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Abstract

We consider the Cauchy problem for the massive Dirac equation in the non�extreme

Kerr�Newman geometry outside the event horizon� We derive an integral represen�

tation for the Dirac propagator involving the solutions of the ODEs which arise in

Chandrasekhar�s separation of variables� It is proved that for initial data with com�

pact support� the probability of the Dirac particle to be in any compact region of

space tends to zero as t goes to in�nity� This means that the Dirac particle must ei�

ther disappear in the black hole or escape to spatial in�nity� If the energy of the Dirac

particle is strictly larger than its rest mass and its angular momentum is bounded�

the Dirac wave function decays rapidly in t� locally uniformly in x�

� Introduction

It has recently been shown that the Dirac equation does not admit normalizable� time�
periodic solutions in the non�extreme Kerr�Newman axisymmetric black hole geometry
���� This was interpreted as an indication that a Dirac particle either falls into the black
hole or escapes to in�nity� but that it cannot stay in a bounded region outside the event
horizon� In this paper we make precise this interpretation in the general time�dependent
setting� We thus consider the Cauchy problem for the Dirac equation with smooth initial
data on the hypersurface t � �� compactly supported outside the event horizon� We study
the probability for the Dirac particle to be inside a given annulus located outside the event
horizon� and we prove that this probability tends to zero as t goes to in�nity� Hence� in
contrast to the situation for a bounded orbit of a classical point particle� there exists no
compact region outside the event horizon in which the quantum mechanical Dirac particle
will remain for all time� In more precise form� our result is stated as follows� Recall
that in Boyer�Lindquist coordinates 	t� r� �� �
 with r � �� � � � � �� � � � � ��� the
Kerr�Newman metric takes the form ���

ds� � gjk dx
jxk

�
�

U
	dt � a sin� � d�
� � U

�
dr�

�

 d��

�
� sin� �

U
	a dt � 	r� 
 a�
 d�
� 	���


with
U	r� �
 � r� 
 a� cos� � � �	r
 � r� � �Mr 
 a� 
Q� �
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and the electromagnetic potential is given by

Aj dx
j � �Q r

U
	dt � a sin� � d�
 �

whereM � aM and Q denote the mass� the angular momentum and the charge of the black
hole� respectively� We shall here restrict attention to the non�extreme case M� � a�
Q��
Then the function � has two distinct zeros�

r� � M �
q
M� � a� �Q� and r� � M 


q
M� � a� �Q� �

corresponding to the Cauchy and the event horizon� respectively� We will here consider
only the region r � r� outside of the event horizon� and thus � � ��

Theorem ��� Consider the Cauchy problem

	i�jDj �m
 �	t� x
 � � � �	�� x
 � C�
� 		r���
� S�
�

for the Dirac equation in the non�extreme Kerr�Newman black hole geometry� with initial
data at t � � compactly supported outside the event horizon� Then for any � � � and
R � r�
 �� the probability for the Dirac particle to be inside the annulus K��R � fr�
 � �
r � Rg tends to zero as t��� i�e�

lim
t��

Z
K��R

	����
	t� x
 d� � � � 	���


where d� denotes the induced invariant measure on the hypersurface t � const�

The proof is organized as follows� We �rst bring the Dirac equation into the Hamil�
tonian form i	t� � H� with a self�adjoint operator H� Our main technical tool is an
integral representation for the Dirac propagator exp	�itH
� which we derive in Theo�
rem ���� To obtain this integral representation� we �rst consider the Dirac equation in
an annulus outside the event horizon with suitable Dirichlet�type boundary conditions�
The Hamiltonian corresponding to this modi�ed problem has a purely discrete spectrum�
and thus the propagator can be decomposed into discrete eigenstates� We then take the
in�nite�volume limit by letting the inner boundary of the annulus tend to the event hori�
zon and the outer boundary to in�nity in a suitable way� Our construction is based on
Chandrasekhar�s separation of variables for the Dirac equation in the Kerr�Newman met�
ric ��� �� �� together with estimates for the asymptotic behavior of the amplitudes and
phases of the separated radial eigenfunctions 	Lemmas ��� and ���
� and for the spectral
gaps 	Lemma ���
� The usefulness of our integral representation for the propagator is that
it explicitly gives the continuous spectral measure of H in terms of the solutions of the
radial and angular ODEs arising in Chandrasekhar�s separation of variables� Theorem ���
then follows by standard results of Fourier analysis� We also use our representation for
the propagator to prove that if the energy of the initial data is strictly larger than the
rest mass� and the angular momentum is bounded� then the Dirac wave function decays
rapidly in t as t tends to in�nity� locally uniformly in x 	Theorem ���
� We note that the
axisymmetric character of the background geometry makes the analysis signi�cantly more
delicate than in the spherically symmetric case� mainly because for a �� � both the radial
and angular ODEs depend on the energy� and thus for the study of the dynamics we must
consider the system of these coupled equations�

�



We remark that the type of solutions studied in this paper are in some sense more
restricted than those considered in ���� Namely� the assumption of compactly supported
initial data made here clearly implies that for all t� the normalization integral of the Dirac
wave function is �nite outside the event horizon� In contrast to this� the assumptions made
in ��� include the case where the normalization integral is �nite only at spatial in�nity�
but in�nite near the event horizon� This weaker normalization condition might be of
importance in the study of the formation of a black hole in gravitational collapse�

� Separation of Variables� Hamiltonian Formulation

The Dirac equation in the Kerr�Newman geometry can be completely separated into ODEs
by Chandrasekhar�s method ��� �� ��� We here outline the separation� see ��� for details�
After a suitable regular and time�independent transformation � � �� of the Dirac wave
function ���� the Dirac equation can be written as

	R
A
 �� � � 	���


with

R �

�
BBB�

imr �
p
�D� �

� �imr �
p
�D�p

�D� � �imr �

�
p
�D� � imr

�
CCCA

A �

�
BBB�
�am cos� � � L�

� am cos� �L� �
� L� �am cos� �

�L� � � am cos�

�
CCCA

and the di�erential operators
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�
	r� 
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	�
� ieQr
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cot �

�
� i

�
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�
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Employing the ansatz

��	t� r� �� �
 � e�i�t e�i�k�
�

�
��

�
BBB�

X�	r
 Y�	�

X�	r
 Y�	�

X�	r
 Y�	�

X�	r
 Y�	�


�
CCCA � k � Z� 	���


we obtain the eigenvalue problems�

R �� � � �� � A �� � �� �� � 	���


under which the Dirac equation 	���
 decouples into the system of ODEs� p
�D� imr � �

�imr � �
p
�D�

��
X�

X�

�
� � 	���


�
L� �am cos�
 �

am cos�
 � �L�

��
Y�
Y�

�
� � � 	���


�



where D� and L� are the radial and angular operators

D� �
	

	r
� i

�

�
� 	r� 
 a�
 


�
k 


�

�

�
a 
 eQr

�
	���


L� �
	

	�


cot �

�
�
	
a� sin� 


k 
 �
�

sin�




 	���


We will in what follows also use the vector notation X � 	X��X�
� Y � 	Y�� Y�
 and
for clarity sometimes add indices for the parameters involved� e�g� Xk�� 	 X� We point
out that 	���
 is an eigenfunction of the angular operator i	� with eigenvalue k 


�
� � The

reason why we need to consider half odd integer eigenvalues is that the transformation
from the usual single�valued wave function in space�time� to the wave function �� in 	���

involves a sign �ip at � � � 	see ��� Section ����
�
In this paper� we want to study time�dependent solutions of the Dirac equation� In the

separation ansatz 	���
� the dynamics of the solution is encoded through the ��dependence
in the ODEs 	���
 and 	���
� Unfortunately� both the radial and angular operators 	���

and 	���
 depend on �� making the situation rather complicated� Therefore it is useful to
bring the Dirac equation 	���
 into Hamiltonian form� in a way which is compatible with
the separation of variables� We �rst bring the time derivative in 	���
 to one side of the
equation and obtain�

r� 
 a�p
�

B 
 a sin� C

�
i
	

	t
�� � 	R� 
A�
 �� 	���


with

B �

�
BBB�
� � �i �
� � � i
i � � �
� �i � �

�
CCCA � C �

�
BBB�
� � � ��
� � �� �
� �� � �
�� � � �

�
CCCA �

where the operators R� and A� are obtained from R and A by setting the time derivatives
to zero� The matrices B and C satisfy the relations B� � �� � C� and BC � CB� Thus
the linear combination of these matrices which appears in 	���
 can be inverted with the
formula 	
B
�C
�� � 	
����
�� 	
B��C
 	and 
� � � IR
� Furthermore� we introduce
a new radial variable u � 	����
 by

du

dr
�

r� 
 a�

�

 	���


Then the Dirac equation 	���
 becomes

i
	

	t
� � H �

with the Hamiltonian
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�
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��� �
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where r is an implicit function of u� and

�R � �mr
p
�

r� 
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�
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� � � �
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The Hamiltonian 	����
 is an operator acting on the wave functions on the hypersur�
faces t � const� The simplest scalar product on such a hypersurface is

	� j �
 �
Z �

��
du

Z �

��
d cos�

Z ��

�
d� ��	t� u� �� �
 �	t� u� �� �
 � 	����


where ���� denotes the complex conjugated� transposed spinor� In the spherically sym�
metric case a � �� the Hamiltonian 	����
 is Hermitian 	i�e� formally self�adjoint
 with
respect to this scalar product� However for a �� �� H is not Hermitian� In order to get
around this problem� we introduce a di�erent scalar product as follows� Notice that the
operators �R and �A� 	����
�	����
� are both Hermitian with respect to 	����
� The reason
why the Hamiltonian 	����
 is not Hermitian is that� when the taking the adjoint of H
using integration by parts� one gets r� and ��derivatives of the square bracket in 	����
�
But we can compensate this square bracket by inserting its inverse into the scalar product�
Thus we introduce on the four�component spinors the inner product

�� j ���t�u����� � ��	t� u� �� �


�
�� 


a
p
� sin�

r� 
 a�
BC

�
�	t� u� �� �
 	����


and de�ne the scalar product �
j
� by

�� j �� �

Z �

��
du

Z �

��
d cos�

Z ��

�
d� �� j ���t�u����� 
 	����


Then the Hamiltonian H is Hermitian with respect to 	����
� Let us verify that 	����

is positive� In the region outside the event horizon under consideration� r � r� � M �
Also� since we are in the non�extreme case� M � Q� a� and as a consequence� � � r�� We
conclude that �����a

p
� sin�

r� 
 a�

����� � a
p
�

r� 
 a�
�

a

r

p
�

r
� � 


Combining this inequality with the fact that the matrix BC has eigenvalues ��� we obtain
that the bracket in 	����
 is indeed a positive matrix� We remark for clarity that the scalar

�



product 	����
 does not coincide with the scalar product
R
����d� 	with the adjoint spinor

�
� obtained by integrating the probability density of the Dirac particle over a space�like
hypersurface� By construction� the Hamiltonian H is also Hermitian with respect to the
latter scalar product� But the problem is that this latter scalar product is not compatible
with our Dirichlet�type boundary conditions 	i�e� Hu��u� and Hu� are not Hermitian with
respect to it
� and for this reason we will not use it in what follows�
We denote the Hilbert space of wave functions with scalar product 	����
 by H� Then

the operator H� 	����
� is essentially self�adjoint on H with domain of de�nition

D	H
 � C�
� 	IR� S�
� 


In Section �� we shall consider the Dirac operator also with certain Dirichlet�type boundary
conditions� which we now introduce� First for given u� � IR� we restrict u to the half line
u � 	��� u�� and impose the boundary conditions

