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Abstract� We study the Dirichlet problem for the parabolic equation

ut � �um� m � �

in a bounded� non�cylindrical and non�smooth domain � � IRN��� N � �� Existence and boundary

regularity results are established� We introduce a notion of parabolic modulus of left�lower �or left�

upper	 semicontinuity at the points of the lateral boundary manifold and show that the upper �or lower	

H
older condition on it plays a crucial role for the boundary continuity of the constructed solution� The

H
older exponent �

�
is critical as in the classical theory of the one�dimensional heat equation ut � uxx�
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� Introduction

Consider the equation

ut � �u
m� �����

where u � u�x� t�� x � �x�� � � � � xN � � IRN � N � �� t � IR��� �
NX
i��

����x�i �m � �� We study

the Dirichlet problem �DP� for equation ����� in a bounded domain � � IRN��� It can be

stated as follows	 given any continuous function on the parabolic boundary P� of �
 to �nd a

continuous extension of this function to the closure of � which satis�es ����� in �nP��

The classical DP for the heat equation �m � � in ������ is included in our problem� Another

direction
 this work �ts in with
 is the modern theory of nonlinear degenerate and singular

parabolic equations� If m � �
 the equation ����� is a well�known porous medium equation


describing the 
ow of a compressible Newtonian 
uid through a porous medium ����
 while the

singular case �� � m � �� arises �for example� in plasma physics ���� A particular motivation

for this work arises from the problem about the evolution of interfaces in problems for porous

medium equation� Special interest concerns the cases when support of the initial data contains

a corner or cusp singularity at some points� What about the movement of these kinds of

singularities along the interface� To solve this problem
 it is important
 at the �rst stage
 to

develop general theory of boundary�value problems in non�cylindrical domains with boundary

surfaces which has the same kind of behaviour as the interface� In many cases this may be

non�smooth and characteristic �see e�g� ������� Another motivation arises from the problem

about the formation of singularities in Stefan problem �����

We make now precise the meaning of solution to DP� Let � be bounded open subset of

IRN��� N � �� Let the boundary �� of � consists of the closure of a domain B� lying on t � �


a domain D� lying on t � T � ����� and a �not necessarily connected� manifold S� lying in

the strip � � t � T � Denote

���� � f�x� t� � � 	 t � �g

and assume that ��t� �� � for t � ��� T �� The set P� � B�
S
S� is called a parabolic boundary

of �� Furthermore
 the class of domains with described structure will be denoted by D��T �



�

Let � � D��T is given and � is an arbitrary continous nonnegative function de�ned on

P�� DP consists in �nding a solution to equation ����� in �
S
D� satisfying initial�boundary

condition

u � � on P� �����

Obviously
 in general the equation ����� degenerates at points �x� t�
 where u � � and we

cannot expect the considered problem to have classical solution� If m �� �
 we shall follow the

following notion of weak solution	

De�nition ��� We shall say that the function u�x� t� is a solution of DP �����
 �����
 if

�a� u is nonnegative and continuous in �
 satisfying ������

�b� for any t�� t� such that � � t� � t� � T and for any domain �� � Dt��t� such that

�� � �
S
D� and �B��� �D��� S�� being su�ciently smooth manifolds
 the following

integral identity holds

Z

D��

ufdx �

Z

B��

ufdx�

Z

��

�uft � um�f�dxdt�
Z

S��

um
�f

��
dxdt� �����

where f � C���
x�t ���� is an arbitrary function that equals to zero on S�� and � is the outward�

directed normal vector to ���t� at �x� t� � S��� If m � �
 however
 the solution is understood

in the classical sence�

After Wiener published his famous work ����
 where he accomplished the long line investi�

gations on the DP for Laplace equation in general domains
 the DP for the heat equation was

continously under the interest of many mathematicians in this century� The �nal result
 namely

the necessary and su�cient condition which is a quasigeometric characterization for a boundary

point of an arbitrary bounded open subset of IRN�� to be regular for the heat equation has been

established in ����
 necessity being established earlier in ����� Another necessary and su�cient

condition had earlier been given in �����

However
 it should be mentioned that Wiener�s criterion does not explicitly resolve the

natural analytic question
 which we impose in this paper for more general nonlinear equation

