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Abstract

The action of Ashtekar�s generalized gauge group G on the space A of generalized

connections is investigated for compact structure groups G�

First a stratum is de�ned to be the set of all connections of one and the same gauge

orbit type� i�e� the conjugacy class of the centralizer of the holonomy group� Then a slice

theorem is proven on A� This yields the openness of the strata� Afterwards� a denseness

theorem is proven for the strata� Hence� A is topologically regularly strati�ed by G�

These results coincide with those of Kondracki and Rogulski for Sobolev connections�
As a by�product� we prove that the set of all gauge orbit types equals the set of all

�classes of� Howe subgroups of G� Finally� we show that the set of all gauge orbits with

maximal type has the full induced Haar measure ��
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� Introduction

For quite a long time the geometric structure of gauge theories has been investigated� A
classical �pure� gauge theory consists of three basic objects� First the set A of smooth con�
nections ��gauge �elds�� in a principle �ber bundle� then the set G of all smooth gauge
transforms� i�e� automorphisms of this bundle� and �nally the action of G on A� Physically�
two gauge �elds that are related by a gauge transform describe one and the same situation�
Thus� the space of all gauge orbits� i�e� elements in A�G� is the con�guration space for the
gauge theory� Unfortunately� in contrast to A� which is an a	ne space� the space A�G has
a very complicated structure� It is non�a	n� non�compact and in�nite�dimensional and it is
not a manifold� This causes enormous problems� in particular� when one wants to quantize a
gauge theory� One possible quantization method is the path integral quantization� Here one
has to �nd an appropriate measure on the con�guration space of the classical theory� hence
a measure on A�G� As just indicated� this is very hard to �nd� Thus� one has hoped for a
better understanding of the structure of A�G� However� up to now� results are quite rare�
About 
� years ago� the e�orts were focussed on a related problem� The consideration of
connections and gauge transforms that are contained in a certain Sobolev class �see� e�g��
����� Now� G is a Hilbert�Lie group and acts smoothly on A� About �� years ago� Kondracki
and Rogulski �
� found lots of fundamental properties of this action� Perhaps� the most
remarkable theorem they obtained was a slice theorem on A� This means� for every orbit
A�G � A there is an equivariant retraction from a �so�called tubular� neighborhood of A onto
A � G� Using this theorem they could clarify the structure of the so�called strata� A stratum
contains all connections that have the same� �xed type� i�e� the same �conjugacy class of the�
stabilizer under the action of G� Using a denseness theorem for the strata� Kondracki and
Rogulski proved that the space A is regularly strati�ed by the action of G� In particular� all
the strata are smooth submanifolds of A�
Despite these results the mathematically rigorous construction of a measure on A�G has not
been achieved� This problem was solved � at least preliminary � by Ashtekar et al� �� 
��
but� however� not for A�G itself� Their idea was to drop simply all smoothness conditions for
the connections and gauge transforms� In detail� they �rst used the fact that a connection
can always be reconstructed uniquely by its parallel transports� On the other hand� these
parallel transports can be identi�ed with an assignment of elements of the structure group
G to the paths in the base manifold M such that the concatenation of paths corresponds to
the product of these group elements� It is intuitively clear that for smooth connections the
parallel transports additionally depend smoothly on the paths ���� But now this restriction
is removed for the generalized connections� They are only homomorphisms from the groupoid
P of paths to the structure group G� Analogously� the set G of generalized gauge transforms
collects all functions from M to G� Now the action of G to A is de�ned purely algebraically�
Given A and G the topologies induced by the topology of G� one sees that� for compact G�
these spaces are again compact� This guarantees the existence of a natural induced Haar
measure on A and A�G� the new con�guration space for the path integral quantization�
Both from the mathematical and from the physical point of view it is very interesting how the
�classical� regular gauge theories are related to the generalized formulation in the Ashtekar
framework� First of all� it has been proven that A and G are dense subsets in A and G�
respectively ���� Furthermore� A is contained in a set of induced Haar measure zero ����
These properties coincide exactly with the experiences known from the Wiener or Feynman






path integral� Then the Wilson loop expectation values have been determined for the two�
dimensional pure Yang�Mills theory �� ��� � in coincidence with the known results in the
standard framework� In the present paper we continue the investigations on how the results
of Kondracki and Rogulski can be extended to the Ashtekar framework� In a previous paper
�� we have already shown that the gauge orbit type is determined by the centralizer of the
holonomy group� This closely related to the observations of Kondracki and Sadowski ���� In
the present paper we are going to prove that there is a slice theorem and a denseness theorem
for the space of connections in the Ashtekar framework as well� However� our methods are
completely di�erent to those of Kondracki and Rogulski�

The outline of the paper is as follows�
After �xing the notations we prove a very crucial lemma in section �� Every centralizer
in a compact Lie group is �nitely generated� This implies that every orbit type �being
the centralizer of the holonomy group� is determined by a �nite set of holonomies of the
corresponding connection�
Using the projection onto these holonomies we can lift the slice theorem from an appropriate
�nite�dimensional Gn to the space A� This is proven in section � and it implies the openness
of the strata as shown in the following section�
Afterwards� we prove a denseness theorem for the strata� For this we need a construction for
new connections from ���� As a corollary we obtain that the set of all gauge orbit types equals
the set of all conjugacy classes of Howe subgroups of G� A Howe subgroup is a subgroup
that is the centralizer of some subset of G� This way we completely determine all possible
gauge orbit types� This has been succeeded for the Sobolev connections � to the best of our
knowlegde � only for G � SU�n� and low�dimensional M ����
In Section � we show that the slice and the denseness theorem yield again a topologically
regular strati�cation of A as well as of A�G� But� in contrast to the Sobolev case� the strata
are not proved to be manifolds�
Finally� we show in Section � that the generic stratum �it collects the connections of maximal
type� is not only dense in A� but has also the total induced Haar measure �� This shows that
the Faddeev�Popov determinant for the projection A �� A�G is equal to ��

� Preliminaries

As we indicated in �� the present paper is the �nal one in a small series of three papers�
In the �rst one �� we extended the de�nitions and propositions for A� G and A�G made by
Ashtekar et al� from the case of graphs �� 
� �� �� ��� and of webs �� to arbitrarily smooth
paths� Moreover� in that paper we determined the gauge orbit type of a connection� In the
second paper ��� we investigated properties of A and proved� in particular� the existence of
an Ashtekar�Lewandowski measure in our context� Now� we summarize the most important
notations� de�nitions and facts used in the following� For detailed information we refer the
reader to the preceding papers �� ����
� Let G be a compact Lie group�
� A path �usually denoted by � or �� is a piecewise Cr�map from �� �� into a connected

Cr�manifoldM � dimM � 
� r � N
� �f�g�f�g arbitrary� but �xed� Additionally� we �x

now the decision whether we restrict the paths to be piecewise immersive or not� Paths
can be multiplied as usual by concatenation� A graph is a �nite union of paths� such that
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di�erent paths intersect each other at most in their end points� Paths in a graph are called
simple� A path is called �nite i� it is up to the parametrization a �nite product of simple
paths� Two paths are equivalent i� the �rst one can be reconstructed from the second
one by a sequence of reparametrizations or of insertions or deletions of retracings� We will
only consider equivalence classes of �nite paths and graphs� The set of �classes of� paths
is denoted by P� that of paths from x to y by Pxy and that of loops �paths with a �xed
initial and terminal point m� by HG� the so�called hoop group�

� A generalized connection A � A is a homomorphism� hA � P �� G� �We usually write
hA synonymously for A�� A generalized gauge transform g � G is a map g � M �� G�
The value g�x� of the gauge transform in the point x is usually denoted by gx� The action
of G on A is given by

hA�g��� �� g������ hA��� g���� for all � � P� ���

We have A�G 	� Hom�HG�G��Ad�
� Now� let � be a graph with E��� � fe�� � � � � eEg being the set of edges and V��� �

fv�� � � � � vV g the set of vertices� The projections onto the lattice gauge theories are de�ned
by

�� � A �� A� 
 GE

A ���
�
hA�e��� � � � � hA�eE�

� and �� � G �� G� 
 GV �

g ���
�
gv� � � � � � gvV

�

The topologies on A and G are the topologies generated by these projections� Using these
topologies the action � � A� G �� A de�ned by ��� is continuous� Since G is compact
Lie� A and G are compact Hausdor� spaces and consequently completely regular�

� The holonomy group HA of a connection A is de�ned by HA �� hA�HG� � G� its cen�
tralizer is denoted by Z�HA�� The stabilizer of a connection A � A under the action of
G is denoted by B�A�� We have g � B�A� i� gm � Z�HA� and for all x � M there is
a path � � Pmx with hA��� � g��m hA���gx� In �� we proved that B�A� and Z�HA� are
homeomorphic�

� The type of a gauge orbit EA �� A � G is the centralizer of the holonomy group of A
modulo conjugation in G� �An equivalent de�nition uses the stabilizer B�A� itself��

� Partial Ordering of Types

De�nition ��� A subgroup U of G is called Howe subgroup i� there is a set V � G with
U � Z�V ��

Analogously to the general theory we de�ne a partial ordering for the gauge orbit types ���

De�nition ��� Let T denote the set of all Howe subgroups of G�
Let t�� t� � T � Then t�  t� holds i� there are G� � t� and G� � t� with
G� � G��

Obviously� we have

Lemma ��� The maximal element in T is the class tmax of the center Z�G� of G� the
minimal is the class tmin of G itself�

�Homomorphism means h
A
������ � h

A
����hA���� supposed ���� is de�ned�

�



De�nition ��� Let t � T � We de�ne the following expressions�

A�t �� fA � A j Typ�A� � tg
A�t �� fA � A j Typ�A� � tg
A�t �� fA � A j Typ�A�  tg�

All the A�t are called strata��

� Reducing the Problem to Finite�Dimensional G�

Spaces

��� Finiteness Lemma for Centralizers

We start with the crucial

Lemma ��� Let U be a subset of a compact Lie group G� Then there exist an n � N and
u�� � � � � un � U � such that Z�fu�� � � � � ung� � Z�U��

Proof � The case Z�U� � G � Z��� is trivial�
� Let Z�U� �� G� Then there is a u� � U with Z�fu�g� �� G� Choose now for

i � � successively ui�� � U with Z�fu�� � � � � uig� � Z�fu�� � � � � ui��g� as long as
there is such a ui��� This procedure stops after a �nite number of steps� since
each non�increasing sequence of compact subgroups in G stabilizes ��� �Cen�
tralizers are always closed� thus compact�� Therefore there is an n � N � such
that Z�fu�� � � � � ung� � Z�fu�� � � � � ung � fug� for all u � U � Thus� we have
Z�fu�� � � � � ung� �

T
u�U Z�fu�� � � � � ung � fug� � Z�fu�� � � � � ung � U� � Z�U��

qed

Corollary ��� Let A � A�
Then there is a �nite set � � HG� such that Z�HA� � Z�hA�����

�

Proof Due to HA � G and the just proven lemma there are an n � N and g�� � � � � gn � HA

with Z�fg�� � � � � gng� � Z�HA�� On the other hand� since g�� � � � � gn � HA� there are
��� � � � � �n � HG with gi � hA��i� for all i � �� � � � � n� qed

��� Reduction Mapping

De�nition ��� Let � � HG� Then the map
�� � A �� G	�

A ��� hA���
is called reduction mapping�

Lemma ��� Let � � HG be arbitrary�
Then �� is continuous� and for all A � A and g � G we have ���A � g� �
���A� � gm� Here G acts on G	� by the adjoint map�

�The justi�cation for that notation can be found in section ��
�h

A
��� ��

�
h
A
����� � � � � hA��n�

�
� G where n �� 	�� To avoid cumbersome notations we denote also�

h
A
����� � � � � hA��n�

�
� Gn by h

A
���� It should be clear from the context what is meant� Furthermore
 �

is always �nite�

�



Proof � �� � A �� G	� is as a map into a product space continuous i� �i � �� 
 �f�ig
is continuous for all projections �i � G

	� �� G onto the ith factor� Thus� it is
su	cient to prove the continuity of �f�g for all � � HG�
Now decompose � into a product of �nitely many edges ej� j � �� � � � � J �i�e��
into paths that can be represented as an edge in a graph�� Then the mapping