��	u�� �� �
 � ��	u�� �� �
 and ��	u�� �� �
 � ��	u�� �� �
 
 	����


Let Hu� be the Hilbert space of square integrable wave functions �	u� �� �
� u � u� with
the scalar product

�� j ��u� ��

Z u�

��
du

Z �

��
d cos �

Z ��

�
d� �� j ���t�u����� 
 	����


Then the Hamiltonian 	����
 on Hu� with boundary conditions 	����
� which we denote
for clarity by Hu� � is Hermitian 	the main point here is that the boundary values at u � u�
vanish when the adjoint of Hu� is calculated using integration by parts
� The operator
Hu� is essentially self�adjoint on Hu� with domain of de�nition

D	Hu�
 �
n
� � C�

� 		��� u��� S�
� and 	����
 is satis�ed
o




Similarly� for u�� u� � IR� u� � u�� we restrict u to the closed interval u � �u�� u�� with
boundary conditions

��	u�
 � ��	u�
� ��	u�
 � ��	u�
 and ��	u�
 � ��	u�
� ��	u�
 � ��	u�
 

	����


We denote the Hilbert space of square integrable wave functions �	u� �� �
� u� � u � u��
with the scalar product

��� ��u��u� ��

Z u�

u�
du

Z �

��
d cos �

Z ��

�
d� �� j ���t�u����� 	����


by Hu��u� � and the Hamiltonian 	����
 on Hu��u� by Hu��u� � It is essentially self�adjoint
with

D	Hu��u�
 �
n
� � C�

� 	�u�� u��� S�
� and 	����
 is satis�ed
o




Our above Hamiltonian formulation of the Dirac equation is well�suited to Chan�
drasekhar�s separation of variables� Namely� the boundary conditions 	����
 reduce to
simple boundary conditions for the radial functions�

X�	u�
 � X�	u�
 � 	����


�



whereas 	����
 amounts to

X�	u�
 � X�	u�
 and X�	u�
 � X�	u�
 
 	����


The scalar product 	����
 splits into the product of a radial and an angular part� namely

	 ��k�� j ��k�����
 � 	Xk�� jXk�����
 	Y k�� j Y k�����


with

	Xk�� jXk�����
 �

Z �

��
Xk��	u
Xk�����	u
 du

	Y k�� j Y k�����
 � �� �kk
�
Z �

��
Y k��	�
 Y k�����	�
 d cos � 


The scalar product 	����
� however� does not split into a product� more precisely

�� j �� � 	Xk�� jXk�����
 	Y k�� j Y k�����



a 	Xk�� j
p
�

r� 
 a�
�� jXk�����
 	Y k�� j sin� �� j Y k�����
 
 	����


This mixing of the radial and angular parts in the scalar product can be understood from
the fact that the Kerr�Newman solution is only axisymmetric�

� An Integral Representation for the Propagator

The propagator exp	�itH
 has the spectral decomposition

e�itH �

Z �

��
e�i�t dE� � 	���


where dE� is the spectral measure of H� In this section� we shall bring this formula into
a more explicit form� This will be done by expressing the spectral measure in terms of
solutions of the radial and angular ODEs of the previous section� Since the spectrum
of H is continuous� it is not obvious how to relate the spectral measure to the solutions
of our ODEs� To bypass this problem� we begin with the spectral decomposition of the
operator Hu��u� 	which has a purely discrete spectrum
� and then deduce the desired
integral representation for exp	�itH
 by taking suitable limits u� � �� and u� ���
As an elliptic operator on a bounded domain� the Hamiltonian Hu��u� has a purely

discrete spectrum with �nite�dimensional eigenspaces 	see ���
� In view of our separation
of variables� the most convenient eigenvector basis is the following� First we can choose
the basis vectors as eigenvectors of the operator i	� with eigenvalue k 


�
� � k � Z� We

denote this eigenspace of i	� by Hk
u��u� � and the restriction of Hu��u� to Hk

u��u� by H
k
u��u� �

Furthermore� the basis vectors can be chosen as eigenvectors of the angular operator A�
As is shown in the Appendix� the spectrum of A on Hk

u��u� is discrete� non�degenerate�
and depends smoothly on �� Thus the eigenvalues of A can be written as �n	�
� n � Z�
with �n � �n�� and �n	

 � C�	IR
� For any given k � Z� � � �	Hk

u��u�
� and n � Z�
the radial ODE 	���
 has at most one solution satisfying the boundary conditions 	����
�
Hence we have for any k� �� and n at most one eigenstate of Hu��u� � which we denote by
�k�n
u��u� � The set of n for which such an eigenvector exists is denoted by N	k� �
� Thus our
eigenvector basis is

	�k�n
u��u�
k�Z� ����Hk

u� �u�
�� n�N�k��� 
 	���


�



We normalize these eigenfunctions with respect to the scalar product 	����
� more precisely�
we normalize both the radial and angular parts according to

	Xk�n
u��u� jXk�n

u��u�
 � � � 	Y k�n j Y k�n
 � � 	���


with X and Y as in 	���
� Since the angular operator A is self�adjoint with respect to the
scalar product 	
j

� its eigenvectors are orthogonal� and thus the eigenfunctions for �xed
k and � are even orthonormal�

	�k�n
u��u� j�k�n�

u��u�
 � �nn
�

� n� n� � N	k� �

 	���


We mention for clarity that for di�erent values of �� the eigenfunctions are in general not
orthogonal with respect to 	
j

� but since Hu��u� is self�adjoint with respect to �
j
�� its
eigenspaces are orthogonal with respect to the latter scalar product� and thus

