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Abstract. We study the Dirichlet problem for the parabolic equation
ur = Au™, m >0

in a bounded, non-cylindrical and non-smooth domain Q@ ¢ RN*! N > 2. Existence and boundary
regularity results are established. We introduce a notion of parabolic modulus of left-lower (or left-
upper) semicontinuity at the points of the lateral boundary manifold and show that the upper (or lower)
Holder condition on it plays a crucial role for the boundary continuity of the constructed solution. The
Holder exponent % is critical as in the classical theory of the one-dimensional heat equation u; = gz,
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1 Introduction

Consider the equation

wp = Au'™, (1.1)

where v = u(z,t),z = (z1,...,2n5) € RV, N > 2,t € R, A = §:82/8w?,m > 0. We study
the Dirichlet problem (DP) for equation (1.1) in a bounded dozri;in Q Cc RM*L It can be
stated as follows: given any continuous function on the parabolic boundary P2 of €2, to find a
continuous extension of this function to the closure of Q which satisfies (1.1) in Q\PS2.

The classical DP for the heat equation (m = 1 in (1.1)) is included in our problem. Another
direction, this work fits in with, is the modern theory of nonlinear degenerate and singular
parabolic equations. If m > 1, the equation (1.1) is a well-known porous medium equation,
describing the flow of a compressible Newtonian fluid through a porous medium [20], while the
singular case (0 < m < 1) arises (for example) in plasma physics [8]. A particular motivation
for this work arises from the problem about the evolution of interfaces in problems for porous
medium equation. Special interest concerns the cases when support of the initial data contains
a corner or cusp singularity at some points. What about the movement of these kinds of
singularities along the interface? To solve this problem, it is important, at the first stage, to
develop general theory of boundary-value problems in non-cylindrical domains with boundary
surfaces which has the same kind of behaviour as the interface. In many cases this may be
non-smooth and characteristic (see e.g. [1-3]). Another motivation arises from the problem
about the formation of singularities in Stefan problem [23].

We make now precise the meaning of solution to DP. Let 2 be bounded open subset of
IRNTL N > 2. Let the boundary 99 of 2 consists of the closure of a domain B lying on t = 0,
a domain D lying on ¢t =T € (0,00) and a (not necessarily connected) manifold S lying in

the strip 0 < ¢ < T'. Denote
Q7)) ={(z,t) e Q:t =17}

and assume that Q(t) # () for t € (0,7"). The set P2 = BQJ SQ is called a parabolic boundary

of 2. Furthermore, the class of domains with described structure will be denoted by Dg 1.



Let 2 € Dy is given and ¢ is an arbitrary continous nonnegative function defined on
PQ. DP consists in finding a solution to equation (1.1) in QJ DQ satisfying initial-boundary
condition

u=1 on PQ (1.2)

Obviously, in general the equation (1.1) degenerates at points (x,t), where v = 0 and we
cannot expect the considered problem to have classical solution. If m # 1, we shall follow the
following notion of weak solution:

Definition 1.1 We shall say that the function u(z,?) is a solution of DP (1.1), (1.2), if

(a) u is nonnegative and continuous in Q, satisfying (1.2).

(b) for any tg,t; such that 0 < ¢g < ¢; < T and for any domain €y € Dy, ;, such that
Q) C QUDQ and 9BQy, 0Dy, Sy being sufficiently smooth manifolds, the following
integral identity holds

/ufda:: /ufdx—i—/(uft—i-umAf)dwdt— /umgfdxdt, (1.3)
W}
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where f € C’i; (€21) is an arbitrary function that equals to zero on S€2; and v is the outward-
directed normal vector to Q4(t) at (z,t) € SQy. If m = 1, however, the solution is understood
in the classical sence.

After Wiener published his famous work [24], where he accomplished the long line investi-
gations on the DP for Laplace equation in general domains, the DP for the heat equation was
continously under the interest of many mathematicians in this century. The final result, namely
the necessary and sufficient condition which is a quasigeometric characterization for a boundary
point of an arbitrary bounded open subset of IRV *! to be regular for the heat equation has been
established in [11], necessity being established earlier in [16]. Another necessary and sufficient
condition had earlier been given in [17].

