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Abstract

We study an infinite horizon optimal control problem for a system with
two state variables. One of them has the evolution governed by a controlled
ordinary differential equation and the other one is related to the latter by a
hysteresis relation, represented here by either a play operator or a Prandtl-
Ishlinskii operator. By dynamic programming, we derive the corresponding
(discontinuous) first order Hamilton-Jacobi equation, which in the first case is
of finite dimension and in the second case is of infinite dimension. In both cases
we prove that the value function is the only bounded uniformly continuous
viscosity solution of the equation.

1 Introduction.

Hysteresis is a common feature of several physical and natural phenomena. It may
occur in any input/output relationship between time-dependent quantities. More
precisely, we say that an input/output relationship presents hysteresis if: (memory)
the value of the output at time ¢ does not only depend on the value of the input at
the same instant, but also on the whole past history of the input; (rate-independence)
the value of the output at time ¢ does not depend on the “velocity” of the input but
it depends only on the sequence of values reached by the input during its history.

The probably most known example of hysteresis is the one occurring in ferro-
magnetism: the relationship between magnetic field and magnetization of a ferro-
magnetic material. Other important examples are in elastoplasticity (stress/strain),
filtration through porous media (pressure/saturation), phase transitions (tempera-
ture/phase) and also in superconductivity, mechanical damage, shape memory alloys
and behavior of thermostats. In biology, hysteresis may occur for instance in the re-
lationship between the concentration of nutrients and the activity of bacteria, in
economics between profit and investment.



One way to represent hysteresis effects is the use of the so-called hysteresis
operators, namely suitable (nonlinear) functionals between spaces of time-dependent
functions. We shall restrict ourselves to scalar hysteresis, that is the case where both
input and output are scalar time-dependent functions. We give a rather general
definition. Let B be a Banach space, [0,T] be a time-interval. A functional

F:C%0,T]) x B— C°([0,T]), (u,) v Flu,£]

is said to be a hysteresis operator if: (causality) for all £ € B, u, v € C°([0,T]),
t € [0,7] we have that u = v in [0,t] = Flu, &](t) = Flv,&|(t); (rate-independence)
for all continuous and nondecreasing ¢ : [0,7] — [0,T], £ € B, u € C°([0,T]) we
have that Fluoy, £] = Flu,£]og. The elements of the Banach space B represent the
initial states of the system. To know the value of the output at certain time, we need
to know the previous evolution of the input and the initial values of some (possibly
infinite) internal variables. If the internal variables coincide with the value of the
output itself then we have B = IR. But there are many cases, where the system
evolves other internal variables which are not recognizable by the only observation
of the output. Only the knowledge of such internal variables (together with the
evolution of the input) gives the knowledge of the evolution of the output.

Now, we describe the control problem. We consider the following controlled
dynamical system

{ y'(t) = fly(t), w(t), alt)) w(t) = Fly, &) =0, (1.1)
y(0) =yo '
where (yo,&) € O C IR x B is the initial state, « : [0, 400[— A is the measurable
control, y,w € IR, F is a hysteresis operator, f : IR x IR x A — IR (note that the
controlled dynamic “sees” only the “external state” w, but the true state of the
system is the couple (y,&) € IR x B; moreover we can “directly control” only the
evolution of the state variable y, the other one depending with hysteresis). We then
consider the problem of minimizing a cost functional of Bolza type

+00
T 0.0) = [ MUy (), w(t), alv)at,
with A>0and ! : IR x IR x A — IR. We define the value function

Vo, &) = igf J (Y0, &0, @) (90, &) € O,

and want to apply the dynamic programming method in order to derive and to
study the (possibly infinite dimensional) corresponding Hamilton-Jacobi equation.
We in particular analyze two cases: when the hysteresis operator is a Play operator
and when it is a Prandtl-Ishlinskii operator. Both operators are useful for describing
several hysteresis relationship, especially in elastoplasticity.

In the first case, the operator is of the so-called local memory type, that is
without internal variables. Its behavior is described in the Subsection 2.1 (see Fig.
1). The set of initial states O in (1.1) is the closure of the strip of the (y,w)-plane
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Q, 12{(y,w)€ﬂ%2|y—p<w<y+p},

for some p > 0. We show that the output is solution of a discontinuous ordinary
differential equation in €2,, with the discontinuity occurring on the boundary. This
leads to the discontinuous Hamilton-Jacobi equation

AV + H(y,w,V,,Vy,) =0 in Q,
with H given by

H(yawaplap2) = Sug{ - p1f(y,w,a)
ac

—P2 (Xﬂr(y7 w)f(y7 w, a)+ - Xpl(y7 w)f(ya w, a)_) - l(y7 w, a)}

where X, (respectively x,;) is the characteristic function of the straight line w = y—p
(respectively w = y+p), and (-)* (respectively (-)~) means the positive (respectively
negative) part. By particular properties of the Play operator, we can prove that V'
is a viscosity subsolution of A\V + H < 0 and a supersolution of AV + H* > 0, where
H* is the upper semicontinuous envelope of H. This of course is coherent with the
definition of viscosity solution for discontinuous Hamiltonians (see Ishii [13]). By
the particular form of H, we immediately get that V' is a viscosity solution of a
boundary value problem of Neumann-type in €2,. Note that H is continuous in €2,,.
For this problem we have of course the uniqueness of the solution. The problem here
studied can be contained in the case of optimal control for the so-called Skorokhod
problem (or reflecting boundary problem), see Lions-Sznitman [18], Lions [17] and
Ishii-Dupuis [10] (see also Ishii [12]). However, here we use the formulation of the
dynamic as a discontinuous ordinary differential equation, which is useful for study-
ing the other case when the hysteresis relationship is given by the Prandtl-Ishlinskii
operator. Moreover, in the above quoted works on the Skorokhod problem, the au-
thors never mention hysteresis, they are more concerned with the problem of the
reflection of a trajectory inside a domain.

