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Abstract

We develop a data-sparse and accurate approximation to parabolic solution operators in the case of a
rather general elliptic part given by a strongly P -positive operator [3].

In the preceding papers [11]-[16], a class of matrices (H-matrices) has been analysed which are data-
sparse and allow an approximate matrix arithmetic with almost linear complexity. In particular, the
matrix-vector/matrix-matrix product with such matrices as well as the computation of the inverse have
linear-logarithmic cost. In the present paper, we apply the H-matrix techniques to approximate the
exponent of an elliptic operator.

Starting with the Dunford–Cauchy representation for the operator exponent, we then discretise the
integral by the exponentially convergent quadrature rule involving a short sum of resolvents. The latter
are approximated by the H-matrices. Our algorithm inherits a two-level parallelism with respect to both
the computation of resolvents and the treatment of different time values. In the case of smooth data
(coefficients, boundaries), we prove the linear-logarithmic complexity of the method.

AMS Subject Classification: 65F50, 65F30, 15A09, 15A24, 15A99

1 Introduction

There are several sparse (n × n)-matrix approximations which allow to construct optimal iteration methods
to solve the elliptic/parabolic boundary value problems with O(n) arithmetic operations. But in many appli-
cations one has to deal with full matrices arising when solving various problems discretised by the boundary
element (BEM) or FEM methods. In the latter case the inverse of a sparse FEM matrix is a full matrix. A
class of hierarchical (H) matrices has been recently introduced and developed in [11]-[16]. These full matrices
allow an approximate matrix arithmetic (including the computation of the inverse) of almost linear complexity
and can be considered as ”data-sparse”. Methods for approximating the action of matrix exponentials have
been investigated since the 1970s, see [19]. The most commonly used algorithms are based on Krylov subspace
methods [21, 17]. A class of effective algorithms based on the Cayley transform was developed in [7].

Concerning the second order evolution problems and the operator cosine family new discretisation methods
were recently developed in [3]-[4] in a framework of strongly P-positive operators in a Banach space. This
framework turns out to be useful also for constructing efficient parallel exponentially convergent algorithms
for the operator exponent and the first order evolution differential equations [4]. Parallel methods with a
polynomial convergence order 2 and 4 based on a contour integration for symmetric and positive definite
operators were proposed in [23].

The aim of this paper is to combine the H-matrix techniques with the contour integration to construct an
explicit data-sparse approximation for the operator exponent. Starting with the Dunford-Cauchy representa-
tion for the operator exponent and essentially using the strong P-positivity of the elliptic operator involved
we discretise the integral by the exponentially convergent trapezoidal rule involving a short sum of resolvents.
Approximating the resolvents by the H-matrices, we obtain an algorithm with almost linear cost representing
the non-local operator in question. This algorithm possesses two levels of parallelism with respect to both the
computation of resolvents for different quadrature points and the treatment of numerous time values. Our
parallel method has the exponential convergence due to the optimal quadrature rule in the contour integra-
tion for holomorphic function providing an explicit representation of the exponential operator in terms of
data-sparse matrices of linear-logarithmic complexity.

Our method applies to the matrix exponentials exp(A) for the class of matrices with �e(sp(A)) < 0, which
allow the hierarchical data-sparse H-matrix approximation to the resolvent (zI − A)−1, z /∈ sp(A). First, we
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discuss an application for solving linear parabolic problems with P-positive elliptic part. Further applications
of our method for the fast parallel solving of linear dynamical systems of equations and for the stationary
Lyapunov-Sylvester matrix equation AX + XB + C = 0 will also be discussed, see §4.

2 Representation of exp(tL) by a Sum of Resolvents

In this section we outline the description of the operator exponent with a strongly P-positive operator. As a
particular case a second order elliptic differential operator will be considered. We derive the characteristics of
this operator which are important for our representation and give the approximation results.

2.1 Strongly P-positive Operators

Strongly P-positive operators were introduced in [3] and play an important role in the theory of the second
order difference equations [22], evolution differential equations as well as the cosine operator family in a Banach
space X [3] .

Let A : X → X be a linear, densely defined, closed operator in X with the spectral set sp(A) and the
resolvent set ρ(A). Let Γ0 = {z = ξ + iη : ξ = aη2 + γ0} be a parabola, whose interior contains sp(A). In
what follows we suppose that the parabola lies in the right half-plane of the complex plane, i.e., γ0 > 0. We
denote by ΩΓ0 = {z = ξ + iη : ξ > aη2 + γ0}, a > 0, the domain inside of the parabola. Now, we are in the
position to give the following definition.

Definition 2.1 We say that an operator A : X → X is strongly P-positive if its spectrum sp(A) lies in the
domain ΩΓ0 and the estimate

‖(zI − A)−1‖X→X ≤ M

1 +
√|z| for all z ∈ C\ΩΓ0 (2.1)

holds true with a positive constant M .

Next, we show that there exist classes of strongly P-positive operators which have important applications.
Let V ⊂ X ≡ H ⊂ V ∗ be a triple of Hilbert spaces and let a(·, ·) be a sesquilinear form on V . We denote by
ce the constant from the imbedding inequality ‖u‖X ≤ ce‖u‖V , : ∀u ∈ V . Assume that a(·, ·) is bounded, i.e.,

|a(u, v)| ≤ c‖u‖V ‖v‖V for all u, v ∈ V.

The boundedness of a(·, ·) implies the well-posedness of the continuous operator A : V → V ∗ defined by

a(u, v) =V ∗< Au, v >V for all ∈ V.