However, it should be mentioned that Wiener’s criterion does not explicitly resolve the
natural analytic question, which we impose in this paper for more general nonlinear equation

(1.1). Namely, what about the relation between the solvability of the DP or regulartiy of the



boundary points and local modulus of continuity of the boundary manifolds. The importance
of this question arises in view of applications which we mentioned earlier. Almost complete
answer to this question was given by Petrowsky [21] in the case of one-dimensional linear
heat equation u; = ug,. Results concerning one-dimensional reaction-diffusion equation u; =
a(u™) e +buf a > 0,m > 0,b € IR, > 0 were presented in recent papers by the author [4,
5]. Primarily applying the results of [4], a full description of the evolution of interfaces and of
the local solution near the interface for all relevant values of parameters is presented in another
recent paper [3]. However, the one-dimensional case is a very special case and the results which
we present here are new even in the case of the classical heat equation.

The DP for the porous medium equation in cylindrical domain with smooth boundary was
investigated in [7,13]. At the moment there is a complete well established theory of the boundary
value problems in cylindrical domains for general second order nonlinear degenerate parabolic
equations (which includes as a particular case (1.1) and (1.4) below) due to [6,7,9,10,13,22,25
etc.] (see the review article [14]).

The approach used in this paper may be well expressed by the citation from the classical
work [24] on the DP for Laplace equation. As it was pointed out by Lebesgue and indepen-
dently by Wiener ”"the Dirichlet problem divides itself into two parts, the first of which is
the determination of a harmonic function corresponding to certain boundary conditions, while
the second is the investigation of the behaviour of this function in the neighbourhood of the
boundary”. By using an approximation of both 2 and v, we also construct a limit solution
as a limit of a sequence of classical solutions in regular domains. We then prove a boundary
regularity by using barriers and a limiting process.

The main result of this paper on the existence and boundary continuity of the solution to
DP is formulated in Theorem 2.1 (see also Corollary 2.1) of the Section 2. The important
new element is that we introduce in this paper a notion of parabolic modulus of left-lower (or
left-upper) semicontinuity of the lateral boundary manifold at the given point (Definition 2.1,
Section 2). Our main assumption (Assumption A and (2.1), Section 2) consists in upper (or

lower) Holder condition on the parabolic modulus of left-lower (or left-upper) semincontinuity



at each point of the lateral boundary manifold. Moreover, as in the classical theory of one-
dimensional heat equation, the critical Holder exponent is equal to % This assumption relates
to the parabolic nature of the equation (1.1) and does not depend on m. At this point, it
should be mentioned that equation (1.1) has no essential importance for our results, rather it
is a suitable model example for three different class of parabolic equations, namely singular
(0 < m < 1), degenerate (m > 1) and uniform (m = 1) parabolic equations. For example,
by using our techniques the same results may be proved for the following reaction-diffusion-
convection equation

ug = aAu™ 4+ by u) + cu®, (1.4)
where a,m,y,8 > 0,b,c € IR (see Remark 3.1, Section 3). We believe that the same result
is true for more general second order parabolic equations. However, in this paper we restrict
ourselves to equation (1.1), in order to make the presentation of our barrier method for proving
the boundary regularity less technical. It should also be mentioned that since our main result
on the boundary regularity of a weak solution to equation (1.1) is of the local nature, similar
result is true for an arbitrary bounded domain Q C RY.

It should also be mentioned that in this paper we restrict ourselves only with the existence
and boundary regularity problems. We address issues regarding uniqueness of the constructed
solution and related comparison theorems in a subsequent paper. The organisation of the paper
is as follows: In Section 2 we outline the main result. In Section 3 we prove the main result

(Theorem 2.1) from Section 2.

2 Statement of the Main Result

We shall use the usual notation:

z = (z,t) = (r1,...2N,t) € RNtTUN > 2,1 = (1,%) = (r1,22,...,2N) € RN,z =

N N
(z9,...,2n) € RN |z|? = Z |lz: %, |7 = Z |z;|%. For a point z = (z,t) € RV *! we denote
i=1 =2

by Q(z;6) an open ball in IRV *! of radius § > 0 and with center in z.
Let © € Dy be a given domain. Assume that for arbitrary point 29 = (z%,¢9) € SQ (or

20 = (z°,0) € SQ) there exists § > 0 and a conitnuous function ¢ such that, after a suitable



rotation of z-axes, we have

S_Qﬂ Q(20,0) ={z € Q(z0,9) : z1 = (7, 1) }.

Suppose also that

sign (z1 — ¢(Z,t)) = const for z € Q(zy, 9) ﬂ Q

Furthermore, we denote this constant by d(zp). Obviously, by introducing a new variable
x; = —u1, if necessary, we could have supposed that d(zg) = 1. However, we describe the
conditions for both cases d(zy) = £1 seperately, in order to distinguish these boundary points,
which are similar to the left and right boundary points in the one-dimensional case.

