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Abstract

We study an in�nite horizon optimal control problem for a system with

two state variables� One of them has the evolution governed by a controlled

ordinary di�erential equation and the other one is related to the latter by a

hysteresis relation� represented here by either a play operator or a Prandtl�

Ishlinskii operator� By dynamic programming� we derive the corresponding

�discontinuous� �rst order Hamilton�Jacobi equation� which in the �rst case is

of �nite dimension and in the second case is of in�nite dimension� In both cases
we prove that the value function is the only bounded uniformly continuous

viscosity solution of the equation�

� Introduction�

Hysteresis is a common feature of several physical and natural phenomena� It may
occur in any input�output relationship between time�dependent quantities� More
precisely� we say that an input�output relationship presents hysteresis if� �memory�
the value of the output at time t does not only depend on the value of the input at
the same instant� but also on the whole past history of the input� �rate�independence�
the value of the output at time t does not depend on the �velocity	 of the input but
it depends only on the sequence of values reached by the input during its history�

The probably most known example of hysteresis is the one occurring in ferro�
magnetism� the relationship between magnetic 
eld and magnetization of a ferro�
magnetic material� Other important examples are in elastoplasticity �stress�strain��

ltration through porous media �pressure�saturation�� phase transitions �tempera�
ture�phase� and also in superconductivity� mechanical damage� shape memory alloys
and behavior of thermostats� In biology� hysteresis may occur for instance in the re�
lationship between the concentration of nutrients and the activity of bacteria� in
economics between pro
t and investment�
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One way to represent hysteresis e�ects is the use of the so�called hysteresis
operators� namely suitable �nonlinear� functionals between spaces of time�dependent
functions� We shall restrict ourselves to scalar hysteresis� that is the case where both
input and output are scalar time�dependent functions� We give a rather general
de
nition� Let B be a Banach space� 
�� T � be a time�interval� A functional

F � C��
�� T ��� B � C��
�� T ��� �u� �� �� F 
u� ��

is said to be a hysteresis operator if� �causality� for all � � B� u� v � C��
�� T ���
t � 
�� T � we have that u � v in 
�� t� � F 
u� ���t� � F 
v� ���t�� �rate�independence�
for all continuous and nondecreasing � � 
�� T � � 
�� T �� � � B� u � C��
�� T �� we
have that F 
u��� �� � F 
u� ����� The elements of the Banach space B represent the
initial states of the system� To know the value of the output at certain time� we need
to know the previous evolution of the input and the initial values of some �possibly
in
nite� internal variables� If the internal variables coincide with the value of the
output itself then we have B � IR� But there are many cases� where the system
evolves other internal variables which are not recognizable by the only observation
of the output� Only the knowledge of such internal variables �together with the
evolution of the input� gives the knowledge of the evolution of the output�

Now� we describe the control problem� We consider the following controlled
dynamical system

�
y��t� � f�y�t�� w�t�� ��t�� w�t� � F 
y� ����t� t � ��
y��� � y�

�����

where �y�� ��� � O � IR � B is the initial state� � � 
����
� A is the measurable
control� y� w � IR� F is a hysteresis operator� f � IR � IR � A � IR �note that the
controlled dynamic �sees	 only the �external state	 w� but the true state of the
system is the couple �y� �� � IR � B� moreover we can �directly control	 only the
evolution of the state variable y� the other one depending with hysteresis�� We then
consider the problem of minimizing a cost functional of Bolza type

J�y�� ��� �� ��
Z ��

�
e��tl�y�t�� w�t�� ��t��dt�

with � � � and l � IR� IR� A� IR� We de
ne the value function

V �y�� ��� � inf
�
J�y�� ��� �� �y�� ��� � O�

and want to apply the dynamic programming method in order to derive and to
study the �possibly in
nite dimensional� corresponding Hamilton�Jacobi equation�
We in particular analyze two cases� when the hysteresis operator is a Play operator
and when it is a Prandtl�Ishlinskii operator� Both operators are useful for describing
several hysteresis relationship� especially in elastoplasticity�

In the 
rst case� the operator is of the so�called local memory type� that is
without internal variables� Its behavior is described in the Subsection ��� �see Fig�
��� The set of initial states O in ����� is the closure of the strip of the �y� w��plane
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�� ��
n
�y� w� � IR�jy 	 � � w � y � �

o
�

for some � � �� We show that the output is solution of a discontinuous ordinary
di�erential equation in ��� with the discontinuity occurring on the boundary� This
leads to the discontinuous Hamilton�Jacobi equation

�V �H�y� w� Vy� Vw� � � in ��

with H given by

H�y� w� p�� p�� �� sup
a�A

n
	 p�f�y� w� a�

	p�
�
��r�y� w�f�y� w� a�

�	 ��l�y� w�f�y� w� a�
�
�
	 l�y� w� a�

o
	

where ��r �respectively ��l� is the characteristic function of the straight linew � y	�
�respectively w � y���� and �
�� �respectively �
��� means the positive �respectively
negative� part� By particular properties of the Play operator� we can prove that V
is a viscosity subsolution of �V �H � � and a supersolution of �V �H� � �� where
H� is the upper semicontinuous envelope of H� This of course is coherent with the
de
nition of viscosity solution for discontinuous Hamiltonians �see Ishii 
����� By
the particular form of H� we immediately get that V is a viscosity solution of a
boundary value problem of Neumann�type in ��� Note that H is continuous in ���
For this problem we have of course the uniqueness of the solution� The problem here
studied can be contained in the case of optimal control for the so�called Skorokhod
problem �or re�ecting boundary problem�� see Lions�Sznitman 
���� Lions 
��� and
Ishii�Dupuis 
��� �see also Ishii 
����� However� here we use the formulation of the
dynamic as a discontinuous ordinary di�erential equation� which is useful for study�
ing the other case when the hysteresis relationship is given by the Prandtl�Ishlinskii
operator� Moreover� in the above quoted works on the Skorokhod problem� the au�
thors never mention hysteresis� they are more concerned with the problem of the
re�ection of a trajectory inside a domain�

In the second case� the operator is of the so�called nonlocal memory type� That
is� there are internal variables� The operator consists of a superposition of weighted
di�erent Plays� each of them labeled by � � R ������
� Let 
 be a measure on R
and� for every �� let F� be the corresponding Play� The Prandtl�Ishlinskii operator
can be de
ned as