As usual, one can restrict A to a domain D(A) ⊂ V and consider A as an (unbounded) operator in H . The
assumptions

�e a(u, u) ≥ δ0‖u‖2
V − δ1‖u‖2

X for all u ∈ V,

|
m a(u, u)| ≤ κ‖u‖V ‖u‖X for all u ∈ V

guarantee that the numerical range {a(u, u) : u ∈ X with ‖u‖X = 1} of A (and sp(A)) lies in ΩΓ0 , where the
parabola Γ0 depends on the constants δ0, δ1, κ, ce. Actually, if a(u, u) = ξu + iηu then we get

ξu = �e a(u, u) ≥ δ0‖u‖2
V − δ1 ≥ δ0c

−2
e − δ1,

|ηu| = |
m a(u, u)| ≤ κ‖u‖V .

It implies

ξu > δ0c
−2
e − δ1, ‖u‖2

V ≤ 1
δ0

(ξu + δ1), |ηu| ≤ κ

√
ξ + δ1

δ0
. (2.2)

The first and the last inequalities in (2.2) mean that the parabola Γδ = {z = ξ + iη : ξ = δ0
κ η2 − δ1} contains

the numerical range of A. Supposing that �e sp(A) > γ1 > γ0 one can easily see that there exists another
parabola Γ0 = {z = ξ + iη : ξ = aη2 + γ0} with a = (γ1−γ0)δ0

(γ1+δ1)κ
in the right-half plane containing sp(A),

see Fig. 1. Note that δ0c
−2
e − δ1 > 0 is the sufficient condition for �e sp(A) > 0 and in this case one can

choose γ1 = δ0c
−2
e − δ1. Analogously to [3] it can be shown that inequality (2.1) holds true in C\ΩΓ0 (see the

discussion in [3, pp. 330-331]). In the following, the operator A is strongly P-positive.
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Figure 1: Parabolae Γδ and Γ0.

2.2 Several Examples

As the first example let us consider the one-dimensional operator A : L1(0, 1) → L1(0, 1) with the domain
D(A) = H2

0 (0, 1) = {u : u ∈ H2(0, 1), u(0) = 0, u(1) = 0} in the Sobolev space H2(0, 1) defined by

Au = −u′′ for all u ∈ D(A).

Here we set X = L1(0, 1) (see Definition 2.1). The eigenvalues λk = k2π2 (k = 1, 2, . . . ) of A lie on the
real axis inside of the domain ΩΓ0 enveloped by the path Γ0 = {z = η2 + 1 ± iη}. The Green function for the
problem

(zI − A)u ≡ u′′(x) + zu(x) = −f(x), x ∈ (0, 1); u(0) = u(1) = 0

is given by

G(x, ξ) =
1√

z sin
√

z

{
sin

√
zx sin

√
z(1 − ξ) if x ≤ ξ,

sin
√

zξ sin
√

z(1 − x) if x ≥ ξ,

i.e., we have

u(x) = (zI − A)−1f =
∫ 1

0

G(x, ξ)f(ξ)dξ.

Estimating the absolute value of the Green function on the parabola z = η2 + 1 ± iη for |z| large enough we
get that ‖u‖L1 = ‖(zI − A)−1f‖L1 ≤ M

1+
√

|z|‖f‖L1 (f ∈ L1(0, 1), z ∈ C \ΩΓ0), i.e., the operator A : L1 → L1

is strongly P-positive in the sense of Definition 2.1. Similar estimates for the Green function imply the strong
positiveness of A also in L∞(0, 1) (see [4] for details).

As the second example of a strongly P-positive operator one can consider the strongly elliptic differential
operator

L := −
d∑

j,k=1

∂jajk∂k +
d∑

j=1

bj∂j + c0 (∂j :=
∂

∂xj
) (2.3)

with smooth (in general complex) coefficients ajk, bj and c0 in a domain Ω with a smooth boundary. For the
ease of presentation, we consider the case of Dirichlet boundary conditions. We suppose that apq = aqp and
the following ellipticity condition holds

d∑
i,j=1

aij yi yj ≥ C1

d∑
i=1

y2
i .

This operator is associated with the sesquilinear form

a(u, v) =
∫

Ω

⎛⎝ d∑
i,j=1

aij ∂iu ∂jv +
d∑

j=1

bj ∂ju v + c0uv

⎞⎠ dΩ.
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Our algorithm needs explicit estimates for the parameters of the parabola which in this example have to be
expressed by the coefficients of the differential operator. Let

C2 := inf
x∈Ω

∣∣∣∣12 ∑
j

∂bj

∂xj
− c0

∣∣∣∣ , C3 :=
√

d max
x,j

|bj(x)|,

|u|21 =
∑

j |∂ju|2 be the semi-norm of the Sobolev space H1(Ω), ‖ · ‖k be the norm of the Sobolev space Hk(Ω)
(k = 0, 1, . . . ) with H0(Ω) = L2(Ω), and CF the constant from the Friedrichs inequality

|u|21 ≥ CF ‖u‖2
0 for all u ∈ H1

0 (Ω).

This constant can be estimated by CF = 1/(4B2), where B is the edge of the cube containing the domain Ω. It is
easy to show that in this case with V = H1

0 (Ω), H = L2(Ω) it holds ξu ≥ C1|u|21−C2‖u‖0 ≥ C1CF −C2, |ηu| ≤
C3|u|1 ≤ C3

√
(ξu + C2)/C1, so that the parabola Γδ is defined by the parameters δ0 = C1, δ1 = C2, κ = C3

and the lower bound of sp(A) can be estimated by γ1 = C1CF − C2 > γ0. Now, the desired parabola Γ0 is
constructed as above by putting a = (γ1−γ0)δ0

(γ1+δ1)κ
, see §2.1.

