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Abstract

We consider the Cauchy problem for the massive Dirac equation in the non-extreme
Kerr-Newman geometry outside the event horizon. We derive an integral represen-
tation for the Dirac propagator involving the solutions of the ODEs which arise in
Chandrasekhar’s separation of variables. It is proved that for initial data with com-
pact support, the probability of the Dirac particle to be in any compact region of
space tends to zero as t goes to infinity. This means that the Dirac particle must ei-
ther disappear in the black hole or escape to spatial infinity. If the energy of the Dirac
particle is strictly larger than its rest mass and its angular momentum is bounded,
the Dirac wave function decays rapidly in ¢, locally uniformly in z.

1 Introduction

It has recently been shown that the Dirac equation does not admit normalizable, time-
periodic solutions in the non-extreme Kerr-Newman axisymmetric black hole geometry
[1]. This was interpreted as an indication that a Dirac particle either falls into the black
hole or escapes to infinity, but that it cannot stay in a bounded region outside the event
horizon. In this paper we make precise this interpretation in the general time-dependent
setting. We thus consider the Cauchy problem for the Dirac equation with smooth initial
data on the hypersurface ¢t = 0, compactly supported outside the event horizon. We study
the probability for the Dirac particle to be inside a given annulus located outside the event
horizon, and we prove that this probability tends to zero as t goes to infinity. Hence, in
contrast to the situation for a bounded orbit of a classical point particle, there exists no
compact region outside the event horizon in which the quantum mechanical Dirac particle
will remain for all time. In more precise form, our result is stated as follows. Recall
that in Boyer-Lindquist coordinates (¢,7,9,¢) with r > 0,0 <9 < m, 0 < p < 27, the
Kerr-Newman metric takes the form [2]

ds® = 9jk da? z*

A 2 )
= —(dt — asin’9dp)? — U <d%+d192> - 51r[1]19 (adt — (r’ +a?) dp)* (1.1)

U
with
U(r,9) = r’+a® cos’9 A(r) = 2 —2Mr +ad*> + Q*
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and the electromagnetic potential is given by

Ajdr! = —% (dt — a sin®d dyp)
where M, aM and () denote the mass, the angular momentum and the charge of the black
hole, respectively. We shall here restrict attention to the non-eztreme case M? > a® + Q2.

Then the function A has two distinct zeros,

ro = M — \/M? —a? — Q2 and rn = M+ \JM?—-a?—-Q? ,

corresponding to the Cauchy and the event horizon, respectively. We will here consider
only the region r > 7 outside of the event horizon, and thus A > 0.

Theorem 1.1 Consider the Cauchy problem
(iv'D; —m) U(t,z) = 0 , T(0,2) € CO((r1,00) x §2)*

for the Dirac equation in the non-extreme Kerr-Newman black hole geometry, with initial
data at t = 0 compactly supported outside the event horizon. Then for any § > 0 and
R > ri 446, the probability for the Dirac particle to be inside the annulus Ksp = {r1+9¢ <
r < R} tends to zero as t — oo, i.e.

lim (TYOU)(t,z) du = 0 (1.2)

t—00 Ksr
where dy denotes the induced invariant measure on the hypersurface t = const.

The proof is organized as follows. We first bring the Dirac equation into the Hamil-
tonian form 10,¥ = HWY with a self-adjoint operator H. Our main technical tool is an
integral representation for the Dirac propagator exp(—itH), which we derive in Theo-
rem 3.6. To obtain this integral representation, we first consider the Dirac equation in
an annulus outside the event horizon with suitable Dirichlet-type boundary conditions.
The Hamiltonian corresponding to this modified problem has a purely discrete spectrum,
and thus the propagator can be decomposed into discrete eigenstates. We then take the
infinite-volume limit by letting the inner boundary of the annulus tend to the event hori-
zon and the outer boundary to infinity in a suitable way. Our construction is based on
Chandrasekhar’s separation of variables for the Dirac equation in the Kerr-Newman met-
ric [3, 4, 5] together with estimates for the asymptotic behavior of the amplitudes and
phases of the separated radial eigenfunctions (Lemmas 3.1 and 3.5), and for the spectral
gaps (Lemma 3.3). The usefulness of our integral representation for the propagator is that
it explicitly gives the continuous spectral measure of H in terms of the solutions of the
radial and angular ODEs arising in Chandrasekhar’s separation of variables. Theorem 1.1
then follows by standard results of Fourier analysis. We also use our representation for
the propagator to prove that if the energy of the initial data is strictly larger than the
rest mass, and the angular momentum is bounded, then the Dirac wave function decays
rapidly in ¢ as ¢ tends to infinity, locally uniformly in z (Theorem 4.1). We note that the
axisymietric character of the background geometry makes the analysis significantly more
delicate than in the spherically symmetric case, mainly because for a # 0 both the radial
and angular ODEs depend on the energy, and thus for the study of the dynamics we must
consider the system of these coupled equations.



We remark that the type of solutions studied in this paper are in some sense more
restricted than those considered in [1]. Namely, the assumption of compactly supported
initial data made here clearly implies that for all £, the normalization integral of the Dirac
wave function is finite outside the event horizon. In contrast to this, the assumptions made
in [1] include the case where the normalization integral is finite only at spatial infinity,
but infinite near the event horizon. This weaker normalization condition might be of
importance in the study of the formation of a black hole in gravitational collapse.