��k�n
u��u� j�k���n�

u��u� � � � for � �� ��


These subtle di�erences between the two scalar products clearly become irrelevant in the
spherically symmetric case a � ��
In the basis 	���
� the spectral decomposition 	���
 for Hu��u� can be written as

e�it Hu��u� � �
X
k�Z

X
����Hk

u� �u�
�

e�i�t
�
� X
n�n��N�k���

cnn� �
k�n
u��u� ��

k�n�
u��u� j��

�
A 
 	���


Here the coe cients cnn� must be chosen such that the bracket in 	���
 is the projection
of � onto the eigenspace of Hk

u��u� corresponding to the eigenvalue �� more precisely�

cnn� � 	A��
nn� with Ann� � ��k�n
u��u� j�k�n�

u��u�� 
 	���


Notice that the �rst two sums in 	���
 give a decomposition of � into the orthogonal eigen�
states of the operators i	� and H� respectively� and thus converge in norm in Hu��u� � The
bracket in 	���
 is the basis representation of the projector on the respective eigenspace�
Our �rst goal is to take the limit u� � �� in 	���
� We expect that in this in�nite

volume limit� the �energy gaps� ��kn between neighboring eigenvalues� de�ned by

��kn � minf!�kn � �kn j !�kn � �kng with

�kn� !�kn � �	Hk
u��u�
 and N	k� �kn
� N	k� !�kn
 �� � �

should tend to zero� The basic idea is to rewrite the sum over the spectrum in 	���

as Riemann sums which converge to integrals as u� � ��� yielding a formula for the
propagator of the Hamiltonian Hu� � For making this idea mathematically precise� it is
essential to get good estimates for ��kn and to relate the eigenvectors �

k�n
u��u� in 	���
 to

solutions
�k�n
u� 	u
 with k � Z� � � IR� n � Z� u � 	��� u��

of the Dirac equation with boundary conditions 	����
� We denote the radial and angular
functions corresponding to �k�n

u� by Xk�n
u� and Y k�n� respectively� In the variable u� 	���
�

the radial equation 	���
 becomes	
d

du

 i"	u


�
� �
� ��

�

X �

p
�

r� 
 a�

�
� imr � �

�imr � � �

�
X � 	���


�



with

"	u
 � � 

	k 
 �

�
 a
 eQr

r� 
 a�
�

and where for ease in notation the indices of X were omitted� The next lemma describes
the asymptotic behavior of X	u
 as u� ���
Lemma ��� Every nontrivial solution X of ����� with boundary conditions ������ is
asymptotically as u� �� of the form

X	u
 �

�
e�i��u f��
ei��u f��

�

 R�	u
 	���


with

f� �� � 	���


"� � � 

ka
 eQr�
r�� 
 a�

	����


jR�j � c edu 	����


and suitable constants c� d � �� which can be chosen locally uniformly in ��

Proof	 Substituting into 	���
 the ansatz

X	u
 �

�
e�i��u f�	u

ei��u f�	u


�
� 	����


we obtain for f the equation

d

du
f �

	
i	"� � "	u



�
� �
� ��

�




p
�

r� 
 a�

�
� e��i�u	imr � �


e�i�u	�imr � �
 �

�

f 
 	����


The square bracket vanishes on the event horizon r � r�� In the variable u� this leads to
exponential decay for u� ��� in the sense that there are constants c�� d � � such that���� dduf

���� � c� e
du jf j 
 	����


Since X is a nontrivial solution� jf j �� �� Thus we can divide 	����
 by jf j and integrate
from any u � u� to u� to obtain

log jf j
���u�
u
� c� e

du
���u�
u

with c� � c��d� Since the right side of this inequality stays �nite when u � ��� we
conclude that there is a constant L � � with

�

L
� jf	u
j � L for all u � u�
 	����


Using that � depends smoothly on � 	see the Appendix
� the constants c�� c�� d� and L
clearly can be chosen locally uniformly in ��

�



We substitute 	����
 into 	����
����� ddu f

���� � c�L edu 
 	����


This inequality shows that f � is integrable� and thus f	u
 converges for u� ��� Setting

f� � lim
u��� f	u


����	�

�� � �

we can integrate 	����
 from �� to u � b and get

jf	u
� f�j � c edu

with c � c�L�d� Substituting in the ansatz 	���
� we get 	����
�

From 	���
 we see that X	u
 does not decay to zero for u� ��� As a consequence� the
function �k�n

u� cannot have �nite norm and thus is not a vector in the Hilbert space Hu� �
This shows that the Hamiltonian Hu� has no point spectrum� In contrast to 	���
� we
normalize the functions �k�n

u� according to

lim
u��� jX

k�n
u� j � � � 	Y k�n j Y k�n
 � � 
 	����


The next two lemmas describe the behavior of the normalization factors and the energy
gaps as u� � ���
Lemma ��� For 
xed u� and asymptotically as u� � ���

Xk�n
u��u� � g	u�
X

k�n
u� j
u��u�� with 	����


jg	u�
j�� � 	u� � u�
 
 O	�
 
 	����


Furthermore������k�n
u��u� j�k�n�

u��u�� � �nn
�
��� � c

u� � u�
�Y k�n j sin� �� j Y k�n�� � 	����


where the constant c can be chosen locally uniformly in ��

Proof	 Since Xk�n
u��u� and Xk�n

u� are solutions of the same ODE 	����
 with the same
boundary conditions at u�� they clearly coincide up to a normalization factor g� i�e�
Xk�n
u��u� � g Xk�n

u� � Taking the norm on both sides and using the �rst part of 	���
� we
obtain that

jg	u�
j�� �
Z u�

u�
Xk�n
u� 	u
X

k�n
u� 	u
 du 


We now substitute 	���
� multiply out� and use that jf�j� � � according to the �rst part
of 	����
� to obtain

jg	u�
j�� �
Z u�

u�

�
� 
 XR� 
 R�X � jR�j�

�
du 
 	����


Since X is bounded and R� has exponential decay 	����
� the last three summands in
	����
 are integrable� and thus jg	u�
j�� � 	u� � u�
 is bounded uniformly in u�� This
proves 	����
�

��



The scalar product ��k�n
u��u� j�k�n�

u��u�� can be computed via 	����
� The orthonormality
	���
 yields that

��k�n
u��u� j�k�n�

u��u��� �nn
�

� a	Xk�n
u��u� j

p
�

r� 
 a�
�� jXk�n�

u��u�
 	Y
k�n j sin��� jY k�n�
 
 	����


In order to estimate the radial scalar product� we �rst note that the factor
p
� goes

exponentially to zero for u� ��� and thus

	Xk�n
u��u� j

p
�

r� 
 a�
�� jXk�n�

u��u�
 � c�

Z u�

u�
edu jXk�n

u��u� j jXk�n�
u��u� j du

for some constant c� � �� Substituting 	����
 and using that the integral is uniformly
bounded due to the factor exp du� we obtain the estimate�����	Xk�n

u��u� j
p
�

r� 
 a�
�� jXk�n�

u��u�


����� � c	 	u� � u�

�� �

which together with 	����
 yields 	����
�

Lemma ��� The following estimate holds asymptotically as u� � ���

��kn �
�

u� � u�

 O	�
 � 	����


for 
xed u� locally uniformly in ��

Proof	 We consider solutions of 	���
 satisfying the boundary conditions at u� and ask
for which values of � and �n	�
 our boundary conditions are also ful�lled at u�� As is
immediately veri�ed from 	���
�

d

du

�
jX�j� � jX�j�

�
� � 


Thus jX�j� � jX�j� is independent of u� and since it vanishes at u��

jX�j� � jX�j� for all u � u�
 	����


Hence for the boundary values at u�� we need not be concerned about the absolute values
of X�� it su ces to consider the condition for the phases

argX�	u�
 � argX�	u�
 
 	����


It is convenient to work again with the ansatz 	����
� In order to describe the depen�
dence on �� we di�erentiate 	����
 with respect to �� Since � depends smoothly on �� we
obtain the bound ���� ddu 	�f

���� � c� e
du j	�f j 
 c� e

du jf j 	����


with constants c�� d as in 	����
 and c� � �� Using that jf j is bounded from above 	����
�
we get ���� ddu 	j	�f j
 c�


���� � c� e
du 	j	�f j
 c�


��



with c� � c�L�c�� Similar to the development after 	����
� dividing by 	j	�f j 
 c�
 and
integrating yields

log	j	�f j
 c�
ju�u � c� e
du
���u�
u

�

and since the right side of this inequality is uniformly bounded in u�

j	�f j � c	 	����


for some constant c	 � ��
For the study of the phase shifts� we introduce the phase function

�	u
 � arg f�	u
 � arg f�	u
 � �" u�
	the last summand was included so that �	u�
 � �
� The derivative of the argument of a
complex�valued function h is given by

d

du
arg h	u
 � Im

h�	u

h	u





Using this formula together with the fact that� according to 	����
 and 	����
 both jf�j
and jf�j are bounded away from zero� we obtain that���� ddu 	��

���� � �L

���� ddu 	�f

���� 
 �L� j	�f j
���� ddu f

���� 


Substituting in 	����
� 	����
 as well as the bounds 	����
 and 	����
� we conclude that���� ddu 	��

���� � c� e
du

with some constant c� � �� We integrate this inequality from u � u� to u�� Since �	u�
 � �
independently of �� the boundary term 	��	u�
 drops out� and we obtain the bound

j	��	u
j � C for all u � u� 	����


with a constant C � �� This means that the equation for f � 	����
 leads only to 
nite
phase shifts�
The boundary conditions at u�� 	����
� are ful�lled i�

� �� �" 	u� � u�
 
 � � � 	mod ��
 


Di�erentiating with respect to � and integrating again from �I to �II � �I � �II � we obtain
that

j�	�II
� �	�I
 � �	�II � �I
 	u� � u�
j �
Z �II

�I

j	��j d�
����
�

� C 	�II � �I
 �

and this proves 	����
�

We can now prove the integral representation for the propagator of Hu� �

Proposition ��� For every � � C�
� 		��� u��
� S�
� and x � 	u� �� �
�

�
e�it Hu� �

�
	x
 �

�

�

X
k�Z

Z �

��
d� e�i�t

X
n�Z

�k�n
u� 	x
 ��

k�n
u� j�� 
 	����


��



Proof	 According to the bound 	����
� the operator A in 	���
 converges uniformly in �
and k to the identity as u� ��� and thus 	���
 simpli�es asymptotically to
�
e�it Hu��u� �

�
	x
 �

X
k�Z

X
����Hk

u� �u�
�

e�i�t
X

n�N�k���

�k�n
u��u� ��

k�n
u��u� j��
O		u��u�
��
 


Using 	����
 and 	����
� we can express �k�n
u��u� by �

k�n
u� ��

e�it Hu��u� �
�
	x


�
X
k�Z

�

u� � u�

X
����Hk

u� �u�
�

e�i�t
X

n�N�k���

�k�n
u� ��k�n

u� j��u��u� 
 O		u� � u�

��
 


The gap estimate� Lemma ���� shows that the sum over the spectrum is a Riemann sum
which converges as u� � �� to an integral�

The idea for proving an integral representation for exp	�itH
 is to take in 	����
 a
suitable limit u� � 
�� In preparation� we need to derive estimates which describe the
asymptotics of solutions of the radial equation 	���
 for large u� In this regime�

d

du
X �

	�
�i� im
�im i�

�


�

u

�
�ieQ �imM � �

imM � � ieQ

�

 O	u��




X 
 	����


Thus the matrix potential on the right converges for u � �� If j�j � m� its eigenvalues
� � �pm� � �� are real� and this leads to one fundamental solution of 	����
 which de�
cays exponentially like exp	�pm� � �� u
� and the other solution has exponential growth

 exp	

p
m� � �� u
� We denote these two fundamental solutions by �k�n

� and �k�n
� �

respectively� and normalize them according to

lim
u��� j�

k�n
�	� 	u
j � � 
 	����


For j�j � m� on the other hand� the eigenvalues of the matrix potential at u � � are
imaginary� � � �ip�� �m�� and this leads to two fundamental solutions �k�n