In the second case, the operator is of the so-called nonlocal memory type. That
is, there are internal variables. The operator consists of a superposition of weighted
different Plays, each of them labeled by p € R C|0,+oc[. Let p be a measure on R
and, for every p, let F, be the corresponding Play. The Prandtl-Ishlinskii operator
can be defined as

F - C([0,T]) x LR, p) — C°([0,T])  Flu,&](t) = /pr[u,f(p)](t)du-

The internal state & € L*(R, ) is the function which maps p to the initial state of
the corresponding Play. The set of the initial states for the system (1.1) is

O:={(1,€) € R x L*(R, p)|(£(p)) € Dy p—ae. p € R},
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We use again the representation of the output of the Play as solution of a discontin-
uous ordinary differential equation. We get a Hamilton-Jacobi equation in O with
Hamiltonian H on O x IR x L*(R, i) given by

y 6 b, w) - SupaeA { f(y> w, a)p
— [ [900) (6 (4 600D F 0, 0,0) = X0, £ () £ v, w0, )7
—l(y,w,a)}.

where w = [, dp. Of course, the previous Hamiltonian is discontinuous in O, and
hence the definition of solution is given by two suitable envelopes of H. Note that
O has no interior in R X L*(R, 1), however it is an invariant set for the evolution
given by (1.1) (more precisely for the evolution of y and of the internal variables).
Also in this case we can have a “boundary formulation” of Neumann-type, where
the “boundary” is the following subset of O

0 ={(,9 eRu{peR, ly—£&p)|=p}) >0}

Note that if (y, &) ¢ O, then the Hamiltonian is the following continuous and “finite
dimensional” one

H(y,& p, ) = ilelg{ — fly, w,a)p— Uy, w,a)}.
Observe that O has nonempty interior in IR x L*(R, i) only if inf R > 0, and in that
case 0’ is strictly contained in the boundary of O in IR x L*(R, 11). Due to the fact
that we are working in IR x L?(R, i) (that is because it is a reflexive space and hence,
as usual, suitable for comparison viscosity techniques), the “boundary formulation”
is not completely satisfactory since we are not able to force extremal points of
suitable functions to be out of O or at least to force the continuous equation to
hold. Hence, the discontinuous term in the Hamiltonian (i.e. the term containing the
integration with respect to ) may always be different from zero. However, taking a
suitably small penalization term (which, as in standard techniques, should be taken
for applying a suitable variational principle), we can make the absolute value of the
discontinuous term to be arbitrarily small. We can then prove that V' is the unique
bounded uniformly continuous viscosity solution in O of the discontinuous equation

V(y,&) + H(y, & Vy(y,€), DV (y,£)) = 0

where V), is the derivative of V' with respect to y and D¢V is the Fréchet differential
of V' with respect to &.

The results of the paper apply with obvious modification to several other situ-
ations: we can replace in both cases the Play with either the Stop or the generalized
play or generalized stop (see for instance Visintin [22] for definitions).

An optimal control problem for ordinary differential equation with hysteresis,
very similar to the present one, was studied by Brokate in [4]. In that work, the au-
thor is concerned in necessary conditions for optimality and he does not apply the
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dynamical programming technique. Other optimal control problems, with functional
dependence in the dynamic, were studied with dynamic programming approach by
Soner [20] and Wolenski [23] for the so-called hereditary problem (or delayed prob-
lem). However, it seems that this is the first time that the dynamic programming
method and the viscosity solution theory are applied to an optimal control problem
with hysteresis functional dependence.

We recall that the first studies on mathematical aspects of hysteresis, and in
particular on the concept of hysteresis operator, are due to Krasnoselskii and his
co-workers (see the monograph Krasnoselskii-Pokrovskii [15]). Other books on the
mathematical aspects of hysteresis and applications are Mayergoyz [19], Visintin
[22], Brokate-Sprekels [5], Krejci [14].

The theory of viscosity solutions for Hamilton-Jacobi equations goes back to
the works of Lions [16] and Crandall-Lions [8] (see also Crandall-Evans-Lions [7]).
In particular for the Neumann problem and for the definition of viscosity solutions
for discontinuous equations we refer to Lions [17], Ishii [13] and Barles-Lions [3].
For the theory in infinite dimension we refer to the work (first of a series) Crandall-
Lions [9]. For a comprehensive account of the theory (in finite dimension) and its
application to optimal control problems, we refer to the books Barles [2], Capuzzo
Dolcetta-Lions (eds.) [6] and Bardi-Capuzzo Dolcetta [1].

The plan of the paper is as follows. In Section 2 we give the notion of hysteresis
operator and introduce the Play and Prandtl-Ishlinskii operators with their main
properties. In Section 3 we state the optimal control problem in the general setting
of hysteresis operator. In Sections 4 and 5 we respectively study the problem with
the Play and the Prandtl-Ishlinskii operators. In Section 6 we give some remarks
and extensions to the case of some other hysteresis operators.

2 Hysteresis operators; two examples.

In this section we give the basic notions of hysteresis operators and two examples
of such operators with their properties, which we shall use in the next sections. We
first argue in a general framework. Let [0, 7] be a time interval and B a Banach
space.

Definition 2.1. An operator

F:DCCN[0,T]) x B—C([0,T]) (u,8) = Flu,g]()

is said to be a hysteresis operator if the following two properties are satisfied
a) (causality) ¥(u,§), (v,&) € D, Vt € [0,T]

Yo = Yoy = Flu, €](t) = Flv, £](2); (2.1)
b) (rate independence) ¥(u, &) € D, V continuous nondecreasing ¢ : [0, 7] — [0, 7T

(uop,£) €D, Fluop, = Flu,EJop. (2:2)
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Figure 1: Play operator of hysteresis.

Moreover we suppose that the following further properties are satisfied
¢) (Lipschitz continuity) there exists L > 0 such that ¥(u,&), (v,n) € D

1F[u, €] = Flo nlllcogoan < L (llu = vlleogon + 1€ = nll5) ; (2.3)

d) (semigroup property) there exists another operator ® : D — C°([0, 7], B)
such that V(u,&) € D, Vt,7 € [0,T], t + 7 < T, setting £(t) := P[u, £](¢) we have

Flu, &J(t +7) = Flu(t +-),E@)](7) (2.4)

The operator @ represents the evolution of the internal variable £ € B.

2.1 The Play operator.

For p > 0 we define the open set
Q, = {(u,w) GIRz‘u—p<w <u—|—p}.

We take B = R and D = {(u,w’) € C°([0,T]) x R|(u(0),w°) € Q,}. The behav-
ior of the Play operator w(-) := Flu,w’|(-), with its typical hysteresis loops, can
be described by Fig. 1. For instance, supposing that u is piecewise monotone, if
(u(t),w(t)) € 2, then w is constant in a neighborhood of ¢; if w(t) = u(t) — p and
u is non increasing in [t,¢ + 7] (with small 7) then w stays constant in [t,¢ + 7]; if
w(t) = u(t) — p and u is nondecreasing in [t,t + 7| then w = u — p in [t,t + 7]; a
similar argumentation holds if w(t) = u(t) + p. Moreover we have w(0) = w°.

Let I;_, ; be the indicator function of [—p, p| (i.e. 0 in [—p, p| and +oo other-
wise), and J1[_, , its subdifferential.