������ Namely
 what about the relation between the solvability of the DP or regulartiy of the



�

boundary points and local modulus of continuity of the boundary manifolds� The importance

of this question arises in view of applications which we mentioned earlier� Almost complete

answer to this question was given by Petrowsky ���� in the case of one�dimensional linear

heat equation ut � uxx� Results concerning one�dimensional reaction�di�usion equation ut �

a�um�xx � bu�� a � ��m � �� b � IR� 	 � � were presented in recent papers by the author ��


��� Primarily applying the results of ���
 a full description of the evolution of interfaces and of

the local solution near the interface for all relevant values of parameters is presented in another

recent paper ���� However
 the one�dimensional case is a very special case and the results which

we present here are new even in the case of the classical heat equation�

The DP for the porous medium equation in cylindrical domain with smooth boundary was

investigated in ��
���� At the moment there is a complete well established theory of the boundary

value problems in cylindrical domains for general second order nonlinear degenerate parabolic

equations �which includes as a particular case ����� and ����� below� due to ��
�
�
��
��
��
��

etc�� �see the review article ������

The approach used in this paper may be well expressed by the citation from the classical

work ���� on the DP for Laplace equation� As it was pointed out by Lebesgue and indepen�

dently by Wiener �the Dirichlet problem divides itself into two parts
 the �rst of which is

the determination of a harmonic function corresponding to certain boundary conditions
 while

the second is the investigation of the behaviour of this function in the neighbourhood of the

boundary�� By using an approximation of both � and �
 we also construct a limit solution

as a limit of a sequence of classical solutions in regular domains� We then prove a boundary

regularity by using barriers and a limiting process�

The main result of this paper on the existence and boundary continuity of the solution to

DP is formulated in Theorem ��� �see also Corollary ���� of the Section �� The important

new element is that we introduce in this paper a notion of parabolic modulus of left�lower �or

left�upper� semicontinuity of the lateral boundary manifold at the given point �De�nition ���


Section ��� Our main assumption �Assumption A and �����
 Section �� consists in upper �or

lower� H�older condition on the parabolic modulus of left�lower �or left�upper� semincontinuity
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at each point of the lateral boundary manifold� Moreover
 as in the classical theory of one�

dimensional heat equation
 the critical H�older exponent is equal to �
� � This assumption relates

to the parabolic nature of the equation ����� and does not depend on m� At this point
 it

should be mentioned that equation ����� has no essential importance for our results
 rather it

is a suitable model example for three di�erent class of parabolic equations
 namely singular

�� � m � ��
 degenerate �m � �� and uniform �m � �� parabolic equations� For example


by using our techniques the same results may be proved for the following reaction�di�usion�

convection equation

ut � a�um � b	 
u� � cu�� �����

where a�m� 
� 	 � �� b� c � IR �see Remark ���
 Section ��� We believe that the same result

is true for more general second order parabolic equations� However
 in this paper we restrict

ourselves to equation �����
 in order to make the presentation of our barrier method for proving

the boundary regularity less technical� It should also be mentioned that since our main result

on the boundary regularity of a weak solution to equation ����� is of the local nature
 similar

result is true for an arbitrary bounded domain � � IRN �

It should also be mentioned that in this paper we restrict ourselves only with the existence

and boundary regularity problems� We address issues regarding uniqueness of the constructed

solution and related comparison theorems in a subsequent paper� The organisation of the paper

is as follows	 In Section � we outline the main result� In Section � we prove the main result

�Theorem ���� from Section ��

� Statement of the Main Result

We shall use the usual notation	

z � �x� t� � �x�� � � � xN � t� � IRN��� N � �� x � �x�� x� � �x�� x�� � � � � xN � � IRN � x �

�x�� � � � � xN � � IRN��� jxj� �
NX
i��

jxij
�� jxj� �

NX
i��

jxij
�� For a point z � �x� t� � IRN�� we denote

by Q�z� �� an open ball in IRN�� of radius � � � and with center in z�

Let � � D��T be a given domain� Assume that for arbitrary point z� � �x
�� t�� � S� �or

z� � �x
�� �� � S�� there exists � � � and a conitnuous function � such that
 after a suitable
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rotation of x�axes
 we have