The third example is given by a matrix A ∈ Rn×n whose spectrum satisfies �e sp(A) > 0. In this case,
the parameters of the parabola Γ0 can be determined by means of the Gershgorin circles. Let A = {aij}n

i,j=1,

define Ci = {z : |z − aii| ≤
n∑

j=1,j �=i

aij}, Dj = {z : |z − ajj | ≤
n∑

i=1,i�=j

aij}. Then by Gershgorin’s theorem,

sp(A) ⊂ CA := (∪iCi) ∩ (∪jDj) .

The corresponding parabola Γ0 is obtained as the enveloping one for the set CA with simple modifications in
the case �e(CA) ∩ (−∞, 0] �= ∅.

2.3 Representation of the Operator Exponent

Let L be a linear, densely defined, closed, strongly P-positive operator in a Banach space X . The operator
exponent T (t) ≡ exp(−tL) (operator-valued function or a continuous semigroup of bounded linear operators
on X with the infinitesimal generator L, see, e.g., [20]) satisfies the differential equation

dT

dt
+ LT = 0, T (0) = I, (2.4)

where I is the identity operator. Given the operator exponent T (t) the solution of the first order evolution
equation (parabolic equation)

du

dt
+ Lu = 0, u(0) = u0

with a given initial vector u0 and unknown vector valued function u(t) : R+ → X can be represented as

u(t) = exp(−tL)u0.

Let Γ0 = {z = ξ + iη : ξ = aη2 + γ0} be the parabola defined as above and containing the spectrum sp(L) of
the strongly P-positive operator L.

Lemma 2.2 Choose a parabola Γ = {z = ξ + iη : ξ = aη2 + b} with b ∈ (0, γ0). Then the exponent exp(−tL)
can be represented by the Dunford-Cauchy integral [1]

exp(−tL) =
1

2πi

∫
Γ

e−zt(zI − L)−1dz. (2.5)

Moreover, T (t) = exp(−tL) satisfies the differential equation (2.4).

Proof. In fact, using the parameter representation z = aη2 + b± iη, η ∈ (0,∞), of the path Γ and the estimate
(2.1), we have

‖ exp(−tL)‖ = ‖ 1
2πi

∫ 0

∞ e−(aη2+b+iη)t((aη2 + b + iη)I − L)−1(2aη + i)dη

+ 1
2πi

∫ ∞
0

e−(aη2+b−iη)t((aη2 + b − iη)I − L)−1(2aη − i)dη‖
≤ C

∫ ∞
0

e−(aη2+b)t

√
4a2η2+1

1+[(aη2+b)2+η2]1/4 dη.
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Analogously, applying (2.1) we have for the derivative of T (t) = exp(−tL)

‖L exp(−tL)‖ = ‖ 1
2πi

∫
Γ

ze−zt(tI − L)−1)dz‖

≤ C

∫ ∞

0

√
(aη2 + b)2 + η2e−(aη2+b)t

√
4a2η2 + 1

1 + [(aη2 + b)2 + η2]1/4
dη,

where the integrals are finite for t > 0. Furthermore, we have

dT

dt
+ LT =

1
2πi

∫
Γ

−ze−zt(zI − L)−1dz + L
(

1
2πi

∫
Γ

e−zt(zI − L)−1dz

)
= − 1

2πi

∫
Γ

ze−zt(zI − L)−1dz +
1

2πi

∫
Γ

zezt(zI − L)−1dz = 0,

i.e., T (t) = exp(−tL) satisfies the differential equation (2.4). This completes the proof.
The parametrised integral (2.5) can be represented in the form

exp(−tL) =
1

2πi

∫ ∞

−∞
F (η, t)dη (2.6)

with

F (η, t) = e−zt(zI − L)−1 dz

dη
, z = aη2 + b − iη.

After the change of variables η = η(ξ), η : (0, 2π) → (−∞,∞), we get the integral representation

exp(−tL) =
1

2πi

∫ 2π

0

F1(ξ, t)dξ (2.7)

with a 2π-periodic analytic operator-valued function F1(ξ, t) = F (η, t)dη
dξ of ξ, where F1(0, t) = 0. In the

following we shall use the parametrisation

η =
ξ − π

[ξ(2π − ξ)]α
for ξ ∈ (0, 2π), α ∈ (0, 1). (2.8)

2.4 The Computational Scheme and the Convergence Analysis

Let Φ(ξ) be an analytical 2π-periodic operator-valued function and ξj = jπ/N (j = 0, . . . , 2N − 1) be an
equidistant grid. Denote the (unique) trigonometric polynomial by (PNΦ)(ξ) ≡ ΦN (ξ) :=

∑N
j=0 αj cos jξ +∑N

j=1 βj sin jξ providing the interpolation property Φ(ξj) ≡ Φj = ΦN (ξj). The coefficients of this polynomial
are the linear operators

α0 = 1
2N

∑2N−1
k=0 Φk, αN = 1

2N

∑2N−1
k=0 (−1)kΦk,

αj = 1
N

∑2N−1
k=0 Φk cos jξk, βj = 1

N

∑2N−1
k=0 Φk sin jξk, j = 1, . . . , N − 1.

The representation with respect to the Lagrange basis is

(PNΦ)(ξ) =
1

2N
sin Nξ

2N−1∑
k=0

(−1)kΦ(ξk) cot
ξ − ξk

2
(0 ≤ ξ < 2π, ξ �= ξk, k = 0, . . . , 2N − 1).