2 Separation of Variables, Hamiltonian Formulation

The Dirac equation in the Kerr-Newman geometry can be completely separated into ODEs
by Chandrasekhar’s method [3, 4, 5]. We here outline the separation, see [1] for details.
After a suitable regular and time-independent transformation ¥ — ¥ of the Dirac wave
function [1], the Dirac equation can be written as

(R+A) T =0 (2.1)
with
imr 0 VAD, 0
R 0 —imr 0 VAD_
- | VAD_ 0 —imr 0
0 VA Dy 0 mr
—am cos ¥ 0 0 Ly
A = 0 am cos —L_ 0
N 0 Ly —am cos v 0
—L_ 0 0 am cos

and the differential operators

0 1 0 0
D - - 2 2y Y I :|
+ 8T¢A{T+a)at+a&p 1eQr
£, = 2o et [ g 24 ! 3}
=T 5 T T TS T Gno dg
Employing the ansatz
X_(r)Y_(9)
- it ikl X (r) Y (9)
w(t,r, 9, — it gmilk+g)e + + ) keZ, 2.2
(470 ) X (1Y (9) 22
X_(r) Y4 (9)
we obtain the eigenvalue problems,
RU = AT | AT = AT | (2.3)

under which the Dirac equation (2.1) decouples into the system of ODEs

(2 van ) (3) = @4

Ly —amcostV + A Y, _
( amcost + A —L_ ) < Y_ ) =0, (2.5)



where Dy and L4 are the radial and angular operators

Dy = 8riA[w(r +a)+<k+2>a+eQr} (2.6)
0 cot ¥ ) k+3
Ly = EY) + 5 T |ow sind + g (2.7)

We will in what follows also use the vector notation X = (X, X_), Y = (Y_,Y,) and
for clarity sometimes add indices for the parameters involved, e.g. X*“* = X. We point
out that (2.2) is an eigenfunction of the angular operator 0, with eigenvalue &k + % The
reason why we need to consider half odd integer eigenvalues is that the transformation
from the usual single-valued wave function in space-time, to the wave function ¥ in (2.1)
involves a sign flip at ¢ = 0 (see [1, Section 2.1]).

In this paper, we want to study time-dependent solutions of the Dirac equation. In the
separation ansatz (2.2), the dynamics of the solution is encoded through the w-dependence
in the ODEs (2.4) and (2.5). Unfortunately, both the radial and angular operators (2.6)
and (2.7) depend on w, making the situation rather complicated. Therefore it is useful to
bring the Dirac equation (2.1) into Hamiltonian form, in a way which is compatible with
the separation of variables. We first bring the time derivative in (2.1) to one side of the
equation and obtain

2 2
<%B +a simm) z’%\l! = (R®+ A% (2.8)
with
0 0 —i 0 0 0 0 -1
00 0 i 0 0 -1 0
B=14i 0 0 0] =10 -1 0 o |
0 = 0 0 10 0 0

where the operators R? and A? are obtained from R and A by setting the time derivatives
to zero. The matrices B and C satisfy the relations B?> = 1 = C? and BC = CB. Thus
the linear combination of these matrices which appears in (2.8) can be inverted with the
formula («B+B3C)~! = (a?— %)~} (aB—BC) (and «, B € IR). Furthermore, we introduce
a new radial variable u € (—o0,00) by

du r? + q?
Then the Dirac equation (2.8) becomes
0
, — Vv = HU
"ot
with the Hamiltonian
2 2\2 =1/ o 2
H = <% —a? sin219> (T jza B — a sin? C’) (R? + A%)
a? A sin 9 ! a VA sin®d . -




where r is an implicit function of u, and

0010 - 0 O 0
po_ _mrVALO0 00 1) 0 & 0 0 (2.11)
72 4 g2 1 0 0 O 0 0 &4 0
0100 0 0 0 —-€&-
0 0 4 0 0 -M; 0 0
o I VA 1 _
4 amcos VA 00 0| M_ 0 0 0 (2.12)
r2 + g2 —-i 0 00 0 0 0 My
0 —2 0 O 0 0 M_ 0
with
.0 ia 0 eQr
b = Za_u:F<7’2—i-a2% 7’2+a2>
VA 0 cot 1 0
_ VA (.0 . " K
M r2 + q? <Z oY T 2 sin? 8(,0)

The Hamiltonian (2.10) is an operator acting on the wave functions on the hypersur-
faces t = const. The simplest scalar product on such a hypersurface is

00 1 2m _
(| ) :/ du/ dcosﬁ/ do T(t,u,0,0) B(t,u,0,0) (2.13)
—00 —1 0

where “U” denotes the complex conjugated, transposed spinor. In the spherically sym-
metric case a = 0, the Hamiltonian (2.10) is Hermitian (i.e. formally self-adjoint) with
respect to this scalar product. However for a # 0, H is not Hermitian. In order to get
around this problem, we introduce a different scalar product as follows. Notice that the
operators R and A, (2.11),(2.12), are both Hermitian with respect to (2.13). The reason
why the Hamiltonian (2.10) is not Hermitian is that, when the taking the adjoint of H
using integration by parts, one gets r- and ¥-derivatives of the square bracket in (2.10).
But we can compensate this square bracket by inserting its inverse into the scalar product.
Thus we introduce on the four-component spinors the inner product

- a VA sind
<\I/ | (I)>(t,u,19,4p) = \I/(t,u,ﬂ, (p) <]l + W BC) <I>(t,u,19, (,D) (214)
and define the scalar product <.|.> by
o] 1 2m
<V | o> = / du/ dcosﬁ/ dp <U | ©>(149,0) - (2.15)
—00 -1 0

Then the Hamiltonian H is Hermitian with respect to (2.15). Let us verify that (2.15)
is positive. In the region outside the event horizon under counsideration, r > r; > M.
Also, since we are in the non-extreme case, M > Q,a, and as a consequence, A < r2. We

conclude that
a VA sinﬁ‘ < a VA VA

a
< —-—— <1
r2 + a2 ~ r24q? ror

Combining this inequality with the fact that the matrix BC' has eigenvalues +1, we obtain
that the bracket in (2.14) is indeed a positive matrix. We remark for clarity that the scalar



product (2.15) does not coincide with the scalar product [ Uy Wdu (with the adjoint spinor
U), obtained by integrating the probability density of the Dirac particle over a space-like
hypersurface. By construction, the Hamiltonian H is also Hermitian with respect to the
latter scalar product. But the problem is that this latter scalar product is not compatible
with our Dirichlet-type boundary conditions (i.e. Hy, 4, and H,, are not Hermitian with
respect to it), and for this reason we will not use it in what follows.