F � C��
�� T ��� L��R� 
�� C��
�� T �� F 
u� ���t� �
Z
R
F�
u� ������t�d
	

The internal state � � L��R� 
� is the function which maps � to the initial state of
the corresponding Play� The set of the initial states for the system ����� is

O ��
n
�y� �� � IR� L��R� 
�

����y� ����� � �� 
	 a�e� � � R
o
	

�



We use again the representation of the output of the Play as solution of a discontin�
uous ordinary di�erential equation� We get a Hamilton�Jacobi equation in O with
Hamiltonian H on O � IR� L��R� 
� given by

H�y� �� p� �� �� supa�A
n
	 f�y� w� a�p

	
Z
R

h
����

�
��r�y� �����f�y� w� a�

�	 ��l�y� �����f�y� w� a�
�
�i
d


	l�y� w� a�
o
	

where w �
R
R �d
� Of course� the previous Hamiltonian is discontinuous in O� and

hence the de
nition of solution is given by two suitable envelopes of H� Note that
O has no interior in IR � L��R� 
�� however it is an invariant set for the evolution
given by ����� �more precisely for the evolution of y and of the internal variables��
Also in this case we can have a �boundary formulation	 of Neumann�type� where
the �boundary	 is the following subset of O

O� ��
n
�y� �� � R

���
 �f� � R� jy 	 ����j � �g� � �
o
	

Note that if �y� �� 
� O�� then the Hamiltonian is the following continuous and �
nite
dimensional	 one

H�y� �� p� �� �� sup
a�A

n
	 f�y� w� a�p	 l�y� w� a�

o
	

Observe that O has nonempty interior in IR�L��R� 
� only if infR � �� and in that
case O� is strictly contained in the boundary of O in IR�L��R� 
�� Due to the fact
that we are working in IR�L��R� 
� �that is because it is a re�exive space and hence�
as usual� suitable for comparison viscosity techniques�� the �boundary formulation	
is not completely satisfactory since we are not able to force extremal points of
suitable functions to be out of O� or at least to force the continuous equation to
hold� Hence� the discontinuous term in the Hamiltonian �i�e� the term containing the
integration with respect to 
� may always be di�erent from zero� However� taking a
suitably small penalization term �which� as in standard techniques� should be taken
for applying a suitable variational principle�� we can make the absolute value of the
discontinuous term to be arbitrarily small� We can then prove that V is the unique
bounded uniformly continuous viscosity solution in O of the discontinuous equation

�V �y� �� �H�y� �� Vy�y� ��� D�V �y� ��� � ��

where Vy is the derivative of V with respect to y and D�V is the Fr�echet di�erential
of V with respect to ��

The results of the paper apply with obvious modi
cation to several other situ�
ations� we can replace in both cases the Play with either the Stop or the generalized
play or generalized stop �see for instance Visintin 
��� for de
nitions��

An optimal control problem for ordinary di�erential equation with hysteresis�
very similar to the present one� was studied by Brokate in 
��� In that work� the au�
thor is concerned in necessary conditions for optimality and he does not apply the
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dynamical programming technique� Other optimal control problems� with functional
dependence in the dynamic� were studied with dynamic programming approach by
Soner 
��� and Wolenski 
��� for the so�called hereditary problem �or delayed prob�
lem�� However� it seems that this is the 
rst time that the dynamic programming
method and the viscosity solution theory are applied to an optimal control problem
with hysteresis functional dependence�

We recall that the 
rst studies on mathematical aspects of hysteresis� and in
particular on the concept of hysteresis operator� are due to Krasnoselskii and his
co�workers �see the monograph Krasnoselskii�Pokrovskii 
����� Other books on the
mathematical aspects of hysteresis and applications are Mayergoyz 
���� Visintin

���� Brokate�Sprekels 
��� Krejci 
����

The theory of viscosity solutions for Hamilton�Jacobi equations goes back to
the works of Lions 
��� and Crandall�Lions 
�� �see also Crandall�Evans�Lions 
����
In particular for the Neumann problem and for the de
nition of viscosity solutions
for discontinuous equations we refer to Lions 
���� Ishii 
��� and Barles�Lions 
���
For the theory in in
nite dimension we refer to the work �
rst of a series� Crandall�
Lions 
��� For a comprehensive account of the theory �in 
nite dimension� and its
application to optimal control problems� we refer to the books Barles 
��� Capuzzo
Dolcetta�Lions �eds�� 
�� and Bardi�Capuzzo Dolcetta 
���

The plan of the paper is as follows� In Section � we give the notion of hysteresis
operator and introduce the Play and Prandtl�Ishlinskii operators with their main
properties� In Section � we state the optimal control problem in the general setting
of hysteresis operator� In Sections � and � we respectively study the problem with
the Play and the Prandtl�Ishlinskii operators� In Section � we give some remarks
and extensions to the case of some other hysteresis operators�

� Hysteresis operators� two examples�

In this section we give the basic notions of hysteresis operators and two examples
of such operators with their properties� which we shall use in the next sections� We

rst argue in a general framework� Let 
�� T � be a time interval and B a Banach
space�
De�nition ���� An operator

F � D � C��
�� T ��� B � C��
�� T �� �u� �� �� F 
u� ���
�

is said to be a hysteresis operator if the following two properties are satis
ed
a� �causality� ��u� ��� �v� �� � D� �t � 
�� T �

uj���t� � vj���t� � F 
u� ���t� � F 
v� ���t�� �����

b� �rate independence� ��u� �� � D� � continuous nondecreasing � � 
�� T �� 
�� T �

�u � �� �� � D� F 
u � �� �� � F 
u� �� � �	 �����

�
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ρ

Figure �� Play operator of hysteresis�

Moreover we suppose that the following further properties are satis
ed
c� �Lipschitz continuity� there exists L � � such that ��u� ��� �v� �� � D

kF 
u� ��	 F 
v� ��kC�����T �� � L
�
ku	 vkC�����T �� � k� 	 �kB

�
� �����

d� �semigroup property� there exists another operator � � D � C��
�� T �� B�
such that ��u� �� � D� �t� 
 � 
�� T �� t � 
 � T � setting ��t� �� �
u� ���t� we have