Integrating the interpolation polynomial ΦN (ξ), we get the usual trapezoidal rule for the integral
∫ 2π

0
Φ(ξ)dξ

similar to the case of real-valued functions. Thus, we have for the integral (2.7)

T (t) ≡ exp(−tL) ≈ TN(t) ≡ expN (−tL) :=
2N−1∑
k=0

θkF1(ξk, t) =
2N−1∑
k=1

θkF1(ξk, t),

where ξk = kπ
N , θk = π

N , k = 0, 1, . . . , 2N − 1. This introduces the following algorithm for the approximation
of the operator exponent at a given time value t .
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Algorithm 2.3 1. Determine zk (k = 1, . . . , 2N − 1) by zk = aη2
k + b − iηk, ξk = kπ

N , ηk = η(ξk).

2. Find the resolvents (zkI − L)−1, k = 1, . . . , 2N − 1 (note that it can be done in parallel).

3. Find the approximation expN (−tL) for the operator exponent exp(−tL) in the form

expN (−tL) =
1

2Ni

2N−1∑
k=1

e−zkt(zkI − L)−1 dz(η(ξk))
dη

dη(ξk)
dξ

, (2.9)

where dz
dη = 2aη − i.

Remark 2.4 The above algorithm possesses two sequential levels of parallelism: one can compute all resolvents
in Step 2 in parallel and then each operator exponent at different time values provided that we apply the operator
exponential for a given time vector (t1, t2, . . . , tM ).

Note that for small parameters t � 1, the numerical tests indicate that Step 3 in the algorithm above has
slow convergence. In this case, we propose the following modification of Algorithm 2.3, which converges much
faster than (2.9).

Algorithm 2.5 1′. Determine zk(t) (k = 1, . . . , 2N − 1) by ξk = kπ
N , ηk = η(ξk), zk(t) = aη2

k + b(t) − iηk,
where the parameter b(t) is defined with respect to the location of sp(tL), i.e., b(t) = tb.

2′. Find the resolvents (zk(t)I − tL)−1, k = 1, . . . , 2N − 1 (it can be done in parallel).

3′. Find the approximation expN(−tL) for the operator exponent exp(−tL) in the form

expN (−tL) =
1

2Ni

2N−1∑
k=1

e−zk(t)(zk(t)I − tL)−1 dz(η(ξk))
dη

dη(ξk)
dξ

, where
dz

dη
= 2aη − i.

Though the above algorithm allows only sequential treatment of different time values close to t = 0, in
many applications (e.g., for integration with respect to the time variable) we may choose the time-grid as
ti = i∆t, i = 1, . . . , nt. Then the exponentials for i = 2, . . . , nt are easily obtained as the corresponding
monomials from expN (−∆tL).

Adapting the ideas of [18] it is easy to prove the following approximation result for any fixed t ∈ (0,∞).

Lemma 2.6 There holds

‖T (t) − TN(t)‖ ≡ ‖ exp(−tL) − expN (−tL)‖ ≤ M1
coth (s/2)
sinh sN

, (2.10)

where s is the width of a strip in which F1(ξ, t) can be extended holomorphically and M1 = M1(s, t) is the
bound on F1(ξ, t).

Proof. First of all we note that Φ(ξ) = F1(ξ, t) is a bounded operator for all ξ, t. Let ΓR be the counterclockwise
oriented boundary of the rectangle [ π

2N , 2π + π
2N ]× [−σ, σ] containing all interpolation points where σ ∈ (0, s)

is arbitrary. By a simple modification of the results from [18] for operator-valued functions one gets for the
interpolation error

Φ(ξ) − ΦN (ξ) =
sinNξ

4πi

∫
ΓR

cot z−ξ
2

sinNz
Φ(z)dz

=
sinNξ

4πi

[∫
Γu

cot z−ξ
2

sin Nz
Φ(z)dz +

∫
Γl

cot z−ξ
2

sin Nz
Φ(z)dz

]
, ξ �= ξj , j = 0, . . . , 2N − 1,

where we have used the periodicity of the integrand and Γu, Γl denote the top and the bottom sides of the
rectangle ΓR corresponding to the values z = σ and z = −σ. Using the inequalities | sin Nz| ≥ sinhNσ,
| cot z

2 | ≤ coth σ
2 for 
m z = ±σ and passing to the limit σ → s, we get the statement of the lemma.

The specific dependence of M1(s, t) on the time variable t in (2.10) will be investigated in §5. In accordance
with (5.1) there holds

‖ exp(−tL) − expN (−tL)‖ � s−1 exp(−[b − aα2
2s

2 + α1s]t − sN),

where α1, α2 denote generic constants independent of the parameters involved.
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3 On the H-Matrix Approximation to the Resolvent (zI −L)−1

Below, we briefly discuss the main features of the H-matrix techniques to be used for data-spase approximation
of the operator resolvent in question. We recall the complexity bound for the H-matrix arithmetic and prove
the existence of the accurate H-matrix approximation to the resolvent of elliptic operator in the case of smooth
data.

Note that there are different strategies to construct the H-matrix approximation to the inverse A = L−1

of the elliptic operator L. The existence result is obtained for the direct Galerkin approximation Ah to the
operator A provided that the Green function is given explicitly (we call this H-matrix approximation by AH).
In this paper, such an approximation has only the theoretical significance. However, using this construction
we prove the density of H-matrices for approximation to the inverse of elliptic operators in the sense that
there exists the H-matrix AH such that

||Ah − AH|| ≤ c ηL, η < 1, (3.1)

where L = O(log N), N = dimVh, cf. Corollary 3.4.
In practice, we start from certain FE Galerkin stiffness matrix Lh corresponding to the elliptic operator

involved, which has already the H-matrix format, i.e., we set LH := Lh. Then using the H-matrix arithmetic,
we compute the approximate H-matrix inverse ÃH to the exact fully populated matrix L−1

H . The difference
||AH− ÃH|| will not be analysed in this paper. In turn, the numerical results in [8] exhibit the approximation
||L−1

H − ÃH|| = O(ε) with the block rank r = O(logd−1 ε−1) for d = 2.
We end up with a simple example of the hierarchical block partitionig to build the H-matrix inverse for

the 1D Laplacian and for a singular integral operator.