We denote the Hilbert space of wave functions with scalar product (2.15) by H. Then
the operator H, (2.10), is essentially self-adjoint on H with domain of definition

D(H) = C(IR x §2)*

In Section 3, we shall consider the Dirac operator also with certain Dirichlet-type boundary
conditions, which we now introduce. First for given us € IR, we restrict u to the half line
u € (—00, ug] and impose the boundary conditions

\Ill(u27197 (10) = ‘IJ3(U27197 (P) and ‘IJ2(U27197 (10) = \114(’“27197 (10) . (216)

Let #H,, be the Hilbert space of square integrable wave functions ¥(u,d, ), u < uy with
the scalar product

U 1 27
<V D>,, = /7 du[ldcosﬁ/() dp <U | O>(1u9,0) - (2.17)

Then the Hamiltonian (2.10) on #,, with boundary conditions (2.16), which we denote
for clarity by H,,, is Hermitian (the main point here is that the boundary values at u = us
vanish when the adjoint of H,, is calculated using integration by parts). The operator
H,, is essentially self-adjoint on #H,, with domain of definition

D(H,,) = {\Il € C5°((—o0,ug] x §?)* and (2.16) is satisﬁed}

Similarly, for u;,us € IR, u; < ug, we restrict u to the closed interval u € [u1,us] with
boundary conditions

‘I'l(ul) = ‘1»'3('&1), \Ifg(ul) = ‘1»'4(’&1) and ‘1»'1(’&2) = \1’3(’U,2), ‘1»'2(’&2) = ‘1»'4(’&2)
(2.18)
We denote the Hilbert space of square integrable wave functions ¥ (u,, ¢), u; < u < ug,
with the scalar product

u

2 1 27
<, D>y, 4y = / du/ 1dcos19/0 dp <[ D> (1 4.9,0) (2.19)
u _

1
by Hu, us, and the Hamiltonian (2.10) on Hy, 4, by Hy, u,. It is essentially self-adjoint
with

D(Huyy ) = { € CF(lur,us] x §2)" and (2.18) is satisfied |

Our above Hamiltonian formulation of the Dirac equation is well-suited to Chan-
drasekhar’s separation of variables. Namely, the boundary conditions (2.16) reduce to
simple boundary conditions for the radial functions,

Xy(uz) = X_(u2) , (2.20)



whereas (2.18) amounts to
Xi(up) = X_(uy) and Xy(ug) = X_(ug) . (2.21)
The scalar product (2.13) splits into the product of a radial and an angular part, namely
(\ijkw)\ | ‘i,k’u)’)\’) _ (ka)\ | Xk’u)’)\') (qu))\ | Yk’w’)\’)
with

(ka/\ | ch’w’/\’) — ka)\(u) Xk""’”\’ (u) du
I / —— Tw' X
(qu»\ | y KA ) = 2r 5kk / YhwA(9) ykwA (9) dcos ¥
-1

The scalar product (2.15), however, does not split into a product, more precisely

< | > — (Xku))\ | Xk’w’)\') (ka)\ | Yk’u)’)\’)
VA

Xk;u))\
ta | r2 4 o2

o? | XFYNY (YR | sind ol | YFON) (2.22)
This mixing of the radial and angular parts in the scalar product can be understood from
the fact that the Kerr-Newman solution is only axisymmetric.

3 An Integral Representation for the Propagator

The propagator exp(—itH) has the spectral decomposition
e — / e dE, (3.1)
— 00

where dE,, is the spectral measure of H. In this section, we shall bring this formula into
a more explicit form. This will be done by expressing the spectral measure in terms of
solutions of the radial and angular ODEs of the previous section. Since the spectrum
of H is continuous, it is not obvious how to relate the spectral measure to the solutions
of our ODEs. To bypass this problem, we begin with the spectral decomposition of the
operator Hy, 4, (which has a purely discrete spectrum), and then deduce the desired
integral representation for exp(—itH) by taking suitable limits u; — —oo and uy — oo.

As an elliptic operator on a bounded domain, the Hamiltonian H,, ,, has a purely
discrete spectrum with finite-dimensional eigenspaces (see [6]). In view of our separation
of variables, the most convenient eigenvector basis is the following. First we can choose
the basis vectors as eigenvectors of the operator id, with eigenvalue %k + %, k€ Z. We
denote this eigenspace of 10, by Hfblm, and the restriction of Hy, 4, to Hfjhm by Hfjlm.
Furthermore, the basis vectors can be chosen as eigenvectors of the angular operator A.
As is shown in the Appendix, the spectrum of A on Hfmm is discrete, non-degenerate,
and depends smoothly on w. Thus the eigenvalues of A can be written as A\, (w), n € Z,
with A, < Apyq1 and A, () € C°(IR). For any given k € Z, w € U(H517u2), and n € Z,
the radial ODE (2.4) has at most one solution satisfying the boundary conditions (2.18).
Hence we have for any k, w, and n at most one eigenstate of Hy, 4,, which we denote by
‘I’ﬁf&y The set of n for which such an eigenvector exists is denoted by N (k,w). Thus our
eigenvector basis is

(\PZT,%)ICEZ, weo(HE ), neN(kw) - (32)

uyl,u2



We normalize these eigenfunctions with respect to the scalar product (2.13); more precisely,
we normalize both the radial and angular parts according to

(Xkum |Xkum) =1 ) (qum|qum) =1 (33)

Uu1,u2 Uu1,u2

with X and Y as in (2.2). Since the angular operator A is self-adjoint with respect to the
scalar product (.|.), its eigenvectors are orthogonal, and thus the eigenfunctions for fixed
k and w are even orthonormal,

!