Let zg = (2°,19) € SN be a given boundary point. For an arbitrary sufficiently small § > 0,

consider a parabolic domain
PO ={(@,t): [T—7°| < eo(d+1—to)2, 19— 0 <t<ty}

where g9 > 0 is an arbitrary fixed number.

Definition 2.1 Let

w™ (0) = maz(H@°, t0) — H(T, 1) : (T,t) € P(6)).

wT(8) = min(p(E°, to) — (Z, 1) : (Z,t) € P(9)).

The function w™(d) (respectively w™(d)) is called the parabolic modulus of left-lower (re-
spectively left-upper) semicontinuity of the function ¢ at the point (z°, ).

For suffuciently small 6 > 0 these functions are well-defined and converge to zero as d | 0.
Our main assumption on the behaviour of the function ¢ near zg is as follows:
Assumption A. There exists a function F'(¢) which is defined for all positive sufficiently small

d; F' is positive with F(§) L 0 as 0 | 0 and if d(z9) = 1 (respectively d(zp) = —1) then

(ML

w™(6) < 62 F(9) (2.1)

(respectively wt(d) > —6%F(6))



We prove in the next section that assumption A is sufficient for the regularity of the boundary
point zg. Namely, the constructed limit solution takes the boundary value 1(z) at the point
z = 7y continuously in Q. It is well-known that in the case of the classical heat equation (m = 1
n (1.1)) boundary point zg = (2°,0) € SQ is always regular (see e.g. [18, p. 172]). Hence, in
this case the assumption A imposed on every boundary point zg € S{2 is sufficient for solvability
of the DP (see Corollary 2.1 below). It may easily be proved that the solution in this particular
case is a unique classical solution.

However, in general to provide the regularity of the boundary point zy = (z°,0) € SQ we
need another assumption. Denote 21 = ¢(T) = ¢(Z, 0).
Definition 2.2 Let

wy (6) = maa(§(3°) — $(7) : [T — 7| < 0)
wi (6) = min($(z°) — 3(@) : |7 — 7°| < 0)

The function wy (8) (respectively wy (0)) is called the modulus of lower (respectively upper)
semicontinuity of the function z; = ¢(Z) at the point T = z°.

Assumption B. There exists a function Fi () which is defined for all positive sufficiently small

9; Fy is positive with F1(d) J 0 as 0 | 0 and if d(zp) = 1 (respectively d(zp) = —1) then
w5 (6) < 6F(6) (2.2

(respectively wi (6) > —3F1(6))

It may easily be verified that if we redefine ¢ as z; = ¢(Z) = #(T,to) then assumption B
is a consequence of the assumption A at the boundary point zy = (z°,¢y) € SQ. However,
assumption B has a sense for the boundary points zg = (2°,0) € SQ on the bottom of the
lateral boundary manifold.

We prove in the next section that assumption B is sufficient for the regularity of the boundary
point zg = (z%,0) € SQ. Namely, the constructed limit solution takes the boundary value 9)(z)
at the point z = zy continuously in .

Thus our main theorem reads:



Theorem 2.1 DP (1.1), (1.2) is solvable in a domain 2 which satisfies the assumption A at
every point zy € S and assumption B at every point zg = (2°,0) € SQ.
Corollary 2.1 There exists a unique classical solution to DP (1.1), (1.2) with m = 1, in a
domain  which satisfies the assumption A at every point zy € S€D.

It should be noted that our main result about the boundary regularity is of local nature
and, consequently, an existence of different function F'(§) (or F;(J)) for each boundary point
in respective assumption A (or B) is allowed. It may be easily observed that assumptions A

and B coincide in the case of cylindrical domain 2.

3 Proof of the Main Result

Step 1. Construction of the limit solution.

Consider a sequence of domains €}, € Dor,n = 1,2,... with SQ,,dBQ, and 0Df},
being sufficiently smooth manifolds. Assume that {SQ,},{0BQ,} and {0DS,} approximate
50, 0BQ and DN respectively. Assume also that for arbitrary compact subset Q) of Q| D,
there exists a number ny which depends on the distance between Q) and PQ, such that
0(0) C Q,UDQ, for n > ng. Let ¥ be a nonnegative and continuous function in RN which
coincides with 1) on PQ. This continuation is always possible. Next we take ¢, = U4+n"1,n =
1,2,... and consider a Dirichlet Problem (1.1), (1.2), in €2,,, with 1 replaced by ,. This is
a nondegenerate parabolic problem and classical theory ([12,15,19]) imply the existence of a

unique Cay, solution. From maximum principle it follows that
n~t <up(z,t) < Min Q,n=12,... (3.1)

where M is an upper bound for ¥ and t,,n = 1,2,... in some compact which contains Q and