Theorem 2.1 The output w = Flu,w’] of the Play operator F with input u €
W0, T) and initial state w® is the unique solution w € W(0,T) of the following
differential inclusion



{ w(t) € 01y (u(t) = w(t)) a.e te(0,T),

w(0) = w°.

Moreover, F can be uniquely extended to a continuous operator from C°([0,T]) x IR
to C°([0,T)) which is a Lipschitz hysteresis operator with Lipschitz constant equal
to 1 and which satisfies the semigroup property (2.4) (with B = IR and ® = F).

Theorem 2.2 For any p € [1,4+00|, the Play operator is strongly continuous from
W0, T) x IR to WHP(0,T). Moreover, the following equality holds

(w(t)* = w(t)w(t) ae te(0,T). (2.5)

For the proofs of the previous two theorems see Visintin [22] and Krejci [14].

Now, we prove a useful property of the output for regular input. Let us call vy,
and 7, respectively the straight lines in the (u, w)—plane of equations w = u + p,
w = u—p (I stays for “left” and r for “right”). Moreover, for ¢ € {l,r}, let us denote
by xpi(u, w) the characteristic function of 7, (i.e. 1 on 7, and 0 outside). Finally,
for a € IR we denote its positive part by a® := max(a,0) and its negative part by
a” = max(—a,0).

Proposition 2.3 For everyu € H'(0,T) and for every admissible initial state w® €
R (i.e. (u,w®) € D), the output w satisfies the following discontinuous differential
equation

(1) = e (1(0), w0 (1)~ (w(2) D) (1)) e € O,7). (26
Proof. First of all, let us note that from (2.5), the following easily follows

(t)] < a(t)| ae. t € (0,T). (2.7)

Let ¢t € (0,7) be such that #(t) and w(t) exist. Let us first suppose that
lu(t) — w(t)] < p. Then, for § > 0 sufficiently small we have

|h| <d=|u(t+h) —w(t+h)| <p=wt+h) =w(),

and hence w(t) = 0 which satisfies (2.6). Now, let us suppose that w(t) = u(t) — p
(the case w(t) = u(t) + p can be similarly treated). We claim that
u(t) > 0. (2.8)

Indeed, if it is not the case, for some ¢ > 0 the following holds
0<h<d=u(t—~h)>ut).
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By the shape of Q, (see Fig. 1), this implies that w(t—h) > w(t), which is impossible
because if ¢ is small, w cannot decrease in a time interval of length ¢ in order to
reach the value w(t) at time ¢ (w can decrease only if (u, w) € v,;). Now, let us note
that the following inequality holds

=) s gy MEERZRZ MO G 2y

)=

By (2.9), using (2.8) and (2.7), we get

which is (2.6). O
The Play operator is a so-called local memory operator; that is the internal
variables coincide with the external one, namely the value of the output.

2.2 The Prandtl-Ishlinskii operator of play-type.

This is an important example of operator with nonlocal memory: the value of the
output is not completely determined by the initial value of the output and by the
evolution of the input. We need the knowledge of some internal variables, namely
the elements of a (Banach) space B different from IR.

The characteristic feature of the Play, when constructed as in the previous
section, is the length of the symmetric interval [—p, p|, that is the positive number
p. Plays corresponding to different p give different outputs for the same input. An
interesting case for applications is when the output is the “result” of a (possibly
infinite) number of weighted Plays working in parallel.

Let R be a bounded set of ]0,4+o00[ and g be a finite Borel measure on R.
For every p € R, as in the previous subsection, we consider the set €2, and the
corresponding Play operator, which we call F,. We define the set

D = {(u,&) € C°(0, 7)) x L*(R, )| (u(0).£(p)) € O, p-ae. p € R},
that is we take B = L*(R, ). We define the Prandtl-Ishlinskii operator F as
F:DCC[0,T]) x L*(R, p) = C°([0,T])  (u,8) = /pr[uaf(p)](')du-

Note that the function £ gives the initial state of every Play (labeled by p). The
evolution of the internal variables (namely the output of every Play) is of course
given by the evolution of every single Play. That is, at any instant ¢ we have a
function

Ou, £](1) : R = IR, p = ®,[u, £](1) := Fplu, E(p)](2), (2.10)
with of course ®[u, &](0) = &.



Theorem 2.4 The Prandtl-Ishlinskii operator is a Lipschitz continuous hysteresis
operator from C°([0,T]) x L*(R, i) to C°([0,T]) and satisfies the semigroup property
(2.4) (with @ defined in (2.10)).

Proof. The proof is essentially given in Visintin [22]. Here, we only point out
that ®[u, &](t) defined in (2.10) belongs to L*(R, u) for every t. Indeed, for almost
every p, the corresponding Play continuously evolves from &(p) (uniformly with
respect to p and to &£(p)): this guarantees the measurability. Moreover, since R
is bounded, by the definition of 2,, we have that ®[u, £](t) is bounded (u(t) — p <
®,lu, &](t) < u(t)+p). The Lipschitz continuity follows from the Lipschitz continuity
(uniformly with respect to p) of every Play (see Theorem 2.1). O

Let us call w the output of F and w, the output of F,.

Theorem 2.5 Let p € [1,+o0[, then F is strongly continuous from W1?(0,T) x
L*(R, ) to W'2(0,T). Moreover, we have

u')(t):/Ru')p(t)du a.e. t € (0,T); (2.11)

ifu € W”’(O T), then the functions w()(-) and w.)(-) (which map respectively (t, p)
to wy(t) = Folu, E(p)](t) and to w,(t) = (d/dt) (F, [u, (P)I(2))) satisfy

Ly () = i) (212

wey(-) € WH(0,T; L*(R, 1)), o

Proof. The proof of the continuity can be found for instance in Brokate-Sprekels
[5]. Let us prove (2.12). Indeed w.)(-) and w.(-) are measurable and belong to
LP(0,T; L*(R, p)) (since |w,(t)] < |u(t)] + p and |w,(t)| < |u(t)]). For every ¢ €
CH[0,T); L*(R, 1)) we have

//wp W(t, p)dudt = //wp W(t, p)dudt.

The latter equality, when ¢ is independent on p, also proves (2.11). O

3 The control problem in a general setting.

In this section, we formulate the optimal control problem and give basic results for
the case of a general hysteresis operator, leaving next sections to focus on particular
examples of operators and to investigate more deeply the application of dynamic

programming.
We consider the following dynamical system
y'(t) = fly(t), w(t), at)) w(t) = Fly,&l(t) t=0,
(3.1)
y(O) = Yo,



where (yp, &) € O C IR x B, with B Banach space; for every T' > 0, the hysteresis
operator (see Definition 2.1)

F:D cC%0,T]) x B— C°([0,7T))
satisfies
Lipschitz continuity (2.3); semigroup property (2.4);

strong continuity from H'(0,7) x B to H'(0,T).