S�
�

Q�z�� �� � fz � Q�z�� �� 	 x� � ��x� t�g�

Suppose also that

sign �x� � ��x� t�� � const for z � Q�z�� ��
�
�

Furthermore
 we denote this constant by d�z��� Obviously
 by introducing a new variable

x
�

� � �x�
 if necessary
 we could have supposed that d�z�� � �� However
 we describe the

conditions for both cases d�z�� � �� seperately
 in order to distinguish these boundary points


which are similar to the left and right boundary points in the one�dimensional case�

Let z� � �x
�� t�� � S� be a given boundary point� For an arbitrary su�ciently small � � �


consider a parabolic domain

P ��� � f�x� t� 	 jx� x�j � 
��� � t� t��
�
� � t� � � � t � t�g�

where 
� � � is an arbitrary �xed number�

De�nition ��� Let

����� � max���x�� t��� ��x� t� 	 �x� t� � P �����

����� � min���x�� t��� ��x� t� 	 �x� t� � P �����

The function ����� �respectively ������ is called the parabolic modulus of left�lower �re�

spectively left�upper� semicontinuity of the function � at the point �x�� t���

For su�uciently small � � � these functions are well�de�ned and converge to zero as � � ��

Our main assumption on the behaviour of the function � near z� is as follows	

Assumption A� There exists a function F ��� which is de�ned for all positive su�ciently small

�� F is positive with F ��� � � as � � � and if d�z�� � � �respectively d�z�� � ��� then

����� � �
�
�F ��� �����

�respectively ����� � ��
�
�F ����
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We prove in the next section that assumptionA is su�cient for the regularity of the boundary

point z�� Namely
 the constructed limit solution takes the boundary value ��z�� at the point

z � z� continuously in �� It is well�known that in the case of the classical heat equation �m � �

in ������ boundary point z� � �x
�� �� � S� is always regular �see e�g� ���
 p� ������ Hence
 in

this case the assumption A imposed on every boundary point z� � S� is su�cient for solvability

of the DP �see Corollary ��� below�� It may easily be proved that the solution in this particular

case is a unique classical solution�

However
 in general to provide the regularity of the boundary point z� � �x
�� �� � S� we

need another assumption� Denote x� � ��x� 
 ��x� ���

De�nition ��� Let

��� ��� � max���x��� ��x� 	 jx� x�j � ��

��� ��� � min���x��� ��x� 	 jx� x�j � ��

The function ��� ��� �respectively �
�
� ���� is called the modulus of lower �respectively upper�

semicontinuity of the function x� � ��x� at the point x � x��

Assumption B� There exists a function F���� which is de�ned for all positive su�ciently small

��F� is positive with F���� � � as � � � and if d�z�� � � �respectively d�z�� � ��� then

��� ��� � �F���� �����

�respectively ��� ��� � ��F�����

It may easily be veri�ed that if we rede�ne � as x� � ��x� 
 ��x� t�� then assumption B

is a consequence of the assumption A at the boundary point z� � �x�� t�� � S�� However


assumption B has a sense for the boundary points z� � �x�� �� � S� on the bottom of the

lateral boundary manifold�

We prove in the next section that assumption B is su�cient for the regularity of the boundary

point z� � �x
�� �� � S�� Namely
 the constructed limit solution takes the boundary value ��z��

at the point z � z� continuously in ��

Thus our main theorem reads	
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Theorem ��� DP �����
 ����� is solvable in a domain � which satis�es the assumption A at

every point z� � S� and assumption B at every point z� � �x
�� �� � S��

Corollary ��� There exists a unique classical solution to DP �����
 ����� with m � �
 in a

domain � which satis�es the assumption A at every point z� � S��

It should be noted that our main result about the boundary regularity is of local nature

and
 consequently
 an existence of di�erent function F ��� �or F����� for each boundary point

in respective assumption A �or B� is allowed� It may be easily observed that assumptions A

and B coincide in the case of cylindrical domain ��

� Proof of the Main Result

Step �� Construction of the limit solution�

Consider a sequence of domains �n � D��T � n � �� �� � � � with S�n� �B�n and �D�n

being su�ciently smooth manifolds� Assume that fS�ng� f�B�ng and f�D�ng approximate