Q,,n=1,2,.... Next we take a sequence of compact subsets Q) of Q) DQ such that
Q= Jao® oW co® k=172, (3.2)
k=1

By our construction, for each fixed k, there exists a number ny, such that Q%) C Q,, | DQ,,

for n > ng. It is a well-known result of the modern theory of degenerate parabolic equations



(which includes (1.1) as a model example) that the sequence of uniformly bounded solutions
Un,n > My to equation (1) is uniformly equicontinuous in a fixed compact Q*) (see e.g. [9,
Theorem 1], [10, Theorem 1 & Proposition 1]). From (3.2), by diagonalization argument and
the Arzela-Ascoli theorem, we may find a subsequence n" and a limit function @ € C/(Q U D)
such that u,; — @ as n' — o0, pointwise in QJDQ and the convergence is uniform on
compact subsets of QJ DQ. Now consider a function u(z,t) such that u(z,t) = a(z,t) for
(x,t) € QUDQ, u(z,t) = 9 for (z,t) € PQ. Obviously the function u satisfies the integral
identity (1.3). It is also continuous in Bf2, since above mentioned result on the equicontinuity
of the sequence u,, is true up to some neighbourhood of every point z € B2 [10, Theorem 6.1].
Hence, the constructed function u is a solution of the Dirichlet Problem (1.1), (1.2), if it is
continuous in PN\ BS.

Step 2. Boundary regularity. Let zg = (z%,t9) € SQ. We shall prove that zy is regular,
namely that

lim w(z) = (z0) as z = 2¢,2 € QUDQ (3.3)

Without loss of generality assume that d(zg) = 1. First, assume that tg = 7. If 0 < 1)(z9) <
M, we shall prove that for arbitrary sufficiently small € > 0 the following two inequalities are
valid

lim inf u(z) > (z0) — € as z — zg,2 € QUDQ (3.4)

lim sup u(z) < (z9) + € as z — 29,2 € QUDQ (3.5)

Since € > 0 is arbitrary, from (3.4) and (3.5), (3.3) follows. If ¢)(z9) = 0 (or respectively
P(z0) = M), however, then it is sufficient to prove (3.5) (respectively (3.4)), since (3.4)
(respectively (3.5)) follows directly from the fact that 0 < u < M in Q. Let 9(z) > 0. Take
an arbitrary € € (0,(z0)) and prove (3.4). For arbitrary p > 0 consider a parabolic domain
P(p=2). We assume that SQ in some neighbourhood of z is represented by the function
x1 = ¢(T, 1), (T, t) € P(uaZ) with some pg > 0, where ¢ satisfies assumption A from Section 2.

n) —0

We also assume that S€2,, in some neighbourhood of its point z, = (xg ,x°,T) is represented

by the function z1 = ¢, (T, t), (T, t) € P(ug?), where {¢,,} is a sequence of sufficiently smooth
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functions and ¢, — ¢ as n — +o0, uniformly in P(uy 2). We can also asssume that ¢,, satisfies
assumption A from Section 2 uniformly with respect to n. Namely, the parabolic modulus of
left-lower semicointinuity of the function ¢, at the point (z°,T) satisfies (2.1) uniformly with
respect to n.

For arbitrary p > 0, consider a function
wn(z,t) = f(&) = Mi(§/h())®,
where
& =h(u) + (@, T) — w1 — plT — t + &5 *|7 — 7)),

My = 1(z0) — €, h(p) = Mau™'F(u™?),
My = [(Ma/My)w =174, My = 9p(z0) — /2,

1

and « is an arbitrary number such that « > m™". If m > 1, then we assume also that

a < (m—1)~% Then we set

Vi ={(z,t) : ¢u(T, 1) < 21 < $10(T, 1), (T,1) € P(n )},

$1n(T,1) = ¢u (@, 1) + (1 + My)p™ ' F(u™) = plT — t + £g [z = 7°],

In the next lemma we clear the structure of V,,.
Lemma 3.1 If ;1 > 0 is chosen such that F(yz 2) < (1 + M3)~! then the parabolic boundary
of V,, consists of two boundary surfaces z; = ¢,,(7,t) and z; = ¢1,(T,t) (see Figure 1).