�	� with

oscillatory behavior 
 exp	�ip�� �m� u
� For the normalization� we are now free to
choose both the amplitude and the phase� Our convention is that

fk�n�� � �

�
�
�

�
and fk�n�� � �

�
�
�

�
	����


with fk�n�� �	� as in the asymptotic expansion 	���
� The next lemma describes the asymptotics
of the oscillatory solutions as u���
Lemma ��� Every nontrivial solution X of ����� for j�j � m has for large u the asymp�
totic form

X	u
 � A

�
e�i��u� f��
ei��u� f��

�

 R�	u
 	����


��



with

f� �� � 	����


� �
p
�� �m� u 


�eQ
Mm�

p
�� �m�

log u 	����


A �
�

�

��
� 
m

� �m

� �

�




�
� �m

� 
m

� �

�

�
�� 


�

�

��
� 
m

� �m

� �

� �
�
� �m

� 
m

� �

�

�
�� 	����


jR�j � C

u
	����


and a constant C � ��

Proof	 We write 	���
 symbolically as

X � � V X

with a matrix potential V 	u
� According to 	����
 and the hypothesis j�j � m� the
eigenvalues of V are� for su ciently large u� purely imaginary� More precisely� there is a
transformation matrix B	u
 with

B�� V B � �i"	u
 �� 
 	����


Since the matrix potential V converges for u�� and has a regular expansion in powers
of ��u� we can choose B such that

jB	u
j � c� � jB�	u
j � c�
u�

	����


with a constant c� � �� The transformed wave function 	B
��X
 satis�es the equation

d

du
	B��X
 �

h
�i"	u
 �� � B�� B�

i
	B��X
 
 	����


Hence employing the ansatz

X � B

�
e�i� f�	u

ei� f�	u


�
with ��	u
 � "	u
 	����


and using the bound 	����
� we obtain the inequality���� ddu f

���� � c��
u�
jf j 
 	����


A short calculation shows that � has the explicit form 	����
� and that B	u
 � A
O	 �u

with A according to 	����
� The term of order O	 �u
 can be absorbed into R��
The inequality 	����
 can be used similar to 	����
 in Lemma ��� Namely� dividing by

jf j an integrating yields for su ciently large u the bounds
�

L
� jf	u
j � L 
 	����


After substituting the upper bound for jf j into 	����
� one sees that f � is integrable� Thus
f has a �nite and� according to 	����
� non�zero limit�

f� �� lim
u�� f	u
 �� � 


��



Finally� the ��u�decay 	����
 follows by integrating 	����
 backwards from u � � and
employing the resulting bound in the ansatz 	����
�

In analogy to potential wall problems for Schr#odinger operators� we call the function f� in
	����
 corresponding to our fundamental solutions �k�n

�	� the transmission coe�cients�

and denote them by fk�n�� �	��

Theorem ��� For every � � C�
� 	IR� S�
��

�
e�itH �

�
	x
 �

�

�

X
k�n�Z

Z �

��
d� e�i�t

�X
a�b��

tk�nab �k�n
a 	x
��k�n

b j�� � 	����


where the coe�cients tab are for j�j � m given by

tab � �a�� �b�� 
 	����


For j�j � m� the tab are given by the integrals

tab �
�

��

Z ��

�

ta tb
jt�j� 
 jt�j� d
 � 	����


where the functions ta are related to the transmission coe�cients by

t�	

 � f�� � e
�i
 � f�� � e

i
 � t�	

 � �f�� � e
�i
 
 f�� � e

i
 
 	����


The integral and the series in ������ converge in norm in the Hilbert space H�
Proof	 Our strategy is as follows� Choosing u� so large that supp � � 	��� u�
�
Proposition ��� yields for t � � the �completeness relation�

�	x
 �
�

�

X
k�Z

Z �

��
d�

X
n�Z

�k�n
u� 	x
��

k�n
u� j�� 


This formula remains true when u� is further increased�

�	x
 �
�

�

X
k�Z

Z �

��
d�

X
n�Z

�k�n
u��� 	x
��

k�n
u��� j�� � � � �
 	����


Hence we can take the average over � in the �nite interval ��� T � with T � � and obtain�
using Fubini�s theorem�

� �
�

�

X
k�Z

Z �

��
d�

X
n�Z

	
�

T

Z T

�
d� �k�n

u��� ��
k�n
u��� j��




 	����


We shall �rst prove that the square bracket in 	����
 has a �nite limit as T � �� Then
we will show that for T � �� we can in 	����
 take the limit inside the integral and the
series in 	����
� This will give a decomposition of the identity in terms of eigensolutions
of H� from which the representation of the propagator 	����
 will follow immediately by
inserting the phase factors exp	�i�t
�
Let us analyze the square bracket in 	����
� We can write �k�n

u��� as a linear combination
of the fundamental solutions �k�n

�	� �

�k�n
u��� 	x
 �

�X
a��

ca	�
 �
k�n
a 	x
 � 	����


��



where the coe cients c�	� must be chosen such that our Dirichlet�type boundary conditions
are satis�ed at u� 
 � � Then the square bracket becomes

�

T

Z T

�
d� �k�n

u��� ��
k�n
u��� j�� �

�X
a�b��

tab	T 
 �
k�n
a ��k�n

b j�� 	����


with

tab	T 
 �
�

T

Z T

�
ca	�
 cb	�
 d� 
 	����


In the case j�j � m� �k�n
� and �k�n

� are for large u exponentially decaying and increasing�
respectively� Hence in order to ful�ll the boundary conditions at u � u� 
 � � the quotient
c�	�
�c�	�
 must go exponentially to zero� Moreover� our normalization conditions 	����

and 	����
 imply that jc�	�
j� must tend to one� We conclude that there is a constant c�
with

jca	�
 � �a��j � c� e
�pm���� � �

and so 	����
 converges for T � � to 	����
� In the case j�j � m� the fundamental
solutions are oscillating for large u� as described by Lemma ���� The boundary conditions
at u�� 	����
� imply that the following scalar product must vanish�

�

�
f�� e�i��u���� � f�� ei��u����

f�� e�i��u���� � f�� ei��u����

�

O	���
�

�
c�	�

c�	�


�
� � � � 	����


where f�	� are the transmission coe cients� Moreover� the normalization and phase con�
ditions 	����
 and 	����
 yield that

jc�j� 
 jc�j� � � 
 	����


The general solution to 	����
 is

�
c�
c�

�
�
�

D

�
f�� e�i��u���� � f�� ei��u����

�f�� e�i��u���� 
 f�� ei��u����

�

 O	���
 	����


with a complex parameter D� which can be chosen so as to satisfy the normalization
condition 	����
� We now substitute 	����
 into 	����
 and take � as the integration
parameter�

tab	T 
 �
�

T

Z ��T �

����
ca	�
 cb	�


d�

j��j 
 	����


Using 	����
� one sees that 	����
 converges for T � � to the average over one period�
giving 	����
 and 	����
� We conclude that the bracket in 	����
 converges pointwise as
T ���
Next we shall prove that in 	����
 we may take the limit T � � inside the series

and the integral� and that for the resulting limit the series and the integral converge
in norm� The sum over k in 	����
 gives the decomposition into the eigenspaces of the
angular operator i	�� which we denote by Hk� We may consider the situation on each
such eigenspace separately� and thus assume that � � Hk� For the integral and the n�
summation in 	����
 the situation is more di cult because the spectral decomposition of
the Hamiltonian depends on u�� and because the eigenvalues �n of A and corresponding
eigenspaces depend on �� We �rst apply to 	����
 the operator product A�pH�q with

��



p� q � � 	with A as in 	���
� where the t�derivative in A is carried out by applying the
operator �iH
 and take the inner product with �� This gives

�� j A�p H�q �� �

Z �

��
d�

�
��q

X
n�Z

��pn 	�
 j��k�n
u��� j��j� 
 	����


If we consider on the right side of 	����
 instead of j��k�n
u��� j��j� a mixed product with

��� � C�
� 		��� u�
 � S�
� 
 Hk� we can in the integrand use the inequality xy �

�
�	x

� 
 y�
� and then apply 	����
 to obtain

X
n�Z

Z �

��
d�

�
��q ��pn 	�


����� j�k�n
u������

k�n
u��� j��

���
� �

�

�
�� j A�p H�q �� 
 �� j A�p H�q ��

�
� 	����


and this bound holds for all � � ��
Let � � �� Then for any �� � �� 	����
 yields for p � � and q � � that

X
n�Z

Z
IRn
�������

d�

�

����� j�k�n
u������

k�n
u���� j��

���
� �

��
�

X
n�Z

Z �

��
d�

�
��
����� j�k�n

u������
k�n
u��� j��

��� � �

���
�

�
kH�k� 
 kH�k�

�



We choose �� so large that

X
n�Z

Z
IRn
�������

d�

�

����� j�k�n
u������

k�n
u��� j��

��� � �

�
	����


for all � � �� This inequality allows us to restrict attention to � in the �nite interval
����� ���� Next for a constant n� � �� we consider 	����
 for p � � and q � �� This gives
the inequality

X
jnj�n�

Z ��

���

d�

�

����� j�k�n
u������

k�n
u��� j��

���
� �

�

�
�� j A���
�� j A���

�
sup

��
�������� jnj�n�
���n 	�
 


Clearly ��n	�
�� for n� �� uniformly in � � ����� ���� and thus we can by choosing
n� su ciently large arrange that

X
jnj�n�

Z ��

���

d�

�

����� j�k�n
u������

k�n
u��� j��

��� � �

�

 	����


Putting together the estimates 	����
 and 	����
� we conclude that

�
�X
n�Z

Z �

��
�

X
jnj�n�

Z ��

���

�
A d�

�

����� j�k�n
u������

k�n
u��� j��

��� � � 	����


for all � � ��

��



For � in a �nite interval and n in a �nite set� we can take the average over � � ��� T �
and take the limit T �� using Lebesgue�s dominated convergence theorem 	notice that
according to Lemma ���� �k�n

u��� is on the support of � and � uniformly bounded in �
�
This gives

lim
T��

n�X
n��n�

Z ��

���

d�

�

	
�

T

Z T

�
d� �� j�k�n

u������
k�n
u��� j��




�
n�X

n��n�

Z ��

���

d�

�

�X
a�b��

tk�nab �� j�k�n
a ���k�n

b j�� 	����


with tab according to 	����
 and 	����
� Since � in 	����
 can be chosen arbitrarily small
and n� ��� �� �� as �� �� we obtain that 	����
 is true also for n� �� � ��� with
absolute convergence of the integral and the series� Since � can be chosen arbitrarily� we
conclude that

� � lim
T��

	�
��
 �
X
k�n�Z

Z �

��
d�

�

�X
a�b��

tk�nab �k�n
a ��k�n

b j�� 
 	����


The estimate 	����
 for p � � � q remains true if we take the average over � � ����
�
and a homogeneity argument 	as in the proof of the Schwarz inequality in Hilbert spaces

yields that

X
n�Z

Z �

��
d�

�

������
�X

a�b��

tab �� j�k�n
a ���k�n

b j��
������ � k�k k�k 


This bound shows that the integral and series in 	����
 converge in norm� and that � need
not be an eigenvector of i	�� We �nally apply the unitary operator exp	�itH
 on both
sides of 	����
 to obtain 	����
�

Notice that the coe cients tab given by 	����
 are bounded�

jtabj � �

�
for j�j � m� 	����


In the asymptotic region u � ��� 	����
 goes over to a Fourier representation in terms
of the plane�wave solution 	���
� A careful analysis of this limiting case gives additional
information on the coe cients tab� namely

t�� �
�

�
� t�� for j�j � m� 	����


However� the non�diagonal elements t�� and t�� remain undetermined� We shall not derive
the relations 	����
 here� and will not use them in what follows�

� The Long�Time Dynamics

Using the integral representation for the propagator of the previous section� we can now
prove our main result�

��



Proof of Theorem 
�
	 Let � � �� Since the series in 	����
 converge in norm� we can
choose k� and n� such that

k�	t
��k��n�	t
k � � � 	���


where

�k��n�	t� x
 �
�

�

k�X
k��k�

n�X
n��n�

Z �

��
d� e�i�t

�X
a�b��

tk�nab �k�n
a 	x
��k�n

b j�� 
 	���


Consider the integrand in 	���
 for �xed k and n�

�X
a�b��

tk�nab �k�n
a 	x
��k�n

b j�� 
 	���


From 	����
 and the estimates of Lemma ���� one sees that 	���
 is bounded� locally
uniformly in x and �� Thus the norm convergence established in Theorem ��� implies that
	���
 is in L�	IR� IC�
 as a function of �� with an L��bound locally uniform in x� Hence its
Fourier transform is L� in t� locally uniformly in x� Furthermore� the Riemann�Lebesgue
lemma ��� yields that its Fourier transform tends to zero as t��� pointwise in x� Since
	���
 involves only �nitely many terms� we conclude that �n��k�	t� x
 is L

� in t locally
uniformly in x� and limt���n��k�	t� x
 � � for all x�
Choose K��R as in the statement of the theorem� Since the scalar product in 	���


induces a norm equivalent to that in 	���
� there is a constant c � � such thatZ
K��R

	����
	t� x
 d� � c��� 
 �c� k�k 

Z
K��R

	�k��n��
��k��n�
	t� x
 d� 


We showed above that the integrand in the last integral is uniformly bounded and tends
to zero pointwise as t��� Thus the integral converges to zero according to Lebesgue�s
dominated convergence theorem�

The integral representation of Theorem ��� can also be used to obtain the rates of
decay in t� As a simple example� we have the following result�

Theorem ��� Consider the Cauchy problem

	i�jDj �m
 �	t� x
 � � � �	�� x
 � ��	x
 


Suppose that

�i	 The initial data is C� with at least quadratic decay at in
nity and near the horizon�
i�e�

sup
u�IR

u� j��j � � 


�ii	 The angular momentum is bounded in the sense that �� has contributions only for k
and n in the 
nite range jkj � k� and jnj � n��

�iii	 �� has energy strictly larger than m� i�e� in the spectral decomposition

� �

Z �

��
dE� �

�with dE� as in ���
��� the measure has support in 	m��
�

��



Then for all x� �	t� x
 has rapid decay in t�

Proof	 It follows by approximation that Theorem ��� holds more generally for � satisfying
condition �i	� According to �ii	 and by linearity� we can furthermore restrict attention to
�xed angular momentum k � k� and n � n�� Choose �� � �� For u su ciently large�
u � u�� the di�erential equation 	����
 in Lemma ��� has smooth coe cients� On the
other hand for u � u�� the ODE 	����
 in Lemma ��� has smooth coe cients� In both
cases� the coe cients depend smoothly on � for � in a neighborhood of ��� Hence the
fundamental solutions �k��n�

a 	x
 and the transmission coe cients fk��n� depend smoothly
on � � 	m��
� From 	����
� also the coe cients tab are smooth in � � 	m��
� According
to Theorem ��� and conditions �ii	 and �iii	� there is � � � such that

�	t� x
 �
�

�

Z �

m�

d� e�i�t

�
� �X
a�b��

tab �
k��n�
a 	x
��k��n�

b j��


� 
 	���


Using the above regularity of �k��n� and tab as well as the smoothness of ��� the square
bracket in 	���
 is a smooth function in �� and thus its Fourier transform has rapid decay�

We conclude by remarking that the case of initial data with contributions for � near m is
more delicate because the transformation B	u
 in 	����
 blows up for � � m� This case
will be considered in a forthcoming paper�

A Nondegeneracy and Regularity of the Angular Eigen�

functions

In this appendix� we shall consider the angular equations 	���
�	���
� As explained in ���
Appendix A�� it is useful to write 	���
 as an eigenvalue equation in ��

A Y � � Y with A �

�
�am cos� L�
�L� am cos�

�

 	A��


Proposition A�� For given k and � � �	A
� there is at most one eigensolution of �A�
��
which we denote by Y k� i�e�

A Y k � � Y k 
 	A��


By continuously varying the parameter �� the eigenvalue equation �A��� can be extended
to all values of � � IR� Both � and Y k depend smoothly on ��

Proof	 The two fundamental solutions of 	A��
 behave near � � � like

Y k � 	�k 
 o	�k
� o	�k

 and Y k � 	o	��k��
� ��k�� 
 o	��k��

 �

respectively� Depending on whether k is � � or negative� the second or �rst fundamental
solution diverges in the limit �� �� In ��� Appendix A� it was shown that the eigenfunc�
tions Y k are bounded on S� and smooth except at the poles� Thus we can rule out one of
the fundamental solutions and conclude that 	A��
 has at most one solution�
Note that the solutions of 	A��
 are the eigenvectors of A restricted to the eigenspace

of the operator i	� with eigenvalue k� which we denote by Hk� Since the terms involv�
ing � in 	A��
 are a relatively compact perturbation� standard perturbation theory ���

��



yields that the spectrum of AjHk depends continuously on �� As no degeneracies occur�
each eigenvalue � gives rise to a unique continuous family of eigenvalues �	�
� Standard
perturbation theory without degeneracies ��� then yields that �	�
 and the corresponding
eigenvector Y k	�
 depend smoothly on ��
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