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VORTEX FILAMENT DYNAMICS FOR GROSS�PITAEVSKY

TYPE EQUATIONS

R� L� JERRARD

Abstract� We study solutions of the Gross�Pitaevsky equation and similar
equations inm � � space dimensions in a certain scaling limit� with initial data
u�
�
for which the Jacobian Ju�

�
concentrates around an �oriented� recti�able

m� � dimensional set� say ��� of �nite measure� It is widely conjectured that
under these conditions� the Jacobian at later times t � 	 continues to con�
centrate around some codimension � submanifold� say �t� and that the family
f�tg of submanifolds evolves by binormal mean curvature 
ow� We prove this
conjecture when �� is a round m � ��dimensional sphere with multiplicity ��
We also prove a number of partial results for more general inital data�

�� Introduction

In this paper we prove some results about the singular limits of solutions u� �
Rm � ����� � C �� R� � m � � of the Gross	Pitaevsky equation� a nonlinear
Schr
odinger equation used in the physics literature as a model for the evoluion of
the wave function associated with a Bose condensate� The equation can be written

�k��
��iu�t ��u� 

�

��
W ��ju�j��u� � �� u���� �� � u�������

where k� �� j ln �j�� is a scaling factor� The model example for the nonlinearity
is W �s� � �

� �s � ��� in � or � space dimensions� More generally� we consider
qualitatively similar nonlinearities satisfying appropriate growth conditions that
depend on the dimension m�

We study solutions with initial data u�� for which the Jacobian Ju�� concentrates
as � � � around an �oriented� recti�able m � � dimensional set� say ��� of �nite
Hm�� measure� On the basis of physical arguments and formal asymptotics �see
for example ���� ����� ���� ����� it is conjectured that the Jacobian at later times
t � � continues to concentrate around some codimension � submanifold� say �t�
and that the family f�tg of submanifolds evolves by binormal mean curvature �ow�
a geometric evolution problem that we will describe below�

In physical terms� this conjecture states that in R� for example� quantized vortex
�laments in a Bose condensate in the incompressible limit evolve by exactly the law
of motion that governs vortex �laments in an ideal incompressible �uid in the self	
induction approximation�

In this paper we prove this conjecture when the initial vortex �lament is a m��	
dimensional round sphere with multiplicity �� We also prove that for quite general
initial data there exist some limiting measures f �Jtgt�R which are carried by m� �
dimensional recti�able sets f�tg� and around which the Jacobian concentrates� We
show that� for the time scaling chosen in ������ these measures evolve continuously in

Date� June �	� �			�

�
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certain weak topologies� and that their evolution is nontrivial� Finally� we introduce
a notion of a weak solution of the problem of binormal mean curvature �ow� and we
identify some conditions that would imply that f �Jtgt�R is a weak solution� These
conditions hinge on a careful analysis of the relationship between weak limits of the
Jacobian Ju� and weak limits of quadratic terms k�u

�
xi � u�xj for i� j � �� � � � �m as

�� � under appropriate bounds on the total energy�
We brie�y sketch the contents of this paper�
Section � contains some background material� We show in Section � that a

family of measure fJtgt�R can be thought of corresponding to a weak binormal
mean curvature �ow in a very natural sense if

d

dt

Z
� � Jt�dx� �

Z
��ij � �ji�xixk P

�
jk jJtj�dx������

for all smooth� compactly supported � �
P

i�j �
ijei � ej � C�

c �R
m � ��R

m � and a�e�

t� Here P��x� is them�mmatrix representing projection onto the two	dimensional
approximate normal space of Jt� and jJtj is the total variation measure associated
with Jt� We require that each Jt have a certain nice geometric structure� so that
it can be thought of as representing a weak m � �	dimensional oriented surface
�more precisely an integer multiplicity recti�able set�� This in particular implies
that P��x� exists almost everywhere�

There is a striking formal similarity between ����� and the identity

d

dt

Z
� � Ju� dx �

Z
��ij � �ji�xixk k�u

�
xj �t� � u�xk�t� dx�����

which is satis�ed by solutions u� of ������ The main point of this paper is to identify
conditions when one can pass to limits from ����� to deduce ������

To do this two things are necessary� The �rst is to show that one can �nd a
subsequence �n such that Ju�n�t� � �Jt for all t� where �Jt is some measure having
the nice geometric structure mentioned above� We carry this out in Section �� In
this we rely heavily on results of the author and H�M� Soner ����� see also ���� which
show that if fv�g is a family of functions for which an appropriately scaled Ginzburg	
Landau energy I��v�� is uniformly bounded� then the Jacobians Jv� converge �after
passing to a subsequence� to some measure �J having precisely the desired structure�
These energy bounds in particular are satis�ed by functions fu��t�g obtained by
solving ����� for appropriate initial data�

Having found �Jt� we then prove that

k�nu
�n
xj �t� � u�nxk�t� dx � P�jk j �Jtj weak	� �	i� j�����

whenever� roughly speaking� energy concentration around �Jt is as small as possible�
In fact we prove a more precise result that gives quantitative control over the extent
to which ����� can fail when the small energy concentration condition fails to hold�
This is done in Sections � �in two space dimensions� and � �for dimensions m � ���

In Section � we apply these estimates to solutions u� of ������ The small energy
concentration condition is implied by the condition that �Jt be as large as possi	
ble� given the available energy� The total mass of �Jt roughly corresponds to the
m � �	dimensional Hausdor� measure �counting multiplicity� of the weak surface
represented by �Jt� This quantity is hard to control directly� but from conservation
laws for ����� one can quite easily control the m � �	dimensional measure of the
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area enclosed by a projection of �Jt onto any hyperplane� By the isoperimetric in	
equality this gives lower bounds for the mass of �Jt� and we show that these bounds
are sharp precisely when the initial singular set is optimal for the isoperimetric
inequality� that is� a round sphere of multiplicity one� Thus we can give a complete
analysis in this case�

We conclude this introduction by mentioning some related work� The only rig	
orous work that we know of on this problem is a recent paper by T�C� Lin� ����
that derives the law of motion for vortex �laments in solutions of ����� in three
space dimensions by linearizing about an approximate solution and using earlier
estimates �see for example ����� on the spectrum of the linearized operator� This
result assumes the existence of a smooth solution of the limiting binormal curvature
�ow� and the analysis does not provide any uniform bounds on the time interval
on which it is valid� so that it does not exclude the possibility that its conclusions
hold only on a time interval ��� t�� where t� � � as �� ��

In two space dimensions� the corresponding problem is to study the dynamics
of point vortices in solutions of ����� in the singular limit �with a di�erent time
scaling�� The �rst rigorous analysis of this problem was given in ���� see also ����
Some re�nements were subsequently established in ����� These results show that�
in a variety of situations� vortex motion in the singular limit is governed by exactly
the ODE that describes the motion of classical point vortices in an ideal �uid�

Another related question is the limiting behavior of vortex �laments in solutions
of the Ginzburg	Landau heat equation in m � � space dimensions� F� H� Lin ����
and the author and H�M� Soner ���� independently proved that under appropriate
assumptions� the limiting singular set evolves via codimension � mean curvature
�ow� at least as long as the limiting �ow remains smooth� More recently Ambrosio
and Soner ��� prove that energy measures associated with solutions of the Ginzburg
Landau heat equation converge globally in time to a measure that evolves by mean
curvature �ow in a certain weak sense� if one is allowed to assume that the limiting
energy measure satis�es a certain lower density estimate�

Finally� recent work by the author and H�M� Soner ����� ���� investigates the class
of functions whose distributional Jacobian exists and is a Radon measure� We show�
among other things� that if a function u � W ����Rm �S�� satis�es this condition�
then its distributional Jacobian � that is� the collection of all distributional deter	
minants of �� � submatrices of Du � is an integer multiplicity measure carried by
an oriented recti�able set of dimension m � �� These are related to the compact	
ness results of ����� ���� that characterize limits of Jacobians Ju� for sequences of
functions u� that are asymptotically S�	valued in a certain precise sense�

�� background

���� notation� We �rst introduce some notation that we will use throughout this
paper�

We use the convention that repeated indices are summed� though we also some	
times explicitly write out summations�

For w� v � C �� R� we write v � w to denote the real inner product� v � w �
�
� �v �ww�v� � viwi� We write det�v� w� to denote the determinant of the real �� �
matrix whose columns are v and w respectively� Note that det�v� w� � iv � w�

We write Sk�k to denote the collection of real symmetric k � k matrices� If
M � Sk�k we write M � � to mean that M is nonnegative de�nite� If M � �Mij�
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and N � �Nij� are real m � m matrices� we write M � N to denote the inner
product M � N �MijNij �

For a� b � Rk we write a
 b to denote the k� k matrix whose �i� j� entry is aibj �
For u � H��Rm �R� � we write Du
Du for the m�m matrix whose �i� j� entry is
uxi � uxj �

We always work in m space dimensions� m � �� When we write Rm�� we always
mean Rmx � Rt �

The nonlinearity W in ����� is assumed to be a smooth nonnegative function
such that W ��� � ��W �s� � � for all s �� �� W ����� � �� and W �s� � C��  s�� for
some � � m�m � �� The last condition brings ����� within the scope of standard
well	posedness theory� The assumptions imply that

C����� s�� �W �s� � C��� s�� when � � s � �������

We write Hk to denote k	dimensional Hausdor� measure�
We write feigmi�� to denote a standard orthonormal basis for the space ��R

m

of vectors on Rm � When considering vectors on Rm�� we will write the standard
basis vector in the Rt direction as either em�� or et�

Similarly� fe�g��Ik�m is an orthonormal basis for �kR
m � the space of k	vectors

on Rm � Here Ik�m is the set of all multiindices of the form � � ���� ���� �k� such
that � � �� � ��� � �k � m� For such a multiindex� e� �� e�� � ��� � e�k � If
� � ��� � � � � �k � m are distinct integers not necessarily arranged in increasing
order� and 	 is a permutation on k elements� then

e�� � � � � � e�k � sgn�	�e�	��
 � � � � � e�	�k
�
Here sgn�	� is the sign of the permutation 	�

The space �kR
m is a real vector space of dimension

�
m
k

�
and as such is endowed

with the Euclidean inner product� which we will write as v � w� For v � �kR
m � we

write jvj to mean the standard Euclidean norm �v � v����� A unit multivector is a
multivector with norm jvj � ��

We disregard conventions of geometric measure theory and do not distinguish
between vectors and covectors� rather we identify �kR

m with its dual via the in	
ner product� This occasionally leads to unorthodox language but it simpli�es our
exposition in many ways�

We always write �	vector�elds in the form � �
P

i�j �
ij ei � ej � and we set

�ji � � whenever j � i�
We say that v �

P
��Ik�m v�e� is simple if there are k vectors v�� � � � � vk � ��R

m

such that v � v� � � � � � vk� If P is a k	dimensional subspace of Rm spanned by
fv�� � � � � vkg and v � �kR

m is a unit multivector of the form v� � � � � � vk� then we
says that v orients P �

The Hodge star operator 
 � �kR
m � �m�kRm is de�ned by


e� � sgn���� e�

for the unique � � Im�k�m such that ���� ���� �k� ��� � � � � �m�k� is a permutation of
��� � � � �m�� Here sgn���� is the sign of the permutation� It is easy to check that

e� � 
e� � e� � � � � � em� 
 
 e� � ����k	m�k
e��
Note that if M is a smooth� oriented codimension k manifold of Rm and � � �kR

m

orients �TxM�� at some point x �M � then 
� ��  orients TxM �
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We write d to denote the exterior derivative in Rm � Thus for � of the form
� �

P
��Ik�m ��e�� we de�ne d� �

P
i�� �

�
xiei � e�� We similarly write d to denote

the exterior derivative in Rm�� �� Rmx � Rt �
It is convenient to use the duals of H
older spaces to quantify weak convergence

and continuity properties of measures� For this we need to �x some notation� We
write

k�k �Ck�� � �Dk��� k�kCk�� �
kX

j��

kDj�k�  �Dk����

Here jDj�j� �P
j�j�j jD��j� and �Dk��� � supx��y

jDk�	x
�Dk�	y
j
jx�yj� � Thus a �hat �

as in !Ck��� indicates that we use only the highest	order part of the norm� We use
the convention that C� � !C��

We write k � kCk��� and k � k �Ck��� to indicate the respective dual norms� So for
example� if � is a measure and U  Rm then

k�k �Ck���
c 	U
 � sup

�Z
� d� � k�k �Ck�� � �� � has compact support in U

�
�

We will often write� for example� kJkCk���
c

rather than kJkCk���
c 	Rm�kRm


when no

confusion can result� Note that k�kCk���
�c�

� k�k �Ck���
�c�

for all �� k� ��

Finally� we say that �n � � in k�k �Ck���

loc
if k�n � �kCk���	U
 � � for every

U  Rm �

���� conserved quantities� Equation ����� has a number of conserved quantities�
We de�ne the energy