3.1 Problem Classes

Suppose we are given the second order elliptic operator (2.3). In our application, we look for a sufficiently
accurate data-sparse approximation of the operator (zI − L)−1 : H−1(Ω) → H1

0 (Ω), Ω ∈ Rd, d ≥ 1, where
z ∈ C, z /∈ sp(L), is given in Step 1 of Algorithm 2.3. Assume that Ω is a domain with smooth boundary. To
prove the existence of an H-matrix approximation to exp(−tL), we use the classical integral representation
for (zI − L)−1,

(zI − L)−1u =
∫

Ω

G(x, y)u(y)dy, u ∈ H−1(Ω), (3.2)

where Green’s function G(x, y) = G(x, y; z) solves the equation

(zI − L)xG(x, y) = δ(x − y) (x, y ∈ Ω), G(x, y) = 0 (x ∈ ∂Ω, y ∈ Ω). (3.3)

Together with an adjoint system of equations in the second variable y, equation (3.3) provides the base to
prove the existence of the H-matrix approximation of (zI − L)−1 which then can be obtained by using the
H-matrix arithmetic from [11, 12].

The error analysis for the H-matrix approximation to the integral operator from (3.2) may be based on
using degenerate expansions of the kernel, see §3.2. In this way, we use different smoothness prerequisits.
In the case of smooth boundaries and analytic coefficients the analyticity of the Green’s function G(x, y) for
x �= y is applied:

Assumption 3.1 For any x0, y0 ∈ Ω, x0 �= y0, the kernel function G(x, y) is analytic with respect to x and
y at least in the domain {(x, y) ∈ Ω × Ω : |x − x0| + |y − y0| < |x0 − y0|}.

An alternative (and weaker) assumption requires that the kernel function G is asymptotically smooth, i.e.,

Assumption 3.2 For any m ∈ N, for all x, y ∈ Rd, x �= y, and all multi-indices α, β with |α| = α1 + . . . + αd

there holds |∂α
x ∂β

y G(x, y)| ≤ c(|α|, |β|)|x − y|2−|α|−|β|−d for all |α|, |β| ≤ m.

The smoothness of Green’s function G(x, y) is determined by the regularity of the problem (3.3).
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3.2 On the Existence of H-Matrix Approximation

Let A := (zI − L)−1. Given the Galerkin ansatz space Vh ⊂ L2(Ω), consider the existence of a data-sparse
approximation AH to the exact stiffness matrix (which is not computable in general)

Ah = 〈Aϕi, ϕj〉i,j∈I , where Vh = span{ϕi}i∈I .

Let I be the index set of unknowns (e.g., the FE-nodal points) and T (I) be the hierarchical cluster tree [11].
For each i ∈ I, the support of the corresponding basis function ϕi is denoted by X(i) := supp(ϕi) and for
each cluster τ ∈ T (I) we define X(τ) =

⋃
i∈τ X(i). In the following we use only piecewise constant/linear FEs

defined on the quasi-uniform grid.
In a canonical way (cf. [12]), a block-cluster tree T (I × I) can be constructed from T (I), where all vertices

b ∈ T (I × I) are of the form b = τ × σ with τ, σ ∈ T (I). Given a matrix M ∈ R
I×I , the block-matrix

corresponding to b ∈ T (I × I) is denoted by M b = (mij)(i,j)∈b. An admissible block partitioning P2 ⊂ T (I × I)
is a set of disjoint blocks b ∈ T (I × I), satisfying the admissibility condition,

min{diam(σ), diam(τ)} ≤ 2 η dist(σ, τ), (3.4)

(σ, τ) ∈ P2, η < 1, whose union equals I × I (see an example in Fig. 2b related to the 1D case). Let a block
partitioning P2 of I × I and k � N be given. The set of complex H-matrices induced by P2 and k = k(b) is

MH,k(I × I, P2) := {M ∈ Z
I×I : for all b ∈ P2 there holds rank(M b) ≤ k(b)}.

With the splitting P2 = Pfar ∪ Pnear, where Pfar := {σ × τ ∈ P2 : dist(X(τ), X(σ)) > 0}, the standard
H-matrix approximation of the nonlocal operator A = (zI − L)−1 is based on using a separable expansion of
the exact kernel,

Gτ,σ(x, y) =
k∑

ν=1

aν(x)cν(y), (x, y) ∈ X(σ) × X(τ),

of the order k � N = dim Vh for σ × τ ∈ Pfar, see [12]. The reduction with respect to the operation count is
achieved by replacing the full matrix blocks Aτ×σ (τ × σ ∈ Pfar) by their low-rank approximation

Aτ×σ
H :=

k∑
ν=1

aν · cT
ν , aν ∈ R

nτ , cν ∈ R
nσ ,

where aν =
{∫

X(τ)
aν(x)ϕi(x)dx

}
i∈τ

, cν =
{∫

X(σ)
cν(y)ϕj(y)dy

}
j∈σ

. Therefore, we obtain the following

storage and matrix-vector multiplication cost for the matrix blocks

Nst

(
Aτ×σ

H
)

= k(nτ + nσ), NMV

(
Aτ×σ

H
)

= 2k(nτ + nσ),

where nτ = #τ , nσ = #σ. On the other hand, the approximation of the order O(N−α), α > 0, is achieved
with k = O(logd−1 N).

