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Abstract

We study a stationary� spherically symmetric system of ��j � �� massive Dirac
particles� each having angular momentum j� j � �� �� � � �� in a classical gravitational
and SU��� Yang�Mills �eld	 We show that for any black hole solution of the associated
Einstein�Dirac�Yang
Mills equations� the spinors must vanish identically outside of the
event horizon	

� Introduction

Recently the Einstein�Dirac�Yang�Mills �EDYM� equations were studied for a static�
spherically symmetric system of a Dirac particle interacting with both a gravitational
�eld and an SU��� Yang�Mills �eld ��� �	
 In these papers� the Dirac particle had no
angular momentum� and we could make a consistent ansatz for the Dirac wave function
involving two real spinor functions
 In the present paper� we allow the Dirac particles
to have non�zero angular momentum j� j � �� �� � � �
 Similar to ��	� we can build up a
spherically symmetric system out of ��j  �� such Dirac particles
 In this case however�
a reduction to real ��spinors is no longer possible� but we can obtain a consistent ansatz
involving four real spinor functions


We show that the only black hole solutions of our ��spinor EDYM equations are those
for which the spinors vanish identically outside the black hole� thus these EDYM equa�
tions admit only the Bartnik�McKinnon �BM� black hole solutions of the SU��� Einstein�
Yang�Mills equations ��� �	
 This result extends our work in ��	 to the case with angular
momentum� it again means physically that the Dirac particles must either enter the black
hole or escape to in�nity
 This generalization comes as a surprise because if one thinks
of the classical limit� then classical point particles with angular momentum can �rotate
around� the black hole on a stable orbit
 Our result thus shows that the non�existence of
black hole solutions is actually a quantum mechanical e�ect


In Section �� we derive the stationary� spherically symmetric SU��� EDYM equations
with non�zero angular momentum
 By assuming the BM ansatz for the YM potential
�the vanishing of the electric component�� the resulting system consists of � �rst�order
equations for the spinors� two �rst�order Einstein equations� and a second�order equation
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for the YM potential
 This EDYM system is much more complicated than the system
considered in ��	� and in order to make possible a rigorous mathematical analysis of the
equations� we often assume �as in ��	� a power ansatz for the metric functions and the YM
potential
 Our analysis combines both geometrical and analytic techniques


� Derivation of the EDYM Equations

We begin with the separation of variables for the Dirac equation in a static� spherically
symmetric EYM background
 As in ��	� we choose the line element and the YM potential
A in the form

ds� �
�

T �r��
dt� � �

A�r�
dr� � r� d�� � r� sin� � d�� ��
��

A � w�r� �� d�  �cos � ��  w�r� sin� ��� d� ��
��

with two metric functions A� T � and the YM potential w
 The Dirac operator was com�
puted in ��� Section �	 to be

G � iT �t�t  �r
�
i
p
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�
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p
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T �

T
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 i����  i����


�i

r
�w � �� ����� � �r� r� � r � ��
��

This Dirac operator acts on ��component wave functions� which as in ��	 we denote by
���ua���u�a����� where � are the two spin orientations� u corresponds to the upper and
lower components of the Dirac spinor �usually called the �large� and �small� compo�
nents� respectively�� and a is the YM index
 As explained in ��	� the Dirac operator ��
��
commutes with the �total angular momentum operators�

�J � �L  �S  �� � ��
��

where �L is angular momentum� �S the spin operator� and �� the standard basis of su���YM

Thus the Dirac operator is invariant on the eigenspaces of total angular momentum� and
we can separate out the angular dependence by restricting the Dirac operator to suitable
eigenspaces of the operators �J 
 Since ��
�� can be regarded as the addition of angular
momentum and two spins �

� � the eigenvalues of �J are integers
 In ��	� the Dirac equation
was considered on the kernel of the operator J�� this leads to the two�component Dirac
equation ��� ��
������
���	
 Here we want to study the e�ect of angular momentum and
shall thus concentrate on the eigenspaces of J� with eigenvalues j�j  ��� j � �� �� � � �

Since the eigenvalues of Jz merely describe the orientation of the wave function in space�
it is furthermore su�cient to restrict attention to the eigenspace of Jz corresponding to
the highest possible eigenvalue
 Thus we shall consider the Dirac equation on the wave
functions � with

J� � � j�j  �� � and Jz � � j � �j � �� �� � � ��� ��
��

Since ��
�� involves only angular operators� it is convenient to analyze these equations
on spinors ��a��� �� on S�
 Let us �rst determine the dimension of the space spanned
by the vectors satisfying ��
��
 Using the well�known decomposition of two spins �

� into a
singlet and a triplet� we choose a spinor basis �st with s � �� � and �s � t � s satisfying

��S  ���� �st � s�s �� �st � �Sz  �z� �st � t �st �

�



The spherical harmonics �Ylk�l����l�k�l� on the other hand� are a basis of L��S��
 Using
the rules for the addition of angular momentum��	� the wave functions satisfying ��
��
must be linear combinations of the following vectors�

Yj j �� � ��
��

Yj�� j���� � ��
��

Yj j���� � � Yj j��� ��
��

Yj�� j����� � Yj�� j��� � Yj�� j������ � ��
��

These vectors all satisfy the second equation in ��
��� but they are not necessarily eigen�
functions of J�
 We now use the fact that a vector � �� � satisfying the equation Jz� � j�
is an eigenstate of J� with eigenvalue j�j  �� if and only if it is in the kernel of the op�
erator J� � Jx  iJy
 Thus the dimension of the eigenspace ��
�� coincides with the
dimension of the kernel of J�� restricted to the space spanned by the vectors ��
���
��
��
 A simple calculation shows that this dimension is four �for example� we have
J� �Yj j�� �� �� � Yj j �� � � J� �Yj j �� ��� and thus J� applied to the vectors ��
��
has a one�dimensional kernel�


We next construct a convenient basis for the angular functions satisfying ��
��
 We
denote the vector ��
�� by ��
 It is uniquely characterized by the conditions

L� �� � j�j  �� �� � Lz �� � j��

��S  ��� �� � � � k��kS� � � �

We form the remaining three basis vectors by multiplying �� with spherically symmetric
combinations of the spin and angular momentum operators� namely

�� � �Sr �� � ��� r ��

�� �
�

c
��S�L� �� � ��

c
��� �L� ��

�� �
�

c
Sr ��S�L� �� � ��

c
� r ��� �L� ��

where
c �

q
j�j  �� �� � �

Since the operators Sr� � r� and ��S�L� commute with �J � it is clear that the vectors ��� � � � ���

satisfy ��
��
 Furthermore� using the standard commutation relations between the opera�
tors �L� �x� and �S ��	� we obtain the relations
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�
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��S��� �� � �Sk�k S
r �� � ��Sk ��x�S� Sk ��
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and thus

���S�� � Sr� r�� r �� � ��

�
��

���S�� � Sr� r�� r �� �
�

�
��

���S�� � Sr� r�� r �� � �

���S�� � Sr� r�� r �� � � �

Using these relations� it is easy to verify that the vectors ��� � � � ��� are orthonormal on
L��S��
 We take for the wave function � the ansatz

��ua�t� r� �� �� � e�i�t
p
T �r�

r
���r� ��a

� ��� �� 
u��  ��r� ��a
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� ��� �� 
u��� ��
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with real functions �� �� �� and 
� where �  � is the energy of the Dirac particle
 This
ansatz gives a consistent set of ODEs� and the Dirac equation reduces to the following
system of ODEs for the four�component wave function � �� ��� �� �� 
��

p
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Here m is the rest mass of the Dirac particle� which we assume to be positive �m  ��

Substituting the ansatz ��
��� ��
��� and ��
��� into the Einstein and YM equations ��	�
we get the following system of ODEs�

rA� � ��A � �

e�
��� w���

r�
� ��T � ���  ��  ��  
�� � �A w��

e�
��
���

�rA

T
T � � A� � 

�

e�
��� w���
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�� � �A w��
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r
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�
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r�A w�� � �w��� w��  e� rT �� � �

�
r� A� w� 

r� A T � w�

T
� ��
���

Here ��
��� and ��
��� are the Einstein equations� and ��
��� is the YM equation
 Notice
that the YM equation does not depend on � and 
� moreover the lower two rows in the
Dirac equation ��
��� are independent of w
 This means that the Dirac particles couple
to the YM �eld only via the spinor functions � and �
 Indeed� a main di�culty here as
compared to the two�spinor problem ��	 will be to control the behavior of � and 



For later use� we also give the equations for the following composite functions�

r� �Aw��� � �w��� w��  e� r T �� 
�

�
r�

�AT ���

T �
w� ��
���

r �AT ��� � � �� T � ���  ��  ��  
�� � �A T � w��

e�

T �
�
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�� 

�c

r
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�w

r
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�
� ��
���

Also� it is quite remarkable and will be useful later that for � � �� the squared Dirac
equation splits into separate equations for ��� �� and ��� 
�� namely from ��
����

p
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� Non�Existence Results

As in ��	� we consider the situation where r � �  � is the event horizon of a black hole�
i
e
 A��� � �� and A���  � if r  �
 We again make �cf
 ��	� suitable assumptions on the
regularity of the event horizon�

�AI� The volume element
q
jdet gij j � j sin�j r�A�� T�� is smooth and non�zero on the

horizon� i
e

T��A��� T �A � C�������� �

�AII� The strength of the Yang�Mills �eld Fij is given by

Tr�FijF
ij� �

�Aw��

r�


���w���

r�
�

�



We assume that it is bounded near the horizon� i
e


w and Aw�� are bounded for � � r � � �
 ��
��

Furthermore� the spinors should be normalizable outside and away from the event horizon�
i
e
 Z �

���
j�j� Tp

A
� � for every �  �� ��
��

Finally� we assume that the metric functions and the YM potential satisfy a power ansatz
near the event horizon
 More precisely� setting

u � r � � �

we assume the ansatz

A�r� � A� u
s  o�us� ��
��

w � w� � w� u
�  o�u�� ��
��

with real coe�cients A� �� � and w�� powers s� �  � and w� � limr��w�r�
 Here and in
what follows�

f�u� � o�u�� means that �
  � with lim sup
r��

ju���	 f�u�j � � �

Also� we shall always assume that the derivatives of a function in o�u�� have the natural
decay properties� more precisely�

f�u� � o�u�� implies that f �n��u� � o�u��n� �

According to AI� ��
�� yields that T also satis�es a power law� more precisely

T �r� � u�
s

�  o�u�
s

� � � ��
��

Our main result is the following


Theorem ��� Under the above assumptions� the only black hole solutions of the EDYM

equations ������������� are either the Bartnik�McKinnon black hole solutions of the EYM

equations� or

s �
�

�
and � �

�

�
� ��
��

In �	�
�� the so�called exceptional case� the spinors behave near the horizon like

�����r� � u
�

�  o�u
�

� � � � � ��
���� � � � ��
��

Our method for the proof of this theorem is to assume a black hole solution with � �� ��
and to show that this implies ��
�� and ��
��
 The proof� which is split up into several
parts� is given in Sections ���


In Section �� we will analyze the exceptional case
 It is shown numerically that the
ansatz ��
�����
�� does not yield global solutions of the EDYM equations
 From this we
conclude that for all black hole solutions of our EDYM system� the Dirac spinors must
vanish identically outside of the event horizon


�



� Proof that � � �

Let us assume that there is a solution of the EDYM equations where the spinors are not
identically zero� � �� �
 In this section we will show that then � must be zero
 First we
shall prove that the norm of the spinors j�j is bounded from above and below near the

event horizon
 We distinguish between the two cases where A�
�

� is or is not integrable
near the event horizon


Lemma ��� If A�
�

� is integrable near the event horizon r � �� then there are positive
constant c and � such that

�

c
� j��r�j� � c � if � � r � � �� ��
��

Proof� Writing ��
��� as
p
A �� � M�� we have

�

�

p
A

d

dr
j�j� �

�

�
�t�M M���

�
w

r
���  ��� � �m ���  �
� 

�c

r
��� � �
�

� w

r
��� � ���  m ���  ��  ��  
�� 

�c

r
��� � �
�

� c� j�j� � ��
��

Here the constant c� is independent of r � ��� � �	� since w is bounded near the horizon
according to assumption AII
 Since we are assuming that � �� � in r  �� the uniqueness
theorem for solutions of ODEs yields that j�j�  � on ��� �  �	
 Then dividing ��
�� by
�
�

p
Aj�j� and integrating from r� to r�� � � r� � r�� we get

���log j��r��j� � log j��r��j�
��� � �c�

Z r�

r�
A�

�

� �r� dr �

Taking the limit r� � � in this last inequality gives the desired result


Lemma ��� If A�
�

� is not integrable near the event horizon r � � and � �� �� then there

are positive constants c and � such that

�

c
� j��r�j� � c if � � r � � �� ��
��

Proof� De�ne the matrix J by

J �

�
BBBBBBBBBB�

�� m

�T
� w

r�T
� � c

r�T

� w

r�T
� 

m

�T
� c

r�T
�

� � c

r�T
�� m

�T
�

� c

r�T
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m

�T

�
CCCCCCCCCCA

�



and notice that� since T �r�	 � as r 	�� J is close to the identity matrix for r near �

If we let

F �r� � ���r�� J�r� ��r� �

then a straightforward calculation yields that

F � � ���r�� J ��r� ��r� �

In a manner similar to that in ��	� we can prove that jJ �j is integrable near r � �� and as
in ��	� it follows that ��
�� holds


Lemma ��� If � �� � for r  �� then � � ��

Proof� Assume that � �� �
 We write the �AT ��� equation ��
��� as

r �AT ��� � ��� T � j�j� 

�
�m ��� � ��  �� � 
�� 

� w

r
�� 

�c

r
��
  ���

�
T �

��Aw��

e�
T � � ��
��

According to hypothesis AII� the left side of this equation is bounded near the event hori�
zon
 The Lemmas �
� and �
� together with AII imply that the coe�cients of T �� T �� and
T � in this equation are all all bounded� and that the coe�cient of T � is bounded away
from zero near r � �
 Assumption AII implies that T �r�	� as r � �
 Hence the right
side of ��
�� diverges as r � �
 This is a contradiction


� Reduction to the Case ���� � �� ���� �� �

Since � � �� the Dirac equation ��
��� reduces to

p
A �� �

�
BBB�

w�r �m c�r �
�m �w�r � �c�r
c�r � � �m
� �c�r �m �

�
CCCA� � M� � ��
��

The following Lemma gives some global information on the behavior of the solutions to
��
��


Lemma ��� The function ���  �
� is strictly positive� decreasing� and tends to zero as

r 	��

Proof� A straightforward calculation gives

p
A ���  �
�� � �m j�j� �

so that ���  �
��r� is a strictly decreasing function� and thus has a �possibly in�nite�
limit as r 	 �
 Since j�j� 
 � j��  �
j� we see that the normalization condition ��
��
holds only if this limit is zero
 It follows that ���  �
� is strictly positive


�



Next we want to show that the spinors have a �possibly in�nite� limit as r � �
 When

A�
�

� is integrable near the event horizon� it is an immediate consequence of Lemma �
�
that this limit exists and is even �nite


Corollary ��� If A�
�

� is integrable near the horizon� then � has a �nite limit for r � ��

Proof� We can integrate ��
�� from r� to r�� � � r� � r��

��r��� ��r�� �

Z r�

r�
A�

�

� �r�M�r� ��r� dr �

Lemma �
� yields that the right side converges as r� � �� and hence � has a �nite limit


In the case when A�
�

� is not integrable near the horizon� we argue as follows
 According
to the power ansatz ��
��� the matrix in ��
�� has a �nite limit on the horizon
 Ex�
actly as shown in ��� Section �	 using the stable manifold theorem� there are fundamental
solutions of the Dirac equation which behave near the event horizon exponentially like
exp��j

R
A�

�

� �� where �j � IR are the eigenvalues for r � � of the matrix in ��
�� �notice
that the �j are real since they are the eigenvalues of a symmetric matrix�
 Thus for any
linear combination of these fundamental solutions� the spinor functions are monotone in a
neighborhood of the event horizon� and hence as r � �� � has a limit in IR � f��g
 We
set

���� � lim
r��

��r� � ������� � lim
r��

�����r� �

Proposition ��� ������� � ��

Proof� We consider the �Aw��� equation ��
��� with � � ��

r� �Aw��� � �w��� w��  e� r �
p
AT �

��p
A


r� �AT ���

�AT �
� ��
��

Suppose that
�������  � � ��
��

From hypotheses AI and and AII� we se that the coe�cient of ��A�
�

� is positive near
r � �� as are the other terms on the right side of ��
��
 Thus we may write ��
��� in the
form

�Aw��� � ��r� 
���r�p
A�r�

� ��
��

where � is bounded and �  � near �
 Thus we can �nd constants ��� �� satisfying

�Aw���  �� 
��p
A�r�

� ��  �� ��
��

for r near �
 Then exactly as in ��� Section �	� it follows that the spinors must vanish in
r  �


If on the other hand
������� � � � ��
��

�



then ��
�� holds with ��r� � � near �
 Thus

��Aw��� � ���r� � ���r�p
A�r�

� ��
��

Setting �w � �w� ��
�� becomes

�A �w��� � ���r� � ���r�p
A�r�

�

where ���r�  � for r near �
 Thus we see that ��
�� holds for w replaced by �w
 This
again leads to a contradiction


The next proposition rules out the case that both � and � vanish on the event horizon


Proposition ��� Either ���� � �� ���� �� � or ���� �� �� ���� � ��

Proof� Suppose that
���� � � � ���� � ��
��

Using ��
��� we have for r near ��

p
A �� �

c

r
�  o��� ��
��

p
A �� � � c

r

  o��� � ��
���

If A�
�

� is not integrable near the event horizon� these equations show that ���� and 
���

are �nite �otherwise multiplying ��
�� and ��
��� by A�
�

� and integrating would contradict

��
���� if A�
�

� is integrable near �� Corollary �
� shows that ���� and 
��� are again �nite

From ��
��� with � � � we have

r �AT ��� �

�
�m ��� � ��  �� � 
�� 

�w

r
�� 

�c

r
��
  ���

�
T � � �

e�
�Aw��� T � �

��
���
Since the coe�cients of T � and T � are bounded� as is the left�hand side� we conclude that�
since T �r�	� as r � �� the coe�cient of T � must vanish on the horizon��

�m ��� � ��  �� � 
�� 
�w

r
�� 

�c

r
��
  ���

�
r��

� � � ��
���

As a consequence� ����� � 
����� and Lemma �
� yields that

���� � 
��� �� � � ��
���

Furthermore from ��
�� and ��
���� for r near ��

sgn ��r� � sgn ��r� and sgn ��r� � �sgn 
�r� � ��
���

From ��
��� and ��
���� we see that for r near �� the spinors must lie in the shaded
areas in one of the two con�gurations �I� or �II� in Figure �
 Now we claim that in either
con�guration �I� or �II�� the shaded regions are invariant
 For the proof� we consider
the Dirac equation ��
��
 One easily checks that the shaded regions in the ����plots are