F 
u� ���t� 
� � F 
u�t� 
�� ��t���
� �����

The operator � represents the evolution of the internal variable � � B�

��� The Play operator�

For � � � we de
ne the open set

�� ��
n
�u� w� � IR�

���u	 � � w � u� �
o
	

We take B � IR and D � f�u� w�� � C��
�� T �� � IRj�u���� w�� � ��g� The behav�
ior of the Play operator w�
� �� F 
u� w���
�� with its typical hysteresis loops� can
be described by Fig� �� For instance� supposing that u is piecewise monotone� if
�u�t�� w�t�� � �� then w is constant in a neighborhood of t� if w�t� � u�t� 	 � and
u is non increasing in 
t� t � 
 � �with small 
� then w stays constant in 
t� t � 
 �� if
w�t� � u�t� 	 � and u is nondecreasing in 
t� t � 
 � then w � u 	 � in 
t� t � 
 �� a
similar argumentation holds if w�t� � u�t� � �� Moreover we have w��� � w��

Let I������ be the indicator function of 
	�� �� �i�e� � in 
	�� �� and �� other�
wise�� and �I������ its subdi�erential�

Theorem ��� The output w � F 
u� w�� of the Play operator F with input u �
W ������ T � and initial state w� is the unique solution w � W ������ T � of the following
di�erential inclusion

�



�
�w�t� � �I������

�
u�t�	 w�t�

�
a�e� t � ��� T ��

w��� � w�	

Moreover� F can be uniquely extended to a continuous operator from C��
�� T ��� IR
to C��
�� T �� which is a Lipschitz hysteresis operator with Lipschitz constant equal
to � and which satis�es the semigroup property ����� �with B � IR and � � F��

Theorem ��� For any p � 
����
� the Play operator is strongly continuous from
W ��p��� T �� IR to W ��p��� T �� Moreover� the following equality holds

� �w�t��� � �u�t� �w�t� a�e� t � ��� T �	 �����

For the proofs of the previous two theorems see Visintin 
��� and Krejci 
����
Now� we prove a useful property of the output for regular input� Let us call ��l

and ��r respectively the straight lines in the �u� w�	plane of equations w � u � ��
w � u	� �l stays for �left	 and r for �right	�� Moreover� for i � fl� rg� let us denote
by ��i�u� w� the characteristic function of ��i �i�e� � on ��i and � outside�� Finally�
for a � IR we denote its positive part by a� �� max�a� �� and its negative part by
a� �� max�	a� ���

Proposition ��� For every u � H���� T � and for every admissible initial state w� �
IR �i�e� �u� w�� � D�� the output w satis�es the following discontinuous di�erential
equation

�w�t� � ��r
�
u�t�� w�t�

�
� �u�t��� 	 ��l

�
u�t�� w�t�

�
� �u�t��� a	e	 t � ��� T �	 �����

Proof� First of all� let us note that from ������ the following easily follows

j �w�t�j � j �u�t�j a�e� t � ��� T �	 �����

Let t � ��� T � be such that �u�t� and �w�t� exist� Let us 
rst suppose that
ju�t�	 w�t�j � �� Then� for � � � su�ciently small we have

jhj � � � ju�t� h�	 w�t� h�j � �� w�t� h� � w�t��

and hence �w�t� � � which satis
es ������ Now� let us suppose that w�t� � u�t�	 �
�the case w�t� � u�t� � � can be similarly treated�� We claim that

�u�t� � �	 �����

Indeed� if it is not the case� for some � � � the following holds

� � h � � � u�t	 h� � u�t�	

�



By the shape of �� �see Fig� ��� this implies that w�t	h� � w�t�� which is impossible
because if � is small� w cannot decrease in a time interval of length � in order to
reach the value w�t� at time t �w can decrease only if �u� w� � ��l�� Now� let us note
that the following inequality holds

�w�t� � lim
h��

w�t� h�	 w�t�

h
� lim

h��

u�t� h�	 �	 u�t� � �

h
� �u�t�	 �����

By ������ using ����� and ������ we get

�w�t� � �u�t� � � �u�t����

which is ������ ut
The Play operator is a so�called local memory operator� that is the internal

variables coincide with the external one� namely the value of the output�

��� The Prandtl�Ishlinskii operator of play�type�

This is an important example of operator with nonlocal memory� the value of the
output is not completely determined by the initial value of the output and by the
evolution of the input� We need the knowledge of some internal variables� namely
the elements of a �Banach� space B di�erent from IR�

The characteristic feature of the Play� when constructed as in the previous
section� is the length of the symmetric interval 
	�� ��� that is the positive number
�� Plays corresponding to di�erent � give di�erent outputs for the same input� An
interesting case for applications is when the output is the �result	 of a �possibly
in
nite� number of weighted Plays working in parallel�

Let R be a bounded set of �����
 and 
 be a 
nite Borel measure on R�
For every � � R� as in the previous subsection� we consider the set �� and the
corresponding Play operator� which we call F�� We de
ne the set

D ��
n
�u� �� � C��
�� T ��� L��R� 
�

����u���� ����� � ��� 
�a�e� � � R
o
�

that is we take B � L��R� 
�� We de
ne the Prandtl�Ishlinskii operator F as

F � D � C��
�� T ��� L��R� 
�� C��
�� T �� �u� �� ��
Z
R
F�
u� ������
�d
	

Note that the function � gives the initial state of every Play �labeled by ��� The
evolution of the internal variables �namely the output of every Play� is of course
given by the evolution of every single Play� That is� at any instant t we have a
function

�
u� ���t� � R � IR� � �� ��
u� ���t� �� F�
u� ������t�� ������

with of course �
u� ����� � ��

�



Theorem ��� The Prandtl�Ishlinskii operator is a Lipschitz continuous hysteresis
operator from C��
�� T ���L��R� 
� to C��
�� T �� and satis�es the semigroup property
����� �with � de�ned in ���	
���

Proof� The proof is essentially given in Visintin 
���� Here� we only point out
that �
u� ���t� de
ned in ������ belongs to L��R� 
� for every t� Indeed� for almost
every �� the corresponding Play continuously evolves from ���� �uniformly with
respect to � and to ������ this guarantees the measurability� Moreover� since R
is bounded� by the de
nition of ��� we have that �
u� ���t� is bounded �u�t�	 � �
��
u� ���t� � u�t����� The Lipschitz continuity follows from the Lipschitz continuity
�uniformly with respect to �� of every Play �see Theorem ����� ut

Let us call w the output of F and w� the output of F��

Theorem ��� Let p � 
����
� then F is strongly continuous from W ��p��� T � �
L��R� 
� to W ��p��� T �� Moreover� we have