3.3 The Error Analysis

For the error analysis, we consider the uniform hierarchical cluster tree T (I) (see [11, 12] for more details)
with the depth L such that N = 2dL. Define P

(�)
2 := P2 ∩ T �

2 , where T �
2 is the set of clusters τ × σ ∈ T2 such

that blocks τ, σ belong to level �, with � = 0, 1, . . . , L. We consider the expansions with the local rank k�

depending only on the level number � and defined by k� := min{2d(L−�), md−1
� }, where m = m� is given by

m� = a L1−q(L − �)q + b, 0 ≤ q ≤ 1, a, b > 0. (3.5)

Note that for q = 0, we arrive at the constant order m = O(L), which leads to the exponential convergence
of the H-matrix approximation, see [15].

Introduce

N0 = max
0≤�≤p

max
{

max
τ∈T (�)

∑
τ :τ×σ∈P

(�)
2

1, max
σ∈T (�)

∑
σ:τ×σ∈P

(�)
2

1
}

.

For the ease of exposition, we consider the only two special cases q = 0 and q = 1. Denote by Ah : Vh → V ′
h

the restriction of A onto the Galerkin subspace Vh ⊂ L2(Ω) defined by 〈Ahu, v〉 = 〈Au, v〉 for all u, v ∈ Vh.
The operator AH has the similar sense. The following statement is the particular case of [14, Lemma 2.4].

8



Lemma 3.3 Let η = 2−α, α > 0, and

|s(x, y) − sτσ(x, y)| � ηm��3−d dist(τ, σ)2−d

for each τ ×σ ∈ P
(�)
2 , where the order of expansion m� is defined by (3.5) with q = 0, 1 and with a given a > 0

such that −αa + 2 < 0. Then, for all u, v ∈ Vh there holds

〈(Ah − AH)u, v〉 � h2N0δ(L, q)||u||0||v||0, (3.6)

where δ(L, 0) = ηL and δ(L, 1) = 1 and d = 2, 3.

Note that in the case of constant order expansions, i.e., for q = 0, we obtain the exponential convergence

〈(Ah − AH)u, v〉 � N0L
4−dηL||u||0||v||0 (u, v ∈ Vh)

for any a in (3.5).
The first important consequence of Lemma 3.3 is that for the variable order expansions with q = 1 the

asymptotically optimal convergence is verified only for trial functions from L2(Ω). On the other hand, the
exponential convergence in the operator norm || · ||H−1→H1 may be proven for any 0 ≤ q < 1, see [14].

Corollary 3.4 Suppose that the inverse inequality ||v||0,Ω � h−1||v||−1,Ω is valid for all v ∈ Vh. Then there
holds

||Ah − AH||H−1→H1
0

� N0δ(L, q), q = 0, 1. (3.7)

Proof. The estimate (3.6) and the inverse inequality imply

||(Ah − AH)uh||H1(Ω) = sup
v∈Vh

〈(Ah − AH)uh, v〉
||v||−1,Ω

� hN0δ(L, q)||uh||0,

for any uh ∈ Vh. Finally, the repeated application of the inverse inequality now to the term ||uh||0 implies
(3.7).

Remark 3.5 In the case q = 1 and d = 2, 3, we obtain the optimal error estimate for functions u ∈ L2(Ω).
However, if d = 1, we have the local rank of constant order kconst = O(md−1) = O(1) which again leads to
linear complexity.

3.4 Complexity Estimate and Further Discussion of H-Matrices

The linear-logarithmic complexity O(kN log N) of the H-matrix arithmetic is proven in [11, 12, 13]. In the
special case of regular tensor-product grids the following sharp estimate is valid: for any H-matrix M ∈ RI×I

with rank-k blocks the storage and matrix-vector multiplication complexity is bounded by

Nst(M) ≤ (2d − 1)(
√

dη−1 + 1)d kLN, NMV (M) ≤ 2Nst(M).

Here, as above, L denotes the depth of the hierarchical cluster tree T (I) with N = #I = 2dL and η < 1 is the
fixed admissibility parameter defined in (3.4) and responsible for the approximation.

The complexity of the variable order H-matrices with m� given by (3.5) and for d = 2, 3 depends on the
representation of matrix blocks. Using the representation of blocks in a fixed basis, see [16], we have

Aτ×σ
H =

∑k�

i,j=1
aij(ai · cT

j ) ∈ Va ⊗ Vc, ai ∈ R
nτ , cj ∈ R

nσ , (3.8)

where Va = span{ai}1≤i≤k�
, Vc = span{cj}1≤j≤k�

with k� = O(md−1
� ). We then obtain the following storage

estimate

Nst(AH) � N0

∑L

�=0
k2

� 2d� � N0L
2(1−q)(d−1)N.

As result, we arrive at a linear complexity bound with the choice q = 1 in (3.5). It is easy to see that for q = 1
the matrix-vector product has linear complexity as well, see [16, 15].
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In what follows, we discuss simple examples of block partitionings P2 and the corresponding H-matrix
approximations for the integral operators with asymptotically smooth kernels. The inversion in the H-matrix
arithmetic to the given M ∈ MH,k(I × I, P2) is discussed in [11, 12]. In the general case of quasiuniform
meshes the complexity O(k2N) of matrix inversion is proven. It is worth to note that the FE Galerkin matrix
for the second order elliptic operator in Rd, d ≥ 1, belongs to MH,k(I × I, P2) for each k ∈ N. In particular,
for d = 1 the tridiagonal stiffness matrix corresponding to the operator − d2

dx2 : H1
0 (Ω) → H−1(Ω), Ω = (0, 1),

belongs to MH,1(I×I, P2) with the partitioning P2 depicted in Fig. 2a. Therefore, each matrix block involved
in the above partitioning has the rank equals one. It is a particular 1D-effect that the inverse to this tridiagonal
matrix has the same format, i.e., the inverse is exactly reproduced by an H-matrix (see [11] for more details).