The set of initial sates O can be seen as the subset of D given by the couples
(u, &) with u constant function (of course the output of F for every element of O is
constant); « : [0, +oo[— A is a measurable control taking value in the compact set
A C IR? for some g € IN. The function

(3.2)

fiRxRxA— R, (ywa)— f(yw,a),

is continuous, bounded and Lipschitz continuous with respect to (y, w) uniformly in
a, that is

3L > 0 such that Ya € A Y(yy, wy), (y2, ws) € IR X IR
|f(y17w1>a) - f(y2>w27 CL)| < L|(y1>w1) - (y27w2)| (33)
AM > 0 such that |f(y,w,a)| < M V(y,w,a) € IR x IR x A.

Note that the “external state” of the system (3.1) is (y,w), but the “true” state is
the couple (y, &) where £ is the evolution of the internal variables.
Let us define the set of measurable controls

A= {a : [0, +00[— A‘Oz is measurable},

and for every a € A let us denote the unique solution of (3.1) (see Proposition 3.1

belOW) as (y(yo,ﬁo) ('5 a): W(yo,&0) ('; a))
Now let us consider a function

iR xR xA—|0,+00f, (y,w,a)l(y,w,a),

which is continuous, bounded and uniformly continuous with respect to (y,w) uni-
formly in a, that is

Jw : [0, +00[— [0, +00[ increasing, continuous, w(0) = 0,
Vaec A V(yl,wl), (yQ,wg) ceRx IR

|l(y1>w1>a) o l(y27w2>a)| < w(|(y1>w1) o (y2>w2)|)
dM > 0 such that |l(y, w,a)| < M ¥Y(y,w,a) € R x IR x A.

(3.4)

Given A > 0, for every initial state (yo,&) € O, we want to minimize the
following cost functional over the controls a € A

—+00
J(yO; &o, 04) = /0 e Ml (y(yoyﬁo) (t; a)v w(yoyﬁo)(t; a)a a(t))dta
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and hence we define the value function

V(y(): 60) = olcrelfl J(?Jo; 607 Oé) (35)

Proposition 3.1 Let us suppose that (3.2), (3.8) hold. Then, for every initial state
(Yo, &0) € O and for every control a € A, there exists a unique solution of the system
(3.1) (Yyo,e0) (3 )5 Wiyo £0) (5 @), such that Yy, e (5 ) € HY(0,T) for every T > 0.
This of course implies that wy, ¢)(-; &) € H'(0,T) for every T > 0. Moreover, for
every T > 0, there ezists a modulus of continuity wr (i.e. an increasing continuous
function with wr(0) = 0) such that for all initial states (y1,&1), (y2,&2) € O and for
every t € [0,T] the following inequality holds

‘y(yh&l)(t; a) - y(y27§2)(t5 O‘)‘ + |w(y17§1)(t5 O‘) - w(y2,§2)(t; a)| (3.6)
< wr(max{|y; — v, |61 — &l 8})

Proof. Existence is proven by a standard delayed approximation. Indeed, re-
garding yo as a constant function, we define the constant wq := Flyo, {]. Then, in
every subinterval of a partition of [0, 7], we solve the problem with a known w equal
to the output of F when the input is the solution y in the previous interval (with
suitable initial state). In the first interval we take w = w,. We pass to the limit
as the length of the partition goes to zero and we obtain a function y, such that,
together with its corresponding output w,

o(t) =0+ [ F0(5).0(s),a(s)ds vt € 0.7

which is the integral version of (3.1).

Now we prove (3.6), from which the uniqueness easily follows. In the following
we shall write y;(+) == Yy (-, @), wi(+) = Wiy, e) (-, ), for i = 1,2, as well as y?,
&) for the initial states. We shall use the Lipschitz continuity of f and F. All the
involved Lipschitz constants are denoted by L. For ¢t € [0, 7], we have

|y1 (t) - y2(t)|

t 3.7
<1 =8+ L0+ 1) [ s = wallosgorpir + TN~ &lls. 0

The right-hand side of (3.7) is increasing in ¢. Hence, in the left-hand side, we can
replace t by any other 7 € [0, ¢]. We obtain

1 = yelloogo.n) t
<1y = 981+ L+ L) [ s = walloqoepdr + LT10 = &S]

Hence, by the Gronwall inequality applied to ¢ — [|y1 — yal/co(o,q), We get
2 = vallcogoa < (198 — w3l + L*T€0 — &3 )" +H (3.8)
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and, by the Lipschitz continuity of F

|wi — wal| oo, < Llyy — yole TPt 4 L(l + LZTeL(HL)t) 16 = &l (3.9)
From (3.8)—(3.9), it is easy to find wy such that (3.6) holds. O

Theorem 3.2 Let us suppose that (3.2)—(3.4) hold. Then the value function (3.5)
s bounded and uniformly continuous in O.

Proof. The value function V' is bounded by (3.4) and its definition.

The uniform continuity follows from (3.6), by standard techniques (see for
instance Bardi-Capuzzo Dolcetta [1]). O

Now, we suppose that the set O C IR x B of admissible initial states for (3.1) is
an invariant set for the trajectories in IR X B of the system. That is, considering the
evolution functional ® for the internal variables, which is defined in the semigroup
property (2.4), for every t € [0, +oo[ and a € A the following holds

(4,€) € O = (Yo (1. @), Py (- @), E(1)) € O. (3.10)

The cases that will be studied in the next sections, satisfy such property.

Theorem 3.3 (DPP: Dynamic programming principle) Let us suppose that (3.10)
holds. Then, for every (y,&) € O and for every t € [0, +o0[

V(y,€) = inf {/Ot e Uy (5 0), w55 @), as))ds
+e MV (Y (£ ), Ry (5.0), € (1) }.

