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RIGIDITY FOR THE FOUR GRADIENT PROBLEM

MIROSLAV CHLEBIK AND BERND KIRCHHEIM

ABSTRACT. We prove a general rigidity result for the maximal possible number of gradients by
showing that any lipschitz function using four pairwise not rank-one connected gradients is neces-
sarily affine. This exhibits an interesting difference between rigidity features of approximate and
exact solutions of differential inclusions.

This paper contributes to the understanding of the following, seemingly elementary but in any
case very natural question.

Given a set 4 C M of matrices, when does there exist a nontrivial function f : Q C
R™ — R" using A for its gradients, i.e. we have, at least in the distributional sense,
Vf(z) € A almost everywhere in the domain €2 and f is nonaffine?

We will say that the set A is rigid if there is no such nonaffine function.
Besides the interest this question deserves on its own, our research is motivated by the obvious
link to the calculus of variations. Indeed, whenever we look for solutions of the problem

Fa(f) = /Qdist(Vf(x),A) dz — min, where A C M"*™ is compact

then, assuming the infinimum is zero, the minimum is attained precisely at the f mentioned above.
We will in the sequel call these functions, which are for compact A obviously lipschitz, exact
solutions (of the differential inclusion Vf € A a.e.). Clearly, due to the need to respect given
boundary conditions, we are interested how large the class of exact solutions is - in particular if it
contains nonaffine maps.

However, in many problems not only exact solutions but also the behaviour along minimizing
sequences {f;}, i.e. Fa(f;) — inf F4 is of great interest. Therefore we say that A is rigid for
approximate solutions if F 4(f;) — inf F4 and { f;} weakly convergent to an affine map implies that
Vfi— A€ Ain measure. As we will work in spaces of lipschitz functions the weak convergence of
fi is identified with uniform convergence and bounded lipschitz constants for the f;’s. This question
of rigidity for approximate solutions is much better understood, as it is equivalent to the existence
of nontrivial Gradient Young Measures in A (see [9] for a broader introduction into this subject and
the underlying duality with quasiconvex functions). The results known for this problem motivate
corresponding questions for exact solutions.

A crucial notion in this situation is the following. We say that A, B € M"*™ are rank-one
connected if rank(A — B) = 1. Since then A — B = e ® n, laminates, i.e. lipschitz mappings of the
type f(z) = B-z + e - h({z,n)) where h' = xp for some E C R, show that any set A containing
a rank-one connection fails to be rigid, both for exact and approximate solutions. Based on this
observation, we formulate the so-called

N-gradient problem: If card(A) = N and A C M"*"™ fails to be rigid (respectively
rigid for approximate solutions), does A necessarily contain a rank-one connection?
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For N = 2 the answer to these questions is yes, and was given in [2], where the focus of the work
lies on rigidity for approximate solutions. If N = 3, then both answers are still yes. See [11] and
[12] for rigidity for approximate solutions and [15] for exact ones. Finally, for N = 4 it was know
even earlier that rigidity for approximate solutions can fail, see [14]. Indeed, L. Tartar noticed in
1983, compare the notes in [13] about the history, that

A = {diag(1, —3),diag(3, 1), diag(—1, 3), diag(—3, —1)} C M?*?

is such an example. (This example was independently discovered at several other occassions,
references can be found in [9].) He showed that for any C' = diag(ci, ¢2) with ¢; € [—1,1] there is a
sequence f; of uniformly lipschitz functions with F4(f;) — 0 and f; = C. Hence, the barycentres
of the distributions of Vf;, formally expressed as (Vf;)4 (L2 Q)/L*(Q), go to C ¢ A. Since
dist(Vfi,/A) — 0 in measure, these distributions can not converge to a Dirac measure, even if A4
does not contain any rank-one connection. It was also folklore (for a simple proof see our Lemma
5 below) that this particular A is rigid for exact solutions. However, it was not clear what is the
situation for a general 4-point configuration. This together with a “speculation” at the end of [1]
about the existence of finite counterexamples A motivated our research.