E��u�� �
�

�
jDu�j�  �

���
W �ju�j�������

and the linear momentum�

j�u�� � jk�u��ek� jk�u�� � iu� � u�xk � det�u�� u�xk�������

We further de�ne the Jacobian

Ju� �
�

�
d j�u�� �

X
k�l

Jklu� ek � el������

where Jklu� � �
� �j

l�u��xk � jk�u��xl� � det�u�xk � u
�
xl��

Note that our Jacobian does not quite agree with the standard Jacobian of
geometric measure theory� that is� the factor appearing in the coarea formula� We
will refer to the latter as �Federer"s Jacobian � For functions u� as above� Federer"s
Jacobian in our notation is given by jJu�j� that is� the Euclidean norm of Ju��

We always assume that the initial data u�� satis�es �u�� � �� � H��Rm � and has
�nite energy� ie

R
Rm

E��u��� ��� Under these hypotheses ����� is known to have a
unique global solution satisfying

u��t�� � � H��Rm ��

Z
E��u��t�� dx �

Z
E��u��� dx for all t�

This can be deduced quite easily from standard facts about NLS� for a discussion
see Bethuel and Saut ��� Appendix A�
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Smooth solutions of ����� satisfy

d

dt
j�u�� � k�

�
��u�xj � u�xk�xj � ��E��u��� iu� � u�t �xk

�
ek������

By taking the exterior derivative of ������ we obtain an equation for the evolution
of the vorticity�

d

dt
Ju� � k�

X
j�k�l

�u�xj � u�xl�xjxk ek � el

� k�
X
j

X
k�l

�
�u�xj � u�xl�xjxk � �u�xj � u�xk�xjxl

�
ek � el������

These identities remain valid in the sense of distributions if the initial data merely
satis�es u� � � � H��Rm �� This can be shown by regularizing the initial data to
obtain smooth solutions� then passing to limits using standard NLS estimates�

���� Geometric background�

������ recti�ability� A set �  Rm is said to be k	dimensional recti�able� for integer
k � m� if � can be written in the form � � ��j���j where Hk���� � �� and for

each j � �� �j is a Hk	measurable subset of the image of an injective Lipschitz map
fj � Uj � Rm � where Uj is an open subset of Rk �

A set � is k	dimensional recti�able if and only if it has an approximate k	
dimensional tangent space at Hk almost every point of its support� For a proof
of this fact� as well as the de�nition of approximate tangent space and related ma	
terial� consult Simon ���� Section �� or Giaqunita et al ��� Section ������ We write
apTx� to denote this approximate tangent space� which is unique�

Whenever a set �  Rm is k	dimensional recti�able� we can thus de�ne for Hk

a�e� x � � anm�mmatrix P �x� corresponding to projection onto the k	dimensional
approximate tangent space apTx�� We will also write P��x� to denote projection
onto the approximate orthogonal space �apTx��

�� so that P��x� � id� P �x��

������ �rst variation and mean curvature� Suppose that � is a k	dimensional recti	
�able subset of Rm � and for � � C�

c �R
m �Rm � de�ne

div���x� � P �x� � D��x�

at every x � � where apTx� exists� Then div�� is a bounded function which is
Hkj�	measurable� and so

R
� div���x�Hk�dx� makes sense�

If there exists a Hk	measurable function H � �� Rm such thatZ
�

div���x�Hk�dx� � �
Z
�

��x� �H�x�Hk�dx� 	� � C�
c �R

m �Rm �������

then we say that H is the mean curvature of �� If such a vector �eld exists� it
is uniquely determined up to sets of Hk	measure zero� and it coincides with the
classical mean curvature �up to null sets� if � is smooth� �See Simon ����� Section
����

The quantities appearing in ����� have a natural interpretation� Suppose that�
for t � ���� ��� t �� �t is an evolving k	dimensional recti�able subset of Rm � and
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that the velocity of �t at t � � is given by the restriction to �� of some smooth
vector �eld �� Then

d

dt
Hk��t�jt�� �

Z
��

div����x�Hk�dx������

See Simon ���� Section � for a precise statement and a proof�

������ oriented i�m� recti�able sets� An oriented integer multiplicity k	dimensional
recti�able set is a triple ��� �� �� where �  Rm is a k	dimensional recti�able set�
� � � � N and  � � � �kR

m are Hk	measurable functions� and �x� orients Tx�
for Hk a�e� x � �� We will write i�m� for integer multiplicity� and we will not
explicitly mention the dimension k where there is no possibility of confusion�

A k	dimensional i�m� recti�able current on Rm is a bounded linear functional
on C�c �Rm � �kR

m � that has the form

T ��� �

Z
�

��x� � �x���x�Hk�dx� 	� � C�c �Rm � �kR
m ������

for some oriented i�m� recti�able ��� �� �� For such a current� we de�ne the mass
M�T � ��

R
�
�Hk�dx�� When ����� holds we will write T � � ��� �� � We will need

one deep fact about integer multiplicity currents� Almgren"s optimal isoperimetric
inequality� which we will invoke in the proof of Theorem ��

In our context we will often encounter ��R
m 	valued measures of the formZ

� � J �

Z
�

��x� � ��x� ��x� Hk�dx� 	� � C�
c �R

m � ��R
m ��

where ��� �� 
�� is an oriented i�m� �m � ��	dimensional recti�able set� so that
��x� orients �apTx��

� almost everywhere� These arise naturally due to Theorem �
below� We will write J � 	��Hk j� to describe measures of this form� and when we
write expressions like 	��Hk j�� it is always with the understanding that ��� �� 
��
is an oriented i�m� recti�able set� Given such a measure J � we write jJ j to indicate
the nonnegative scalar measure jJ j � 	�Hkj��
���� Compactness properties� We de�ne the scaled Ginzburg	Landau functional

I��u�U� �� k�

Z
U

E��u�dx� for u � H��U �R� �� U  R
m �������

We write I��u� as shorthand for I��u�Rm �� As remarked earlier� t �� I��u��t�� is
constant for a solution u� of ����� with initial data u�� such that u�� � � � H��Rm ��

The Jacobian and the Ginzburg	Landau energy are intimately related� In partic	
ular� uniform bounds on I��u��U� for a collection of functions fu�g�	�  H��U �R� ��
with U  Rm �m � � imply that the Jacobians fJu�g��	���� are precompact in ap	
propriately weak topologies� The following theorem is established by the author
and H�M� Soner in ����� Theorem ����

Theorem �� Suppose that fu�g��	���� is a family of functions in H��Rm �R� � such

that lim sup��� I
��u�� � K� Then fJu�g��	���� is strongly precompact in C����

loc
for

all � � �� Moreover� if �J �
P

i�j
�J ijei � ej is any weak limit of a subsequence

Ju�n� then
�i� �J has the form 	��Hm��j� where ��� �� 
�� is some oriented i�m� recti�able

set�
�ii� j �J j�Rm � � lim infn�� I�n�u�n�
�iii� d �J � � in the sense of distributions�
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We also show in ���� that� roughly speaking� components of �J can naturally be
sliced in certain directions� and moreover that slices of Ju� converge to slices of
�J along appropriate subsequences� We will need this result in Section �� but the
statement is rather technical so we defer it until there�

The compactness assertion stated in ���� is that� if U is a bounded open subset
of Rm and u� � H��U �R� � satisfy I��u��U� � C� then fJu�g is precompact in
C���
c �U��� However this immediately implies the result asserted in Theorem �

above�
The above theorem does not make any assertion about compactness of the func	

tions fu�g� These are in fact weakly precompact in Lp for all p ��� and they may
fail to be precompact in any stronger sense�

�� weak formulation of binormal mean curvature flow

In this section we de�ne classical binormal mean curvature �ow� and then we
give our de�nition of a weak solution� and we show that any classical solution is a
weak solution�

We �rst introduce some notation�
In the following� f�tgt�R always denotes a family of m�� dimensional recti�able

subsets of Rm � m � �� We write � � �t�t � ftg� We assume that � � � � N and
 � �� �m��Rm are Hm��	measurable functions such that ��t� ���� t�� ��� t�� is an
oriented i�m� recti�able set for every t� To avoid dealing with boundary conditions�
we make the standing assumption that for every t� ��t� �� � has no boundary in the
sense thatZ

�t

d��x� � �x� t���x� t�Hm���dx� � � for all � � C�c �Rm � �m��Rm �������

To de�ne a classical solution� suppose that �t is smooth for every t� and also
that � is smooth� Assume also that � � �� We write � � �� �m��Rm�� to denote
the unit m � �	vector�eld that orients Tx�t�� In ����� below we will use Stokes"
Theorem� and we �x the relative orientations of  and � such that the signs in �����
are correct� Since Tx�t is a subspace of Tx�t�� we can necessarily write � in the
form m�� � � where m�� � ��R

m�� � jm��j � �� and m�� � Tx�t in Rm�� �
We assume that m�� � et never vanishes� this amounts to assuming that t �� �t
is smooth� We then further assume that m�� � et is always positive� this �xes the
orientation of �� So we can write

� � m�� �  �
�et  V �

��  jV j����� � �����

for some V � �� ��R
m such that V �x� t� � �apTx�t�

� for all �x� t� � ��
Note that V �x� t� is precisely the nontangential part of the velocity of �t at a

point x in its support�

De�nition �� A smooth family of m� �	dimensional submanifolds f�tgt oriented
by multivectors  � �m��Rm de�nes a smooth binormal mean curvature �ow if


V �  � H in �������

where H is the mean curvature vector to �t

Note that V is orthogonal to both H and Tx�t� that is� binormal� and also that
jV j � jHj� Hence the name binormal mean curvature �ow�

We next introduce our notion of a weak solution�
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De�nition �� A family of oriented i�m� rectifable sets f��t� ���� t�� ��� t��g de�nes
a weak binormal mean curvature �ow if for every � � C�

c �R
m � �m��Rm �� the

function t �� R
�t
� � �Hm�� is Lipschitz� and moreover

d

dt

Z
�t

� �  � Hm�� �
Z
�t

div�t�
d�� � Hm�������

for a�e� t� When this holds we write that �f�tg� �� � is a weak binormal mean
curvature �ow�

Note that in order to make sense of the right	hand side of ������ all that is needed
is that div�t be well	de�ned� which as remarked earlier is equivalent to requiring
that �t be recti�able�

In this section we will prove

Proposition �� Every smooth binormal mean curvature �ow is a weak binormal
mean curvature �ow�

Here we are considering the smooth oriented manifolds �t as oriented i�m� rec	
ti�able sets with multiplicity � � ��

This is the very minimum that one can require of a weak solution� One would
also like to know� for example� whether a weak solution necessarily coincides with
a smooth solution whenever the latter exists�

Proof� �� Recall that we are writing d to denote the exterior derivative in Rm �
and d the exterior derivative in Rm�� � and also that the boldface � denotes the
space	time tangent multivector to ��

Fix t � R and � � C�c �Rm � �m��Rm �� and let #� � C�c �Rmx � Rt � �m��Rmx � be

such that #���� s� � � for all s in an interval containing t� We write �fs�tg to denote
f�x� s� � x � �s� s � tg� Then by Stokes" TheoremZ

�t

� � Hm���dx� �
Z
�fs�tg

d#� � �Hm���dxds������

For �x� t� � � de�ne 	�x� t� � t� Let d		x�t
 denote the induced linear map from
Tx�t� to TtR� where both tangent spaces inherit the ambient Euclidean metrics� By
de�nition Federer"s Jacobian jJ	�x� t�j is just jd		x�t
j� and using this and ����� one

can easily check that jJ	�x� t�j � ��  jV j������ for all �x� t� � �� Thus the coarea
formula �see Simon ����� Section ��� implies thatZ

�fs�tg

d#� � �Hm���dxds� �
Z t

��

Z
�s

d#� � ���  jV j�����Hm���dx� ds�

Also� from ����� we see that d#� � ���  jV j����� � �d#�  dt � #�t� � ��et  V � � � �

d#� � �V � �  #�t � � So
d

dt

Z
�t

� � Hm���dx� �
Z
�t

d� � �V � �Hm���dx��

�� Since d� � �V � � � 
d� � 
�V � �� the equation ����� for a smooth binormal
mean curvature �ow implies that

d

dt

Z
�t

� � Hm���dx� �
Z
�t

H � 
d�Hm���dx��

So the conclusion of the proposition follows from ������
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It is convenient to reformulate ����� as follows�

Lemma �� Suppose that f��t� ���� t�� ��� t��gt�R is a family of oriented i�m� codi�
mension two rectifable sets� and that for each t� �Jt is the corresponding ��R

m valued
measure Jt � 	��Hm��j�t � where 
� � �

For every t and Hm�� almost every x � �t let P denote the matrix corresponding
to projection onto apTx�t� and let P� � id � P �

Then f��t� �� �g is a weak binormal mean curvature �ow if and only if

d

dt

Z
� � Jt�dx� �

Z
P�jk��

ij � �ji�xixk jJtj�dx������

for all � � C�
c �R

m � ��R
m � of the form � �

P
i�j �

ijei � ei and a�e� t�

Proof� If we use the isomorphism 
 � ��R
m �� �m��Rm and the de�nition of div���

we �nd that ����� is satis�ed by f�t� 
�g if and only if

d

dt

Z
� � Jt�dx� �

Z
P � D�
d 
 ��jJtj�dx�

for all � � C��Rm � ��R
m �� One can check that for � �

P
i�j �

ij ei � ej �


d 
 � �

nX
i�j��

��ji � �ij�xi ej �

where we set �ij � � if i � j� As a result� P � D�
d 
 �� � Pjk��
ji � �ij�xixk �

However� since P � id� P� and �jk��
ji � �ij�xixk � �� we can rewriteZ

Pjk��
ji � �ij�xixk jJtj�dx� �

Z
P�jk��

ij � �ji�xixk jJtj�dx��

�� a compactness result

In this section we prove a compactness result for fJu�g��	����� where u� is a solu	
tion of ����� on Rm � ������ It follows by combining Theorem �� which guarantees
compactness of fJu��t�g for every �xed t� with some simple estimates on the mod	
ulus of continuity of t �� Ju��t� in a weak norm� The latter estimates follow easily
from ������

We consider initial data u�� such that

u�� � � � H��Rm �������

We assume in addition that there exists an oriented i�m� �m � ��	dimensional
recti�able set ���� �� � such that

Ju�� � �J� �� 	��Hm��j�� in C����
loc for all � � �������

where 
� � � We also assume that the energy is asymptotically small in that

I��u��� � j �J�j�Rm �  o����������

As remarked earlier� the initial value problem is known to be well	posed under these
assumptions� Since the energy is conserved� it immediately follows that

I��u��t�� � j �J�j�Rm �  o����������

for all t � R�
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Remark �� Alberti� Baldo and Orlandi ��� show that� whenever �J� is a measure of
the above form with �nite total mass and with vanishing boundary in the sense that
d �J� � � in the sense of distributions� then there exists a sequence fu�g of functions
satisfying ������ ������ and ������

Our main result in this section is

Theorem �� Suppose that u� is a solution of ����� for initial data satisfying ������
������ and ������ Then given any subsequence �n� there exists a further subsequence
�which we still write �n � and measures f �Jtgt�R of the form �Jt � 	��Hm��j�t for
some oriented i�m� �m� �� dimensional recti�able set ��t� �� 
��� such that d �Jt � �
for all t�

Ju�n�t�� �Jt in C��
loc for all � � ��� �� and every t � �������

j �Jtj�Rm � � j �J�j�Rm �������

and �nally� t �� �Jt is weak�� continuous in C��� and uniformly H	older continuous
in weaker topologies


k �Js � �Jtk �Ck���
c

� C�k� ��jt� sj	k��
�������

for k � �� � and � � ��� ���

Remark �� If we merely assume that lim sup��� I
��u�� �� instead of ������ then

the theorem remains valid if ����� is replaced by �Jt � lim infn�� I�n�u�n��

Proof� �� We will �rst use the Arzela	Ascoli Theorem to show that the functions
ft �� Ju��t�g��	���� are precompact in C��� T �C����

loc � for every T � �� To do this

we need to verify two points� �rst� that fJu��t�g��	���� is precompact in C����
loc

for every t � �� This is easy� because in view of ������ fu��t�g�	� satis�es the

hypotheses of Theorem �� Thus for �xed t� fJu��t�g��	���� is precompact in C����
loc

for all � � �� Precompactness in C����
loc follows from the obvious fact that the

embedding C����
loc  C����

loc is continuous�
The second point we need to check is that ft �� Ju��t�g��	���� are equicontinuous

as functions into C����
loc � We show that in fact they are uniformly Lipschitz as

functions into C����
c � and thus into C����

loc � To see this� let � �
P

i�j �
ijei � ej �

R
m � ��R

m be a smooth� compactly supported �	vector�eld� Then ����� and the
uniform energy bound ����� imply thatZ

� � �Ju��t��� Ju��t��� � Ck�

Z t�

t�

Z
jD��jjDu�j� dx dt

� Cjt� � t�jk�k �C���
c

�����

In other words�

kJu��t��� Ju��t��kC����
c

� kJu��t��� Ju��t��k �C����
c

� Cjt� � t�j�����

for all t�� t��
�� Thus given a subsequence f�ng� we can pass to a further sequence �still

labelled �n� such that Ju�n�t� converges to some limit �Jt in C
����
loc � locally uniformly

for t � �� Then again appealing to ����� and Theorem �� we deduce that for every
t� �Jt is a measure of the form the form 	��Hm��j�t � The same theorem implies
that d �Jt � � for all t and that ����� and ����� hold�
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By passing to limits in ����� we �nd that ����� holds for k � � � �� The
remaining continuity estimates in ����� follows by interpolating between the case
� � k � � and the easy estimate

k �Jt� � �Jt�k �C��
c

� k �Jt�kC��
c

 k �Jt�kC��
c

� �j �J�j�Rm � 	t�� t��
The relevant interpolation inequality is given in Lemma � below�

Finally� the weak	� continuity of t �� �Jt follows directly from the fact that
f �Jtgt	�� is uniformly bounded in C��

c and hence weak	� precompact� together with
the continuity estimate ����� in weaker topologies�

Lemma �� If � is a measure such that k�k �C����
c

� �� then for k � �� � and

� � ��� ��

k�k �Ck���
c

� Ck�k	k��
���C����
c

k�k	��k��
���C��
c

�������

Proof� Suppose � � !C����
c � C��

c � and �x k � f�� �g and � � ��� ��� Fix � such that
k�k �Ck��

c
� ��

Let ���x� � �
�m ��

x
� �� where � � C�c �Rn � is a nonnegative function such thatR

�dx � �� De�ne �� � �� � �� One easily veri�es that

k�� � �kC� � C�k��k�k �Ck�� � C�k���

k�k �C��� � kD���kC� � C����k��k�k �Ck�� � C����k���

Then ����
Z
�d�

���� �
����
Z
��d�

����
����
Z
��� ���d�

����
� k��k �C���k�k �C����

c
 k�� ��k �C�k�k �C��

c

� C����k��k�k �C����
c

 C�k��k�k �C��
c
�

We now select � �
�k
k �C����

k
k �C��

����
to obtain �������

�� convergence to binormal mean curvature flow

In this section we give some conditions which imply that the weak limit of the
Jacobians is a weak binormal mean curvature �ow� These are based on Theorem
�� which is established in Section �� As a corollary we show that in general the
limiting measures f �Jtg evolve nontrivially� We also prove that f �Jtg evolves by
the conjectured dynamics in the case where the initial singular submanifold is a
multiplicity one sphere�

One criterion for f �Jtg to evolve by weak binormal mean curvature �ow is given
in the following theorem� and others are discussed after its proof�

Theorem �� Suppose that u� is a solution of ����� for initial data satisfying ������
������ and ������ Fix a subsequence �n and measures �Jt satisfying the conclusions
of Theorem ��

Then f �Jtgt�R is a weak binormal mean curvature �ow if j �Jtj�Rm � � j �J�j�Rm �
for all t� In view of ������ to prove this it su�ces to show that

j �Jtj�Rm � � j �J�j�Rm � for all t�����
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Remark �� The condition that t �� j �Jtj�Rm � be constant is satis�ed if f �Jtg corre	
sponds to a smooth binormal mean curvature �ow� This follows from ������ ������
and the fact that V �H � �� Thus it is not completely unreasonable to imagine
that one might be able to verify ����� in this weak setting� for �Jt constructed as
above by passing to limits from solutions of Gross	Pitaevsky equations�

Corollary �� Assume the hypotheses of Theorem �� and assume in addition that
the distributional mean curvature of ���� �� 
�� does not identically vanish� so thatZ

��ij � �ji�xixk P�jk j �J�j�dx� �� �

for some � � C�
c �R

m � ��R
m �� Then t �� �Jt is not constant�

Proof� If �Jt � �J� in any interval containing the origin� clearly ����� would be
satis�ed in that interval� and so t �� �Jt would correspond to a weak binormal mean
curvature �ow in that interval� Then ����� implies that

� �
d

dt

Z
� � �Jt

����
t��

�

Z
��ij � �ji�xixk P

�
jk j �J�j�dx�

for all � � C�
c �R

m � ��R
m �� a contradiction�

Proof of Theorem � �� Fix a sequence �n and measures �Jt as in the statement
of the theorem� Assume that j �Jtj�Rm � � j �J�j�Rm � for all t� Fix a test function
� �

P
i�j �

ij ei � ej � C�
c �R

m � ��R
m �� Using ����� and reindexing� we �nd that

d

dt

Z
Rm

� � Ju�n�t� dx � k�n

Z
Rm

�
�ij � �ji

�
xkxi

u�nxk � u�nxj �t�dx������

We are using the convention that �ji � � if j � i�
We know from Theorem � that t �� R

� � �Jt is Lipschitz� and also thatZ
Rm

� � Ju�n�t�dx�
Z
Rm

� � �Jt�dx�

as n � �� Thus to pass to limits in ����� and deduce that ����� holds� it su$ces
to show that

lim
n��

k�n

Z
Rm

�
�ij � �ji

�
xkxi

u�nxk � u�nxjdx �

Z
P�jk

�
�ij � �ji

�
xkxi

j �Jtj�dx������

for a�e� t� Note also that� because t �� R
� � �Jt is Lipschitz� ����� implies that the

above limit exists a�e� t� and we can pass to subsequences freely on the left	hand
side of ������

�� Fix some t and pass to a subsequence �still labelled �n� for which there exists
a matrix	valued measure Qt such that k�nDu

�n�t�
Du�n�t� � Qt weak	� in C��
c �

Then using conservation of energy�

TrQt�R
m � � lim sup

n��
k�n

Z
Rm

jDu�n�t�j� dx

� lim sup
n��

k�n

Z
Rm

�E�n�u�n�t�� dx

� lim sup
n��

k�n

Z
Rm

�E�n�u�n���� dx

� �j �J�j�Rm � � �j �Jtj�Rm �
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if ����� holds� Then using Theorem � we conclude that Qt � P�j �Jtj� which gives
������

Theorem � gives conditions that ensure that Qt � P�j �Jtj� and thus it can be
used to formulate other criteria that guarantee convergence to weak binormal mean
curvature �ow� For example� assume the hypotheses of Theorem �� and �x some
arbitrary t� Assume also that after passing to a further subsequence and relabelling
as necessary� k�Du

�n�t�
Du�n�t� converges weak	� to some matrix	valued measure
Qt� Passing to limits in ������ we then can write

d

dt

Z
� � �Jt�dx� �Z

suppj �Jtj
��ij � �ji�xixkQ

jk
t �dx� 

Z
Rmnsuppj �Jtj

��ij � �ji�xixkQ
jk
t �dx��

If � � Rm � ����� is any smooth function such that � � � on suppj �Jtj� then one
can replace � by �� without changing the term of the left	hand side� or the �rst
term on the right� Using this fact one can show that the last term on the right	hand
side must vanish� Thus to show that f �Jtg de�nes a weak binormal mean curvature
�ow� we only need to check that Qt � P�j �Jtj on the support of j �Jtj� This follows
from Theorem � if we know that TrQt�suppj �Jtj� � �j �Jtj�Rm �� One can formulate

local conditions� for example in terms of dTrQt

dj �Jtj � that would imply this estimate�

This would have to be done rather carefully� because of the possibility that suppj �Jtj
is much larger than �t� or that Qt can concentrate on smaller	dimensional subsets
of �t� We do not do this here� because it is not clear exactly what conditions�
if any� one might hope to be able to verify for sequences of solutions u� of the
Gross	Pitaevsky equation ������

We now consider initial data such that the initial singular set is a round sphere
of multiplicity one� We introduce some notation� For x � Rm � p � Sm�� and r � �
let

Br�x� p� � fy � R
m � jx� yj � r� �x� y� � p � �g�

We equip Br�x� p� with an orienting tangent m � � vector�eld B � 
p� We will
also write

Sr�x� p� � fy � R
m � jx� yj � r� �x � y� � p � �g�

We endow Sr�x� p� with the tangent vector�eld S that makes it the boundary of
Br�x� p� in the sense of Stokes" Theorem� and we de�ne a normal �	vector�eld by
requiring that 
� � S �

Theorem �� Assume the hypotheses of Theorem �� and assume moreover that

�J� � 	�Hm��jSr	x��p

for some r � �� x � Rm and p � Sm��� Then

Ju��t�� �Jt � 	�Hm��jSr	x	t
�p

as �� � where x�t� � x�  t 	m��
pr �

Proof� �� By a change of coordinates and a translation we may assume that x� is
the origin and p � em�

Fix a sequence �n and measures �Jt as guaranteed by Theorem ��
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Let � �� xm��em�� � em� Also� let � � ������ ��� �� be a smooth nonincreasing
function such that ��s� � � if s � � and ��s� � � for s � �� and de�ne