(whon | ghon' y . gon’ n,n' € N(k,w). (3.4)

Uuy,u2 Uuy,u2

We mention for clarity that for different values of w, the eigenfunctions are in general not
orthogonal with respect to (.|.), but since Hy, 4, is self-adjoint with respect to <.|.>, its
eigenspaces are orthogonal with respect to the latter scalar product, and thus
<\I/Z°l"22 | \115,1“’;7;,> =0 for w # W'
These subtle differences between the two scalar products clearly become irrelevant in the
spherically symmetric case a = 0.
In the basis (3.2), the spectral decomposition (3.1) for Hy, 4, can be written as

ey =YY ( Y W, <wﬁf,z’2|w>) - (35)
)

k€Z weo(HE n,n' €N (kw)

uyl,u2

Here the coefficients ¢, must be chosen such that the bracket in (3.5) is the projection

of ¥ onto the eigenspace of Hffl u, corresponding to the eigenvalue w; more precisely,

Cnn! = (Ail)nn’ with Ann’ = <\Ijkum |\Ilkum,> . (3'6)

Uuy,u2 uy,u2

Notice that the first two sums in (3.5) give a decomposition of ¥ into the orthogonal eigen-
states of the operators 10, and H, respectively, and thus converge in norm in H,, 4,. The
bracket in (3.5) is the basis representation of the projector on the respective eigenspace.
Our first goal is to take the limit u; — —oo in (3.5). We expect that in this infinite
volume limit, the “energy gaps” Awg, between neighboring eigenvalues, defined by

Awg, = min{&)kn — Wkn | Wn > wkn} with
Whn, Wk € o(HY ) and N(k, win), N(ky@gn) #0

Ur,u2

should tend to zero. The basic idea is to rewrite the sum over the spectrum in (3.5)
as Riemann sums which converge to integrals as u;y — —oo, yielding a formula for the
propagator of the Hamiltonian H,,. For making this idea mathematically precise, it is
essential to get good estimates for Awy, and to relate the eigenvectors \Ilﬁfzz in (3.5) to
solutions

\Ilﬁ;””(u) withk€Z, we R, n€Z, u€ (—o0,us]

of the Dirac equation with boundary conditions (2.16). We denote the radial and angular
functions corresponding to \Ilﬁ;’” by X{fg’“ and Y*4" respectively. In the variable u, (2.9),
the radial equation (2.4) becomes

d 1 0 VA 0 imr — A
%JHQ(u)(O _lﬂxz—( 0 )X, (3.7)

r24+a?2 \ —imr—2A\




with

(k+3)a+eQr
r2 4+ g2

and where for ease in notation the indices of X were omitted. The next lemma describes

the asymptotic behavior of X (u) as u — —oo.

Qu) = w+

b

Lemma 3.1 Every nontrivial solution X of (3.7) with boundary conditions (2.20) is
asymptotically as u — —oo of the form

e~ iu fi
X(w) = o j0 ) + ol (33
0
with
fo # 0 (3.9)
ka4 eQr
1
|Ro| < ce™ (3.11)

and suitable constants c¢,d > 0, which can be chosen locally uniformly in w.

Proof: Substituting into (3.7) the ansatz

X(u) = (e_mou / +(“)> , (3.12)

e [ (u)

we obtain for f the equation

d ) 1 0
@f = [Z(QO_Q(U))<O _1>

— 200 (e —
VA <e2iQu( ! e g )]f - (3.13)

72 + o2 —imr — A) 0

The square bracket vanishes on the event horizon r = 1. In the variable w, this leads to
exponential decay for u — —oo, in the sense that there are constants c¢1,d > 0 such that

d
il < e (3.14)

Since X is a nontrivial solution, |f| # 0. Thus we can divide (3.14) by |f| and integrate
from any u < ug to us to obtain

u2

log|f|‘z2 < ey e

u

with ¢o = ¢;/d. Since the right side of this inequality stays finite when u — —oo, we
conclude that there is a constant L > 0 with

1

I < |f(u)| <L for all u < us. (3.15)
Using that A depends smoothly on w (see the Appendix), the constants ¢, co,d, and L
clearly can be chosen locally uniformly in w.



We substitute (315) into (314),
» C (& . .

This inequality shows that f’ is integrable, and thus f(u) converges for u — —oo. Setting
. (3.15)
fo= lim f(u) # 0,

U—r—00

we can integrate (3.16) from —oo to u < b and get

1f(u) — fo] < cet

with ¢ = ¢; L/d. Substituting in the ansatz (3.8), we get (3.11). ]

From (3.9) we see that X (u) does not decay to zero for u — —oo. As a consequence, the
function WA“" cannot have finite norm and thus is not a vector in the Hilbert space Hy,.
This shows that the Hamiltonian H,, has no point spectrum. In contrast to (3.3), we
normalize the functions \Ilﬁg’” according to

lim | X" =1 |, (Yhon | yheny = 1 | (3.17)

U——0Q

The next two lemmas describe the behavior of the normalization factors and the energy
gaps as u; — —00.

Lemma 3.2 For fized uy and asymptotically as ug — —oo,

xhen = glur) XE ) with (3.18)
g(w)[7* = (w2 —w) + O(1) . (3.19)
Furthermore,
|<whon, Jwken > — o] < S <y sing ot | YR (3.20)
U9 — U1

where the constant ¢ can be chosen locally uniformly in w.