In this paper we show, see Theorem 7, that a general 4-point configuration is rigid if and only
if it does not contain a rank-one connection. This result is nicely supplemented by an example
in [7] of a nonrigid 5-point configuration without any rank-one connection. It turns out that the
main obstructions for the existence of non-trivial exact solutions f come from the properties of
mappings with bounded distortion (also called quasiregular mappings). As long as we consider
only 4-points, there are still enough degrees of freedom to transform the exact solution via shifting
and postmultiplication (almost) into this more regular setting. The strategy of our proof is as
follows. We first present in Lemma 3 a genericity argument saying that 2 x 2 is the right dimension
to study the problem. Then linear algebra, see Lemma 4, allows us to reduce to a situation either
very similar to the original example by Tartar (and hence rigid by Lemma 5) or to suppose that all
A e A C M?>*? are symmetric and have the same determinant D. The case D > 0 is handled by
a regularity result from [11]. In fact, in that paper the 3-gradient problem is treated in a similar
way. Since 3 gradients can always be transformed into diagonal ones, in that situation a positive
determinant can always be achieved. Because this pleasant fact is not longer valid for N = 4, the
case D < 0 presents the core of our work.

We prove that each finite A C Mlzyx,% N{det = —D}, D > 0, contains a rank-one connection
if it is nonrigid. The basic observation used is that adding a suitable linear term to f we obtain
a map ¢ which is a degenerate limit of open mappings. Therefore, g satifies a kind of strong
monotonicity principle which says that g(M) = g(0M) for all sets M. In particular, g has an
one-dimensional image and all of its level sets are fairly long - whereas they are finite for a usual
map h : R2 — R?. Moreover, the nonexistence of rank-one connections in A allows us to prove
that these level sets can not bend and have different directions. This leads to a contradiction as
they then necessarily have to intersect. Note that in [6] a complete description of mappings with
Vfe szx,% N{det = —D}, D > 0, is obtained which implies in particular that Theorem 6 remains
true without any assumptions on the cardinality of .A.

Acknowledgements. It is a pleasure to thank D.Preiss and S.Miiller for helpful discussions
and suggestions. Both authors gratefully acknowledge the hospitality of UCL London, where the
main result was obtained.

We start with some preliminaries. By B(M, R) and U(M,r) we denote the closed and open
(metric) r-neighbourhoods of the set M, respectively. If M = {z} then B(M,r) = B(z, R) etc.
The Lebesgue measure of a set M is denote by |M]. In the proof of the crucial Theorem 6 we will
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need a few basic facts and notions about one-dimensional Hausdorfl measure and its densities. For
this purpose, we recall the definition.
If M C R” is given, we define the one-dimensional Hausdorff measure of M to be

V(M) = lim 1nf{2d1am UP DO M and diam(F;) <4 for alli}.

5*)04,_

Given a point z € R" we define the one—dlmensmnal upper density of M at z by

1
07 (M, z) = limsup ?%I(B(w,r) NM).

’I’~>0+ r

We will rely on the following basic density results, for the proof see e.g. Chapter 2 of [4].

Lemma 1. Let M C R" be a Borel set with 5#1(M) < co. Then
e 07(M,x) <1 for #*-almost every x € R, and
e 0;(M,x) =0 for " -almost every = € R* \ M.

A very important ingredience is the following result from [11], to be more precise the first part is
just Theorem 4 of [11] and as noted in that paper, the second statement follows then from regularity
results for convex solutions of the Monge-Ampeére equation (see [3]).

Theorem 2. Let Q C R? be an open set and F € W2®(Q,R) be such that det D*F(z) = u(z) >
e >0 for a.e. x € Q. Then F is locally either convex or concave. If u € C*°(Q2) then F € C*(Q).