�w�t� �
Z
R

�w��t�d
 a�e� t � ��� T �� ������

if u � W ��p��� T �� then the functions w����
� and �w����
� �which map respectively �t� ��
to w��t� � F�
u� ������t� and to �w��t� � �d�dt� �F�
u� ������t��� satisfy

w����
� � W ��p��� T �L��R� 
���
d

dt
w����
� � �w����
�	 ������

Proof� The proof of the continuity can be found for instance in Brokate�Sprekels

��� Let us prove ������� Indeed w����
� and �w����
� are measurable and belong to
Lp��� T �L��R� 
�� �since jw��t�j � ju�t�j � � and j �w��t�j � j �u�t�j�� For every � �
C�
c �
�� T ��L

��R� 
�� we have

Z T

�

Z
R
w��t� ���t� ��d
dt � 	

Z T

�

Z
R

�w��t���t� ��d
dt	

The latter equality� when � is independent on �� also proves ������� ut

� The control problem in a general setting�

In this section� we formulate the optimal control problem and give basic results for
the case of a general hysteresis operator� leaving next sections to focus on particular
examples of operators and to investigate more deeply the application of dynamic
programming�

We consider the following dynamical system

�
y��t� � f�y�t�� w�t�� ��t�� w�t� � F 
y� ����t� t � ��
y��� � y��

�����

�



where �y�� ��� � O � IR � B� with B Banach space� for every T � �� the hysteresis
operator �see De
nition ����

F � D � C��
�� T ���B � C��
�� T ��

satis
es

Lipschitz continuity ������ semigroup property ������
strong continuity from H���� T ��B to H���� T ��

�����

The set of initial sates O can be seen as the subset of D given by the couples
�u� �� with u constant function �of course the output of F for every element of O is
constant�� � � 
����
� A is a measurable control taking value in the compact set
A � IRq for some q � IN � The function

f � IR� IR� A� IR� �y� w� a� �� f�y� w� a��

is continuous� bounded and Lipschitz continuous with respect to �y� w� uniformly in
a� that is

�L � � such that �a � A ��y�� w��� �y�� w�� � IR� IR
jf�y�� w�� a�	 f�y�� w�� a�j � Lj�y�� w��	 �y�� w��j
�M � � such that jf�y� w� a�j �M ��y� w� a� � IR� IR� A	

�����

Note that the �external state	 of the system ����� is �y� w�� but the �true	 state is
the couple �y� �� where � is the evolution of the internal variables�

Let us de
ne the set of measurable controls

A ��
n
� � 
����
� A

���� is measurable
o
�

and for every � � A let us denote the unique solution of ����� �see Proposition ���
below� as �y�y������
���� w�y������
�����

Now let us consider a function

l � IR� IR� A� 
����
� �y� w� a� �� l�y� w� a��

which is continuous� bounded and uniformly continuous with respect to �y� w� uni�
formly in a� that is

�� � 
����
� 
����
 increasing� continuous� ���� � ��
�a � A ��y�� w��� �y�� w�� � IR� IR
jl�y�� w�� a�	 l�y�� w�� a�j � ��j�y�� w��	 �y�� w��j�
�M � � such that jl�y� w� a�j �M ��y� w� a� � IR� IR� A	

�����

Given � � �� for every initial state �y�� ��� � O� we want to minimize the
following cost functional over the controls � � A

J�y�� ��� �� ��
Z ��

�
e��tl

�
y�y������t���� w�y������t���� ��t�

�
dt�

��



and hence we de
ne the value function

V �y�� ��� �� inf
��A

J�y�� ��� �� �����

Proposition ��� Let us suppose that ������ ����� hold� Then� for every initial state
�y�� ��� � O and for every control � � A� there exists a unique solution of the system
���	� �y�y������
���� w�y������
� ��� � such that y�y������
��� � H���� T � for every T � ��
This of course implies that w�y������
��� � H���� T � for every T � �� Moreover� for
every T � �� there exists a modulus of continuity �T �i�e� an increasing continuous
function with �T ��� � �� such that for all initial states �y�� ���� �y�� ��� � O and for
every t � 
�� T � the following inequality holds

���y�y������t���	 y�y������t���
���� jw�y������t���	 w�y������t���j

� �T �maxfjy� 	 y�j� k�� 	 ��kBg�
�����

Proof� Existence is proven by a standard delayed approximation� Indeed� re�
garding y� as a constant function� we de
ne the constant w� �� F 
y�� ���� Then� in
every subinterval of a partition of 
�� T �� we solve the problem with a known w equal
to the output of F when the input is the solution y in the previous interval �with
suitable initial state�� In the 
rst interval we take w � w�� We pass to the limit
as the length of the partition goes to zero and we obtain a function y� such that�
together with its corresponding output w�

y�t� � y� �
Z t

�
f�y�s�� w�s�� ��s��ds �t � 
�� T ��

which is the integral version of ������
Now we prove ������ from which the uniqueness easily follows� In the following

we shall write yi�
� �� y�yi��i��
� ��� wi�
� �� w�yi��i��
� ��� for i � �� �� as well as y�i �
��i for the initial states� We shall use the Lipschitz continuity of f and F � All the
involved Lipschitz constants are denoted by L� For t � 
�� T �� we have

jy��t�	 y��t�j

� jy�� 	 y��j� L�� � L�
Z t

�
ky� 	 y�kC������ ��d
 � L�Tk��� 	 ���kB	

�����

The right�hand side of ����� is increasing in t� Hence� in the left�hand side� we can
replace t by any other 
 � 
�� t�� We obtain

ky� 	 y�kC�����t��

� jy�� 	 y��j� L�� � L�
Z t

�
ky� 	 y�kC������ ��d
 � L�Tk��� 	 ���kB	

Hence� by the Gronwall inequality applied to t �� ky� 	 y�kC�����t��� we get

ky� 	 y�kC�����t�� �
�
jy�� 	 y��j� L�Tk��� 	 ���kB

�
eL���L�t �����

��



and� by the Lipschitz continuity of F

kw� 	 w�kC�����t�� � Ljy�� 	 y��je
L���L�t � L

�
� � L�TeL���L�t

�
k��� 	 ���kB	 �����

From ����� ������ it is easy to 
nd �T such that ����� holds� ut

Theorem ��� Let us suppose that ����������� hold� Then the value function ���
�
is bounded and uniformly continuous in O�

Proof� The value function V is bounded by ����� and its de
nition�
The uniform continuity follows from ������ by standard techniques �see for

instance Bardi�Capuzzo Dolcetta 
���� ut
Now� we suppose that the set O � IR�B of admissible initial states for ����� is

an invariant set for the trajectories in IR�B of the system� That is� considering the
evolution functional � for the internal variables� which is de
ned in the semigroup
property ������ for every t � 
����
 and � � A the following holds

�y� �� � O �
�
y�y����t� ����
y�y����
� ��� ���t�

�
� O	 ������

The cases that will be studied in the next sections� satisfy such property�

Theorem ��� �DPP� Dynamic programming principle� Let us suppose that ���	
�
holds� Then� for every �y� �� � O and for every t � 
����


V �y� �� � inf
��A

�Z t

�
e��sl�y�y����s���� w�y����s���� ��s��ds

�e��tV �y�y����t�����
y�y����
���� ���t��
o
	

Proof� It follows in a standard way by the semigroup property ����� and the
uniqueness of the solution of ������ ut

� The case of Play�

In this section we suppose that the hysteresis operator F in the control problem is
the Play operator� with � � �� described in Section �� We recall that B � IR and
the internal variables coincide with the external one� namely the output w itself� We
have

�� ��
n
�y� w� � IR�

���y 	 � � w � y � �
o
�

�see Fig� �� with u replaced by y�� From the de
nition of the Play� it is easy to see
that �� is an invariant set for the controlled system� For more clarity� we give the
formulation of DPP in this particular case� For any �y� w� � �� and for any t � ��
we have

��



V �y� w� � inf
��A

�Z t

�
e��sl�y�y�w��s���� w�y�w��s���� ��s��ds

�e��tV �y�y�w��t���� w�y�w��t����
o
	

�����

For every �y� w� � ��� �p�� p�� � IR�� we de
ne the following Hamiltonian

H�y� w� p�� p�� �� sup
a�A

n
	 p�f�y� w� a�

	p�
�
��r�y� w�f�y� w� a�

�	 ��l�y� w�f�y� w� a�
�
�
	 l�y� w� a�

o
	

�����

Let us note that H is discontinuous in ���IR
�� We consider the following Hamilton�

Jacobi equation

�u�y� w� �H�y� w� uy� uw� � � in ��� �����

where uy �respectively uw� is the derivative with respect to y �respectively w��
We denote the lower semicontinuous and upper semicontinuous envelopes of H

in �� respectively by H� and H��

Theorem ��� Let ������ ����� hold �note that the Play operator satis�es �������
Then the value function V is a uniformly continuous and bounded viscosity solution
in �� of the Hamilton�Jacobi equation ������ That is� for every � � C����� such
that �y� w� � �� is a local extremal point for V 	 �� the following holds

�subsolution� if �y� w� is a maximum� then
�u�y� w� �H��y� w� �y�y� w�� �w�y� w�� � ��

�����

�supersolution� if �y� w� is a minimum� then
�u�y� w� �H��y� w� �y�y� w�� �w�y� w�� � �	

�����

Proof� The uniformly continuity and the boundedness come from the results of
Section ��

A simple calculation shows that

H��y� w� p�� p�� � sup
a�A

n
	 p�f�y� w� a�

�p�� ��r�y� w�f�y� w� a�
� � p�� ��l�y� w�f�y� w� a�

�	 l�y� w� a�
o
�

�����

To prove that V is subsolution� we prove that ����� is satis
ed even replacingH�

by H itself �and thus ����� a fortiori holds�� Take � � C����� and �y� w� � �� such
that V 	 � has a local maximum in �y� w� with respect to ��� Let us take a � A
and consider the corresponding trajectory �y�
� a�� w�
� a�� starting from �y� w�� If
f�y� w� a� � �� then the trajectory is the stationary one and hence it is su�cient
to observe that �V �y� w� � l�y� w� a� by de
nition of V � On the other hand� if

��



f�y� w� a� � � �respectively f�y� w� a� � ��� then for su�ciently small t� y is strictly
monotone in 
�� t� and hence we can suppose that ����� holds everywhere in 
�� t�� In
particular �suppose for instance that f�y� w� a� � �� we have

�w�
 � a� � ��r
�
y�
 � a�� w�
 � a�

�
f
�
y�
 � a�� w�
 � a�� a

��
�
 � 
�� t�� �����

where either ��r�y�
 � a�� w�
 � a�� � � or ��r�y�
 � a�� w�
 � a�� � � for every 
 � 
�� t�
and hence the right�hand side of ����� is continuous� Using the continuity of V �
DPP ����� and the continuity of the Play operator� by standard techniques �see for
instance Bardi�Capuzzo Dolcetta 
��� we then obtain

�V �y� w�	 �y�y� w�f�y� w� a�

	�w�y� w�
�
��r�y� w�f�y� w� a�

�	 ��l�y� w�f�y� w� a�
�
�
	 l�y� w� a� � ��

and then we conclude�
Let us prove that V is a supersolution of ������ Fix � � C����� and let �y� w� �

�� be of minimum for V 	 �� Using again DPP ������ for every � � � and for every
t � � su�ciently small� we 
nd � � A �depending on � and t�� such that� denoting
the corresponding trajectory by �y�
�� w�
���

V
�
y�t�� w�t�

�
	
Z t

�
e��sl

�
y�s�� w�s�� ��s�

�
ds

	e��tV
�
y�t�� w�t�

�
� �t � �

�
y�t�� w�t�

�
	 ��y� w�	

�����

Let us note that

�
�
y�t�� w�t�

�
	 ��y� w� �

Z t

�

d

ds
�
�
y�s�� w�s�

�
ds

�
Z t

�

h
�y

�
y�s�� w�s�

�
f
�
y�s�� w�s�� ��s�

�
��w

�
y�s�� w�s�

��
��r�y�s�� w�s��f�y�s�� w�s�� ��s��

�

	��l�y�s�� w�s��f�y�s�� w�s�� ��s��
�
�i
ds	

�����

If ��r�y� w� � � �respectively ��l�y� w� � ��� then for small s� ��r�y�s�� w�s�� � �
�respectively ��l�y�s�� w�s�� � ��� Then for small s we have the following estimates