(a) (b)

Figure 2: Block partitioning P2 in the case of 1D differential operator (a) and for the integral operator with
a singular kernel (b)

In general, the admissibility condition is intended to provide the hierarchical approximation for the asymp-
totically smooth kernel G(x, y), see Assumption 3.2, which is singular on the diagonal x = y. Thus, an ad-
missible block partitioning includes only “nontouching blocks” belonging to Pfar and leaves of T (I × I), see
Fig. 2b corresponding to the case η = 1

2 , N = 24 for 1D index set. In the case d = 2, 3 the admissible block
partitioning is defined recursively, see [12], using the block cluster tree T (I × I). The numerical experiments
for 2D Laplacian illustrate the efficiency of the H-matrix inversion. Improved data-sparsity is achieved by
using the H2-matrix approximation [16] based on the block representation (3.8) with fixed basis of Va and Vc

for all admissible matrix blocks.

4 Applications

4.1 Parabolic Problems

In the first example, we consider an application to parabolic problems. Using semigroup theory (see [20] for
more details), the solution of the first order evolution equation

du

dt
+ Lu = f, u(0) = u0,

with a known initial vector u0 ∈ L2(Ω) and with the given right-hand side f ∈ L2(QT ), QT := (0, t)× Ω, can
be represented as

u(t) = exp(−tL)u0 +

t∫
0

exp(−(t − s)L)f(s)ds. (4.1)

We consider the following semi-discrete scheme. Let Mj be the H-matrix approximation of the resolvent
(zjI − L)−1 in (2.9) associated with the Galerkin ansatz space Vh ⊂ L2(Ω) and let u0, f be the vector
representations of the corresponding Galerkin projections onto the spaces Vh and Vh × [0, T ], respectively.
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Then the H-matrix approximation of the operator exponential takes the form

expH(−tL) =
2N0−1∑

j=1

γje
−zjtMj, γj =

1
2N0i

dz(η(ξj))
dη

dη(ξj)
dξ

.

Substitution of the above representation into (4.1) leads to the entirely parallelisable scheme

uH(t) =
2N0−1∑

j=1

γje
−zjtMj

⎛⎝u0 +

t∫
0

ezj sf(s)ds

⎞⎠ , (4.2)

with respect to j = 1, . . . , 2N0 − 1, to compute the approximation uH(t),
The second level of parallelisation appears if we are interested to calculate the right-hand side of (4.2) for

different time steps.

4.2 Dynamical Systems and Control Theory

In the second example, we consider the linear dynamical system of equations

dX(t)
dt

= AX(t) + X(t)B + C(t), X(0) = X0,

where X, A, B, C ∈ Rn×n. The solution is given by

X(t) = etAX0e
tB +

t∫
0

e(t−s)AC(s)e(t−s)Bds.

Suppose that we can construct the H-matrix approximations of the corresponding matrix exponents

expH(tA) =
2N0−1∑

l=1

γale
−altAl, expH(tB) =

2N0−1∑
j=1

γbje
−bjtBj , Al,Bj ∈ MH,k(I × I, P2).

Then the approximate solution XH(t) may be computed in parallel as in the first example,

XH(t) =
2N0−1∑
l,j=1

γalγbje
−(al+bj)tAl

⎛⎝X0 +

t∫
0

e(al+bj)s C(s)ds

⎞⎠Bj .

Let C be constant and the eigenvalues of A, B have negative real parts, then X(t) → X∞ as t → ∞, where

X∞ =

∞∫
0

etACetBdt

satisfies the Lyapunov-Sylvester equation

AX∞ + X∞B + C = 0.

Assume we are given the hierarchical approximations to etA and etB as above. Then there holds

XH,∞ =

∞∫
0

(
2N0−1∑

l=1

γale
−altAl)CH(

2N0−1∑
j=1

γbje
−bjtBj)dt =

2N0−1∑
l,j=1

γalγbj

∞∫
0

e−(al+bj)tdtAlCHBj, (4.3)

where CH stands for the H-matrix approximation to C if available. Taking into account that the H-matrix
multiplication has the complexity O(k2n), we then obtain a fully parallelisable scheme of complexity O(N0 k n)
(but not O(n3) as in the standard linear algebra) for solving the matrix Lyapunov equation.

In many applications the right-hand side is given by a low rank matrix, rank(C) = k � n. In this case we
immediately obtain the explicit low rank approximation for the solution of the Lyapunov equation.
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Lemma 4.1 Let C =
∑k

α=1 aα · cT
α . Moreover, we assume B = AT . Then the solution of the Lyapunov-

Sylvester equation is approximated by

XH =
k∑

α=1

2N0−1∑
l,j=1

γalγbj

al + bj
(Alaα) · (Ajcα)T , (4.4)

such that ||X∞ − XH||∞ ≤ ε, with N0 = O(log ε−1) and rank(XH) = k (2N0 − 1).

Proof. In fact, substitution of the rank-k matrix C into (4.3) leads to (4.4). Due to the exponential convergence
in (2.10), we obtain N0 = O(log ε−1), where ε is the approximation error. Combining all terms in (4.4)
corresponding to the same index l = 1, . . . , 2N0 − 1 proves that XH has the rank k(2N0 − 1).

Various techniques were considered for numerical solution of the Lyapunov equation, see, e.g., [2], [6], [19]
and the references therein. Among others, Lemma 4.1 proves the non-trivial fact that the solution X∞ of our
matrix equation admits an accurate low rank approximation if this is the case for the right-hand side C. We
refer to [8] for a more detailed analysis and numerical results concerning the H-matrix techniques for solving
the Lyapunov equation.