Lemma 3. Let A C M™™ be finite and without rank-one connections. Suppose there exist a
nonaffine lipschitz map on a domain f : @ C R™ — R" such that Vf € A almost everywhere.
Then there are g € MPX™ and h € M"*2 and a lipschitz map f from [0,1]% into R? such that

e A={hoAog; Ac jl} does not contain any rank-one connection
e Vfe A almost everywhere and f is nonaffine.

Proof. First we note that for any fixed M € M"*™ of rank at least two, the set of those
(g,h) € M2X™ x M"*? satisfying rank(ho M og) = 2 is an open and dense subset of M2X™ x M**2,
Indeed, we consider the polynomial mapping ® : (h,g) — det(h o M o g). This map does obviously
not vanish identically, so it is different from zero on an open dense set in M?*™ x M"*? as was
claimed. ~

Next, we observe that f nonaffine implies the existence of y,z € B(z,r) C B(z,3r) C Q with
fly+z—2a)+ f(x) # fy) + f(z). We choose gg € M"*2 and hy € M2*™ such that

goer) =y — x,go(e2) = z —w and ho(f(y + 2 — ) + f(2) — f(y) — f(2)) #0.
As we have only finitely many pairs in A x A, we find arbitrarily close to (go, ho) a pair (g, h) and
an ¢ > 0 with rank(h o (A — B) og) = 2 for all A, B € A different and such that still

h(f(g(er +e2) +2) + f(2)) # h(f(g(e1) + &) + f(g(e2) + 2)) if |z — 2] <e.
Fubini’s theorem implies that for almost every translation & € R™ we have for a.e. p € R? the
inclusion V f (g(p) +&) € A provided g(p)+# € Q. We pick such a translation zo with |z —zo| < r,¢
and see that the map f : p € [0,1]2 = h(f(g(p) + z0)) does the job. O

Lemma 4. Consider 2 x 2-matrices Ay = 0, Ay = Id, Az and A4 with minjdet(A;) < 0. Then
we have one of the following two cases.

a) There are v,w € St such that w||Ajv for j =1,...,4.
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b) There exists a reqular matriz P € M2*? | a matriz S € Mg;,% and a real D such that PA; — S
is symmetric and det(PA; —S) =D forj=1,...,4.

Proof. At the very beginning, we notice that condition a) remains unchanged if we pre- and
postmultiply all A; with the same fixed matrices. First, we try to find the regular matrix P making
all PA; symmetric. As A; = 0, we see that requiring symmetry of PA; gives only three linear
constraints and consequently there is a nonzero matrix P in the at least onedimensional “kernel”
of these conditions. Since P = PAj, it is itself symmetric. Now suppose that P is singular, after
multiplication with a suitable real we can suppose P = v ® u # 0. We put w = v =i-u in complex
notation and claim that we are in case a) now. Indeed, take any j € {3,4} and y € R?. Since
(u®u)A; is symmetric, we see that (y, (v ® u)4;)v) = (v @ u)A;(y),v) = (4;(v),u @ u(v)) = 0.
Hence 0 = ((u ® u)A;)v = u(u, A;v) which shows that A;(v)||v.

Consequently, we can suppose det(P) # 0 and set flj = PA;. Searching now for the suitable
S € Mgy, fulfilling b) we obtain the equivalent conditions det(A; — S) = det(A; — S) = det(S9),
i.e. (cof Aj,S) = det(4;) for j = 2,3,4, and (M, S) = 0 where M=1i. Obviously, these four linear
conditions have a simultaneous solution establishing case b), provided the conditions are linearly
independent. Since all matrices cof flj, j =2,3,4 are orthogonal to M, this can fail only if cof flj,
j =2,3,4 are linearly dependent.