Proof. We have
in(T 1) = du(@, 1) = p[ds + 1 =T — &g "[7 = Z°[*), 6w = (1+ Ma)p ™ F(p"?)
and &, € (0, 2~2] if p is chosen as in Lemma 3.1. Then it easily follows that V,, = V,*, where
Voo ={(z,t) : pn(T,t) < 21 < p10(T, 1), (T, t) € P(d4)}.

Obviously, the assertion of lemma is true for V,. Lemma is proved.

In Figure 1 the domain V,, is described in the particular case when ¢, (Z,t) =0, N = 2,25 = 0.
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~

Figure 1. The domain V;, in a particular case when ¢, = 0, N = 2,29 = 0.

In general, the structure of the domain V,, coincides with that given in Figure 1 if we change
the variable z; with the new one xll = 1 — ¢n (T, t). More precisely, V, is a domain in RN+,
lying in the strip T—4d, < ¢t < T, its boundary consists of the single point lying on {t = T'—d,}, a
domain DV, lying on {t = T'} and a connected manifold SV}, lying in the strip {T'—d, <t < T'}.
Boundary manifold SV, consists of two boundary surfaces z1 = ¢, (Z, t) and x1 = ¢1, (T, t).

Our purpose is to estimate u, in V,, via the barrier function
W, = maz (wy; (2n)71).
Obviously,
Wp = (2n) 7! for 21 > 0,,(Z, t); W, = wy, for z1 < O,(T, 1),
where
0(7,8) = (1 — (2My7)"F)h(1) + $u(@°,T) — plT — ¢ + £ %7 — 2P,

In the next lemma we estimate u, via the barrier function w, on the parabolic boundary of

Vn. For that the special structure of V,, plays an important role. Namely, our barrier function
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takes the value (2n)~!, which is less than a minimal value of u,,, on the part of the parabolic
boundary of V;, which lies in €2,,. Hence it is enough to compare u, and w, on the part of the
lateral boundary of 2,,, which may easily be done in view of boundary condition for w,,.

Lemma 3.2 If ;4 > 0 is chosen large enough, then
Up, > Wy, on SV, (3.6)

Proof. From (2.1) it follows that for x > 0 being large enough

0n(T,t) — $1n (T, t) <O for (T,t) € P(u=?),

and hence

Wp = (2n) L for 1 = ¢1 (T, 1), (T, 1) € P(u—2). (3.7)

Without loss of generality, assume that n > M, . From (2.1) it also follows that

wn = f(h(p) + ¢u(@°,T) — ¢u(@,1) — p[T —t + e [T — ")) <

F((MY+1)h(p)) = My for 1 = ¢ (T, 1), (T, t) € P(u—2),

and hence

Wy, < Mo for 21 = ¢y (T, 1), (T,t) € P(p=2) (3.8)

We can also easily estimate u, on SV,,. To estimate up|,,—g, 7,1, first we choose ny = n1(e)

so large that for n > ny

3 _ 7 —2y
\Ij|a:1:¢n(5,t) > \Ij|a:1:¢>(f,t) - g for (:E,t) € P(,UJOQ)'

This is possible in view of uniform convergence of {¢,} to ¢ in P(uy?2). Then we choose

© > 0 large enough in order that

9
Wlay—g(ae) > Blz0) — 5 for (7,6) € P2,

If ;4 and n are chosen like this, then we have

6 e —
Unlzy=gn (@) > Y(20) = for (7,1) € P(u2). (3.9)
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Thus, from (3.1) and (3.7) - (3.9), (3.6) follows. Lemma is proved.
Lemma 3.3 If u > 0 is chosen large enough, then at the points of V,, with 21 < 0,(%,t), we
have

Lwy, = wy, — Aw]' <0 (3.10)
Proof At the points of V,, with 21 < 6,,(Z,t), we have

—2

l o — 2 am
Ly = ph™ (m)aMf f°= — h=2(u)am(am — )M [¥5

1 am—
(1+ 4pu2eg 47 — 2°12) + 2uh L (u)ameg 2(N — 1) My f 5% (3.11)
If m > 1 then from (3.11) and (3.8) it follows that
1 oo
Lw, < h=2(p)aMy f*= S, (3.12)

a(m—1)—1

1
S =MF(u™?) —m(am — )M f~ & +2Mzmeg *(N — 1) F(u™?) x

m—1-1

1 1
frl < MaF(pm2) — m(am — 1)MP M, @ 4+ 2Msmey 2(N — 1)My* L F(u™?).