Proof. Tt follows in a standard way by the semigroup property (2.4) and the
uniqueness of the solution of (3.1). O

4 The case of Play.

In this section we suppose that the hysteresis operator F in the control problem is
the Play operator, with p > 0, described in Section 2. We recall that B = IR and
the internal variables coincide with the external one, namely the output w itself. We
have

Qp::{(y,w)E]R2‘y—p<w<y+p},

(see Fig. 1, with u replaced by y). From the definition of the Play, it is easy to see
that ©Q, is an invariant set for the controlled system. For more clarity, we give the
formulation of DPP in this particular case. For any (y,w) € €, and for any ¢ > 0,
we have
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t
V(y,w) = ;gﬂ{/o e MUYy (8;Q), Wiy ) (53 0), as))ds

+6_/\tv(y(y,w) (t; Oé), W(y,w) (t5 Oé))}

For every (y,w) € Q,, (p1,p2) € IR?, we define the following Hamiltonian

(4.1)

H(y> w;plap?) = Ssup { - plf(ya w, CL)
acA (42)

=2 (Xor (4, 0) f (4, 0, a) = X, w) f(y, 0, 0)7) = Uy, w, a) }.

Let us note that H is discontinuous in , x IR?. We consider the following Hamilton-
Jacobi equation

Au(y, w) + H(y, w, uy, uy,) =0 in £, (4.3)

where u,, (respectively u,,) is the derivative with respect to y (respectively w).
We denote the lower semicontinuous and upper semicontinuous envelopes of H
in €, respectively by H, and H".

Theorem 4.1 Let (3.3), (3.4) hold (note that the Play operator satisfies (3.2)).
Then the value function V' is a uniformly continuous and bounded viscosity solution
in Q, of the Hamilton-Jacobi equation (4.3). That is, for every ¢ € C1(Q,) such
that (y,w) € Qp s a local extremal point for V — ¢, the following holds

(subsolution) if (y,w) is a mazimum, then

)\U(y,w) +H*(y>w7¢y(y>w)7¢w(y;w)) < 0; (44)

(supersolution) if (y,w) is a minimum, then

Ny, w) + H (g, w, 9y(y, w), 9uly, w)) > 0. (4.5)

Proof. The uniformly continuity and the boundedness come from the results of
Section 3.
A simple calculation shows that

H*(yawaplapQ) = Sup{ _plf(yawaa)
acA (46)
+D2 Xor (4, W) £ (4,0, 0) + p3 X (y, w) f (y,w, 0)™ = Uy, w,a) },

To prove that V' is subsolution, we prove that (4.4) is satisfied even replacing H.,
by H itself (and thus (4.4) a fortiori holds). Take ¢ € C*(Q,) and (y,w) € Q, such
that V — ¢ has a local maximum in (y,w) with respect to (,. Let us take a € A
and consider the corresponding trajectory (y(-;a),w(-;a)) starting from (y,w). If
f(y,w,a) = 0, then the trajectory is the stationary one and hence it is sufficient

to observe that AV (y,w) < l(y,w,a) by definition of V. On the other hand, if
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f(y,w,a) > 0 (respectively f(y,w,a) < 0), then for sufficiently small ¢, y is strictly
monotone in [0, ¢] and hence we can suppose that (2.6) holds everywhere in [0, ¢]. In
particular (suppose for instance that f(y,w,a) > 0) we have

W(T;a) = Xpr (y(T; a), w(r; a))f(y(T; a),w(T;a), a)+ Vr € [0,t], (4.7)

where either x,(y(7;a), w(r;a)) = 0 or X, (y(7;a),w(r;a)) =1 for every 7 € [0, ]
and hence the right-hand side of (4.7) is continuous. Using the continuity of V,
DPP (4.1) and the continuity of the Play operator, by standard techniques (see for
instance Bardi-Capuzzo Dolcetta [1]) we then obtain

AV(y? w) - QOy(y, ’U))f(y, w, a)
—gow(y, w) (Xpr(y> w)f(y> w, CL)+ - Xﬂl(y> w)f(y> w, a)i) - l(ya w, a’) S 07

and then we conclude.

Let us prove that V is a supersolution of (4.3). Fix ¢ € C*(Q,) and let (y,w) €
Q, be of minimum for V' — ¢. Using again DPP (4.1), for every ¢ > 0 and for every
t > 0 sufficiently small, we find @ € A (depending on ¢ and t), such that, denoting
the corresponding trajectory by (y(-),w(-)),

V(y(t),w(t)) — /Ot e’)‘sl(y(s),w(s),a(s))ds (48)
e MV (y(1), w(t)) + et > o(y(t), w(t)) - oy, w).

Let us note that

t

(yt),wt)) oy, w) = diw(ys w(s))ds

( ~o(u(s)
[wy(y<s>,w ) (u(s), w(s), a(s)) (4.9)
ww( (), w(5)) (Xor (y(8), w($) f (y(s), w(s), as))*

—Xu (y(s),w(s))f (y(s), w(s), a(s)) )] ds.

If x,r(y, w) = 0 (respectively x,(y,w) = 0), then for small s, x,-(y(s),w(s)) =0
(respectively x,(y(s), w(s)) = 0). Then for small s we have the following estimates

gow(y,w)xm( (), w(s)) £ (v, w, a(s))" )
—u(y, w) X (g 0) f (3, w, a(f)) :
—@w<y, w)xo (y(5),w()) f (1, w, 0(s))

—u(y ) Xy, w) f (9,0, a(s))

We approximate /(y(s), w(s), a(s)), [(y(s), w(s), a(s)) and Vig(y(s), w(s)) respec-
tively by f(y, w, a(s)), l(y, w, a(s)) and Vy(y, w), with an error which is infinitesimal
as s goes to zero, independently on « (and of course on € and t). This can be done

0

(4.10)
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by the uniform continuity of f and [ and the regularity of ¢. Hence, by (4.9)-(4.10),
noting that the coefficient of ¢,, in the integral in (4.9) is uniformly bounded and
adding and subtracting + [} [(y, w, a(s))ds we obtain from (4.8)

/Ot [_ @y(y,w)f(y,w, a(s)) — l(y,w, a(s))
ol 0) X 0)f (3 10,0(5)) (4.11)

+0u (Y ) Xy, w) f (9w, a(s)) |ds +V (y(s), w(s)) (1= e ™)
> —ct +o(t),

where o(t) indicates a function g(t) such that t~'g(¢) — 0 as t — 0. From (4.11), we
obtain the conclusion (see for instance Bardi-Capuzzo Dolcetta [1]). O

It is evident that V is a viscosity solution of the continuous Hamilton-Jacobi
equation

AV (y,w)+ H(y,w,V,,0) =0 in Q,. (4.12)

On the other hand, on 09, if (4.12) is not satisfied in the viscosity sense, then the
“discontinuous part” of (4.3) (i.e. the part involving the derivatives with respect to
w) has to play a role. This means that the derivative of V' with respect to w (i.e.
the derivative of the test function), should be not zero and have a suitable sign, in
order to obtain the right sign for the Hamiltonian (4.2) or (4.6). Hence, if we define
the outward vector to 012,

ORI TR b (119

we have the following formulation for our problem

{ AV (y,w) + H(y,w,V;,0) =0 in Q,, (4.14)

Ve, (y,w) =0 on 0%,

where V;, := (0/0¢,)V and the boundary condition has to be understood in (a
strict) viscosity sense

{ AV 4+ H(y,w,V,,0) > 0=V, (y,w) <0 for subsolution, (4.15)

AV 4+ H(y,w,V,,0) < 0=V, (y,w) >0 for supersolution.