Proof:  Since Xff;”ﬁz and X%" are solutions of the same ODE (3.13) with the same
boundary conditions at s, they clearly coincide up to a normalization factor g, i.e.
Xhon = g Xken Taking the norm on both sides and using the first part of (3.3), we

w1 ,U2

obtain that
/ XEon(u) X (u) du

We now substitute (3.8), multiply out, and use that |fo|? = 1 according to the first part
of (3.17), to obtain

uz _ J—
lg(u))|~2 = / (1 +XRo + RoX — [Rof?) du . (3.21)
u1

Since X is bounded and Ry has exponential decay (3.11), the last three summands in
(3.21) are integrable, and thus |g(u1)|™2 — (ug — u1) is bounded uniformly in wu;. This
proves (3.19).

10



The scalar product <\I/1"j°l"z2 | \Ilﬁﬁ’z'2> can be computed via (2.22). The orthonormality
(3.4) yields that

kwn \/Z 02 | Xkum’

U1,u2

<\Ijkum |\Ijkwn’>_6nn’ _ a(X

Uy ,u2 Uy ,u2 Uy,u2 | ,,/.2 _I_ a2

) (YR | sind ol | YR | (3.22)

In order to estimate the radial scalar product, we first note that the factor VA goes
exponentially to zero for u — —oo, and thus

(Xu;‘},ZQ | r2 4 g2 o |Xu;‘},7132) <o /u1 e |X“;‘}:Z2| |X“(fj’z‘2|du

for some constant ¢4 > 0. Substituting (3.19) and using that the integral is uniformly
bounded due to the factor exp du, we obtain the estimate

(Xkum | \/Z 2 | chum’

Uy ,u2 742 +a2 o ul,u2)

< cs(ug —w1) ',

which together with (3.22) yields (3.20). |

Lemma 3.3 The following estimate holds asymptotically as uy — —o0,

Awp, = + o) (3.23)

Uz — Uy

for fized us locally uniformly in w.

Proof: We consider solutions of (3.7) satisfying the boundary conditions at uy, and ask
for which values of w and A, (w) our boundary conditions are also fulfilled at u;. As is
immediately verified from (3.7),

d
(X = 1xP?) =0
Thus | X |> — | X _|? is independent of u, and since it vanishes at us,

X2 = |X_|? for all u < us. (3.24)

Hence for the boundary values at u;, we need not be concerned about the absolute values
of X4; it suffices to consider the condition for the phases

arg X1 (up) = arg X_(uy1) . (3.25)

It is convenient to work again with the ansatz (3.12). In order to describe the depen-
dence on w, we differentiate (3.13) with respect to w. Since A depends smoothly on w, we
obtain the bound J

— 0

o 08
with constants ¢, d as in (3.14) and ¢3 > 0. Using that |f| is bounded from above (3.15),
we get

< ¢ e™ |0wf| + c3 et If] (3.26)

d
L 0f+en)| < e e (2,0 + e

11



with ¢4 = ¢3L/cy. Similar to the development after (3.14), dividing by (|0, f| + ¢4) and
integrating yields

u2

log(|0u f| + ca)]” < e edu
u

b

and since the right side of this inequality is uniformly bounded in u,
0uf| < e (3.27)

for some constant c5 > 0.
For the study of the phase shifts, we introduce the phase function

plu) = arg f1(u) — arg f(u) — 2Quy

(the last summand was included so that p(uz) = 0). The derivative of the argument of a
complex-valued function h is given by

d
— argh(u) = Im
du

Using this formula together with the fact that, according to (3.15) and (3.24) both |f]
and |f_| are bounded away from zero, we obtain that

< 4L ‘i Ouf
du

d d
i 0 822 ofl |51
Substituting in (3.26), (3.16) as well as the bounds (3.15) and (3.27), we conclude that

4
du

du

< cge

Oup

with some constant ¢g > 0. We integrate this inequality from u < ug to us. Since p(ug) = 0
independently of w, the boundary term 9,p(u2) drops out, and we obtain the bound

|0wp(u)] < C for all u < uy (3.28)

with a constant C' > 0. This means that the equation for f, (3.13) leads only to finite
phase shifts.
The boundary conditions at uq, (3.25), are fulfilled iff

O = 2Q (ug —u1) + p = 0 (mod 2m)

Differentiating with respect to w and integrating again from wy to wyy, wy < wyy, we obtain
that

w (3.28)

II
|®(wrr) — @(wr) — 2(wir — wr) (u2 —ug)| < / |Oupldw < C(wir —wp)

wr
and this proves (3.23). ]
We can now prove the integral representation for the propagator of H,,.

Proposition 3.4 For every ¥ € C§°((—o0,us]) x S?)* and x = (u,9, p),

. 1 o0 ;
(e—lt Hay,y \I/) () = — Z/ dw e~ ™t Z \I/ﬁ;m(x) <\I/ﬁ°2m | U> . (3.29)
kez neZ
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Proof: According to the bound (3.20), the operator A in (3.6) converges uniformly in w
and k to the identity as ug — oo, and thus (3.5) simplifies asymptotically to

(efit Huy uy \I,) (z) = Z Z ot Z \1,5%2 <\1;1’i°1022 | U> 4+ O((ug —uy) ) .
k€Z weo(HE ) neN (k,w)

uyl,u2

Using (3.18) and (3.19), we can express Wkn by ykon

uy,u2 u2

(efit Huyup ‘IJ) (z)

1 )
= > D> e Y WU Uy, + O((ur —ur) )
kez 2T weo(ml, ) nEN (kw)

The gap estimate, Lemma 3.3, shows that the sum over the spectrum is a Riemann sum
which converges as u; — —oo to an integral. |

The idea for proving an integral representation for exp(—itH) is to take in (3.29) a
suitable limit us — +o00. In preparation, we need to derive estimates which describe the
asymptotics of solutions of the radial equation (3.7) for large u. In this regime,

d —iw  im 1 —ieQ) —imM — A\ _
= [(—zm z’w>+5<z‘mM—,\ ieQ >+O(“ 2)1){ - (3.30)