Hence, if p is chosen large enough, from (3.12), (3.10) follows. If 0 < m < 1, then from

(3.11) and (3.8) we derive that

am—1

1
Lw, < h™2(p)aMp f~ o S, (3.13)

1
S = MsF(u2)f5™ — m(am — 1)My f & + 2Mzmey 2(N — 1)

1 _1
F(u™?) < MyF(u™?)My ™™ — m(am — 1))M{* My = + 2Mzmeg > (N — 1)F(u™?).

If 41 is chosen large enough, from (3.13), (3.10) again follows. Lemma is proved.
Thus W, is the maximum of two smooth subsolutions of the equation (1.1) in V,. By the

standard maximum principle, from Lemma 3.1, (3.6) and (3.10) we easily derive that

Up > Wy in V),
In the limit as n’ — +oo, we have

u>winV, (3.14)

where



14

@ = maz(w;0), in V
w(z,t) = f(h(p) + ¢(@°,T) — 21 — p[T — t + & ° |z — 2°|]),
V={(z,t): (T, t) < 71 < $1(T, 1), |F — 7°| < eo[0x +t —T]2, T — 6, <t<T},

$1(@. 1) = (@, 1) + (1 + Ma)u ™ F (%) — [l — t + &g *|z — 2°)].
Obviously, we have

lim  w= lim  w=1(z)—c¢
z—=zp,z €V z — 29,z € )

Hence, from (3.14), (3.4) follows.
Assume now that 0 < (z9) < M and prove (3.5) for an arbitrary ¢ > 0 such that ¢(zy)+¢e <

M. For arbitrary ;> 0 consider a function
L -1 > =\1a
wn (2, 1) = f1(§) = [Ma + Eh™ (u) (Mg — M=),
where ¢ is defined as before and

h(p) = Mep " F (= ?), My = (20) + €,

1 1 1 I
Ms = 1p(z0) + /2, Mg = (M= — M7 )(Mj — M&) ™,

and « is an arbitrary number such that 0 < o < min (1;m~!). Similarly, consider the domains
Vp (with Mj replaced by Mg in the expression of ¢1,(Z,t) and d,) and V,* (see Lemma 3.1).

We then construct an upper barrier function as follows:
Wy, = min (wp; M).
Obviously,
wy, = M for x1 > 0,(T,t); W, = wy, for x1 < 0,(Z, t).
where

0u(F,1) = h(n) + $u (@, T) — pT — t + &7 — 7).
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Next, we prove an analog of the Lemma 3.2.

Lemma 3.4 If ;1 > 0 is chosen large enough, then
Uy < Wy, on SV,,. (3.15)
Proof. From (2.1) it follows that for ;1 > 0 being large enough
0,(Z,t) — ¢1n (T, 1) <0 for (z,) € P(p—2),

and hence

Wy, = M for 1 = ¢1,(Z, 1), (T, t) € P(n=2). (3.16)

From (2.1) it also follows that

wp = fi(h(p) + ¢n (@, T) — ¢n(T,t) — p[T — t + 52T — 7°|*])

> fi((Mgt + Dh(p)) = Ms for z1 = ¢a(T, 1), (T, 1) € P(u~2),

and hence

iy > Ms for z1 = ¢n (T, 1)), (T, 1) € P(u—2). (3.17)

Similarly, as in (3.9), we can establish that if g > 0 is large enough and n > nq(g) then
£ . -
Unlzy =g (@) < Y(20) + 7 for (@,1) € P(u2). (3.18)

Thus, from (3.1) and (3.16) - (3.18), (3.15) follows. Lemma is proved.

The next lemma is analog of the Lemma 3.3.

Lemma 3.5 If u > 0 is chosen large enough, then at the points of V,, with 21 < 0,(%,t), we
have

Lw, > 0. (3.19)

Proof. By using (3.17), at the points of V;, with 21 < 0,,(Z,t), we have

1 a1
Lwn = —ph~ (p)a(M= = M{) f1 = +ma(l — am)h™ (1)
am—2

1 am=—2
(M3 — M )2fy = (14 4p%eq [7 = 7°%) — 2uh ™ (w)ameg ? x

am—1

(N = 1)(M* = MP) 5 > 2 ()a(M* — M)S, (3.20)
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am—2 am=—1

a=1 1
S=—MM,* F(u2) +m(l—am)(Ma — Mj)M“s" —2Mgmeg2(N — )M, = F(u2).

Hence, if p is chosen large enough, from (3.20), (3.19) follows. Lemma is proved.
Thus w,, is the minimum of two smooth supersolutions of the equation (1) in V;,. By the

standard maximum principle, from Lemma 3.1, (3.15) and (3.19) we easily derive that
Up < Wy, in V.