A �� GJ with A ���
�
�e��A�� � � � � �eJ �A�

�
is continuous per de�nitionem� Since

the multiplication in G is continuous� �f�g is continuous� too�
� The compatibility with the group action follows from hA�g��� � g��m hA��� gm�

qed

��� Adjoint Action of G on Gn

In this short subsection we will summarize the most important facts about the adjoint action
of G on Gn that can be deduced from the general theory of transformation groups �see� e�g��
����
First we determine the stabilizer G�g of an element 	g � Gn� We have

G�g � fg � G j 	g � g � 	gg � fg � G j g��gig � gi �ig � Z�fg�� � � � � gng��
Consequently� we have for the type of the corresponding orbit

Typ�	g� � G�g� � Z�fg�� � � � � gng���
The slice theorem reads now as follows�

Proposition ��� Let 	g � Gn� Then there is an S � Gn with 	g � S� such that�
� S �G is an open neighboorhood of 	g �G and
� there is an equivariant retraction f � S �G �� 	g �G with f���f	gg� �

S�

Both on A and on Gn the type is a Howe subgroup of G� The transformation behaviour of
the types under a reduction mapping is stated in the next

Proposition ��� Any reduction mapping is type�minorifying� i�e� for all � � HG and all
A � A we have

Typ
�
���A�

�
 Typ�A��

Proof We have Typ
�
���A�

�
� Z����A��� 
 Z�hA�����  Z�HA�� � Typ�A�� qed

� Slice Theorem for A

We state now the main theorem of the present paper�

Theorem ��� There is a tubular neighbourhood for any gauge orbit�
Equivalently we have� For all A � A there is an S � A with A � S� such
that�
� S � G is an open neighbourhood of A � G and
� there is an equivariant retraction F � S �G �� A�G with F���fAg� � S�

�



��� The Idea

Our proof imitates in a certain sense the proof of the standard slice theorem �see� e�g�� ���
which is valid for the action of a �nite�dimensional compact Lie group G on a Hausdor� space
X� Let us review the main idea of this proof� Given x � X� Let H � G be the stabilizer
of x� i�e�� H� is an orbit type on the G�space X� Now� this situation is simulated on an R

n �
i�e�� for an appropriate action of G on Rn one chooses a point with stabilizer H� So the orbits
on X and on R

n can be identi�ed� For the case of Rn the proof of a slice theorem is not
very complicated� The crucial point of the general proof is the usage of the Tietze�Gleason
extension theorem because this yields an equivariant extension 
 � X �� R

n � mapping one
orbit onto the other� Finally� by means of 
 the slice theorem can be lifted from R

n to X�
What can we learn for our problem� Obviously� G is not a �nite�dimensional Lie group� But�
we know that the stabilizer B�A� of a connection is homeomorphic to the centralizer Z�HA�
of the holonomy group that is a subgroup of G� Since every centralizer is �nitely generated�
Z�HA� equals Z�hA���� with an appropriate �nite � � HG� This is nothing but the stabilizer
of the adjoint action of G on Gn� Thus� the reduction mapping �� is the desired equivalent
for 
�
We are now looking for an appropriate S � A� such that

F � S � G �� A � G

A
�
� g ��� A � g

is well�de�ned and has the desired properties�
In order to make F well�de�ned� we need A

�
� g � A

�
�� A � g � A for all A

�
� S and

g � G� i�e� B�A
�
� � B�A�� Applying the projections �x on the stabilizers �see ��� we get for

�x � Pmx �let �m be the trivial path�
h
A
���m�

��Z�H
A
��h

A
���x� � �x�B�A

�
�� � �x�B�A�� � hA��m�

��Z�HA�hA��x��
thus

Z�H
A
�� � h

A
���m�hA��m�

�� Z�HA� hA��x�h
��

A
� ��x� �
�

for all x �M � In particular� we have Z�H
A
�� � Z�HA� for x � m�

Now we choose an � � HG with Z�HA� � Z�hA���� and an S � G	� and an equivariant
retraction f � S �G �� ���A� �G� Since equivariant mappings magnify stabilizers �or at
least do not reduce them�� we have Z�	g�� � Z����A�� for all 	g

� � S�
Therefore� the condition of �
� would be� e�g�� ful�lled if we had for all A

�
� S

�� ���A
�
� � S and


� h
A
���x� � hA��x� for all x �M �

because the �rst condition implies Z�H
A
�� � Z�h

A
����� 
 Z����A

�
�� � Z����A�� � Z�HA��

We could now choose S such that these two conditions are ful�lled� However� this would
imply F���fAg� � S in general because for g � B�A� together with A

�
the connection A

�
� g

is contained in F���fAg� as well�
 but A
�
� g needs no longer ful�ll the two conditions above�

Now it is quite obvious to de�ne S as the set of all connections ful�lling these conditions
multiplied with B�A�� And indeed� the well�de�nedness remains valid�

�We have F �A
�

� � A � A � g � F �A
�

� g��

�



��� The Proof

Proof �� Let A � A� Choose for A an � � HG with Z�HA� � Z�hA���� according to
Corollary ��
 and denote the corresponding reduction mapping �� � A �� G	�

shortly by ��

� Due to Proposition ��� there is an S � G	� with ��A� � S� such that

� S �G is an open neighbourhood of ��A� �G and
� there exists an equivariant mapping f with

� f � S �G �� ��A� �G and
� f���f��A�g� � S�

�� We de�ne the mapping

 � A �� G�

A
�
���

�
h
A
���x�

�
x�M

whereas for all x � M n fmg the �arbitrary� but �xed� path �x runs from m to
x and �m is the trivial path�

�� As we motivated above we set

S� �� ����S� � 
���
�A���

S ��
�
����S� � 
���
�A��

�
�B�A� 
 S� �B�A�

and
F � S � G �� A � G�

A
�
� g ��� A � g

�� F is well�de�ned�
� Let A

�
� g� � A

��
� g�� with A

�
� A

��
� S and g�� g�� � G� Then there exist

z�� z�� � B�A� with A
�
� A

�
� � z

� and A
��
� A

��
� � z

�� as well as A
�
�� A

��
� � S��

� Due to S� � 
���
�A�� we have 
�A
�
�� � 
�A� � 
�A

��
��� i�e� h

A
�
�
��x� �

hA��x� � h
A
��

�
��x� for all x�

� Furthermore� we have

f���A
�
� g��� � f���A

�
� � z

� � g���

� f���A
�
�� � z

�
m � g

�
m� �� �equivariant��

� f���A
�
��� � z

�
m � g

�
m �f equivariant�

� ��A� � z�m � g
�
m ���A

�
�� � S�

� ��A � z�� � g�m �� �equivariant��

� ��A� � g�m �z� � B�A��

and analogously f���A
��
� g���� � ��A� � g��m�

Therefore� we have ��A� � g�m � ��A� � g��m� i�e� g
��
m �g�m�

�� is an element of
the stabilizer of ��A�� thus g��m �g�m�

�� � Z���A�� � Z�HA��

� Since A
�
� � z

� � g� � A
��
� � z

�� � g��� we have A
�
� � A

��
� �

�
z�� g�� �g���� �z����

�
� and

so for all x �M
h
A
�
�
��x� �

�
z�� g�� �g���� �z����

���
m

h
A
��
�
��x�

�
z�� g�� �g���� �z����

�
x
�

Moreover� since
�
g�� �g����

�
m
� Z�HA�� we have

�
z�� g�� �g���� �z����

�
m
�

Z�HA�� From h
A
�
�
��x� � hA��x� � h

A
��
�
��x� for all x now z�� g�� �g���� �z���� �

B�A� follows� and thus g�� �g���� � B�A��
� By this we have A � g� � A � g��� i�e� F is well�de�ned�

�



�� F is equivariant�
� Let A

��
� A

�
� g� � S � G� Then

F �A
��
� g� � F �A

�
� �g� � g��

� A � �g� � g�
� �A � g�� � g

� F �A
�
� g�� � g

� F �A
��
� � g�

�� F is retracting�
� Let A

�
� A � g � A � G� Then F �A

�
� � F �A � g� � A � g � A

�
�

�� S � G is an open neighbourhood of A � G�
� Obviously� A � G � S � G�
� We have S � G � ����S �G��

��� Let A
��
� A

�
� g � S� � G � S � G�

Then we have ��A
��
� � ��A

�
� g� � ��A

�
� � gm � S � G because

��S�� � S� Thus� A
��
� ����S �G��

��� � Let A
��
� ����S �G�� i�e� ��A

��
� � 	g�� � g with appropriate 	g�� � S

and g � G�
� Choose some g with gm � g�

Then ��A
��
� g��� � ��A

��
� � g��m � 	g�� � S�

Now set A
���
�� A

��
� g���

� Using g�x ��
�
h
A
�����x�

���
hA��x� and A

�
�� A

���
� g� we get

a� ��A
�
� � ��A

���
� � S because of g�m � eG and

b� h
A
���x� � h

A
�����x� g

�
x � hA��x� for all x �M �

Thus� we have A
�
� S� � S and A

��
� A

���
� g � A

�
� ��g���� � g� �

S � G�
� Consequently� S �G � ����S �G� is as a preimage of an open set again open

because of the continuity of ��
�� F is continuous�

� We consider the following diagram

S � G
F

� A � G

S �G

�

�
f
� ��A� �G

�

�
�G
��
� Z�HA�nG

�

���

A
�
� g

F
� A � g

��A
�
� � gm

�

�
f
� ��A� � gm

�

�
�G� gm�Z�H

A
�

It is commutative due to ��S � G� � S �G� ��A � G� � ��A� �G and the
de�nition of F � �G is the canonical homeomorphism between the orbit of
��A� and the quotient of the acting group G by the stabilizer of ��A��

�



Since �� f and �G are continuous� the map
F � �� �G � � � F � S � G �� Z�HA�nG

A
�
� g ��� gm�Z�H

A
�

is continuous�
� Now� we consider the map

F �� � �S � G��G �� G�

�A
�
� g�� gm� ���

�
h�x�A�

�� gm h�x�A
�
� g��

�
x�M

F �� is continuous because
�x � F �� � �S � G��G �� G�G

mult�
���� G

�A
��
� gm� ��� �h�x�A

��
�� gm� ��� h�x�A�

�� gm h�x�A
��
�

is obviously continuous for all x �M �
� F �� induces a map F ��� via the following commutative diagram

�S � G��G
F ��

�G

�S � G�� Z�HA�nG

id��Z�H
A
�

�
F ���

�B�A�nG

�
B�A�

�

�

i�e�� F ����A
��
� gm�Z�H

A
�� �

h�
h�x�A�

�� gm h�x�A
��
�
�
x�M

i
B�A�

�

� F ��� is well�de�ned�
Let g��m � zg��m with z � Z�HA�� Then

F ����A
��
� g��m�Z�H

A
�� �

h�
h�x�A�

�� g��m h�x�A
��
�
�
x�M

i
B�A�

�
h�
h�x�A�

�� z g��m h�x�A
��
�
�
x�M

i
B�A�

�
h�
zx h�x�A�

�� g��m h�x�A
��
�
�
x�M

i
B�A�

� F ����A
��
� g��m�Z�H

A
���

because �zx�x�M �� �h�x�A�
�� z h�x�A��x�M � B�A� for z � Z�HA��

� F ��� is continuous� because id� �Z�H
A
� is open and surjective and �

B�A�

and F �� are continuous�
� For A

�
� S there is an A

�
� � S� and a g� � B�A� with A

�
� A

�
� � g

�� Thus� we
have h�x�A

�
�� � h�x�A� and

F ����A
�
� g� gm�� �

h�
h�x�A�

�� gm h�x�A
�
� � g

� � g�
�
x�M

i
B�A�

�
h�
h�x�A�

�� gm g��m �g�m�
��h�x�A�g

�
xgx

�
x�M

i
B�A�

�
h�
h�x�A�

��h�x�A � g
�� gx

�
x�M

i
B�A�

�
h
�gx�x�M

i
B�A�

� g�
B�A�

where we used g� � B�A��
� Now� F is the concatenation of the following continuous maps�

F � S � G
id�F �
���� �S � G�� Z�HA�nG

F ���
��� B�A�nG

�
G�� A � G�

A
�
� g ��� �A

�
� g� gm�Z�H

A
�� ��� g�

B�A� ��� A � g

where �G is the canonical homeomorphism between the orbit A � G and the

��



acting group G modulo the stabilizer B�A� of A�
Hence� F is continuous�

��� We have F���fAg� � S�
� ��� Let A

�
� F���fAg�� i�e� F �A

�
� � A�

� By the commutativity of ��� we have f���A
�
�� � ��F �A

�
�� �

��A�� hence A
�
� ����f�����A��� � ����S��

� De�ne gx �� h
A
���x�

�� hA��x� and A
��
�� A

�
� g� Then we have

��A
��
� � ��A

�
� � S� i�e� A

��
� ����S�� and h

A
����x� � hA��x� for

all x� i�e� A
��
� 
���
�A��� By this� A

��
� S��

� Consequently� F �A
��
� � A � F �A

�
� and therefore also A � g �

F �A
�
� � g � F �A

�
� g� � F �A

��
� � A� i�e� g � B�A��

Thus� A
�
� A

��
� g�� � S� �B�A� � S�

��� Let A
�
� S� Then F �A

�
� � F �A

�
� �� � A � � � A� i�e� A

�
� F���fAg��

qed

� Openness of the Strata

Proposition ��� A�t is open for all t � T �

Corollary ��� A�t is open in A�t for all t � T �

Proof Since A�t � A�t �A�t� A�t is open w�r�t� to the relative topology on A�t� qed

Corollary ��� A�t is compact for all t � T �

Proof AnA�t �
S
t��T �t��� tA�t� �

S
t��T �t��� tA�t� is open because A�t� is open for all t� � T �

Thus� A�t is closed and therefore compact� qed

The proposition on the openness of the strata can be proven in two ways� �rst as a simple
corollary of the slice theorem on A� but second directly using the reduction mapping� Thus�
altogether the second variant needs less e�ort�

Proof Proposition ���

We have to show that any A � A�t has a neighbourhood that again is contained in
A�t� So� let A � A�t�
� Variant �

Due to the slice theorem there is an open neighbourhood U of A � G� and so of
A� too� and an equivariant retraction F � U �� A � G� Since every equivariant
mapping reduces types� we have Typ�A

�
� � Typ�A� � t for all A

�
� U � thus

U � A�t�
� Variant 


Choose again for A an � � HG with
Typ�A� � Z�HA�� � Z�hA����� 
 Z����A��� � Typ����A���

Due to the slice theorem for general transformation groups there is an open�
invariant neighbourhood U � of ���A� in G	� and an equivariant retraction f �
U � �� ���A� �G� Since ���A� and f are type�reducing� we have

Typ�A
�
� � Typ����A

�
�� � Typ

�
f����A

�
��
�
� Typ����A�� � Typ�A�

for all A
�
� U �� ���

�
�U ��� i�e� U � A�t� Obviously� U contains A and is open as

a preimage of an open set� qed

��



� Denseness of the Strata

The next theorem we want to prove is that the set A�t is not only open� but also dense in
A�t� This assertion does � in contrast to the slice theorem and the openness of the strata �
not follow from the general theory of transformation groups� We have to show this directly
on the level of A�
As we will see in a moment� the next proposition will be very helpful�

Proposition ��� Let A � A and �i be �nitely many graphs�
Then there is for any t � Typ�A� an A

�
� A with Typ�A

�
� � t and

��i�A� � ��i�A
�
� for all i�

Namely� we have

Corollary ��� A�t is dense in A�t for all t � T �

Proof Let A � A�t � A� We have to show that any neighbourhood U of A contains an

A
�
having type t� It is su	cient to prove this assertion for all graphs �i and all

U �
T
i �

��
�i
�Wi� with open Wi � G	E��i� and ��i�A� � Wi for all i � I with �nite I�

because any general open U contains such a set�
Now let �i and U be chosen as just described� Due to Proposition ��� above there
exists an A

�
� A with Typ�A

�
� � t � Typ�A� and ��i�A� � ��i�A

�
� for all i� i�e� with

A
�
� A�t and A

�
� ����i

�
��i�fAg�

�
� ����i

�Wi� for all i� thus� A
�
�
T
i �

��
�i
�Wi� � U �

qed

Along with the proposition about the openness of the strata we get

Corollary ��� For all t � T the closure of A�t w�r�t� A is equal to A�t�

Proof Denote the closure of F w�r�t� E by ClE�F ��
Due to the denseness of A�t in A�t we have ClA�t�A�t� � A�t� Since the closure is

compatible with the relative topology� we have A�t � ClA�t�A�t� � A�t�ClA�A�t��

i�e� A�t � ClA�A�t�� But� due to Corollary ���� A�t � A�t itself is closed in A�
Hence� A�t � ClA�A�t�� qed

��� How to Prove Proposition ����

Which ideas will the proof of Proposition ��� be based on� As in the last two sections we
get help from the �niteness lemma for centralizers� Namely� let � � HG be chosen such that
Typ�A� � Z�HA�� � Z����A���� t � Typ�A� is �nitely generated as well� Thus� we have to
construct a connection whose type is determined by ���A� and the generators of t� For this
we use the induction on the number of generators of t� In conclusion� we have to construct
inductively from A new connections Ai� such that Ai�� coincides with Ai at least along the
paths that pass � or that lie in the graphs �i� But� at the same time� there has to exist a
path e� such that hAi

�e� equals the ith generator of t�
Now� it should be obvious that we get help from the construction method for new connections
introduced in ���� Before we do this we recall an important notation used there�

�




De�nition ��� Let ��� �� � P�
We say that �� and �� have the same initial segment �shortly� �� �� ��� i�
there exist � � ��� ��  � such that �� j����� and �� j����� coincide up to the
parametrization�
We say analogously that the �nal segment of �� coincides with the initial
segment of �� �shortly� �� �� ��� i� there exist � � ��� ��  � such that
���� j����� and �� j����� coincide up to the parametrization�
I� the corresponding relations are not ful�lled� we write �� �� �� and
�� �� ��� respectively�

Finally� we recall the decomposition lemma�

Lemma ��� Let x � M be a point� Any � � P can be written �up to parametrization� as
a product

Q
�i with �i � P� such that

� int �i � fxg � � or
� int �i � fxg�

��� Successive Magnifying of the Types

In order to prove Proposition ��� we need the following lemma for magnifying the types�
Hereby� we will use explicitly the construction of a new connection A

�
from A as given in ����

Lemma ��� Let �i be �nitely many graphs� A � A and � � HG be a �nite set of paths
with Z�HA� � Z�hA����� Furthermore� let g � G be arbitrary�

Then there is an A
�
� A� such that�

� h
A
���� � hA����

� ��i�A
�
� � ��i�A� for all i�

� h
A
��e� � g for an e � HG and

� Z�H
A
�� � Z�fgg � hA�����

Proof �� Let m� � M be some point that is neither contained in the images of �i nor in
that of �� and join m with m� by some path �� Now let e� be some closed path
in M with base point m� and without self�intersections� such that

im e� �
�
int � � im ��� �

�
im ��i�

��
� �� ���

Obviously� there exists such an e� because M is supposed to be at least two�
dimensional� Set e �� � e� ��� � HG and g� �� hA���

��ghA����

Finally� de�ne a connection A
�
for A� e� and g� as follows�


� Construction of A
�

� Let � � P be for the moment a �genuine� path �i�e�� not an equivalence class�
that does not contain the initial point e���� 
 m� of e� as an inner point�
Explicitly we have int � � fe����g � �� De�ne

h
A
���� ��

������	
�����


g� hA�e
���� hA��� hA�e

�� g���� for � �� e� and � �� e�

g� hA�e
���� hA��� � for � �� e� and � �� e�

hA��� hA�e
�� g���� for � �� e� and � �� e�

hA��� � else

�

� For every trivial path � set h
A
���� � eG�

��



� Now� let � � P be an arbitrary path� Decompose � into a �nite productQ
�i due to Lemma ��� such that no �i contains the point e���� in the interior

supposed �i is not trivial� Here� set hA���� ��
Q
h
A
���i��

We know from ��� that A
�
is indeed a connection�

�� The assertion ��i�A
�
� � ��i�A� for all i is an immediate consequence of the

construction because im ��i� � int e� � �� As well� we get h
A
���� � hA����

�� Moreover� from ���� the fact that e� has no self�intersections and the de�nition of
A
�
we get h

A
���� � hA��� and so
h
A
��e� � h

A
���� h

A
��e�� h

A
������ � hA��� g

� hA���
�� � g�

�� We have Z�H
A
�� � Z�fgg �HA��

��� Let f � Z�H
A
��� i�e� f h

A
���� � h

A
���� f for all � � HG�

� From h
A
��e� � g follows fg � gf � i�e� f � Z�fgg��

� From im e� � im ��� � � follows hA��i� � h
A
���i�� i�e� f � Z�hA��i��

for all i�
Thus� f � Z�fgg� � Z�hA���� � Z�fgg �HA��

��� Let f � Z�fgg �HA��
� Let �� be a path from m� to m�� such that int �� � fm�g � � or int �� �

fm�g� Set � �� � �� ���� Then by construction we have

h
A
���� � h

A
���� h

A
����� h

A
������

� hA��� hA���
�� hA���

���

There are four cases�
� �� �� e� and �� �� e��

h
A
���� � hA��� hA��

�� hA���
�� � hA�� �

� ����
� hA����

� �� �� e� and �� �� e��

h
A
���� � hA��� g

� hA�e
���� hA��

�� hA���
��

� g hA��� hA�e
���� hA��

�� hA���
��

� g hA��e
����������

� �� �� e� and �� �� e��

h
A
���� � hA��� hA��

�� hA�e
�� �g����hA���

��

� hA��� hA��
�� hA�e

��hA���
�� g��

� hA���
�e����� g���

� �� �� e� and �� �� e��

h
A
���� � hA��� g

� hA�e
���� hA��

�� hA�e
�� �g���� hA���

��

� g hA��� hA�e
���� hA��

�� hA�e
�� hA���

�� g��

� g hA��e
�����e����� g���

Thus� in each case we get f � Z�fh
A
����g��

� Now� let � � HG be arbitrary and �� �� ������
By the Decomposition Lemma ��� there is a decomposition �� �Q
��i with int ��i � fm�g � � or int ��i � fm�g for all i� Thus�

� � �
�Q

��i
�
��� �

Q�
���i�

��
�
� Using the result just proven we get

f � Z
�n
h
A
�

�Q�
���i�

��
��o�

� Z�fh
A
����g��

��



Thus� f � Z�H
A
���

Due to the de�nition of � we have Z�H
A
�� � Z�fgg � hA����� qed

��� Construction of Arbitrary Types

Finally� we can now prove the desired proposition�

Proof Proposition ���

� Let t � T and t � Typ�A�� Then there exist a Howe subgroup V � � G with t �
V �� and a g � G� such that Z�HA� � g��V �g �� V � Since V is a Howe subgroup�
we have Z�Z�V �� � V and so by Lemma ��� there exist certain u�� � � � � uk �
Z�V � � G� such that V � Z�Z�V �� � Z�fu�� � � � � ukg��

� Now let Z�HA� � Z�hA���� with an appropriate � � HG as in Corollary ��
�
Because of V � Z�HA� we have V � V �Z�HA� � Z�fu�� � � � � ukg��Z�hA���� �
Z�fu�� � � � � ukg � hA�����

� We now use inductively Lemma ���� Let A� �� A and �� �� �� Construct for all
j � �� � � � � k a connection Aj�� and an ej � HG from Aj and �j by that lemma�
such that ��i�Aj��� � ��i�Aj� for all i� hAj��

��j� � hAj
��j�� hAj��

�ej� � uj and

Z�HAj��
� � Z�fujg � hAj

��j���

Setting�j�� �� �j�fejg we get Z�HAj��
� � Z�fujg�hAj

��j�� � Z�hAj��
��j�����

Finally� we de�ne A
�
�� Ak���

Now� we get ��i�A
�
� � ��i�A� for all i� hA���� � hA��� and h

A
��ej� � uj� Thus�

Z�H
A
�� � Z�h

A
���k����

� Z�h
A
��fe�� � � � � ekg � h

A
������

� Z�fu�� � � � � ukg � hA����
� V�

i�e�� Typ�A
�
� � V � � t� qed

The proposition just proven has a further immediate consequence�

Corollary ��� A�t is non�empty for all t � T �

Proof Let A be the trivial connection� i�e� hA��� � eG for all � � P� The type of A is G��
thus minimal� i�e� we have t � Typ�A� for all t � T � By means of Proposition ���
there is an A

�
� A with Typ�A

�
� � t� qed

This corollary solves the problem which gauge orbit types exist for generalized connections�

Theorem ��� The set of all gauge orbit types on A is the set of all conjugacy classes of
Howe subgroups of G�

Furthermore we have

Corollary ��	 Let � be some graph� Then ���A�tmax� � ���A�� In other words� �� is
surjective even on the generic connections�

Proof �� is surjective on A as proven in ���� By Proposition ��� there is now an A
�
with

Typ�A
�
� � tmax and ���A

�
� � ���A�� qed

��



� Strati	cation of A

First we recall the general de�nition of a strati�cation �
��

De�nition 	�� A countable family S of non�empty subsets of a topological space X is called
strati�cation of X i� S is a covering for X and for all U� V � S we have
� U � V �� � �� U � V �
� U � V �� � �� U � V and
� U � V �� � �� V � �U � V � � V �
The elements of such a strati�cation S are called strata�
A strati�cation is called topologically regular i� for all U� V � S

U �� V and U � V �� � �� V � U � ��

Theorem 	�� S �� fA�t j t � T g is a topologically regular strati�cation of A�
Analogously� f�A�G��t j t � T g is a topologically regular strati�cation of
A�G�

Proof � Obviously� S is a covering of A�
� For a compact Lie group the set of all types� i�e� all conjugacy classes of Howe

subgroups of G� is at most countable �cf� �
���
� Moreover� from A�t� � A�t� �� � immediately follows A�t� � A�t� �
� Due to Corollary ��� we have� Cl�A�t�� � A�t� � i�e� from Cl�A�t�� � A�t� �� �

follows t�  t� and thus Cl�A�t�� � A�t� �
� Analogously we get Cl�A�t�� � �A�t� � A�t�� � A�t� � �A�t� � A�t�� � A�t� �
� As well� from Cl�A�t���A�t� �� � and A�t� �� A�t� follows t�  t�� i�e� Cl�A�t���

A�t� � ��
Consequently� S is a topologically regular strati�cation of A� qed

For a regular strati�cation it would be required that each stratum carries the structure of a
manifold that is compatible with the topology of the total space� In contrast to the case of
the classical gauge orbit space �
�� this is not ful�lled for generalized connections�


 Non�complete Connections

We shall round o� that paper with the proof that the set of the so�called non�complete
connections is contained in a set of measure zero� This section actually stands a little bit
separated from the context because it is the only section that is not only algebraic and
topological� but also measure theoretical�

De�nition 
�� Let A � A be a connection�
�� A is called complete �� HA � G�

� A is called almost complete �� HA � G�
�� A is called non�complete �� HA �� G�

Obviously� we have

�Cl�U� denotes again the closure of U 
 here w�r�t� A�

��



Lemma 
�� If A � A is complete �almost complete� non�complete�� so A � g is complete
�almost complete� non�complete� for all g � G�

Thus� the total information about the completeness of a connection is already contained in
its gauge orbit� Now� to the main assertion of this section�

Proposition 
�� Let N �� fA � A j A non�completeg� Then N is contained in a set of
���measure zero whereas �� is the induced Haar measure on A� 
� �� ���

Since N is gauge invariant� we have

Corollary 
�� Let N � �� fA� � A�G j A non�completeg� Then N � is contained in a set of
���measure zero�

For the proof of the proposition we still need the following

Lemma 
�� Let U � G be measurable with �Haar�U�  � and NU �� fA � A j HA �
G n Ug�
Then NU is contained in a set of ���measure zero�

Proof � Let k � N and �k be some connected graph with one vertex m and k edges
��� � � � � �k � HG�� Furthermore� let �k � A �� Gk�

A ��� �hA����� � � � � hA��k��

� Denote now by Nk�U �� ���k ��GnU�k� the set of all connections whose holonomies
on �k are not contained in U � Per constructionem we have NU � Nk�U �

� Since the characteristic function �Nk�U
for Nk�U is obviously a cylindrical function�

we get

���Nk�U� �
Z
A
�Nk�U

d�� �
Z
A
��k���GnU�k� d��

�
Z
Gk

��GnU�k d�
k
Haar � �Haar�G n U��k�

� From NU � Nk�U for all k follows NU �
T
kNk�U � But� ���

T
kNk�U�  ���Nk�U� �

�Haar�GnU�k for all k� i�e� ���
T
kNk�U� � �� because �Haar�GnU� � ���Haar�U� �

�� qed

Proof Proposition 
��

� Let ��k�k�N be some null sequence� Furthermore� let fUk�igi be for each k a �nite
covering of G by open sets Uk�i whose respective diameters are smaller than �k�

Now de�ne N � ��
S
k

�S
iNUk�i

�
�

� Since Uk�i is open and G is compact� Uk�i is measureable with �Haar�Uk�i�  ��
Due to Lemma ��� we have NUk�i � N�

Uk�i
with ���N

�
Uk�i

� � � for all k� i� thus

N � � N� ��
S
k

�S
iN

�
Uk�i

�
with ���N

�� � ��

� We are left to show N � N ��
Let A � N � Then there is an open U � G with HA � G n U �
Now let m � U � Then � �� dist�m� �U�  �� Choose k such that �k � �� Then
choose a Uk�i with m � Uk�i� We get for all x � Uk�i� d�x�m�  diam Uk�i � �k � ��
i�e� x � U � Consequently� Uk�i � U and thus HA � GnUk�i� i�e� A � N �� qed

�Such a graph does indeed exist for dimM � �� For instance
 take k circles Ki with centers in � �
i
� �� � � � �

and radii �

i
� By means of an appropriate chart mapping aroundm these circles de�ne a graph with the desired

properties�

��



Corollary 
�� The set of all generic connections �i�e� connections of maximal type� has
���measure ��

Proof Every almost complete connection A has type Z�HA�� � Z�G�� � tmax� �Observe
that the centralizer of a set U � G equals that of the closure U �� Since A�tmax is
open due to Proposition ���� thus measurable� Proposition ��
 yields the assertion�

qed

The last assertion is very important� It justi�es the de�nition of the natural induced Haar
measure on A�G �cf� 
� ����� Actually� there were �at least� two di�erent possibilities for
this� Namely� let X be some general topological space equipped with a measure � and let G
be some topological group acting on X� The problem now is to �nd a natural measure �G
on the orbit space X�G� On the one hand� one could simply de�ne �G�U� �� ������U�� for
all measurable U � X�G� �� � X �� X�G is the canonical projection�� But� on the other
hand� one also could stratify the orbit space� For instance� in the easiest case we could have
X � X�G�G� In general� one gets �roughly speaking� X �

S�
V�G�GVnG

�
whereas

S
V

is an appropriate disjoint decomposition of X and GV characterizes the type of the orbits

on V � Now one naively de�nes �G�U� ��
P

V
	�����U�	V �
	G�V �G�GV �

��
P

V �
�
����U� � V

�
�V �GV ��

where �V measures the �size� of the stabilizer GV in G� This second variant is nothing but
the transformation of the measures using the Faddeev�Popov determinant �i�e� the Jacobi
determinant� d	

d	G
� In contrast to the �rst method� here the orbit space and not the total

space is regarded to be primary� For a uniform distribution of the measure over all points of
the total space the image measure on the orbit space needs no longer be uniformly distributed�
the orbits are weighted by size� But� for the second method the uniformity is maintained� In
other words� the gauge freedom does not play any r�ole when the Faddeev�Popov method is
used�
Nevertheless� we see in our concrete case of �A�G � A �� A�G that both methods are
equivalent because the Faddeev�Popov determinant is equal to � �at least outside a set of
���measure zero�� This follows immediately from the slice theorem and the corollary above
that the generic connections have total measure ��

�� Summary and Discussion

In the present paper and its predecessor �� we gained a lot of information about the structure
of the generalized gauge orbit space within the Ashtekar framework� The most important tool
was the theory of compact transformation groups on topological spaces� This enabled us to
investigate the action of the group of generalized gauge transforms on the space of generalized
connections� Our considerations were guided by the results of Kondracki and Rogulski �
�
about the structure of the classical gauge orbit space for Sobolev connections� The methods
used there are however fundamentally di�erent from ours� Within the Ashtekar approach
most of the proofs are purely algebraic or topological� in the classical case the methods are
especially based on the theory of �ber bundles� i�e� analysis and di�erential geometry�
In a preceding paper �� we proved that the G�stabilizer B�A� of a connection A is isomorphic
to the G�centralizer Z�HA� of the holonomy group of A� Furthermore� two connections have
conjugate G�stabilizers if and only if their holonomy centralizers are conjugate� Thus� the
type of a generalized connection can be de�ned equivalently both by the G�conjugacy class of

��



B�A� �as known from the general theory of transformation groups� and by the G�conjugacy
class of Z�HA�� This is a signi�cant di�erence to the classical case�
The reduction of our problem from structures in G to those in G was the crucial idea in the
present paper� Since stabilizers in compact groups are even generated by a �nite number of
elements� we could model the gauge orbit type Z�HA�� on a �nite�dimensional space� Using
an appropriate mapping we lifted the corresponding slice theorem to a slice theorem on A�
This is the main result of our paper� Collecting connections of one and the same type we
got the so�called strata whose openness was an immediate consequence of the slice theorem�
In the next step we showed that the natural ordering on the set of the types encodes the
topological properties of the strata� More precisely� we proved that the closure of a stratum
contains �besides the stratum itself� exactly the union of all strata having a smaller type�
This implied that this decomposition of A is a topologically regular strati�cation�
All these results hold in the classical case as well� This is very remarkable because our proofs
used partially completely di�erent ideas� However� two results of this paper go beyond the
classical theorems� First� we were able to determine the full set of all gauge orbit types
occurring in A� This set is known for Sobolev connections � to the best of our knowlegde
� only for certain bundles� Recently� Rudolph� Schmidt and Volobuev solved this problem
completely for SU�n��bundels P over two�� three� and four�dimensional manifolds ���� The
main problem in the Sobolev case is the non�triviality of the bundle P � This can exclude
orbit types that occur in the trivial bundle M � SU�n�� But� this problem is irrelevant for
the Ashtekar framework� Every regular connection in every G�bundle over M is contained in
A 
�� This means� in a certain sense� we only have to deal with trivial bundles� Second� in
the Ashtekar framework there is a well�de�ned natural measure on A� Using this we could
show that the generic stratum has the total measure one� this is not true in the classical
case� The proposition above implies now that the Faddeev�Popov determinant for the trans�
formation from A to A�G is equal to �� This� on the other hand� justi�es the de�nition of
the induced Haar measure on A�G by projecting the corresponding measure for A which has
been discussed in detail in section ��
Hence� we were able to �transfer� the classical theory of strata in a certain sense �almost�
completely to the Ashtekar program� We emphasize that all assertions are valid for each
compact structure group � both in the analytical and in the Cr�smooth case�

What could be next steps in this area� An important � and in this paper completely ignored
� item is the physical interpretation of the gained knowledge� So we will conclude our paper
with a few ideas that could link mathematics and physics�
� Topology

What is the topological structure of the strata� Are they connected or is A connected
itself �at least for connected G�� Is A�t globally trivial over �A�G��t� at least for the
generic stratum with t � tmax� What sections do exist in these bundles� i�e� what gauge
�xings do exist in A�
These problems are closely related to the so�called Gribov problem� the non�existence of
global gauge �xings for classical connections in principal �ber bundles with compact� non�
commutative structure group �see� e�g�� ����� From this lots of di	culties result for the
quantization of such a Yang�Mills theory that are not circumvented up to now�

��



� Algebraic topology
Is there a meaningful� i�e� especially non�trivial cohomology theory on A�� Is it possible
to construct this way characteristic classes or even topological invariants�

� Measure theory
How are arbitrary measures distributed over single strata� In other words� What proper�
ties do measures have that are de�ned by the choice of a measure on each single stratum�
This is extremely interesting� in particular� from the physical point of view because the
choice of a ���absolutely continuous measure � on A corresponds to the choice of an action
functional S on A by

R
A f d� �

R
A f e�S d��� According to Lebesgue�s decomposition

theorem all measures whose support is not fully contained in the generic stratum have
singular parts�

Finally� we have to stress that the present paper only investigates the case of pure gauge
theories� Of course� this is physically not satisfying� Therefore the next goal should be the
inclusion of matter �elds� A �rst step has already been done by Thiemann 
�� whereas the
aspects considered in the present paper did not play any r�ole in Thiemann�s paper�
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