Thus the matrix potential on the right converges for u — oo. If |w| < m, its eigenvalues
A = +vm? — w? are real, and this leads to one fundamental solution of (3.30) which de-
cays exponentially like exp(—+v/m? — w? u), and the other solution has exponential growth

~ exp(vm? —w? u). We denote these two fundamental solutions by Wk“m and wken
respectively, and normalize them according to

lim |Wfg™(u)] = 1 . (3.31)

U——00

For |w| > m, on the other hand, the eigenvalues of the matrix potential at u = oo are
imaginary, A = +ivw? —m?2, and this leads to two fundamental solutions \I/’f;g” with

oscillatory behavior ~ exp(+ivw? —m? u). For the normalization, we are now free to
choose both the amplitude and the phase. Our convention is that

with fé“‘i’/g as in the asymptotic expansion (3.8). The next lemma describes the asymptotics
of the oscillatory solutions as u — oo.

Lemma 3.5 Every nontrivial solution X of (3.7) for |w| > m has for large u the asymp-
totic form

e—1®(u) £+

13



with

foo # 0 (3.34)
M 2
® = Vw?2-m?u + weQ;_iTZlogu (3.35)
we —m
1 — 1 1 — 1
o ) () () o
2 w—m w+m 2 w—m w+m
|[Reo| < % (3.37)

and a constant C > 0.
Proof: We write (3.7) symbolically as
X =VX

with a matrix potential V(u). According to (3.30) and the hypothesis |w| > m, the
eigenvalues of V' are, for sufficiently large u, purely imaginary. More precisely, there is a
transformation matrix B(u) with

B 'V B = —iQ(u) o* . (3.38)
Since the matrix potential V' converges for © — oo and has a regular expansion in powers

of 1/u, we can choose B such that

B(u)| < ¢ B'(w)] < 2 (3.39)

u2

with a constant ¢y > 0. The transformed wave function (B~!X) satisfies the equation

%(B”X) = [—m(u) o — B*lB'] (B~1X) . (3.40)
Hence employing the ansatz
X =B ( eeif ff_ig‘)) ) with  @'(u) = Qu) (3.41)

and using the bound (3.39), we obtain the inequality

d cl
o< 3 (3.42)

A short calculation shows that ® has the explicit form (3.35), and that B(u) = A + O(%)
with A according to (3.36). The term of order O(1) can be absorbed into Ro.

The inequality (3.42) can be used similar to (3.14) in Lemma 3.1 Namely, dividing by
|f| an integrating yields for sufficiently large u the bounds

~ < |fw| <L . (3.43)

After substituting the upper bound for |f| into (3.42), one sees that f’ is integrable. Thus
f has a finite and, according to (3.43), non-zero limit,

foo = ulbrglof(u) £ 0

14



Finally, the 1/u-decay (3.37) follows by integrating (3.42) backwards from v = oo and
employing the resulting bound in the ansatz (3.41). ]

In analogy to potential wall problems for Schrodinger operators, we call the function f in

(3.33) corresponding to our fundamental solutions \Il’f/‘g” the transmission coefficients,

and denote them by f fow’{/z.

Theorem 3.6 For every ¥ € C§°(IR x S?)?,

(e 0) (@) = =D / dwe ™0 ST hen ghen () cuken | s (3.44)
knez” —® a,b=1

where the coefficients tq, are for |w| < m given by
tap = (5(1,1 (517,1 . (3.45)

For |w| > m, the tq, are given by the integrals

1 27 taﬂ
tap = — SERUL—. 3.46
@ = or /0 t1]2 + |t2)? (3.46)

where the functions t, are related to the transmission coefficients by
ti(a) = ;Ze_m — f2 e ta(e) = —f1, el 4 foo1 e . (3.47)
The integral and the series in (3.44) converge in norm in the Hilbert space H.

Proof:  Our strategy is as follows. Choosing uy so large that supp ¥ C (—oo,usg),
Proposition 3.4 yields for ¢ = 0 the “completeness relation”

1 o0
Vo) = = [ o Y vk <wln | v
T ez 7=  nez

This formula remains true when wy is further increased,

1 o
W) = - 3 / do 3 R (g) <OEOn |0 >0 (3.48)
T ez /= ez

Hence we can take the average over 7 in the finite interval [0,7] with 7" > 0 and obtain,
using Fubini’s theorem,

o0 T
v-1ly / dw Y [% / dr wken cpken || (3.49)
T kez 7= nez 0
We shall first prove that the square bracket in (3.49) has a finite limit as 7" — oo. Then
we will show that for T — oo, we can in (3.49) take the limit inside the integral and the
series in (3.49). This will give a decomposition of the identity in terms of eigensolutions
of H, from which the representation of the propagator (3.44) will follow immediately by
inserting the phase factors exp(—iwt).

Let us analyze the square bracket in (3.49). We can write U5“7 _ as a linear combination

us+71
of the fundamental solutions \Il’f/‘g“,

2
Uyt (z) = D calr) T (z) (3.50)

a=1

15



where the coefficients ¢)» must be chosen such that our Dirichlet-type boundary conditions
are satisfied at ug + 7. Then the square bracket becomes

1 T 2
?/ dr UEn <URR | U> = 37 4 (T) U <Tpe | U> (3.51)
0

u2+T1 u2+T7
a,b=1

with

tap(T) = T/ Co(T dr . (3.52)