Theorem 4.2 The value function V' s the only bounded continuous viscosity solu-
tion in Q, of the Hamilton-Jacobi equation (4.3) (or equivalently of the Neumann-

type problem (4.14)-(4.15)).

To prove Theorem 4.2, we prove uniqueness for the reformulated problem as a
boundary value problem of Neumann-type.
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Proof of the Theorem 4.2. The proof is standard. In our case it is easy because
€, is a strip and we have a “strict” boundary condition (see (4.15)). We give here a
sketch of the proof, which can be useful in the next section. We prove a comparison
result: if u is a subsolution and v is a supersolution then u < v in Q.

A simple calculation shows that there exists a strictly elliptic constant matrix
S such that for every (y,w) € 0, we have

Gy, w) - S((y,w) = (v, w)) 20 Y, w') €9, (4.16)

where S(y, w) denotes the matrix-vector product. Let g(y) be a C! positive function
on IR with bounded derivative and g(y) — +00 as [y| — +00 (note that |w| — +o0
whenever |y| — +00). For § > 0 and > 0, we define in 2, x €,

6 (g1, w1), (92, ) ) 1= w(ys, wa) — v(ya, w2) = Blg(yr) + g(y2)
S(y1 — Yo, w1 — wa) « (Y1 — Yo, w1 — wo)
20 ’

As usual, let us suppose by contradiction that there exists (g, @) such that u(g,w)—
v(g,w) = n > 0. Standard techniques show that, for 4 sufficiently small, there exists
a compact set K C §, such that, for every 6 > 0, 3 ((y‘f, w?), (y3, wg)) € K x K point

of maximum for ¢ over 2, x €, and this maximum is strictly positive independently
from §. Using also the strictly ellipticity of S, we have
|(yf7 wé) — (yga wg)|2

5 —0 asd — 0.

By (4.16), if (v, w{) or (y3,wd) belong to 052, we respectively have

& 08N (00 18

Gt 5 (L0 5
& 8\ (08 8

Cp(yg,w‘s) .S <(y1,w1) ; (y27w2)> <0,

(4.17)

By the definition of ¢, (y,w?) and (y3, w3) are points of maximum and minimum
for u—; and v— @, respectively, with ¢; test functions whose derivatives in (y?, w?)
with respect to (, are respectively the left-hand side of the first and second row of
(4.17). Hence, we deduce that in the two points the (continuous) Hamilton-Jacobi
equation holds, and we conclude in the standard way. O

5 The case of the Prandtl-Ishlinskii model.

In this section we study the control problem when the hysteresis relationship is given
by a Prandtl-Ishlinskii model of play-type, as in Section 2. In this case, the “true”
state of the system is (y,€) € IR x L*(R,u), where & is the infinite dimensional
internal variable. We recall that R is of finite p-measure and hence L®(R,pu) C
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LP(R, i), for every p € [1, +oc[. Moreover R is supposed to be bounded. Hence the
following definition is independent from p € [1,+o00]: we define the set O of the
initial states for the system (3.1)

0 :={(y,€) € R x L"(R, u)\(y,f(p)) €Q,p—ae peR}.

Note that O is nonempty strongly closed and convex in IR x LP(R, u) for every
€ [1,4+o0] and it has empty interior in IR x LP(R, u1), for every p € [1, +oo[. From

the definition of the Prandtl-Ishlinskii model, it easily follows that O is an invariant
set for the system (3.1).

We perform our analysis in the Hilbert space IR x L?(R, j1). We use the notation
(and the statement) of Theorem 2.5 to indicate by ¢ +— w.)(¢) the evolution of the
internal variables. Moreover, for the specific evolution given by the solution of the
system (3.1), we use the notation ¢ — w(.)(¢; yo, &, @).

Let a € A be a fixed constant control then for every (yo,&) € O, we claim
that, as function of time with value in L? (R, i),

t — 1y (t; yo, o, @) is continuous in ¢ = 0. (5.1)

To prove the claim, let us define wy = Flyo, &) the constant initial output. If
f (Yo, wo,a) = 0 then the conclusion is obvious (all is stationary). Let us suppose
for instance f(yo,wp,a) > 0 (the other case being analogous). Hence the solution
y(+) is strictly increasing in [0, ¢] for a small ¢ and thus at ¢ = 0 the time derivative
of the output of every play exists. By Theorem 2.5 the time derivative of w.(t)
exists too. For every 7 € [0, ¢], we write w)(7) in place of w.)(7; %o, o, a) and define
C;:={p€Rly(t) — p=w,(7)} (note that Cy = {p € Rlyo — p = &o(p)}). We have

/ [ 0)[*dp = / I
o T| i >| du+ /C i) — 40 >|2du.

The right-hand side of (5.2) tends to zero as 7 — 0. Indeed the first integral is
infinitesimal because the integrand function is bounded and the integration set’s
measure tends to zero by Lemma 5.3 below (since y(7) and w(.)(7) respectively tend
to yo and & in IR and L?(R, u)); the second integral is zero because the integration
set is empty (for every play corresponding to p, if yo—p = &(p) and y is increasing in
[0, 7], then y(7) — p = w,(7)); the third integral tends to zero because the integrand
function is infinitesimal.

In the sequel, as usual, we identify L?(R,u) with its dual. We consider the
following three Hamiltonians defined in O x IR x L*(R, i) (here and in the sequel

w = [r &dp)
H(y,&,p, ) = sup,eq { — f(y,w, a)p
— [ [900) (o €00) £ (90, 0)* = X9, € () (9w, 0) ) s
~l(y,w,a)},

(5.2)
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H_ (yagapa ¢) - SupaeA{ - f(yawa G,)p
—/R [(©00) X (0, €(0)) £ (w0, 0) " + () Xt (0, £(0) £ (5, w, @) ) lps
_l(yawaa)}a

and

-H+ y f pal/)) - SupaeA{ f(y,w,a)p
[ 1(00) X 60D (010,00 + (o) X1 () 1 0,0) )
—Z<y,w,a>}.
For every Fréchet differentiable function ¢ : IR x L*(R,u) — IR, we denote

by ¢, and D¢y respectively its derivative with respect to y € IR and its Fréchet
differential with respect to & € L*(R, ).