��



�

�

�

�

�

�

�

�

�I�

�II�

Figure �� Invariant Regions for the Spinors

invariant� provided that � and 
 are as depicted in their shaded regions
 Similarly� one
veri�es that the shaded regions in the ��
�plots are invariant� provided that � and � lie
in the shaded regions
 Moreover� Lemma �
� shows that the spinors cannot leave their
regions simultaneously �i
e
 for the same r�
 This proves the claim


Next we consider the situation for large r
 In the limit r 	�� the matrix M in ��
��
goes over to the matrix S given by

S �

�
BBB�

� �m � �
�m � � �
� � � �m
� �� �m �

�
CCCA �

In S� the non�zero � � upper and lower triangular blocks��
� �m
�m �

�
�

have eigenvectors ��� ��t and ������t with corresponding eigenvalues �m and m� respec�
tively
 Since the system of ODEs

p
A �� � S �

splits into separate equations for ��� �� and ��� 
�� we see that ���r�� ��r�� must be a
linear combination of e�c�r� r ��� ��t and ed�r� r ������t� where the functions c and d are
close to m
 Since the spinors are assumed to be normalizable �i
e
 ��
�� holds�� and are
non�zero for r  �� it follows that for large r� the spinors are close to a constant mul�
tiple of e�c�r� r ��� ��t� and thus for large r� sgn ��r� � sgn ��r�
 Similarly� for large r�
sgn ��r� � sgn 
�r�
 This is a contradiction to the shaded invariant regions of Figure �


The two cases in Proposition �
� can be treated very similarly
 Therefore we shall in
what follows restrict attention to the �rst case
 Furthermore� we know from Lemma �
�

��



and Proposition �
� that ��
����  �
 Using linearity of the Dirac equation� we can assume
that both ���� and 
��� are positive
 Hence the remaining problem is to consider the case
where

���� � � � ���� �� � � ����� 
���  � � ��
���

� Proof that A�
�

� is Integrable Near the Event Horizon

In this section we shall assume that A�
�

� is not integrable near the event horizon and
deduce a contradiction
 We work with the power ansatz ��
�����
�� and thus assume that
s 
 �


We �rst consider the case w� �� �
 The �rst component of the squared Dirac equation
��
��� is

p
A �r�

p
A �r�� �

�
m� 

c�  w�

r�

p
A

�
w

r

���
� 

c �w �pA�
r�

� � ��
��

The square bracket is bounded according to AII
 Since ���� � � and ����  �� our
assumption w� �� � implies that the right side of ��
�� is bounded away from zero near the
event horizon� i
e
 there are constants 
� � with

�
p
A �r�

p
A �r�� 
 
 for � � r � � ��

where ��� corresponds to the two cases w�  � and w� � �� respectively
 We multiply
this inequality by A�

�

� and integrate from r� to r�� � � r� � r��

�
p
A �r�

���r�
r�

 


Z r�

r�
A�

�

� �

The right side diverges as r� � �� and thus limr��

p
A�r� � ��
 Hence near the

event horizon� ��r� 
 A�
�

� � and integrating once again yields that limr�� � � ��� in
contradiction to ���� � �


Suppose now that w� � �
 We �rst consider the A�equation ��
���� which since � � �
becomes

rA� � ��A � �

e�
��� w���

r�
� �

e�
Aw�� � ��
��

Employing the power ansatz ��
�����
�� gives

O�us��� � �  O�us� � �

e�r�
 O�u���  O�us������ � ��
��

Here and it what follows�

f�u� � O�u�� means that lim
r��

u�� f�u� is �nite and non�zero�

also we omit the expressions �o�u��
� The constant term in ��
�� must vanish� and thus
e��� � �
 Using also that O�us� is of higher order� ��
�� reduces to

O�us��� � O�u�  O�u���  O�us������ � ��
��

Suppose �rst that s  �
 Then ��
�� yields that � � �
� 
 Substituting our power ansatz

into the Aw��equation ��
��� gives

O�us�
�

� � � O�u
�

� �  e�r T ��

��



and thus �� � O�u
��s

� �
 Since ���� �� �� we conclude that there are constants c�� 
  �
with

j�j � c� u
��s

� for � � r � � 
� ��
��

From this one sees that the �rst summand on the right side of ��
�� is of higher order�
more precisely� p

A �r�
p
A �r�� � O�u

�

� � �

Multiplying by A�
�

� and integrating twice� we conclude that

� � O�u
�

�
�s� �

and this contradicts ��
��

The �nal case to consider is w� � � and s � �
 Now the Aw��equation ��
��� gives

O�u�� � O�u��  e�T ��

and thus � � o�u�
 This gives a contradiction in ��
�� unless w � pA � o�u�� and we
conclude that � � �
 Now consider the Dirac equation ��
��
 Since w��� � �� the eigenval�
ues of the matrix in ��
�� on the horizon are � � �pm�  c����
 As a consequence� the

fundamental solutions behave near the horizon � u�
p

m��c�
�� 
 The boundary conditions

��
��� imply that � � u�
p

m��c�
�� � whereas �� �� 
 � u�
p

m��c�
�� � and we conclude that

��
  ������  � � ��
��

Next we consider the AT ��equation ��
���� which for � � � takes the form ��
���
 It is
convenient to introduce for the square bracket the short notation