In the case |w| < m, U™ and A" are for large u exponentially decaying and increasing,
respectively. Hence in order to fulfill the boundary conditions at u = uy + 7, the quotient
c2(7)/c1(7) must go exponentially to zero. Moreover, our normalization conditions (3.17)
and (3.31) imply that |c;(7)|? must tend to one. We conclude that there is a constant c;
with

lca(T) — 041] < e VmiowiT

b

and so (3.52) converges for T — oo to (3.45). In the case |w| > m, the fundamental
solutions are oscillating for large u, as described by Lemma 3.5. The boundary conditions
at ug, (2.20), imply that the following scalar product must vanish,

fl —z<I> _ f— i@ (ua+7) Cl(
<<f2 —ie(uatT) —ffez(b( n ) +O0™, ca(T)
where fip are the transmission coefficients. Moreover, the normalization and phase con-
ditions (3.17) and (3.32) yield that

(3.53)

2
~—
V
Il
o

e+ lea” = 1. (3.54)
The general solution to (3.53) is

f2+ efi<1>(u2+7') _ f2_ ei<1>(u2+7)

l 1 )
( C2 > - 5 ( —fl+ e_iq’(u2+7') + ff ei@(u2+7) ) + O(T 1) (355)

with a complex parameter D, which can be chosen so as to satisfy the normalization
condition (3.54). We now substitute (3.55) into (3.52) and take ® as the integration

parameter,
ab - T/ (I)) |Q)’| . (356)

Using (3.35), one sees that (3.56) converges for ' — oo to the average over one period,
giving (3.46) and (3.47). We conclude that the bracket in (3.49) converges pointwise as
T — oo.

Next we shall prove that in (3.49) we may take the limit 7" — oo inside the series
and the integral, and that for the resulting limit the series and the integral converge
in norm. The sum over k in (3.49) gives the decomposition into the eigenspaces of the
angular operator i0,, which we denote by HE. We may consider the situation on each
such eigenspace separately, and thus assume that ¥ € H*. For the integral and the n-
summation in (3.49) the situation is more difficult because the spectral decomposition of
the Hamiltonian depends on u9, and because the eigenvalues A, of A and corresponding
eigenspaces depend on w. We first apply to (3.48) the operator product A% H?? with

16



p,q > 0 (with A as in (2.3), where the t-derivative in A is carried out by applying the
operator —iH) and take the inner product with W. This gives

~ g
<U| AP B> — / S 3 A w) [< Wi, | S (3.57)
-0 neZ

If we consider on the right side of (3.57) instead of |<Wk“" |U>|? a mixed product with

ug+T7

O, € CP((—o0,uz) x S%)* N HE, we can in the integrand use the inequality zy <
2(22 + y?), and then apply (3.57) to obtain

* dw 2q \2p kwn kwn
Z/ =N (w) |<@ | when, ><uber | ws|
neZ”’~®

1
< 3 (<@ | A% HY 0> + <W|A* HY¥>) (3.58)

and this bound holds for all 7 > 0.
Let € > 0. Then for any wy > 0, (3.58) yields for p = 0 and ¢ = 1 that

dw
= |<® | Then S cphon S 1@
Z/m\[wo,u)o} T ‘ | Us+T1 Us+T1 | ‘

nez
1 * dw 2 kwn kwn 1 2 2
< S Y[ Zefcopuln scuben jus| < s (lH)? + [ HYJ?) |
Wy pez )00 T 2wg
We choose wy so large that
d

Z/ Elcopulen s<ulen jws| < (3.59)
nez T R\[-wo.wo] T i ’ 2

for all 7 > 0. This inequality allows us to restrict attention to w in the finite interval
[—wo,wp]. Next for a constant ng > 0, we consider (3.58) for p =1 and ¢ = 0. This gives
the inequality

3 /wo d—°"\<q>|\pkw" ><uken | ws|

u2+7
— T
[n|>mno wo

1
< 3 (<<I> | A2®> + <V | A2\If>) sup 2 (w)

wE[—wo,wo], |n|>n0

Clearly A2 (w) — oo for n — oo uniformly in w € [~wy, wy], and thus we can by choosing
ng sufficiently large arrange that

wo d

3 / o pulon s<ulen jus| < S (3.60)
—wy T 2

[n|>no 0

Putting together the estimates (3.59) and (3.60), we conclude that

YN

neZ" |n|>no

u2+T7

wo dw kwn kwn
/ —‘<<I>|\I/ ><\I/u2+7|\11>‘ < ¢ (3.61)
—wo e

for all 7 > 0.
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For w in a finite interval and n in a finite set, we can take the average over 7 € [0, 7]
and take the limit 7" — oo using Lebesgue’s dominated convergence theorem (notice that
according to Lemma 3.1, \Ilﬁ;’fﬁ_T is on the support of ® and ¥ uniformly bounded in 7).
This gives

lim Z /wo dw l/TdT<<1>|\11’W” <when |y
T—oo £ T Jo uz 77 U7

wo d
_ Z/ w f“<@|@§w"><@§w"|@> (3.62)

n=-—ng

with ¢4, according to (3.45) and (3.46). Since € in (3.61) can be chosen arbitrarily small
and ng — 00, wy — 00 as € N\, 0, we obtain that (3.62) is true also for ng = 0o = wy, with
absolute convergence of the integral and the series. Since ® can be chosen arbitrarily, we
conclude that

_ : _ kwn kwn kwn
v o= lim (3.49) = Z/ phon cghon g (3.63)
k,neZ ab 1

The estimate (3.58) for p = 0 = ¢ remains true if we take the average over 7 € [0, 00),
and a homogeneity argument (as in the proof of the Schwarz inequality in Hilbert spaces)
yields that

d 2
Z/ DAYt <@ | TS <Ol U] < 2 |1
nez a,b=1

This bound shows that the integral and series in (3.63) converge in norm, and that ¥ need
not be an eigenvector of i0,. We finally apply the unitary operator exp(—itH) on both
sides of (3.63) to obtain (3.44). ]

Notice that the coefficients ¢, given by (3.46) are bounded,
1
[tap] < 5 for |w| > m. (3.64)
In the asymptotic region u — —oo, (3.44) goes over to a Fourier representation in terms

of the plane-wave solution (3.8). A careful analysis of this limiting case gives additional
information on the coefficients %,,, namely

1
t11 = 5 = 199 for |w| > m. (365)

However, the non-diagonal elements ¢;2 and ¢2; remain undetermined. We shall not derive
the relations (3.65) here, and will not use them in what follows.