S�� �B� and �D� respectively� Assume also that for arbitrary compact subset ���� of �
S
D�


there exists a number n� which depends on the distance between �
��� and P�
 such that

���� � �n
S
D�n for n � n�� Let � be a nonnegative and continuous function in IR

N�� which

coincides with � on P�� This continuation is always possible� Next we take �n � ��n
��� n �

�� �� � � � and consider a Dirichlet Problem �����
 �����
 in �n
 with � replaced by �n� This is

a nondegenerate parabolic problem and classical theory ����
��
���� imply the existence of a

unique C��� solution� From maximum principle it follows that

n�� � un�x� t� �M in �n� n � �� �� � � � �����

where M is an upper bound for � and �n� n � �� �� � � � in some compact which contains � and

�n� n � �� �� � � �� Next we take a sequence of compact subsets �
�k� of �

S
D� such that

� �
��
k��

��k����k� � ��k���� k � �� �� � � � �����

By our construction
 for each �xed k
 there exists a number nk such that �
�k� � �n

S
D�n

for n � nk� It is a well�known result of the modern theory of degenerate parabolic equations



�

�which includes ����� as a model example� that the sequence of uniformly bounded solutions

un� n � nk to equation ��� is uniformly equicontinuous in a �xed compact �
�k� �see e�g� ��


Theorem ��
 ���
 Theorem �  Proposition ���� From �����
 by diagonalization argument and

the Arzela�Ascoli theorem
 we may �nd a subsequence n
�

and a limit function !u � C��
�

D��

such that un� � !u as n� � ��
 pointwise in �
S
D� and the convergence is uniform on

compact subsets of �
S
D�� Now consider a function u�x� t� such that u�x� t� � !u�x� t� for

�x� t� � �
S
D�� u�x� t� � � for �x� t� � P�� Obviously the function u satis�es the integral

identity ������ It is also continuous in B�
 since above mentioned result on the equicontinuity

of the sequence un is true up to some neighbourhood of every point z � B� ���
 Theorem �����

Hence
 the constructed function u is a solution of the Dirichlet Problem �����
 �����
 if it is

continuous in P�nB��

Step �� Boundary regularity� Let z� � �x�� t�� � S�� We shall prove that z� is regular


namely that

lim u�z� � ��z�� as z � z�� z � �
�

D� �����

Without loss of generality assume that d�z�� � �� First
 assume that t� � T� If � � ��z�� �

M 
 we shall prove that for arbitrary su�ciently small 
 � � the following two inequalities are

valid

lim inf u�z� � ��z��� 
 as z � z�� z � �
�

D� �����

lim sup u�z� � ��z�� � 
 as z � z�� z � �
�

D� �����

Since 
 � � is arbitrary
 from ����� and �����
 ����� follows� If ��z�� � � �or respectively

��z�� � M�
 however
 then it is su�cient to prove ����� �respectively ������
 since �����

�respectively ������ follows directly from the fact that � � u � M in �� Let ��z�� � �� Take

an arbitrary 
 � ��� ��z��� and prove ������ For arbitrary � � � consider a parabolic domain

P ������ We assume that S� in some neighbourhood of z� is represented by the function

x� � ��x� t�� �x� t� � P ����� � with some �� � �
 where � satis�es assumption A from Section ��

We also assume that S�n in some neighbourhood of its point zn � �x
�n�
� � x�� T � is represented

by the function x� � �n�x� t�� �x� t� � P ����� �
 where f�ng is a sequence of su�ciently smooth



��

functions and �n � � as n� ��
 uniformly in P ����� �� We can also asssume that �n satis�es

assumption A from Section � uniformly with respect to n� Namely
 the parabolic modulus of

left�lower semicointinuity of the function �n at the point �x
�� T � satis�es ����� uniformly with

respect to n�

For arbitrary � � �
 consider a function

wn�x� t� � f��� 
M����h����
��

where

� � h��� � �n�x
�� T �� x� � ��T � t� 
��� jx� x�j���

M� � ��z��� 
� h��� �M��
��F ������

M� � ��M��M��
�
� � �����M� � ��z��� 
���

and � is an arbitrary number such that � � m��� If m � �
 then we assume also that