Theorem 5.1 Let (3.3), (3.4) hold (note that the Prandtl-Ishlinskii operator sat-
isfies (3.2)). Then the value function V is a uniformly continuous and bounded
viscosity solution in O C IR x L*(R, u) of

AV (y, &) + H(y, &, Vy, DeV) =0 (5.3)

That is, for every continuously Fréchet differentiable function ¢ : IRx L*(R, u) — IR
such that V — ¢ has in (y,&) an extremal point with respect to O, the following holds

AV (5,€) + H (5.6, 0y(5,£), D) > 0 if (4,€) minimum. Y

If V' satisfies the first (respectively the second) equation of (5.4), then it is said a
subsolution (respectively a supersolution).

{ )\V(ya é-) + H- (y7 fa SOy(ya 6)7 Df(p(ya f)) S 0 Zf (y, f) maximum,

Proof. The uniform continuity and the boundedness come from the results of
Section 3.

For clarity we recall here the Dynamic Programming Principle with the no-
tation wy(-;-,-,-) for the evolution of the internal variables (see above (5.1)). For
every (y,&) € O, for every t > 0 we have

t
V(y,€) = inf /0 ey (55.0), w51 @), l's) ) ds+

e MV (Yt ), wi (159, €, )]
We prove that V' is a subsolution of A\V + H < 0, which of course implies
(5.4);. Let ¢ € CY(IR x L*(R,p)). Using (2.6) and (5.1), for every (yp,&) € O

(wo = Flyo, &)) and for every a € A fixed, we have (dropping the notation of the
initial state in the trajectories)

(5.5)
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@(y(t)a w(.)(t)) — (Y0, &) g

%grol ; = 8—y(;Jo;fo)f(yoawm06)+
. '
<D§<P(?Jo;fo);w(-)(0)>L2(R7ﬂ)7L2(R7H) = a—y(ymfo)f(yo;wm a)+

/gw(yo, €0) (Xor (90 €0(0)) £ (50, o, @) = X1 (0, €0 () f (0, w0, @) ™ ) dp.

From this and DPP (5.5) we get (5.4); (subsolution) in a standard way.

Now we prove (5.4)y (supersolution). Let (yo,&) be a point of minimum for
V' — ¢ with respect to O. We follow the proof of the single play case. Take ¢ > 0 and
t > 0 and, via DPP, find a measurable control « such that an inequality as (4.8)
holds (with suitable modifications concerning the presence of the internal variables).
Using (2.12), we have

o (0 w0 (1)) = ol &) = [ [0(0(5), wi(s)
+/73D5¢(y(5)’w(-)(s))(P)wp(S)du]ds,

We approximate f(y(s),w(s),a(s)), I(y(s),w(s),a(s)), Dep(y(s), w)(s)) respec-
tively by f(yo, wo, @(s)), L(yo, wo, a(s)), Dep(yo, &) The committed error is infinites-
imal as s goes to zero, independently on « (and of course on ¢ and t); in particular
note that, by the property of Play (see (2.7)), we have |w()(s) — &ollremu <

Joly(r)ldr < Ms. For p-a.e. p € R, there exists s, > 0 such that for every
0 < s < s,, we have (compare with (4.10))

Do, €0) () (9(5): 10,(5)) £ oo, (5))* 56)
> —De(yo,£0) ™ () Xor (405 S0(0)) f (Yo, wo, (), '
and similarly for the term with x,. The problem here, is that the amplitude of
the s-interval where (5.6) holds depends on p. However, we define the subsets C,
Cy C R as for (5.2), and note that if, for some s, p & C; \ Cy, then for that s (5.6)
holds. Moreover, as in (5.2), by Lemma 5.3 below, u(C;\ Cy) tends to zero as s goes
to zero; finally, if p € Cy, then the right-hand side of (5.6) is zero. Hence we have

/ot /R Deo(yo, £0) (0) Xpr (y(5), we()) f (yo, wo, (s)) " dpds

= /0 /CS\CO Dep(Yo, £0)(P)Xpr (y(5), wp(5)) f (yo, wo, au(s)) T dpds

+ /Ot /72 —Dgw(yo, ého)i(p)xﬂr (y07 fo(p))f(yo, Wy, 04(8))+Clluds7

and the first term of the right-hand side, when divided by ¢, is still infinitesimal for
t — 0. We then conclude, in a standard way. O

Also in this case we can get a “Neumann-type boundary condition”. For every
(y,€) € O, let us define the sets
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Rive = {p € RIEW) —y=—p},  Rig={peRl() ~y =0}

Note that if p € 8Réy,£) (with ¢ € {{,r}) ,then (y,&(p)) € 09,. Moreover, we define
Riye) == Riye U Rl(yyg). Similar argumentations as in the previous section lead to
the following “boundary condition in the viscosity sense”

if p (R(y,g)) =0 MNV(y,&§)+H(y,&V,,0) =0; otherwise:
i ({p € Ry, g [sien(€(p) — y)DeV (4. €)(p) = 0}) > 0 (5.7
or 1 ({p € R, ¢ [sign(€(p) — y) DV (5.€) () = 0}) > 0

where sign(z) = 1if z > 0, sign(z) = —1 if < 0. The previous boundary condition

is “strict” and has to be understood in the following viscosity sense (in the following
the first implication is for subsolution and the second one for supersoltion and both
hold if M(R(y,ﬁ)) > 0)

( AV + H(y,£,V,,0) >0
=pu({pe Rfy,a)‘sign(f(p) —y)DeV (y,6)(p) < 0}) >0

or 11 ({p € Rl ¢ |sien(&(p) — 1) DV (4, €)(p) < 0}) >0,
AV HE V. 0) < 0

= u({p € Ry, ¢ lsign(€(p) — 1) DeV(5,)(p) > 0}) > 0
\ or fi ({p S Rl(y,e‘sign(f(p) —y)DeV(y,§)(p) > 0}) > 0.

(5.8)

A

However, as we already said in the Introduction, such “boundary formulation” is
not enough for usual comparison technique; we still need to use the discontinuous
Hamilton-Jacobi equation.

Theorem 5.2 If R C|0,+o0] is bounded and has p-finite measure, then the value
function V' is the unique bounded and uniformly continuous (with respect to IR x
L*(R, 1)) viscosity solution of the Hamilton-Jacobi equation (5.3).

Proof. We are going to prove a comparison result for every bounded and uniformly
continuous subsolution v and supersolution v.