5 On the Choice of Computational Parameters and Numerics

In this section we discuss how the parameters of the parabola influence our method.
Let Γ0 = {z = ξ ± iη = aη2 + γ0 ± iη} be the parabola containing the spectrum of L whose parameters

a, γ0 are determined by the coefficients of L. Given a, we choose the integration path Γ = {z = ξ1 ± iη1 =
a1η

2
1 + b ± iη1} with b ∈ (0, γ0), a1 ≥ a. It is easy to find that the distance d(Γ, Γ0) between Γ and Γ0 is

d(Γ, Γ0) = min
η,η1∈R

{[a(η2 − η2
1) + (b − γ0)]2 + (η − η1)2}1/2 = γ0 − b.

It means that the strip Πη around the real axis η ∈ (−∞,∞) in (2.6), in which the integrand can be
extended holomorphically, is of the width sη = 2(γ0 − b). Let η = η(ξ) be a conformal mapping η : (0, 2π) →
(−∞,∞) and sξ be the width of the strip Πξ around the interval ξ ∈ (0, 2π) in which, in turn, the integrand
F1(ξ, t) ≡ F (η, t) can be extended holomorphically. It follows from

η(ξ + isξ) = η(ξ) + iη′(θ)sξ

that α1sξ ≤ sη ≤ α2sξ where α1 = minξ∈Πξ
|η′(ξ)|, α2 = maxξ∈Πξ

|η′(ξ)| and sξ → 0 together with sη → 0.
The bound of the integrand F1(ξ, t) = F (η, t) on Πξ is less or equal to the bound of F (η, t) in the strip Πη.
Since the absolute value of an analytic function attains its maximum on the boundary, we have

M1 = sup
ξ∈Πξ

‖F1(ξ, t)‖ = sup
ξ∈Πξ

‖e−z(ξ)t(z(ξ) − L)−1 dz

dη

dη

dξ
‖

≤ Mα2 max sup
η∈(−∞,∞)

|e−[a(η+isη)2+b−i(η+isη )]t| |2a(η + isη) − i|
1 +

√|z| ≤ Mα2 max {θ+(t), θ−(t)}e−[b−as2
η+sη]t,

where

θ±(t) = sup
η∈(−∞,∞)

θ±(η, t), θ±(η, t) = e−aη2t

√
4a2η2 + (2asη ∓ 1)2

1 +
√

(aη2 + b − as2
η ± sη)2 + η2(2asη ∓ 1)2

.

For the last function we have the estimate θ±(η, t) ≤ θ±(η, t) with

θ±(η, t) = e−aη2t

[
4a2η2 + (2asη ∓ 1)2

1 + (aη2 + b − as2
η ± sη)2 + η2(2asη ∓ 1)2

]1/2

.

Denoting ζ = aη2, we get

θ±(η, t) ≡ θ̃±(ζ, t) = e−ζt

[
4aζ + (2asη ∓ 1)2

1 + (ζ + b − as2
η ± sη)2 + ζ(2asη ∓ 1)2/a

]1/2

.
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It is easy to find that there exists a0 such that dθ̃2
±(ζ,t)

dζ < 0 for all a > a0 and ζ ∈ (0,∞), i.e., for such a we
have

θ±(η, t) ≤ θ̃±(0, t) =
|2asη ∓ 1|√

1 + (b − as2
η ± sη)2

=
|2asη ∓ 1|√

1 + (b − as2
η ± sη)2

� s−1
η .

Thus, we get the estimate

‖T (t)− TN (t)‖ ≡ ‖ exp(−tL) − expN(−tL)‖ � s−1
ξ exp(−[b − aα2

2s
2
ξ + α1sξ]t − sξN). (5.1)

In order to arrive at a given tolerance ε > 0 we have to choose

N � s−1
ξ ln

1
ε

+ ln sξ − [γ0 − aα2
2s

2
ξ]t.

This rough estimate shows that we can minimise N (i.e., the number of resolvent inversions for various zi) by
maximization of sξ � γ0 − b with respect to the parameters a, b and α from (2.8). One can also see that the
decreasing of a implies decreasing of N .

To complete this section, we present the numerical example on the H-matrix approximation of the expo-
nential for the 1D finite difference Laplacian ∆h on Ω = (0, 1) (with zero boundary conditions) defined on the
uniform grid with the mesh-size h = 1/(n + 1), where n is the problem size. Table 1 presents the accuracy of
the H-matrix approximation by Algorithm 2.3 versus the number N of resolvents involved. The local rank is
chosen as k = 5, while b = 0.9 λmin(∆h), a = 4. Our calculations indicate the robust exponential convergence
of (2.9) with respect to N for the range of parameters b ∈ (0, 0.95λmin(∆h)) and a ∈ (0, a0) with a0 = O(1)
and confirm our analysis. The computational time corresponding to the H-matrix evaluation of each resolvent
in (2.9) takes 0.16 and 28.1 sec. at a SUN-Ultra1 station for n = 128 and n = 4096, respectively.

The results have been obtained by L. Grasedyck (University of Kiel) using the general HMA1 code
implementing the H-matrix arithmetic, see also [8] for more details.

n\N 1 4 7 10 20 30 40 50 60 70
128 1.4 e-0 7.1 e-2 3.4 e-2 9.3 e-3 2.4 e-4 1.4 e-5 2.9 e-6 3.4 e-7 8.1 e-8 2.2 e-8

4096 1.4 e-0 7.5 e-2 3.3 e-2 9.0 e-3 2.3 e-4 8.0 e-6 3.2 e-6 1.2 e-7 1.1 e-7 2.6 e-8

Table 1: Approximation to the exponential of 1D discrete Laplacian, where n = dimVh and N is defined from
(2.9)
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