� � �m� ����� Then we set

Vn � f�x� t� 	 �n�x� t� � x� � ��n�x� t�� �x� t� � P �����g�

��n�x� t� � �n�x� t� � �� �M���
��F ������ ��T � t� 
��� jx� x�j���

In the next lemma we clear the structure of Vn�

Lemma ��� If � � � is chosen such that F ����� � �� �M��
�� then the parabolic boundary

of Vn consists of two boundary surfaces x� � �n�x� t� and x� � ��n�x� t� �see Figure ���

Proof� We have

��n�x� t�� �n�x� t� � ���� � t� T � 
��� jx� x�j��� �� � �� �M���
��F �����

and �� � ��� �
��� if � is chosen as in Lemma ���� Then it easily follows that Vn � V �

n 
 where

V �

n � f�x� t� 	 �n�x� t� � x� � ��n�x� t�� �x� t� � P ����g�

Obviously
 the assertion of lemma is true for V�� Lemma is proved�

In Figure � the domain Vn is described in the particular case when �n�x� t� 
 �� N � �� x�� � ��



��

Figure �� The domain Vn in a particular case when �n � �� N � �� x�� � ��

In general
 the structure of the domain Vn coincides with that given in Figure � if we change

the variable x� with the new one x
�

� � x� � �n�x� t�� More precisely
 Vn is a domain in IR
N��


lying in the strip T��� � t � T 
 its boundary consists of the single point lying on ft � T���g
 a

domainDVn lying on ft � Tg and a connected manifold SVn lying in the strip fT��� � t � Tg�

Boundary manifold SVn consists of two boundary surfaces x� � �n�x� t� and x� � ��n�x� t��

Our purpose is to estimate un in Vn via the barrier function

!wn � max �wn� ��n�
����

Obviously


!wn � ��n�
�� for x� � �n�x� t�� !wn � wn for x� � �n�x� t��

where

�n�x� t� � ��� ��M�n�
�

�
� �h��� � �n�x

�� T �� ��T � t� 
��� jx� x�j���

In the next lemma we estimate un via the barrier function !wn on the parabolic boundary of

Vn� For that the special structure of Vn plays an important role� Namely
 our barrier function



��

takes the value ��n���
 which is less than a minimal value of un
 on the part of the parabolic

boundary of Vn which lies in �n� Hence it is enough to compare un and !wn on the part of the

lateral boundary of �n
 which may easily be done in view of boundary condition for un�

Lemma ��� If � � � is chosen large enough
 then

un � !wn on SVn� �����

Proof� From ����� it follows that for � � � being large enough

�n�x� t�� ��n�x� t� � � for �x� t� � P ������

and hence

!wn � ��n�
�� for x� � ��n�x� t�� �x� t� � P ������ �����

Without loss of generality
 assume that n � M��
� � From ����� it also follows that

wn � f�h��� � �n�x
�� T �� �n�x� t�� ��T � t� 
��� jx� x�j��� �

f��M��
� � ��h���� �M� for x� � �n�x� t�� �x� t� � P ������

and hence

!wn �M� for x� � �n�x� t�� �x� t� � P ����� �����

We can also easily estimate un on SVn� To estimate unjx���n�x�t�
 �rst we choose n� � n��
�

so large that for n � n�

�jx���n�x�t� � �jx����x�t� �



�
for �x� t� � P ����� ��

This is possible in view of uniform convergence of f�ng to � in P ����� �� Then we choose

� � � large enough in order that

�jx����x�t� � ��z���



�
for �x� t� � P ������

If � and n are chosen like this
 then we have

unjx���n�x�t� � ��z���



�
for �x� t� � P ������ �����



��

Thus
 from ����� and ����� � �����
 ����� follows� Lemma is proved�

Lemma ��� If � � � is chosen large enough
 then at the points of Vn with x� � �n�x� t�
 we

have

Lwn 
 wnt ��w
m
n � � ������

Proof At the points of Vn with x� � �n�x� t�
 we have

Lwn � �h������M
�
�

� f
���
� � h������m��m � ��M

�
�

� f
�m��
� �

�� � ���
�	� jx� x�j�� � ��h������m
��� �N � ��M
�
�

� f
�m��
� � ������

If m � � then from ������ and ����� it follows that

Lwn � h������M
�
�

� f
���
� S� ������

S �M�F ��
����m��m� ��M

�
�

� f
��m�����

� � �M�m
��� �N � ��F ������

fm�� �M�F ��
����m��m� ��M

�
�

� M
m��� �

�

� � �M�m
��� �N � ��Mm��
� F ������

Hence
 if � is chosen large enough
 from ������
 ������ follows� If � � m � �
 then from