As usual, by contradiction, let us suppose that there exists (7,£) € O such
that uw(7,&) —v(7,§) =n > 0. Let g : IR — IR be a C! function such that g > 0
and ¢(y) = |y| for |y| sufficiently large (and so g has bounded derivative). Let S be
the strictly elliptic symmetric matrix as in (4.16). For every (y;,&) € O, i = 1,2,
we define

) = 221 = [ S =12, 61(0) = €2(0)) - (1 = 2 61(p) — )t
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Note that there exist positive constants C;, Cy such that

Ci(lyr — w2l + 16 — &Ml7) < w1, &) — (126)]| < Collyr — 2l + 161 — &172)-

For (yo, &) fixed, the map (y,&) — ||(y,€) — (v, &)|| is Fréchet differentiable.
Take 3 > 0 and § > 0 and any ¢; € L*(R,p) and a; € IR, i = 1,2, with
las|, [|[¥s||z2 < J, and define a function ¢ on O x O

¢ﬂ(y1, &), (12,6)) = u(ys, &) — v, &) — Blalyr) + 9(12))

_ |(yl>§1)2_6(y2’€2)|| —ary1 — agys — (1, &) — (1, &a).

If § and ¢ are sufficiently small, we have

6(7.9.7.9) = 5. (5.9)
Note that, if (y,&) € O, then

I€ll2 < Jylp(R)Z + [lid, ||z,

where id, is the identity function on R. Hence, for |y;| sufficiently large and for
5(1(R)2 + 1) < 3, denoting by M a bound on u and v, we have

(@b&x@%@DSu@b&m—wmﬁﬂ
( ( 1) +9(y2)) — aryr — a2l — (1, 61) — (12, 6) < (5.10)
Blyil + lyal) + o ((W(R)2 + 1) (|ya| + lya| + 2[lid,|[z2) < 0

Note that (5.9), (5.10) hold independently on small § (and on |a;|, |||z < 9).
Moreover noting that for (y,&) € O, |y| large implies ||&||2 large, we can then
assume that (5.10) holds out of a convex closed bounded set O' x O independent on
small 0. Hence, see Stegall [21], let us take |a;| < § and ||¢);]|z2 < ¢ such that ¢ has
a maximum in O’ x O" and thus on O x O. Let (¢2,£9), (y5,£5) be such a maximum
point. By the uniform continuity of « and v, we have

0

Let us concentrate on the subsolution u. As usual, we have that

(0. = u(0.€) ~ Boly) — avy — (&) — WD LEDI (o) )

—0 asd—0

has a maximum in (¢, &) with respect to O and ¢ is an admissible test function.
Let us take € > 0 and define

{pER 3 .€%)

sign(&](p) — ) De(u, 9) (p) < —€} -
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By the definition of (, (4.13) and (4.16), we have R} C {p € R’("y(; £9) ltr(p)] > 5}.
1°51

For the particular choice of 11, we have

n({p € Rigaplvao)l 2 ¢}) < o

with C. depending on . Hence, for for constants C. > 0 and C' > 0, we have,

(Deg(?, €)™ (p)dp < en(R) + /R Dep(yl, €9) (p)dp
(3 .&3) s

< eu(R) +/{

[¥1]>e

} Dego(y), £)(p)dp < p(R)e

eR"
PER s ed)

C.
+ (17— w316 + 18— E11.28"%) + O,

and the first term of the last row is infinitesimal when € > 0 is fixed and § — 0.
We obtain similar conclusions for the other discontinuous term in H_ and for
the similar analysis replacing u by v. Note that the finite dimensional part of H (i.e.
the part containing the derivative with respect to y) can be treated in the usual way.
Taking first small ¢ and small 4 and finally small 9, using the definition of sub-
and supersolution for u and v in (y?, &) and (y3,£3) respectively, and denoting by
o(+,+), o-(+) infinitesimal functions of their argument, we have

rnai(¢ <u(y?, &) —v(y3,€9) — a1y — axyy — (W1, &) — (ahy, £3)
< S(H' = H ) +0(0) <o, ) +02(9) < g

which is a contradiction to (5.9). O

Lemma 5.3 Let Q C IRY be of finite . measure and consider f, — f p-a.e. in Q
and a, — a in IR. Then

,u({xEan(x):an, f(m)%a}) —0 asn— +oo.
Proof. 1t easily follows from the finiteness of the measure of 2 and the up-
persemicontinuity of . O

6 Remarks and extensions.

Remarks 6.1. The result of Section 4 is obviously a special case of the one in Sec-
tion 5. Indeed, it is enough to take ;1 = J,, the Dirac mass centered in p. Moreover,
we can also consider the case of a finite sum of Plays which corresponds to p given by
a finite sum of Dirac masses. In this case we get a Neumann-type boundary problem
in a finite dimensional set with corners. In particular the set is a sort of indefi-
nite parallelepiped. The Neumann boundary condition has to be read min; V,,, <0
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for subsolution (respectively max; V,,, > 0 for supersolution), where the min (re-
spectively the max) is taken over all the derivative of V' with respect to the the
outward vectors relative to each face occurring as boundary. For such a formulation
of Neumann conditions see Dupuis-Ishii [11].

Remarks 6.2. (Stop). It is quite obvious that, with suitable easy modifications, the
results of Section 4 and 5 also hold in the case when we replace the Play operator
with the Stop operator (see for instance Visintin [22] for the definition).

Remarks 6.3. (Generalized play). We can also replace the Play with a so-called gen-
eralized play (see for instance Visintin [22]). It is constructed as the Play, replacing
the two straight lines w = u + p and w = u — p by two strictly increasing Lipschitz
continuous curves w = y,(u), w = 7,(u), where y,(u) > 7,(u) for all w € IR. The
results of Sections 2, 3 and 4 easily apply to this case. In particular an equation as
(2.6) holds. We have to be careful to the fact that the matrix S defined in (4.16) is
not more constant, but it depends on the point. However, under general regularity
assumptions on the two curves, such dependence is Lipschitz and smooth. We can
then apply again classical results (see for instance Ishii [12]).

Remarks 6.4. (Generalized Prandtl-Ishlinskii operator). This operator is a super-
position of a (possibly infinite) number of generalized plays (see for instance Visintin
[22]). We are given a set R of indices (which we call again p but they are not the half
length of intervals as before) and a measure p on R. For every p we have a couple
of curves as in the previous remark, which we call v, and ~,,. The output is given
by the integral with respect to p of the outputs of the generalized plays labeled by
p. Under rather general hypotheses on the family of couple of curves (such as for
instance “uniform regularity” of the curves with respect the indices) we can perform
an analysis as in Section 5 and obtain similar results.
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