� 	 � �m ��� � ��  �� � 
�� 
�w

r
�� 

�c

r
��
  ��� � ��
��

We de�ne the matrix B by

B �

�
BBB�

m w�r � c�r
w�r �m c�r �
� c�r m �
c�r � � �m

�
CCCA �

A short calculation shows that

� 	 � ���� B � �

and furthermore� using the Dirac equation ��
���

� 	� � ���� B� � � ���

�
w

r

��
� �c

r�
��
  ���

�
�w�

r
�� � �w

r�
�� � �c

r�
��
  ��� � ��
��

Since ������� � � and ��
  ������  � according to ��
���

�� 	� 
 c� for � � r � � 


and a constant c�  � 
 Integrating on both sides shows that

j� 	j 
 c� u for � � r � � 


with c�  �
 As a consequence� the �rst summand in ��
��� diverges for r � �� whereas
the left side and the second summand on the right are bounded in this limit
 This is a
contradiction


We conclude that A�
�

� must be integrable near the event horizon� and so s � �


��



� Proof of the Main Theorem

In this section we shall analyze the EDYM equations with the power ansatz ��
�����
��
near the event horizon
 We will derive restrictions for the powers s and k until only the
exceptional case ��
�� of Theorem �
� remains
 So far� we know from Section � that s � �

A simple lower bound follows from the A�equation ��
��� which for � � � simpli�es to
��
��
 Namely in view of hypothesis AII� the right�hand side of ��
�� is bounded� and thus
s 
 �
 The case s � � is excluded just as in ��	 by matching the spinors across the horizon
and applying a radial �ux argument
 Thus it remains only to consider s in the range

� � s � � � ��
��

We begin by deriving a power expansion for � near the event horizon


Lemma ��� Suppose that w� �� � or � �� s��� Then the function � behaves near the

horizon as

� � �� u
�  o�u�� � �� �� �� ��
��

where the power � is either

� � �� s

�
��
��

or

� �

�
�� s if w� �� �

�� smin��� s��� if w� � ��
��
��

Proof� We set

� � sup

�
p � lim sup

r��
ju�p ��r�j � �

�
� � � ��
��

Suppose �rst that � ��
 Then for every � � � there are constants c  � and �  � with

j��r�j � c u� for � � r � � �� ��
��

We consider the �rst component of the squared Dirac equation ��
�� and write it in the
form p

A �r�
p
A �r�� � f � g � ��
��

where f stands for the square bracket and g for the last summand in ��
��� respectively


Multiplying by A�
�

� and integrating gives

p
A �r��r� �

Z r

�
A�

�

� �f � g�  C

with an integration constant C
 We again multiply by A�
�

� and integrate
 Since ���� � ��
we obtain

��r� �

Z r

�
A�

�

� �s� ds

Z s

�
A�

�

� �f � g�  C

Z r

�
A�

�

� � ��
��

Note that the function f � introduced as an abbreviation for the square bracket in ��
���
is bounded near the horizon
 Hence ��
�� yields a polynomial bound for jf�j
 Each

multiplication with A�
�

� and integration increases the power by �� s
� � and thus there is a

constant c� withZ r

�
A�

�

� �s� ds

Z s

�
A�

�

� jf �j � c� u
��s�� for � � r � � �� ��
��

��



Since �� s  �� ��
�� is of the order o�u��
s

�
���� and thus ��
�� can be written as

��r� �

Z r

�
A�

�

� �s� ds

Z s

�
A�

�

� g  C

Z r

�
A�

�

�  o�u��
s

�
��� � ��
���

Consider the behavior of the �rst two summands in ��
���
 The function g stands for the
last summand in ��
��
 If w� �� �� it has a non�zero limit on the horizon
 If on the other
hand w� � �� then g � u�
 Substituting into ��
��� and integrating� one sees that the �rst
summand in ��
��� is� u� with � given by ��
��
 The second summand in ��
��� vanishes if
C � �� and is� u� with � as in ��
��
 According to ��
��� �� s

� � ��s � ��smin��� s���

Thus the values of � in ��
�� and ��
�� are di�erent� and so the �rst two summands in
��
��� cannot cancel each other
 If we choose � so large that �� s

�  � 
 �� ��
��� yields
the Lemma


Suppose now that � given by ��
�� is in�nite
 Then choosing

� � max

�
�� s

�
� �� smin��� s���

�
�

we see that the �rst two summands in ��
��� are of the order O�us� with s according to
��
�� and ��
��� respectively� and the last summand is of higher order
 Thus ��
��� implies
that � as de�ned by ��
�� is �nite �namely� equal to the minimum of ��
�� and ��
����
giving a contradiction
 Thus � is indeed �nite