In the limit as n’' — o0, we have

IS

IN
£
=
<l

(3.21)

where
W = min(w; M) in V
w(z,t) = fi(h(p) + $@°,T) — 21 — p[T — t + 5 ° | — z°))

and the domain V being defined as in (3.14). Obviously, we have

lim W= lim  w=1(z)+e
z—=zp,z €V z— 29,z € )

Hence, from (3.21), (3.5) follows. Thus we have proved (3.3) for zg = (2°,7) € SQ when
d(zp) = 1. The proof is similar when d(zy) = —1.

Suppose now that zy = (z%,tg) € SQ with tg < T. Clearly, the same proof given in the case
to = T, implies the regularity of zy regarding subdomain Q_ = Q{t < tp}. Namely, (3.3) is
valid for z € Q. Hence, it is enough to prove (3.3) for z € Q,,Q, = QO{t > to}. The proof
of this latter, however, is equivalent to the proof of regularity of the point zg = (2°,0) € SQ
under the assumption B. That easily follows from the fact that assumption B (with redefined
¢(T) = (7, 10)) is a consequence of the assumption A. Thus, to complete the proof, it remains
just to prove (3.3) for zp = (z°,0) € SQ.

The proof is similar to that given above. Without loss of generality assume again that
d(z9) = 1. Let 1(z9) > 0. Take an arbitrary ¢ € (0,1 (2p)) and prove (3.4). For arbitrary p > 0

consider a cylinder
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R(p,0) = {(z,t): [T —7°| < p~ 1,0 <t < 6}

We assume that S€ in some neighbourhood of z is represented by the continuous function
z1 = ¢(T,t), (Z,t) € R(ug,d0) with some pg > 0,dp > 0, where ¢(Z) satisfies assumption
B (see (2.2)) from Section 2. We also assume that S, in some neighbourhood of its point
A, = (wgn),fo, 0) is represented by the function z; = ¢, (T, t), (Z,t) € R(po,d), where {¢,} is
a sequence of sufficiently smooth functions and ¢, — ¢ as n — oo, uniformly in R(uq,d). We

can also assume that ¢,, satisfies (2.2) uniformly with respect to n.

For arbitrary p > po consider a function

wn(x,t) = f(§) = Mi(§/h(p)?,

where
& =h(p) + ¢n(@°,0) — 2z + plt — [z — 2],

My = (z0) — &, h(p) = Map™ " Fi(p™"),

Q=

My = 4p(20) — £/2, My = 4[(Mz /M) = — 1]

1

and « is an arbitrary number such that « > m™". If m > 1, then we assume also that

a < (m—1)"! Then we set

Vn = {(*’I;at) : ¢n(§a t) <z < (f)ln(fa t)a (fa t) € R(,LL,(S)}
$10 (T, 1) = dn(2°,0) + (1 — (2Min) "= )h(p) + ult — |7 — 7°)2],

where § = d(p) € (0,6'],0 = min(d1,82),6, = 2u 2F (') and 8y = da(p) € (0, ) is chosen
such that

$n(T,0) = ¢u(@,t) < p~ Fi(n) for (,t) € R(uo, 02) (3.22)

and for n > nj(u). The existence of §y and ny follow from the following proposition.
Proposition 3.1 For arbitrary p > po there exists dy = d2(u) € (0,0¢] and 11 = ny(p) such

that (3.22) is valid for n > n;.
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Proof. Since {¢,} converges to ¢ uniformly in R(ug,dg), for arbitrary u > po there exists a

number ny = n1(p) such that for n > nq, we have
1 T
¢n(fv 0) - ¢n(§a t) S ¢(fa 0) - ¢(fa t) + 5:“‘ lFl (:U‘ 1) m R(:“Oa 50) (323)

Since ¢ is uniformly continuous in R(uo,dg), there also exists a number dy = d2(u) € (0, do]
such that

H(7,0) ~ §(F.0) < 5p Fi(u™") in Ripo, ) (3.24)

From (3.23) and (3.24), (3.22) follows. Proposition is proved.
Furthermore we shall always suppose that n > max (n1; M{ 1). If 4 > po is chosen large

enough, from (2.2) and (3.22) it follows that

¢1n(§a t) - ¢n(§a t) < ¢n(§0a 0) - ¢n(§70) + ¢n(fao) - ¢n(§a t) + h’(,u) + ,LL(Sl - ,uil

<p Mz +4)F(p) =1 <0for |7 —2°| = p~,0<t<4.