It is clear that we then find a A € R3 \ {0} with 2?21 AjAj11 = 0. Due to our assumptions we

find jy > 2 such that det(fljo) > (0 and can even suppose fljo > (. Replacing fl- by 4/ ~*1f~1-, /flfl

and reshuffling the indices, we can in addition assume that Ay = Id again. Now, if A3 = 0 we
see that Az is a multiple of the identity and hence that w = v an eigenvector of A4 brings us into
situation a). Else we have A; € span({Ay, A3}) and hence any eigenvector of A3 does what is
needed. O

Lemma 5. Assume A C M?*2 does not contain any rank-one connection and that there are v,w €
St with w||Av for all A € A. If the lipschitz map f : [0,1]> — R? satisfies Vf € A almost
everywhere, then f is necessarily affine.

Proof. We again use complex notations, e.g. identifying i with a 90-degree rotation, and set
M = {z € (0,1)?; Vf(z) € A}, so M is of full measure. Note that, since A does not contain any
rank-one connection, we infer from A, B € A and (iw)" - A = (iw)"-Bor A-v = B-v that A = B.

Due to our assumption, the map z — (iw, f(z)) is constant in direction v and hence the same
is true for its gradient z — V{iw, f(z)) = (iw)" - Vf(z). By what we told in the beginning, we
see that Vf is constant along the intersection of lines in direction v with M. This means that
f is affine along such lines where M has full measure and so Fubini’s theorem together with the
continuity shows that f is affine along all lines in direction v. Continuity now implies as well that
the slope of f must be the same on nearby v-lines and hence by the remark used already once, V f
must indeed be constant. For the reader prefering a more analytical argument we give a simple
calculation using that the second distributional derivatives commute and yielding this way

D(Df-v)-d=D(Df-d)-v=(D(Df) v)-d=0for all d € S},
hence Df -v =V f - v is constant and then the same must hold for V f itself almost everywhere. O

Theorem 6. Suppose that we are given a finite set A C M2X2 N{A ; det(A) = —D}, where D >0,

SYym
without rank-one connections. If f : B(0,1) — R? is lipschitz and V f(x) € A almost everywhere
in B(0,1) then f is affine.

Proof. Note that we can always assume 0 ¢ A. For 6 > 0 we define

fo(z) = fz) +VD+4 (? _01> T,
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and g = f9. We claim that
(1) g(M) = g(OM) for all M C Q =U(0,1).

Indeed, because V f is symmetric and hence orthogonal to the cofactor of the linear part added,
it is easy to check that det(Vf?)(z) = det(Vf)(z) + (D + 6) = ¢ a.e. in  and hence £, § > 0, is
a mapping of bounded distortion. We conclude from Theorem 6.4 in §6.3 in Chapter 2 of [10] that
each such f is an open mapping and in particular 9f°(M) C f°(0M) for all M C Q.

Now suppose there is y € g(M) \ g(OM). Because f° = g, there is an ¢ > 0 such that
Uly,e) NOf°(int(M)) C U(y,e) N fO(OM) = 0 if § € (0,¢). Obviously, y € g(int M) and hence
Uly,e) N fO(int M) # § for § sufficiently small. This shows U(y,e) C fO(int M) and in particular
|U(y,e)| < |f°(M)| < 6|9 for all such §. The obvious contradiction for § very small finishes the
proof of (1).

In the sequel we will by CC(M, x) denote the connected component of the set M containing the
point z. As a first consequence of (1) we obtain

(2) CC(g™ (g(z)),z) N O # O for all = € Q.

Indeed, assume the conclusion to fail for some z. We denote by M the compact set CC(g~!(g(z)), 7).
Because also the entire space C = g~!(g(x)) C Q is compact, we infer from §42, I1.2 in [8], that M
is also a quasicomponent of this space. In other words, there are sets M, C C, v € I' which are
closed and open in C and satisfy ﬂv M, = M. Because C'N0f) is by our assumption a compact set
disjoint with the intersection of all closed M,, it is already disjoint with the intersection of some
finite subfamily of {M, ; v € T'}. Hence, there is a set M C C \ 9Q closed and open in C' and
containing M. Therefore § = dist(M, (C'\ M) U (R?>\ Q)) > 0. We set G = {y ; 2dist(y, M) < 6}
which is an open subset of {2, moreover G N C = (). This shows that g(z) € ¢g(G) \ 9(0G), a
contradiction to (1) which establishes (2).