4 The Long-Time Dynamics

Using the integral representation for the propagator of the previous section, we can now
prove our main result.
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Proof of Theorem 1.1: Let € > 0. Since the series in (3.39) converge in norm, we can
choose ky and ng such that

() = Ykomo ()| < €, (4.1)

where

koo (t, 1) = Z Z / dw e ™! Ztkw“\ykwn ) <TRm | T> . (4.2)

k——ko n=-ng " a,b=1

Consider the integrand in (4.2) for fixed k£ and n,

2

Dtk ke (z) <TE | T> (4.3)
a,b=1
From (3.64) and the estimates of Lemma 3.1, one sees that (4.3) is bounded, locally
uniformly in z and w. Thus the norm convergence established in Theorem 3.6 implies that
(4.3) is in L' (IR, €*) as a function of w, with an L'-bound locally uniform in . Hence its
Fourier transform is L in ¢, locally uniformly in . Furthermore, the Riemann-Lebesgue
lemma [7] yields that its Fourier transform tends to zero as t — oo, pointwise in z. Since
(4.2) involves only finitely many terms, we conclude that W, (t,2) is L* in ¢ locally
uniformly in z, and lim;_o Wy o (¢, 2) = 0 for all z.

Choose K; g as in the statement of the theorem. Since the scalar product in (1.2)
induces a norm equivalent to that in (4.1), there is a constant ¢ > 0 such that

| @0ty de < et e 9]+ [ (T V) (8 5) di
Ks.r Ks.r

We showed above that the integrand in the last integral is uniformly bounded and tends
to zero pointwise as ¢ — oo. Thus the integral converges to zero according to Lebesgue’s
dominated convergence theorem. [ |

The integral representation of Theorem 3.6 can also be used to obtain the rates of
decay in t. As a simple example, we have the following result.

Theorem 4.1 Consider the Cauchy problem
(Z’Y]Dj_m) U(t,z) =0 , V(0,2) = Yo(x)
Suppose that

(i) The initial data is C* with at least quadratic decay at infinity and near the horizon,
i.e.

sup u? |¥y| < oo
u€lR

(ii) The angular momentum is bounded in the sense that Wy has contributions only for k
and n in the finite range |k| < ko and |n| < ng.

(iii) Wg has energy strictly larger than m, i.e. in the spectral decomposition

= / dE, U

(with dE,, as in (3.1)), the measure has support in (m, o).

19



Then for all z, V(t,z) has rapid decay in t.

Proof: 1t follows by approximation that Theorem 3.6 holds more generally for ¥ satisfying
condition (i). According to (ii) and by linearity, we can furthermore restrict attention to
fixed angular momentum k = ky and n = ng. Choose wg > 0. For u sufficiently large,
u > ug, the differential equation (3.40) in Lemma 3.5 has smooth coefficients. On the
other hand for v < ug, the ODE (3.13) in Lemma 3.1 has smooth coefficients. In both
cases, the coefficients depend smoothly on w for w in a neighborhood of wg. Hence the
fundamental solutions W00 (2) and the transmission coefficients f¥0“"0 depend smoothly
onw € (m,00). From (3.46), also the coefficients ¢, are smooth in w € (m, 00). According
to Theorem 3.6 and conditions (ii) and (iii), there is ¢ > 0 such that

2
D7ty TR (z) <P | P> | (4.4)

1 o .
U(t,x) = —/ dw e ™"
a,b=1

T Jm+te

Using the above regularity of ¥*0“no and t,;, as well as the smoothness of ¥g, the square
bracket in (4.4) is a smooth function in w, and thus its Fourier transform has rapid decay.
|

We conclude by remarking that the case of initial data with contributions for w near m is
more delicate because the transformation B(u) in (3.38) blows up for w N\, m. This case
will be considered in a forthcoming paper.

A Nondegeneracy and Regularity of the Angular Eigen-
functions

In this appendix, we shall consider the angular equations (2.5),(2.7). As explained in [1,
Appendix A], it is useful to write (2.5) as an eigenvalue equation in A,

(A1)

AY = \Y with A = <_“m cost Lo )
—Ly am cos

Proposition A.1 For given k and XA € o(.A), there is at most one eigensolution of (A.1),
which we denote by Y*, i.e.
AYE = \YF | (A.2)

By continuously varying the parameter w, the eigenvalue equation (A.2) can be extended
to all values of w € IR. Both A and Y* depend smoothly on w.

Proof: The two fundamental solutions of (A.2) behave near ¥ = 0 like
YE = @ o) o) and YR = (o), 9 o)

respectively. Depending on whether k is > 0 or negative, the second or first fundamental
solution diverges in the limit ¥ — 0. In [1, Appendix A] it was shown that the eigenfunc-
tions Y* are bounded on S? and smooth except at the poles. Thus we can rule out one of
the fundamental solutions and conclude that (A.2) has at most one solution.

Note that the solutions of (A.2) are the eigenvectors of A restricted to the eigenspace
of the operator i0, with eigenvalue k, which we denote by #F*. Since the terms involv-
ing w in (A.1) are a relatively compact perturbation, standard perturbation theory [6]
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yields that the spectrum of A|'Hk depends continuously on w. As no degeneracies occur,
each eigenvalue X\ gives rise to a unique continuous family of eigenvalues A(w). Standard
perturbation theory without degeneracies [6] then yields that A(w) and the corresponding
eigenvector Y*(w) depend smoothly on w. ]
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