In the proof of Proposition �
�� we already observed that the square bracket in the
AT ��equation ��
��� vanishes on the horizon ��
���
 Let us now analyze this square bracket
in more detail� where we use again the notation ��
��


Proposition ��� � � � and

� 	 � O�u����  O�u� ��
���

with � as in Lemma ���

Proof� The derivative of the square bracket is again given by ��
��
 Now �� � �� �� �� �
and from Lemma �
�� ��
����� �� �� thus using ��
��� ��
��� and ��
��� we get� for r near
��

� 	� � O�u������  u�����  O��� � ��
���

where we again omitted the expressions �o�u��� and we use the notation

��� �

�
� if w� � �
� if w� �� �

�

Integrating ��
��� and using that � 	r�� � � according to ��
���� we obtain that

� 	 � O�u����  u�������  O�u� � ��
���

Suppose � 
 �
 Then � �  � and �  ���  �  �� and ��
��� becomes

� 	 � O�u� �

��



We write the AT ��equation ��
��� as

r �AT ��� � T � � 	 � �A T � w��

e�
� ��
���

Since �AT ��� is bounded and T � � O�u�
�s

� � �by virtue of hypothesis AI�� ��
��� behaves
near the event horizon like

u� � O�u��
�s

� �  O�u����� � ��
���

Since ��� � 
 � and �� �s
� � �� the right side of ��
��� is unbounded as r � �� giving a

contradiction
 We conclude that � � �

For � � �� the second summand in ��
��� is of higher order� and we get ��
���


In the remainder of this section� we shall substitute the power expansions ��
�����
��
and ��
�� into the EDYM equations and evaluate the leading terms �i
e
 the lowest powers
in u�
 This will amount to a rather lengthy consideration of several cases� each of which has
several subcases
 We begin with the case w� �� ����
 The A�equation ��
��� simpli�es to
��
��
 The AT ��equation ��
��� for � � � takes the form ��
���� and we can for the square
bracket use the expansion of Proposition �
�
 Finally� we also consider the Aw��equation
��
���
 Using the regularity assumption AI� we obtain

A�eqn� O�us��� � � � ��� w�
��
�

e���
 O�u��  O�us������ ��
���

AT ��eqn� u� � O�u����
�s

� �  O�u��
�s

� �  O�u����� ��
���

Aw��eqn� O�us����� � w� ��� w�
��  O�u��  O�u��

s

� � � ��
���

First consider ��
���
 According to AII� s  �� � � 
 �� and so all powers in ��
��� are
positive
 We distinguish between the cases where the power s ��� � is larger� smaller�
or equal to the other powers on the right of ��
���
 Making sure in each case that the
terms of leading powers may cancel each other� we obtain the cases and conditions

�a� � � s ��� � �� w�
� � �� e�� � � s� �� s 
 �

�
��
���

�b� � � s ��� � �� w�
� � �� e�� � � �� s� s 
 �

�
��
���

�c� �  s ��� �  � �� w�
� � �� e�� � �

�

�
� s �

�

�
��
���

�d� s ��� � � � �� � � �� s

�
� ��
���

In Case �a�� the relations in ��
��� imply that

�� �s

�
� �s� � � ��� � �

Hence ��
��� yields �� �s�� � � � � �s��� so

� � �� � � �� s � ��
���

��



This is consistent with Lemma �
�
 But we get a contradiction in ��
��� as follows
 Since
� � s� �� we have s �� � � �s� �  �� on the other hand�

� � s

�
� �� s� s

�
� �� �s

�
� � �

Thus the left�hand side of ��
��� is bounded� but the right�hand side is unbounded as
r � �
 This completes the proof in Case �a�


In Case �b�� ��
��� yields that

� 
 s

�
� ��
���

We consider the two cases ��
�� and ��
�� in Lemma �
�
 In the �rst case� ��
��� yields that
s � �� contradicting ��
��
 In the second case� ��
��� implies that s � �

� 
 This contradicts
the inequality in ��
���� and thus completes the proof in Case �b�


In Case �c�� the relations in ��
��� give s �� � � s� �
� � �� and thus ��
��� implies

that s �� � � �� s
� � so � � �

� �s� ��
 According to Lemma �
�� � � �� s or � � �� s
� 


In the �rst of these cases� we conclude that s � 	

 and � � �


 
 Substituting these powers
into ��
���� we get

u� � O�u���  O�u�
��

�� �  O�u��� �

which clearly yields a contradiction
 Thus � � �� s
� � giving

s �
�

�
� � �

�

�
� � �

�

�
� ��
���

This case is ruled out in Lemma �
� below

In Case �d�� we consider ��
���
 Since s �� � � �� � �� we obtain that s �� � �

� � �
� and thus � � s� �
 Lemma �
� yields the two cases

s �
�

�
� � �

�

�
� � �

�

�
and ��
���

s �
�

�
� � �

�

�
� � �

�

�
� ��
���

The �rst of these cases is the exceptional case of Theorem �
�� and the second case is
excluded in Lemma �
� below
 This concludes the proof of Theorem �
� in the case
w� �� ����


We next consider the case w� � ��
 Then the expansions ��
������
��� must be mod�
i�ed to

A�eqn� O�us��� � �  O�u���  O�us������ ��
���

AT ��eqn� u� � O�u����
�s

� �  O�u��
�s

� �  O�u����� ��
���

Aw��eqn� O�us����� � O�u��  O�u��
s

� � � ��
���

One sees immediately that� in order to compensate the constant term in ��
���� s��� �
must be zero
 Hence s  � � � � �� � �� and ��
��� yields that s  � � � � � � s

� and
thus � � s � �
 Now consider Lemma �
�
 In case ��
��� we get the exceptional case of
Theorem �
�� whereas case ��
�� yields that

s �
�

�
� � �

�

�
� � �

�

�
�

��



This case is ruled out in Lemma �
� below� concluding the proof of Theorem �
� in the
case w� � ��


The �nal case to consider is w� � �
 In this case� the expansions corresponding to
��
������
��� are

A�eqn� O�us��� � � � �

e���
 O�u���  O�us������ ��
���

AT ��eqn� u� � O�u����
�s

� �  O�u��
�s

� �  O�u����� ��
���

Aw��eqn� O�us����� � O�u��  O�u��
s

� � � ��
���

If s  �� � � � �� we obtain exactly as in the case w� �� ���� above that � � s � �
 It
follows that �  s

� � and Lemma �
� yields either the exceptional case of Theorem �
�� or
s � �� contradicting ��
��
 If on the other hand s �� � �  �� we can in ��
��� use the
inequality s���� � �� to conclude that s�� � s���� and thus � � �

� 
 Now � � s
� �

and Lemma �
� together with ��
��� yields the two cases

s �
�

�
� � �

�

�
� � �

�

�
and

s �
�

�
� � �

�

�
� � �

�

��
�

The �rst case is ruled out in Lemma �
� below� whereas the second case leads to a con�
tradiction in ��
���
 This concludes the proof of Theorem �
�� except for the special cases
treated in the following two lemmas


Lemma ��� There is no solution of the EDYM equations satisfying the power ansatz �	�	��

�	���� and ���� with

s �
�

�
� � �

�

�
� � �

�

�
�

Proof� Suppose that there is a solution of the EDYM equations with

A�r� � A� u
�

�  o�u
�

� �

w�r� � w� u
�

�  o�u
�

� �

with parameters A�� w� �� �
 Consider the A�equation ��
��
 The left side is of the order

�r � ��
�

� 
 Thus the constant terms on the right side must cancel each other
 Then the

right side is also of the order u
�

� 
 Comparing the coe�cients gives

�

�
� A� � � �

�e�
A� w

�
� �

This equation yields a contradiction because both sides have opposite sign


Lemma ��� There is no solution of the EDYM equations satisfying the power ansatz �	�	��

�	���� and ���� with

s �
�

�
� � �

�

�
� � �

�

�
� ��
���

��



Proof� According to ��
��� we can write the function
p
A as

p
A � u

�
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with a real constant c�
 Now consider the AT ��equation ��
���� which we write again in
the form ��
��� and multiply by A�
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As in the proof of Proposition �
�� a good expansion for the square bracket is obtained by
integrating its derivative
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Substituting into ��
��� and using AI and ��
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We multiply by
p
A� substitute ��
��� and di�erentiate�
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Multiplying by ��w� and using ��
��� gives the following expansion for ���
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Next we multiply the Aw��equation ��
��� by
p
A and write it as
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We apply AI and substitute ��
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 This gives an equation of the form
�modulo higher order terms��
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The constant term � u� must vanish since all the other terms tend to zero as u 	 �

Furthermore� the u
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� terms must cancel because all the other terms are o�u
�
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so that
u f �  f � u  u
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and we �nd that f satis�es an equation of the form

d� u f
�  d� f � d� u  o�u� �

A straightforward but tedious calculation yields that the coe�cients d� and d� both van�
ish� and that d� is non�zero
 This is a contradiction


	 The Exceptional Case

In this section� we consider the exceptional case
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By employing the power ansatz ��
��� ��
��� and ��
�� into the EDYM equations and com�
paring coe�cients �using Mathematica�� we �nd that the solution near the event horizon
is determined by the �ve free parameters ���� ���m� c� ��
 The remaining parameters are
given by
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Expanding to higher order� we obtain after an arduous calculation two further constraints
on the free parameters� thus reducing the problem to one involving only three parameters

We investigated this three�parameter space numerically and found strong evidence that
no global black hole solutions exist
 Indeed� either the power ansatz was inconsistent near
the event horizon� or else the solution could not be extended to all values of r  �
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