Thus, the parabolic boundary of V;, consists of two boundary surfaces 1 = ¢,,(%,t), 21 =

¢1n(Z, t), and of the closure of a domain

VTLO = {(1770) : Qb’n(fao) <z < (ﬁln(fa 0)7 |E_fo| < M_l}.

In the next lemma, which is analog of the Lemma 3.2, we estimate u,, via the barrier function
wy, on the parabolic boundary PV,, of V,,.

Lemma 3.6 If 1 > 0 is chosen large enough, then
Uy, > Wy, on PV, (3.25)

Proof. We have

wp = (2n) 7! for 1 = ¢1,(T, 1). (3.26)

From (2.2) and (3.22) it also follows that if i is chosen large enough, then
Wp = f(h(:u‘) + ¢n(§07 0) - ¢n(§a t) +pt— :U‘|§_EO|2) < f(h(:u‘) + ¢n(foa 0) - ¢n(fa 0) + ¢n(§a 0)_

$n(T, 1) + pd1) < f((4M5 "+ 1)h(p)) = Mz for 1 = ¢u (3, 1), (T, 1) € R(u,9). (3.27)



19
From (3.27) it also follows that

_ _ _ _ . 0
wn = f(h(p) + ¢n(@°,0) =1 — plT —7°]*) < f(h(n) + ¢n(@°, 0) = ¢n(7,0)) < M inV,, (3.28)
We can also easily estimate u,, on PV,,. To estimate uy|y, g, (z,), first we choose ny = na(e)
so large that for n > no
£ _ -
\P|$1:¢n(57t) > \Il|$1:¢)(f,t) — g fOT ($,t) € R(Mo,éo).

This is possible in view of uniform convergence of {¢,} to ¢ in R(po,dp). Then we choose

p > 0 large enough and 6 = §(u) > 0 small enough in order that

9
‘y|z1:¢(f,t) > 7/)(20) - g for (fa t) € R(M? 5)

and hence,
£ _ -
tnlesmguzy > $(z0) — = for (z,1) € B30, 0) (3.29)

Similarly, we can establish that if ;1 > 0 is chosen large enough, there exists a number ns(c)
such that for n > ny we have

Up > P(20) — Z in V° (3.30)

Thus, from (3.1) and (3.26) - (3.30), (3.25) follows. The lemma is proved.

The next step consists in proving that for u > 0 being large enough
Lw, <0in V,.

The proof coincides with that given above in Lemma 3.3. As before, by the standard

maximum principle we then easily derive that
Uy > wy, in V.

In the limit as n’' — o0, we have

u>win V, (3.31)

where

'U)($, t) = f(h(M) + gb(fo’ 0) — 1+ Mt - M|E - §0|2)7
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V ={(z,t): ¢(T,t) < 21 < $1(T, 1), (T,t) € R(p, )},

$1(z,1) = (@, 0) + h(n) + plt — [z — 7).

Obviously, we have
lim  w= lim  w=1(z)—¢
z— 20,2 €V z— 20,2 € L)
Hence, from (3.31), (3.4) follows. To complete the proof it remains to prove (3.5) when

0 <(z9) < M. To do that, we consider a barrier function

1

wn(z,1) = F1(€) = [MF +eh () (M — M¥))?,

where £ is defined as before and

h(p) = Mep™ Fi(n™"), My = (20) + ¢,

1 1

1 L + —
Ms = (2) + /2, Mg = 4(Ma — Mg )(Mp — M2)™*

and « is an arbitrary number such that 0 < o < min(1;m~!). The rest of the proof of (3.5) is
similar to the given proof of (3.4) and to that given above in the case when ¢y = T, therefore
we omit it. Thus we have completed the proof of the boundary continuity of the constructed
limit solution. The Theorem 2.1 is proved. Corollary 2.1 is immediate (see Section 2).
Remark 3.1 The proof of the Theorem 2.1 in the case of the more general equation (1.4)
almost completely coincides with that given above for the equation (1.1). The only difference
consists in choosing an exponent « in respective barrier functions wy,. In this more general
case it depends on the parameters m, 8 and ~y. It should be also mentioned that if ¢ > 0 and
£ > 11in (1.4), we have to prevent blow up, say, imposing a restriction on the length of the
time intervall: T' € (0,7%),T* = M*#/c(3 — 1), M = sup 1 > 0.

Remark 3.2 One may show by standard methods that the weak solution to DP is a classical

solution in a neighbourhood of any interior point z € €, where u(z) > 0.
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