�w�y� w���r
�
y�s�� w�s�

�
f
�
y� w� ��s�

��
� 	�w�y� w�

���r�y� w�f
�
y� w� ��s�

��
�

	�w�y� w���l
�
y�s�� w�s�

�
f
�
y� w� ��s�

��
� 	�w�y� w�

���l�y� w�f
�
y� w� ��s�

��
	

������

We approximate f�y�s�� w�s�� ��s��� l�y�s�� w�s�� ��s�� and r��y�s�� w�s�� respec�
tively by f�y� w� ��s��� l�y� w� ��s�� andr��y� w�� with an error which is in
nitesimal
as s goes to zero� independently on � �and of course on � and t�� This can be done

��



by the uniform continuity of f and l and the regularity of �� Hence� by ����� �������
noting that the coe�cient of �w in the integral in ����� is uniformly bounded and
adding and subtracting �

R t
� l�y� w� ��s��ds we obtain from �����

Z t

�

h
	 �y�y� w�f

�
y� w� ��s�

�
	 l

�
y� w� ��s�

�
��w�y� w�

���r�y� w�f
�
y� w� ��s�

��
��w�y� w�

���l�y� w�f
�
y� w� ��s�

��i
ds� V

�
y�s�� w�s�

�
��	 e��t�

� 	�t � o�t��

������

where o�t� indicates a function g�t� such that t��g�t�� � as t� �� From ������� we
obtain the conclusion �see for instance Bardi�Capuzzo Dolcetta 
���� ut

It is evident that V is a viscosity solution of the continuous Hamilton�Jacobi
equation

�V �y� w� �H�y� w� Vy� �� � � in ��	 ������

On the other hand� on ���� if ������ is not satis
ed in the viscosity sense� then the
�discontinuous part	 of ����� �i�e� the part involving the derivatives with respect to
w� has to play a role� This means that the derivative of V with respect to w �i�e�
the derivative of the test function�� should be not zero and have a suitable sign� in
order to obtain the right sign for the Hamiltonian ����� or ������ Hence� if we de
ne
the outward vector to ���

���y� w� �

�
���	�� if �y� w� � ��r�
��� �� if �y� w� � ��l�

������

we have the following formulation for our problem

�
�V �y� w� �H�y� w� Vy� �� � � in ���
V���y� w� � � on ����

������

where V�� �� �������V and the boundary condition has to be understood in �a
strict� viscosity sense

�
�V �H�y� w� Vy� �� � �� V���y� w� � � for subsolution�
�V �H�y� w� Vy� �� � �� V���y� w� � � for supersolution	

������

Theorem ��� The value function V is the only bounded continuous viscosity solu�
tion in �� of the Hamilton�Jacobi equation ����� �or equivalently of the Neumann�
type problem ���	������	
���

To prove Theorem ���� we prove uniqueness for the reformulated problem as a
boundary value problem of Neumann�type�

��



Proof of the Theorem ���� The proof is standard� In our case it is easy because
�� is a strip and we have a �strict	 boundary condition �see �������� We give here a
sketch of the proof� which can be useful in the next section� We prove a comparison
result� if u is a subsolution and v is a supersolution then u � v in ���

A simple calculation shows that there exists a strictly elliptic constant matrix
S such that for every �y� w� � ��� we have

���y� w� 
 S
�
�y� w�	 �y�� w��

�
� � ��y�� w�� � ��� ������

where S�y� w� denotes the matrix�vector product� Let g�y� be a C� positive function
on IR with bounded derivative and g�y�� �� as jyj � �� �note that jwj � ��
whenever jyj � ���� For � � � and � � �� we de
ne in �� � ��

�
�
�y�� w��� �y�� w��

�
�� u�y�� w��	 v�y�� w��	 ��g�y�� � g�y���

	
S�y� 	 y�� w� 	 w�� 
 �y� 	 y�� w� 	 w��

��
�

As usual� let us suppose by contradiction that there exists �!y� !w� such that u�!y� !w�	
v�!y� !w� � � � �� Standard techniques show that� for � su�ciently small� there exists

a compact setK � �� such that� for every � � �� �
�
�y��� w

�
��� �y

�
�� w

�
��
�
� K�K point

of maximum for � over ������ and this maximum is strictly positive independently
from �� Using also the strictly ellipticity of S� we have

j�y��� w
�
��	 �y��� w

�
��j

�

��
� � as � � �	

By ������� if �y��� w
�
�� or �y

�
�� w

�
�� belong to ���� we respectively have

���y
�
�� w

�
�� 
 S

�
�y��� w

�
��	 �y��� w

�
��

�

�
� ��

���y
�
�� w

�
�� 
 S

�
�y��� w

�
��	 �y��� w

�
��

�

�
� ��

������

By the de
nition of �� �y��� w
�
�� and �y��� w

�
�� are points of maximum and minimum

for u	�� and v	�� respectively� with �i test functions whose derivatives in �y�i � w
�
i �

with respect to �� are respectively the left�hand side of the 
rst and second row of
������� Hence� we deduce that in the two points the �continuous� Hamilton�Jacobi
equation holds� and we conclude in the standard way� ut

� The case of the Prandtl�Ishlinskii model�

In this section we study the control problem when the hysteresis relationship is given
by a Prandtl�Ishlinskii model of play�type� as in Section �� In this case� the �true	
state of the system is �y� �� � IR � L��R� 
�� where � is the in
nite dimensional
internal variable� We recall that R is of 
nite 
�measure and hence L��R� 
� �

��



Lp�R� 
�� for every p � 
����
� Moreover R is supposed to be bounded� Hence the
following de
nition is independent from p � 
������ we de
ne the set O of the
initial states for the system �����

O ��
n
�y� �� � IR� Lp�R� 
�

����y� ����� � �� 
	 a�e� � � R
o
	

Note that O is nonempty strongly closed and convex in IR � Lp�R� 
� for every
p � 
����� and it has empty interior in IR� Lp�R� 
�� for every p � 
����
� From
the de
nition of the Prandtl�Ishlinskii model� it easily follows that O is an invariant
set for the system ������

We perform our analysis in the Hilbert space IR�L��R� 
�� We use the notation
�and the statement� of Theorem ��� to indicate by t �� w����t� the evolution of the
internal variables� Moreover� for the speci
c evolution given by the solution of the
system ������ we use the notation t �� w����t� y�� ��� ���

Let a � A be a 
xed constant control� then for every �y�� ��� � O� we claim
that� as function of time with value in L��R� 
��

t �� �w����t� y�� ��� a� is continuous in t � �	 �����

To prove the claim� let us de
ne w� � F 
y�� ��� the constant initial output� If
f�y�� w�� a� � � then the conclusion is obvious �all is stationary�� Let us suppose
for instance f�y�� w�� a� � � �the other case being analogous�� Hence the solution
y�
� is strictly increasing in 
�� t� for a small t and thus at t � � the time derivative
of the output of every play exists� By Theorem ��� the time derivative of w����t�
exists too� For every 
 � 
�� t�� we write w����
� in place of w����
 � y�� ��� a� and de
ne
C� �� f� � Rjy�
�	 � � w��
�g �note that C� � f� � Rjy� 	 � � �����g�� We have

Z
R
j �w����
�	 �w������j

�d
 �
Z
C�nC�

j �y�
�j�d


�
Z
C�nC�

j �y���j�d
�
Z
C��C�

j �y�
�	 �y���j�d
	
�����

The right�hand side of ����� tends to zero as 
 � �� Indeed the 
rst integral is
in
nitesimal because the integrand function is bounded and the integration set"s
measure tends to zero by Lemma ��� below �since y�
� and w����
� respectively tend
to y� and �� in IR and L��R� 
��� the second integral is zero because the integration
set is empty �for every play corresponding to �� if y�	� � ����� and y is increasing in

�� 
 �� then y�
�	 � � w��
��� the third integral tends to zero because the integrand
function is in
nitesimal�

In the sequel� as usual� we identify L��R� 
� with its dual� We consider the
following three Hamiltonians de
ned in O � IR � L��R� 
� �here and in the sequel
w ��

R
R �d
�

H�y� �� p� �� �� supa�A
n
	 f�y� w� a�p

	
Z
R

h
����

�
��r�y� �����f�y� w� a�

�	 ��l�y� �����f�y� w� a�
�
�i
d


	l�y� w� a�
o
�

��



H��y� �� p� �� �� supa�A
n
	 f�y� w� a�p

	
Z
R

h�
�������r�y� �����f�y� w� a�

� � �������l�y� �����f�y� w� a�
�
�
�d


	l�y� w� a�
o
�

and

H��y� �� p� �� �� supa�A
n
	 f�y� w� a�p

�
Z
R

h�
�������r�y� �����f�y� w� a�

� � �������l�y� �����f�y� w� a�
�
�
�d


	l�y� w� a�
o
	

For every Fr�echet di�erentiable function � � IR � L��R� 
� � IR� we denote
by �y and D�� respectively its derivative with respect to y � IR and its Fr�echet
di�erential with respect to � � L��R� 
��

Theorem ��� Let ������ ����� hold �note that the Prandtl�Ishlinskii operator sat�
is�es ������� Then the value function V is a uniformly continuous and bounded
viscosity solution in O � IR� L��R� 
� of

�V �y� �� �H�y� �� Vy� D�V � � � �����

That is� for every continuously Fr�echet di�erentiable function � � IR�L��R� 
�� IR
such that V 	� has in �y� �� an extremal point with respect to O� the following holds

�
�V �y� �� �H��y� �� �y�y� ��� D���y� ��� � � if �y� �� maximum�
�V �y� �� �H��y� �� �y�y� ��� D���y� ��� � � if �y� �� minimum	

�����

If V satis�es the �rst �respectively the second� equation of �
���� then it is said a
subsolution �respectively a supersolution��

Proof� The uniform continuity and the boundedness come from the results of
Section ��

For clarity we recall here the Dynamic Programming Principle with the no�
tation w����
� 
� 
� 
� for the evolution of the internal variables �see above ������� For
every �y� �� � O� for every t � � we have

V �y� �� � inf
��A

�Z t

�
e��sl

�
y�y����s���� w�y����s���� ��s�

�
ds�

e��tV
�
y�y����t���� w����t� y� �� ��

�i
	

�����

We prove that V is a subsolution of �V � H � �� which of course implies
������� Let � � C��IR � L��R� 
��� Using ����� and ������ for every �y�� ��� � O
�w� � F 
y�� ���� and for every a � A 
xed� we have �dropping the notation of the
initial state in the trajectories�

��



lim
t��

�
�
y�t�� w����t�

�
	 ��y�� ���

t
�

��

�y
�y�� ���f�y�� w�� a��D
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From this and DPP ����� we get ������ �subsolution� in a standard way�
Now we prove ������ �supersolution�� Let �y�� ��� be a point of minimum for

V 	� with respect to O� We follow the proof of the single play case� Take � � � and
t � � and� via DPP� 
nd a measurable control � such that an inequality as �����
holds �with suitable modi
cations concerning the presence of the internal variables��
Using ������� we have
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y�s�� w����s�
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Z
R
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y�s�� w����s�
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��� �w��s�d


i
ds�

We approximate f�y�s�� w�s�� ��s��� l�y�s�� w�s�� ��s��� D���y�s�� w����s�� respec�
tively by f�y�� w�� ��s��� l�y�� w�� ��s���D���y�� ���� The committed error is in
nites�
imal as s goes to zero� independently on � �and of course on � and t�� in particular
note that� by the property of Play �see ������� we have kw����s� 	 ��kL��R�	� �R s
� j �y�
�jd
 � Ms� For 
�a�e� � � R� there exists s� � � such that for every
� � s � s�� we have �compare with �������

D���y�� ��������r�y�s�� w��s��f�y�� w�� ��s��
�

� 	D���y�� ���
������r�y�� ������f�y�� w�� ��s��

��
�����

and similarly for the term with ��l� The problem here� is that the amplitude of
the s�interval where ����� holds depends on �� However� we de
ne the subsets Cs�
C� � R as for ������ and note that if� for some s� � 
� Cs n C�� then for that s �����
holds� Moreover� as in ������ by Lemma ��� below� 
�Cs nC�� tends to zero as s goes
to zero� 
nally� if � 
� C�� then the right�hand side of ����� is zero� Hence we have

Z t
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Z
R
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ds
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D���y�� ��������r�y�s�� w��s��f�y�� w�� ��s��
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�
Z t
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Z
R
	D���y�� ���

������r�y�� ������f�y�� w�� ��s��
�d
ds�

and the 
rst term of the right�hand side� when divided by t� is still in
nitesimal for
t� �� We then conclude� in a standard way� ut

Also in this case we can get a �Neumann�type boundary condition	� For every
�y� �� � O� let us de
ne the sets

��
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o
� Rl
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o

Note that if � � �Ri
�y��� �with i � fl� rg� �then �y� ����� � ���� Moreover� we de
ne

R�y��� �� Rr
�y��� � R

l
�y���� Similar argumentations as in the previous section lead to

the following �boundary condition in the viscosity sense	
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if 