������ and ����� we derive that

Lwn � h������M
�
�

� f
�m��
� S� ������

S �M�F ��
���f��m �m��m� ��M

�
�

� f
�

�
� � �M�m
��� �N � ���

F ����� �M�F ��
���M��m

� �m��m� ��M
�
�

� M
�

�
�

� � �M�m
��� �N � ��F ������

If � is chosen large enough
 from ������
 ������ again follows� Lemma is proved�

Thus !wn is the maximum of two smooth subsolutions of the equation ����� in Vn� By the

standard maximum principle
 from Lemma ���
 ����� and ������ we easily derive that

un � !wn in V n

In the limit as n� � ��
 we have

u � !w in V � ������

where



��

!w � max�w� ��� in V

w�x� t� � f�h��� � ��x�� T �� x� � ��T � t� 
��� jx� x�j����

V � f�x� t� 	 ��x� t� � x� � ���x� t�� jx � x�j � 
���� � t� T �
�
� � T � �� � t � Tg�

���x� t� � ��x� t� � �� �M���
��F ������ ��T � t� 
��� jx� x�j���

Obviously
 we have

lim
z � z�� z � V

!w � lim
z � z�� z � �

!w � ��z��� 


Hence
 from ������
 ����� follows�

Assume now that � � ��z�� � M and prove ����� for an arbitrary 
 � � such that ��z���
 �

M � For arbitrary � � � consider a function

wn�x� t� � f���� 
 �M
�
� � �h������M

�
�

	 �M
�
� ����

where � is de�ned as before and

h��� �M
�
��F ������M	 � ��z�� � 
�

M� � ��z�� � 
���M
 � �M
�
� �M

�
�

	 ��M
�
�

	 �M
�
�

� �
���

and � is an arbitrary number such that � � � � min ���m���� Similarly
 consider the domains

Vn �with M� replaced by M
 in the expression of ��n�x� t� and ��� and V �

n �see Lemma �����

We then construct an upper barrier function as follows	

!wn � min �wn�M��

Obviously


!wn �M for x� � �n�x� t�� !wn � wn for x� � �n�x� t��

where

�n�x� t� � h��� � �n�x
�� T �� ��T � t� 
��� jx� x�j���



��

Next
 we prove an analog of the Lemma ����

Lemma ��� If � � � is chosen large enough
 then

un � !wn on SV n� ������

Proof� From ����� it follows that for � � � being large enough

�n�x� t�� ��n�x� t� � � for �x� t� � P ������

and hence

!wn �M for x� � ��n�x� t�� �x� t� � P ������ ������

From ����� it also follows that

wn � f��h��� � �n�x
�� T �� �n�x� t�� ��T � t� 
��� jx� x�j���

� f���M
��

 � ��h���� �M� for x� � �n�x� t�� �x� t� � P ������

and hence

!wn �M� for x� � �n�x� t��� �x� t� � P ������ ������

Similarly
 as in �����
 we can establish that if � � � is large enough and n � n��
� then

unjx���n�x�t� � ��z�� �



�
for �x� t� � P ������ ������

Thus
 from ����� and ������ � ������
 ������ follows� Lemma is proved�

The next lemma is analog of the Lemma ����

Lemma ��� If � � � is chosen large enough
 then at the points of Vn with x� � �n�x� t�
 we

have

Lwn � �� ������

Proof� By using ������
 at the points of Vn with x� � �n�x� t�
 we have

Lwn � ��h�������M
�
� �M

�
�

	 �f
���
�

� �m��� � �m�h������

�M
�
� �M

�
�

	 �
�f

�m��
�

� �� � ���
�	� jx� x�j��� ��h������m
��� �

�N � ���M
�
� �M

�
�

	 �f
�m��
�

� � h�������M
�
� �M

�
�

	 �S� ������



��

S � �M
M
���
�

� F ����� �m��� �m��M
�
� �M

�
�

	 �M
�m��
� � �M
m
��� �N � ��M

�m��
�

� F ������

Hence
 if � is chosen large enough
 from ������
 ������ follows� Lemma is proved�

Thus !wn is the minimum of two smooth supersolutions of the equation ��� in Vn� By the

standard maximum principle
 from Lemma ���
 ������ and ������ we easily derive that

un � !wn in V n�

In the limit as n
�

��
 we have

u � !w in V � ������

where

!w � min�w�M� in V

w�x� t� � f��h��� � ��x�� T �� x� � ��T � t� 
��� jx� x�j���

and the domain V being de�ned as in ������� Obviously
 we have

lim
z � z�� z � V

!w � lim
z � z�� z � �

!w � ��z�� � 


Hence
 from ������
 ����� follows� Thus we have proved ����� for z� � �x
�� T � � S� when

d�z�� � �� The proof is similar when d�z�� � ���

Suppose now that z� � �x
�� t�� � S� with t� � T � Clearly
 the same proof given in the case

t� � T 
 implies the regularity of z� regarding subdomain �� � �
T
ft � t�g� Namely
 ����� is

valid for z � ��� Hence
 it is enough to prove ����� for z � ����� � �
T
ft � t�g� The proof

of this latter
 however
 is equivalent to the proof of regularity of the point z� � �x
�� �� � S�

under the assumption B� That easily follows from the fact that assumption B �with rede�ned

��x� 
 ��x� t��� is a consequence of the assumption A� Thus
 to complete the proof
 it remains

just to prove ����� for z� � �x
�� �� � S��

The proof is similar to that given above� Without loss of generality assume again that

d�z�� � �� Let ��z�� � �� Take an arbitrary 
 � ��� ��z��� and prove ������ For arbitrary � � �

consider a cylinder



��

R��� �� � f�x� t� 	 jx� x�j � ���� � � t � �g�

We assume that S� in some neighbourhood of z� is represented by the continuous function

x� � ��x� t�� �x� t� � R���� ��� with some �� � �� �� � �� where ��x� satis�es assumption

B �see ������ from Section �� We also assume that S�n in some neighbourhood of its point

An � �x
�n�
� � x�� �� is represented by the function x� � �n�x� t�� �x� t� � R���� ���
 where f�ng is

a sequence of su�ciently smooth functions and �n � � as n��
 uniformly in R���� ���� We

can also assume that �n satis�es ����� uniformly with respect to n�

For arbitrary � � �� consider a function

wn�x� t� � f��� 
M����h����
��

where

� � h��� � �n�x
�� �� � x� � ��t� jx� x�j���

M� � ��z��� 
� h��� �M��
��F���

����

M� � ��z��� 
���M� � ���M��M��
�
� � ����

and � is an arbitrary number such that � � m��� If m � �
 then we assume also that

� � �m� ����� Then we set

Vn � f�x� t� 	 �n�x� t� � x� � ��n�x� t�� �x� t� � R��� ��g

��n�x� t� � �n�x
�� �� � ��� ��M�n�

�
�
� �h��� � ��t� jx� x�j���

where � � ���� � ��� �
�

�� �
�

� min���� ���� �� � ��
��F���

��� and �� � ����� � ��� ��� is chosen

such that

�n�x� ��� �n�x� t� � ���F���
��� for �x� t� � R���� ��� ������

and for n � n����� The existence of �� and n� follow from the following proposition�

Proposition ��� For arbitrary � � �� there exists �� � ����� � ��� ��� and n� � n���� such

that ������ is valid for n � n��



��

Proof� Since f�ng converges to � uniformly in R���� ���
 for arbitrary � � �� there exists a

number n� � n���� such that for n � n�
 we have

�n�x� �� � �n�x� t� � ��x� �� � ��x� t� �
�

�
���F���

��� in R���� �o� ������

Since � is uniformly continuous in R���� ���
 there also exists a number �� � ����� � ��� ���

such that

��x� ��� ��x� t� �
�

�
���F���

��� in R���� ��� ������

From ������ and ������
 ������ follows� Proposition is proved�

Furthermore we shall always suppose that n � max �n��M
��
� �� If � � �� is chosen large

enough
 from ����� and ������ it follows that

��n�x� t�� �n�x� t� � �n�x
�� ��� �n�x� �� � �n�x� �� � �n�x� t� � h��� � ��� � ���

� �����M� � ��F���
���� �� � � for jx� x�j � ���� � � t � �

�

�

Thus
 the parabolic boundary of Vn consists of two boundary surfaces x� � �n�x� t�� x� �

��n�x� t�
 and of the closure of a domain

V �
n � f�x� �� 	 �n�x� �� � x� � ��n�x� ��� jx � x�j � ���g�

In the next lemma
 which is analog of the Lemma ���
 we estimate un via the barrier function

wn on the parabolic boundary PVn of Vn�

Lemma ��� If � � � is chosen large enough
 then

un � wn on PV n� ������

Proof� We have

wn � ��n�
�� for x� � ��n�x� t�� ������

From ����� and ������ it also follows that if � is chosen large enough
 then

wn � f�h�����n�x
�� ����n�x� t���t��jx�x�j�� � f�h�����n�x

�� ����n�x� ����n�x� ���

�n�x� t� � ���� � f���M��
� � ��h���� �M� for x� � �n�x� t�� �x� t� � R��� ��� ������



��

From ������ it also follows that

�n � f�h��� ��n�x
�� ���x���jx�x�j�� � f�h��� ��n�x

�� ����n�x� ��� �M� inV
�
n ������

We can also easily estimate un on PVn� To estimate unjx���n�x�t�
 �rst we choose n� � n��
�

so large that for n � n�

�jx���n�x�t� � �jx����x�t� �



�
for �x� t� � R���� ����

This is possible in view of uniform convergence of f�ng to � in R���� ���� Then we choose

� � � large enough and � � ���� � � small enough in order that

�jx����x�t� � ��z���



�
for �x� t� � R��� ��

and hence


unjx���n�x�t� � ��z���



�
for �x� t� � R��� �� ������

Similarly
 we can establish that if � � � is chosen large enough
 there exists a number n��
�

such that for n � n� we have

un � ��z���



�
in V

�
n ������

Thus
 from ����� and ������ � ������
 ������ follows� The lemma is proved�

The next step consists in proving that for � � � being large enough

Lwn � � in Vn�

The proof coincides with that given above in Lemma ���� As before
 by the standard

maximum principle we then easily derive that

un � wn in V n�

In the limit as n
�

��
 we have

u � w in V� ������

where

w�x� t� � f�h��� � ��x�� �� � x� � �t� �jx� x�j���



��

V � f�x� t� 	 ��x� t� � x� � ���x� t�� �x� t� � R��� ��g�

���x� t� � ��x�� �� � h��� � ��t� jx� x�j���

Obviously
 we have

lim
z � z�� z � V

w � lim
z � z�� z � �

w � ��z��� 


Hence
 from ������
 ����� follows� To complete the proof it remains to prove ����� when

� � ��z�� � M � To do that
 we consider a barrier function

wn�x� t� � f���� 
 �M
�
� � �h������M

�
�

	 �M
�
� ����

where � is de�ned as before and

h��� �M
�
��F���

����M	 � ��z�� � 
�

M� � ��z�� � 
���M
 � ��M
�
� �M

�
�

	 ��M
�
�

	 �M
�
�

� �
��

and � is an arbitrary number such that � � � � min���m���� The rest of the proof of ����� is

similar to the given proof of ����� and to that given above in the case when t� � T� therefore

we omit it� Thus we have completed the proof of the boundary continuity of the constructed

limit solution� The Theorem ��� is proved� Corollary ��� is immediate �see Section ���

Remark ��� The proof of the Theorem ��� in the case of the more general equation �����

almost completely coincides with that given above for the equation ������ The only di�erence

consists in choosing an exponent � in respective barrier functions wn� In this more general

case it depends on the parameters m�	 and 
� It should be also mentioned that if c � � and

	 � � in �����
 we have to prevent blow up
 say
 imposing a restriction on the length of the

time intervall	 T � ��� T ��� T � �M����c�	 � ���M � sup � � ��

Remark ��� One may show by standard methods that the weak solution to DP is a classical

solution in a neighbourhood of any interior point z � �
 where u�z� � ��



��
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