Another very important implication of (1) is that the whole image of ¢ is not just a Lebesgue
zero set but even much smaller. In fact, we have that g(Q) = g(99) is a lipschitz curve of finite
length. We will make some more specific assumption concerning the position of this curve and
its tangents. This is a purely technical step which allows us to apply the coarea formula in its
most simple form, i.e. for scalar valued function. To be more precise, we can assume that the first
coordinate of our function g satisfies

(3) Vgi1(z) is a nonvanishing vector for almost every z € (.

Indeed, we pick any @ € R and consider f%(z) = e " f(e’2). Writing in complex notation we
have Vf9(z) = e ¥V f(e?2)el?. Since Vf was symmetric, Vf? is symmetric as well. More-
over, also det(Vf%(z)) = det(Vf(e?z)) = —D almost everywhere in €, so we can replace f by
f? without violating our assumptions. Notice that ¢%(z) = f%(z) + iV Dz satisfies Vg%(2) =
e 9(Vg(e2))el’. Since Vg(x) # 0 almost everywhere, we see that the set S of all d € S* for which
{z € Q; im(Vg(z)) L d}| > 0 is at most countable, so selecting 6 from a co-countable subset of
[0,7) and replacing f by f? we ensure that (3) is satisfied.

We need some more notations. For A € A let SP(A) = A +iv/D be the singular pertubation of
A and define the (Borel) sets D4 = {z € Q; Vf(zr) = A} and T4 consisting of those z € ) for
which im(g) has at g(x) a classical tangent in direction im(SP(A)). Finally, we denote

Ro= {J (DanTan{z; 0i(im(g) \ 9(Ta), g()) = 0}),
AcA

Ri=RoN{z; # (g7 (91(x))) < oo and H#" (g7 (g1()) \ Ro) = 0}, and
Ro=RiN{z € Q; #'((x+ Ker(SP(A)) \ R1) =0 for all A € A}.
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We claim that all sets R; are of full measure in ). In fact, recall that the coarea formula as given
in Theorem 3.2.11 of [5], says that

/ AN g M) N M) dt = / |Vg1(z)| dz for all measurable M C R?.
R M

Together with our assumption (3) this implies that |g; *(N)| = 0 whenever #'(N) = 0. Because
A1 (proj; (N)) = 0 whenever N C R? and #!(N) = 0, we see that in this situation also [g~!(N)| =
0 holds. Next, it is well known and indeed easy to verify that z € T4 if x € D4 and 67 (im(g), g(z)) <
1. Putting this together with the two general density estimates given in Lemma 1, we easily obtain
|2\ Ro| = 0. The fact that also R; is of full measure follows from two more applications of the
coarea formula (this time for M = Q and M = Q\ Ry) together with the smallness of g;-preimages
already used. Finally, Fubini’s theorem gives |Q2 \ Ro| = 0. We finish our proof by showing that
for any z € Re NDy4 does g~ (g(z)) contain a whole segment parallel to Ker(SP(A)) and reaching
on both sides of x up to the boundary of 2. This is obviously impossible, as the nonaffinity of f
and hence g implies that some different sets Ro N D4 and Ro N Dp have distance zero. Therefore,
different level sets will have to intersect, contradiction.

