™ and the auxilary function h : R — R which is 1-periodic and fulfills
h(0) =0, A'(t) =1 if t € (0, /), and A'(t) = —1 for ¢t € (1, 1). We set

fule) = min(_yin, (VE - 20 ).

As h > 0 we see that fr > 0 on P. We can also define f; = 0 outside P since fp = 0 on 0P, because
in all boundary points either the first minimum vanishes or |z;| = k which implies h(z1) = 0. As f is
affine on finitely many pieces, is also quite easy to see that Vfy, € {e1, —e1}U{e;/VE, —e;/VE ; i =
2,...,m} almost everywhere in P. Moreover, since min;>» vk — (|z;|/v/k) > 2 and hence |V fi| = 1
almost everywhere on (1— %)P, we see that ¢g(z) = e1- fr(z) does the job provided k is sufficiently
large.

So, to finish it is enough to check the existence of a §y > 0 such that for each A € U \ B(K,¢)
there is a rank-one matrix D € M"*™ with |D| > min(dp,e/4nm) and A+¢D € U for || < 1.

As B(0,1/2) C int(U), we find dy with B(0, 12 + dy) C U and so we need only to consider
A € int(Cx) for some X € K. But then A—X =37\, Ay(Y —X) and as card(Mx) < 4nm we
find Y4 € Mx with A\y,|Y4 — X| > |A — X|/4nm > ¢/4nm. Obviously, D = min(1,dy/Ay,|Ya —
X|)Ay, (Ya — X) is a sufficiently large rank-one matrix. Moreover, the following simple geometric
observation ensures that [A — D/2,A+ D/2] C U. It says that if A — X = ZPEMA Ap(P — X)
with M4 C MX, > Ap <1 and Ap >0 for all P € My and if A € int(Cx) then B € U whenever
B = Y PeMy Ap(P — X) with ) Ap < 1 and Ap > 0 for all P. Indeed, we can of course suppose
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B ¢ M C U and hence Y. A\p < 1. We fix 7 > 0 such that B(A,7) C Cx and s € (0, 1(1-3 Ap))
with x maxp Ap < minp Ap. Then we can represent each C € B(B, kn) in the form

C—-X=xr(A+

C-B

—X)+((B-X)—K(A-X)) € k(Cx —X)+((B—X)—r(A—X)) CCx—X

where the last inclusion is checked easily. Therefore, we are done. O

[
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