�
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�
� � �V �y� �� �H�y� �� Vy� �� � �� otherwise�
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where sign�x� � � if x � �� sign�x� � 	� if x � �� The previous boundary condition
is �strict	 and has to be understood in the following viscosity sense �in the following
the 
rst implication is for subsolution and the second one for supersoltion and both
hold if 
�R�y���� � ��

�										

										�
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However� as we already said in the Introduction� such �boundary formulation	 is
not enough for usual comparison technique� we still need to use the discontinuous
Hamilton�Jacobi equation�

Theorem ��� If R ������
 is bounded and has 
��nite measure� then the value
function V is the unique bounded and uniformly continuous �with respect to IR �
L��R� 
�� viscosity solution of the Hamilton�Jacobi equation �
����

Proof� We are going to prove a comparison result for every bounded and uniformly
continuous subsolution u and supersolution v�

As usual� by contradiction� let us suppose that there exists �y� �� � O such
that u�y� �� 	 v�y� �� � � � �� Let g � IR � IR be a C� function such that g � �
and g�y� � jyj for jyj su�ciently large �and so g has bounded derivative�� Let S be
the strictly elliptic symmetric matrix as in ������� For every �yi� �i� � O� i � �� ��
we de
ne

k�y�� ���	 �y�� ���k ��
Z
R
S�y� 	 y�� �����	 ������ 
 �y� 	 y�� �����	 ������d


��



Note that there exist positive constants C�� C� such that

C��jy� 	 y�j
� � k�� 	 ��k

�
L�� � k�y�� ���	 �y����k � C��jy� 	 y�j

� � k�� 	 ��k
�
L��	

For �y�� ��� 
xed� the map �y� �� �� k�y� ��	 �y�� ���k is Fr�echet di�erentiable�
Take � � � and � � � and any �i � L��R� 
� and ai � IR� i � �� �� with

jaij� k�ikL� � �� and de
ne a function � on O �O
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If � and � are su�ciently small� we have
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	 �����

Note that� if �y� �� � O� then

k�kL� � jyj
�R�
�
� � kid�kL� �

where id� is the identity function on R� Hence� for jyij su�ciently large and for

��
�R�
�
� � �� � �� denoting by M a bound on u and v� we have
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Note that ������ ������ hold independently on small � �and on jaij� k�ikL� � ���
Moreover noting that for �y� �� � O� jyj large implies k�kL� large� we can then
assume that ������ holds out of a convex closed bounded set O��O� independent on
small �� Hence� see Stegall 
���� let us take jaij � � and k�ikL� � � such that � has
a maximum in O��O� and thus on O�O� Let �y��� �

�
��� �y

�
�� �

�
�� be such a maximum

point� By the uniform continuity of u and v� we have
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Let us concentrate on the subsolution u� As usual� we have that
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�� with respect to O and � is an admissible test function�
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By the de
nition of �� ������ and ������� we have Rr
� �

n
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o
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For the particular choice of ��� we have
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with C
 depending on �� Hence� for for constants C
 � � and C � �� we have�
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and the 
rst term of the last row is in
nitesimal when � � � is 
xed and � � ��
We obtain similar conclusions for the other discontinuous term in H� and for

the similar analysis replacing u by v� Note that the 
nite dimensional part of H �i�e�
the part containing the derivative with respect to y� can be treated in the usual way�

Taking 
rst small � and small � and 
nally small �� using the de
nition of sub�
and supersolution for u and v in �y��� �

�
�� and �y��� �

�
�� respectively� and denoting by

��
� 
�� �
�
� in
nitesimal functions of their argument� we have

max� � u�y��� �
�
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�
��	 a�y

�
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�i 	 h��� �

�
�i

�
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�
�H� 	H�� � ���� � ���� �� � �
��� �
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which is a contradiction to ������ ut

Lemma ��� Let � � IRN be of �nite 
 measure and consider fn � f 
�a�e� in �
and an � a in IR� Then



�n
x � �

���fn�x� � an� f�x� 
� a
o�
� � as n� ��	

Proof� It easily follows from the 
niteness of the measure of � and the up�
persemicontinuity of 
� ut

� Remarks and extensions�

Remarks ���� The result of Section � is obviously a special case of the one in Sec�
tion �� Indeed� it is enough to take 
 � ��� the Dirac mass centered in �� Moreover�
we can also consider the case of a 
nite sum of Plays which corresponds to 
 given by
a 
nite sum of Dirac masses� In this case we get a Neumann�type boundary problem
in a 
nite dimensional set with corners� In particular the set is a sort of inde
�
nite parallelepiped� The Neumann boundary condition has to be read mini Vwi

� �

��



for subsolution �respectively maxi Vwi
� � for supersolution�� where the min �re�

spectively the max� is taken over all the derivative of V with respect to the the
outward vectors relative to each face occurring as boundary� For such a formulation
of Neumann conditions see Dupuis�Ishii 
����
Remarks ���� �Stop�� It is quite obvious that� with suitable easy modi
cations� the
results of Section � and � also hold in the case when we replace the Play operator
with the Stop operator �see for instance Visintin 
��� for the de
nition��
Remarks ���� �Generalized play�� We can also replace the Play with a so�called gen�
eralized play �see for instance Visintin 
����� It is constructed as the Play� replacing
the two straight lines w � u� � and w � u	 � by two strictly increasing Lipschitz
continuous curves w � �l�u�� w � �r�u�� where �l�u� � �r�u� for all u � IR� The
results of Sections �� � and � easily apply to this case� In particular an equation as
����� holds� We have to be careful to the fact that the matrix S de
ned in ������ is
not more constant� but it depends on the point� However� under general regularity
assumptions on the two curves� such dependence is Lipschitz and smooth� We can
then apply again classical results �see for instance Ishii 
�����
Remarks ���� �Generalized Prandtl�Ishlinskii operator�� This operator is a super�
position of a �possibly in
nite� number of generalized plays �see for instance Visintin

����� We are given a set R of indices �which we call again � but they are not the half
length of intervals as before� and a measure 
 on R� For every � we have a couple
of curves as in the previous remark� which we call ��l and ��r� The output is given
by the integral with respect to 
 of the outputs of the generalized plays labeled by
�� Under rather general hypotheses on the family of couple of curves �such as for
instance �uniform regularity	of the curves with respect the indices� we can perform
an analysis as in Section � and obtain similar results�
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