So, first we consider any x € R N Da. We know that C = CC(g~(g(x)),z) is a connected
compact set intersecting 9§2 and 5#1(C) < oo. Therefore, Lemma 3.12 in [4] ensures the existence
of a lipschitz curve ¢ : [0,¢] — C parametrized by arclength such that ¢(0) = z and ¢(c) € 9C.
Because of this we see that ¢(t) € Ry for almost all ¢. For all such ¢, we find a B € A with
o(t) € TeNDp, as g(p(t)) = g(z) and x € T4 we infer from rank(SP(A) —SP(B)) # 1 that A = B.
This implies in turn that ¢(¢) is parallel to Ker(Vg((t))) = Ker(SP(A)) for almost every ¢. Since
¢ was lipschitz, we conclude that p(t) —z € Ker(SP(A)) for all ¢ € [0, ¢]. In other words, whenever
x € R1 N D4 then there is a segment hl, C g !(g(z)) from z to dQ in direction Ker(SP(A)).

At the very end, we suppose that moreover zg € RoND 4, put I, = CC((zo+Ker(SP(A)))NQ, z0)
and seek for a contradiction coming from the fact that I, \ g *(g(x0)) # 0. In this case we certainly
find an x1 € g1 (g(20)) Nz, da € Ker(SP(A)) NSt and € > 0 such that

e x =11 +tds € g (g(wo)) ift <0 and z € Q,

o #Y(B(g(x1),r)Nim(g) \ g(Ta)) < r/2if r € (0,€), note that g(x1) = g(z) and x¢ € Ry,

e v =ux1+trda €l \g '(g(z0)) for some sequence t, — 0, such that |g(z1 +trda)—g(z1)| < €
for all k.

Fix any k and set 7 = |g(z1+txda) —g(z1)| > 0 and choose s, = min{s > 0; |g(z1+sda)—g(z1)| =
r}. Then the set M = g([z1,z1 + spda]) satisfies M C B(g(z1),r) Nim(g) and, as M is connected,
also A1 (M) > r. Consequently, we have 1 (M N g(T4)) > r/2 and by definition of Ry also that
HA1(N) > 0 where N = {t € (0,s) ; 71 +tda € TANR1}. Since the sets Tp, B € A, are disjoint as
already noticed, we see that 21+ N-d4 C D4. In particular, there is a y; € (1,21 4+spda) "R1ND4
with ¢~ (g(yx)) D hly, where hl,, C I, reaches 0. Obviously, if 21 € hiy, then g = g(zo) on
[1,yx] which is impossible as z1+t;ds € (x1,yg) for large [. Hence, we conclude that t — g(z1+td )
is constant for ¢ > t; and z1+td4 € l,. Because this is true for all £ > 1 we find that t — g(z1+td4)
is constant on [0,¢;]. This final contradiction finishes our proof. O

Theorem 7. Let us be given four matrices Ay, ..., Ay € M"™ with rank(A; — Aj) # 1 for all i, 7.
Iff : Q= R", QCR"™ adomain, is a lipschitz map with V f(z) € {A1,..., A4} almost everywhere,
then f is necessarily affine.

Proof. We can of course assume that n = m = 2 as Lemma 3 tells us that any counterexample
leads to one in this lowerdimensional situation. It is also clear that we can suppose for our f that
{z € Q; Vf(z) = A1}| > 0. Adding the affine map x — —A; - = to f and postmultiplying with
the (well defined) matrix (As — A7) ! we can actually also request that 4; = 0, A = Id. Now, if
det(As),det(A4) > 0 then both determinants are in fact positive, and hence f is a mapping with
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bounded distortion which has gradient zero on a set of positive measure. By Corollary 2 in §10.1
in Chapter II of [10], f has to be affine and we are happy. This shows that we are in a position
to apply Lemma 4, note that case a) there is taken care of by Lemma 5. Therefore, we forget the
request Ay =0, A, = Id and make the new assumption that

A; € M2X% and det(A;) = D for some D € R

SYym

If D > 0, then Theorem 2 implies that the potential F of f is C* and hence Vf = D?F can
not jump between the four possible values. Consequently, we can suppose D < 0 and moreover,
because nonaffinity is a local property, that f is defined on B(0,1). But now Theorem 6 ensures
that f is affine, so we are done. O
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