�R�x� �� ��
jxj
R

��

Finally� de�ne �R � �R�� One easily checks that kD��Rk� � C
R � Thus ����� with

k � � � � implies that ����
Z
�R � �Jt �

Z
�R � �J�

���� � C
t

R
������

�� For every t� let Tt denote the �m��� dimensional integer multiplicity recti�able
current de�ned by

Tt�
�� �
�

	

Z
� � �Jt � � C�c �Rm � ��R

m ��

The fact that d �Jt � � in the sense of distributions implies that �Tt � �� Thus
Almgren"s optimal isoperimetric inequality ��� implies that there exists some �m���
dimensional i� m� recti�able current Qt such that �Qt � Tt and

M�Qt� � min fM�Rt� � Rt �m� �� dim� i�m� recti�able current� �Rt � Ttg
� �

�m� ��m���m��
����m��

M�Tt�
m���m�������

where �k denotes the volume of the unit ball in Rk � In ��� it is further shown that
the inequality on the right is an equality if and only if Tt � � �Sr�x� p�� �� S�� for
some r � �� x � Rm � and p � Sn���

Our choice of �J� implies that equality holds in ����� when t � �� and also that
Q� � � �Br��� em�� �� 
em��

The de�nition of Tt and the identity �Qt � Tt imply that

�

	

Z
� � �Jt � Qt�d 
 �� 	� � C�c �Rm � ��R

m �������

�� By explicitly di�erentiating one can verify that d 
 �R converges pointwise
and boundedly to d 
 � � e� � � � � � em�� � 
em as R � �� Since Qt has �nite
mass� this implies that

M�Qt� � Qt�d 
 �� � lim
R��

Qt�d 
 �R� � lim
R��

�

	

Z
�R � �Jt������

using ������ Now ����� implies that

lim
R��

�

	

Z
�R � �Jt � lim

R��
�

	

Z
�R � �J��

Applying ����� at time t � � we �nd that

lim
R��

�

	

Z
�R � �J� � Q��d 
 ��

�

Z
Br	��em


dHm��

� rm���m��
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since d
� � e�� � � ��em�� is just the oriented tangent B to Br��� em�� Assembling
these calculations we �nd thatM�Qt� � rm���m�� for all t� Thus the isoperimetric
inequality ����� implies that

�

	
j �Jtj�Rm � �M�Tt� � �m� ���m��rm�� �

�

	
j �J�j�Rm ������

where the last identity follows immediately from our assumption about the explicit
form of �J��

�� The estimate ����� implies by Theorem � that f �Jtg is a weak binormal mean
curvature �ow�

In this case we can easily verify that in fact f �Jtg is a classical binormal mean cur	
vature �ow� First note that ����� implies that equality holds in ������ and so accord	
ing to the isoperimetric inequality� Tt must have the form Tt � � �Sr�x�t�� p�t��� �� �
for some x�t�� p�t�� and moreover Qt � � �Br�x�t�� p�t��� �� B� where B � 
p�t��

It follows also that equality holds in ������ and hence that 
d� � 
em identically
equals the orienting tangent 
p�t� to Qt� which implies that p�t� � em for all t�

So we only need to �nd x�t� � �x��t�� � � � � xm�t��� To do this� for l � �� � � � �m
let �l � ����mxlxm��em�� � em� and note that

�

	

Z
�l � �Jt � Tt�
�l� � Qt�d 
 �l��

Also� one easily checks that

d 
 �l �

�
xl 
 em if l �� m� �
�xm�� 
 em if l � m� ��

Thus Z
�l � �Jt � K�l�	

Z
Br	x	t
�em



xlHm���dx� � K�l�	xl�t��m��rm�������

where K�l� � � if l � m � � and � otherwise� Also� one can verify that for every
y � Rm �

	

Z
Sr	y�em


��ijl � �jil �xixk P
�
jk Hm���dx� �

�
� if l �� m
	�m� ���m��rm�� if l � m�

������

This can be done by a straightforward calculation� or else simply by using ����� and
Proposition �� which guarantees that every smooth binormal mean curvature �ow
is a weak binormal mean curvature �ow� and the explicit classical solution when
the initial surface is a round m� �	sphere�

Putting ����� and ������ in the de�nition of a weak solution yields %xi � � for all
i � m� %xm � �m� ���r� which completes the proof�

�� limits of k�Du
� 
Du�

In this section we will prove a result analyzing the relationship between limits
of Ju� and limits of k�Du

�
Du� in two space dimensions� The main result of this
section is
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Theorem �� Suppose that u� � H��&�R� � for � � ��� ��� where & is an open subset
of R� � Assume that

lim sup
���

k�

Z
�

E��u��dx �������

and let �n � � be a sequence such that

Ju�n � �J � 	
X

di�ai in C����
loc

	� � �� and�����

k�nDu
�n 
Du�n � Q � C���&�S���� weakly in C���&�������

If we de�ne

Qd � Q� idj �J j�����

then TrQd � �� and there exist constants c�� c� such that

jQd�A�j � c�
�
TrQd�A� j �J j�A�

����
 c�TrQd�A�������

for every measurable A  &� In particular� if TrQ�A� � �j �J j�A� for some A  &�
then in fact Q � idj �J j in A�

Remark �� Given a sequence of functions satisfying ������ then Theorem ��� in ����
shows that one can �nd a subsequence satisfying ������ It is clear that one can �nd
a subsequence satisfying ������

Remark �� The estimate ����� is sharp in a certain sense� which we illustrate by
describing an example� De�ne

u��x� �

�
ei	��� cos

�	�
 if r � �
jrj
� e

i	��� cos�	�
 if r � �

where �r� �� are polar coordinates� d � Z and � � R� One can then check by
an explicit computation that Ju� � �J �� 	�� and k�Du

� 
 Du� � Q��� where

Q � 	

�
�  ��

� ��
�� �  ��

�

	
� and so Qd�f�g� � 	

�
��

� ��
�� ��

�

	
� Further

de�ning

v��x� � 'd
i��u

��x� x�i�� x�i �� j ln �j��e��i�d�
one can check that Jv� � �J �� d	�� and k�Dv

� 
Dv� � Q��� with

Qd�f�g� � d	

�
��

� ��
�� ��

�

	
�

So jQd�f�g�j � d	�j�j  ��� and TrQd�f�g� � d	��� In particular the term
�TrQd�f�g�j �J j�f�g����� � d	j�j is required to bound jQd�f�g�j�

The following simple lemma helps further explain the content of ������ which in a
sense asserts that the measure Qd � Q�idj �J j is not too far from being nonnegative�

Lemma �� If M � Sn�n is nonnegative de�nite� then �p
n
TrM � jM j � TrM �

Proof� To see this� note that jM j� � Tr�M��� so we need to check that �
n �TrM�� �

Tr�M�� � �TrM�� when M � �� Diagonalizing M and M� reduces these to
elementary inequalities�
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We brie�y describe our strategy for proving Theorem �� We de�ne a nonnegative
function � on the collection of nonnegative de�nite �� � matrices� and for A  &
we de�ne

F ��A� � ��

Z
A

Du� 
Du���

The function � is de�ned in such a way that ����� becomes equivalent to the state	
ment that

F ��A� � ln�
�

�
�j �J j�A�  o�j ln �j��

so that Theorem � reduces to proving a lower bound relating a kind of �energy to
the Jacobian�

We do this by showing� �rst� that if �Br is a circle on which ju�j � �� then one can
prove a lower bound for ��

R
�Br

Du� 
Du�� in terms of deg�u�� �Br�� This is done

in Lemma � and really follows from a simple application of the Cauchy	Schwartz
inequality� We then show that� if x� is a point around which Ju� concentrates as
� � �� then one can �nd many circles on which ju�j � � and degu� is nonzero�
We �nally assemble these estimates to show that F ��U� is large for a suitable
neighborhood U of x�� In doing this we rely on some properties of the function
����� for example a kind of superadditivity property� see Lemma ��

We start by de�ning and investigating ���� and a related function� For a non	
negative matrix S � S��� and for � � � we de�ne

g�S� �� �� jS � �idj � c� ��Tr�S � �id��
��� � c�Tr�S � �id�������

We will impose conditions on the constants ci� i � �� � as we go along� For the
moment we only insist that c� � ��

We also de�ne� for nonnegative de�nite S�

��S� �� supf#� � TrS � g�S� #�� � �g������

It is clear that � � �� and that the supremum in the de�nition of � is attained�
It is not hard to check that g and � have certain monotonicity properties� Using

the fact that c� � � one can easily verify that

S �� g�S� �� is decreasing for all � � �������

This implies that

S �� ��S� is increasing������

Also� one can check by direct di�erentiation that � �� g�S� �� is convex for � � � �
TrS� If g�S� �� � � �in particular this holds if S � �� this implies that

g�S� #�� � � for all � � #� � ��S��������

Using ����� and ������ one deduces that

��S� � #� i� �M such that S � #�id M and jM j � c��#�TrM����  c�TrM�

������

Note also that ������ and the �obvious� continuity of g imply that � can be de�ned
implicitly by the equation g�S� ��S�� � �� The convexity of � �� g�S� �� and the

fact that g�S� �� � � whenever S is positive de�nite imply that �g
� �S� ��S�� � �

whenever S � �� Thus the implicit function theorem implies that ���� is continuous
on the cone of nonnegative matrices�
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We need one more fact about ����� which we state as

Lemma �� If X is a space endowed with a measure �� and X � x �� S�x� � S���
is a ��measurable function such that S � � a�e�� then

�


Z
X

S�x���dx�

�
�
Z
X

��S�x����dx��������

In particular�

��
X

Si� �
X

��Si��������

Proof� For x � X we write ��x� as shorthand for ��S�x��� and we de�ne M�x� �
S�x� � ��x�id� Note that jM�x�j � c����x�TrM�x�����  c�TrM�x� for all x� by
the de�nition of ����� Writing hMi for RX M�x���dx�� we thus have

jhMij �
Z
X

jM�x�j��dx�

�

Z
X

c����x�TrM�x�����  c�TrM�x� ��dx�

� c�


Z
X

��x���dx�

����

�TrhMi����  c�TrhMi�

In addition� Z
X

S�x���dx� � id

Z
X

��x���dx�  hM�x�i�

so ������ follows from ������� Finally� ������ is an immediate consequence of �������

Theorem � will follow easily from the following proposition� Because we will
encounter many balls in our later arguments� we use the notation U rather than B
to denote a ball� to avoid overusing the symbol B�

Proposition �� Suppose that U  R� is an open ball U � BR�x�� and that u� �
H� � C��U �R� � for � � ��� ��� Assume also that

lim sup
���

k�

Z
U

E��u��dx ��������

and let �n � � be a sequence such that

Ju�n � �J � 	d�x� in C����
c �U� 	� � ��������

Let

Sn � k�n

Z
U

Du�n 
Du�n dx�

Then

��Sn� � ��� o����	d � ��� o����j �J j�U� as n���������

We now assume Proposition � and show that it implies Theorem � quite easily�
we then give the proof of Proposition ��
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Proof of Theorem �� We may assume by an approximation argument that u� is
smooth for every ��

We need to show that g�Q�A�� j �J j�A�� � �� for every measurable A� this is ������
By ������� this will follow if we can show that ��Q�A�� � j �J j�A�� Since Q and �J
are Radon measures� it su$ces to prove this for all open sets V  &�

Fix any such open set� and let fUigki�� be a collection of pairwise disjoint open
balls contained in V such that each Ui is centered at a point of suppj �J j � V � and
every such point is contained in a ball Ui� We further assume that Q��Ui� � � for
every i� this is clearly possible� since for any �xed a � &� Q��Bs�a�� is nonzero for
at most countably many values of s� Let V� � V n ��iUi�� and let S� � Q�V��� and

Si � Q�Ui� for i � �� � � � � k� Note that Q�V � �
Pk

i�� Si �
Pk

i�� Si�
The weak convergence k�Du

�n 
Du�n � Q and the fact that Q��Ui� � � imply
that Z

Ui

k�Du
�n 
Du�n dx � Sni � Si � Q�Ui�� i � �� � � � � k�������

So Lemma � implies that

��Q�V �� � ��

kX
i��

Si� �
kX
i��

��Si��

And ������� ������� and the continuity of ���� together yield
kX
i��

��Si� �

kX
i��

lim
n
��Sni � �

kX
i��

j �J j�Ui� � j �J j�V �

Remark �� If we assume ����� and ����� but do not assume that k�nDu
�n 
Du�n

converges to a limit� then Theorem � implies that

lim inf
n

�



k�n

Z
V

Du�n 
Du�n
�
� j �J j�V �������

for every open set V  &�

Lemma �� Assume the hypotheses of Proposition �� Suppose that B  U is a ball
of radius r such that jdeg�u�� �B�j � d � �� Let m � min�B ju�j� Then

�


Z
�B

Du� 
Du�
�
� m�	d��r � m�	d�r�

Proof� Assume that m � � as otherwise there is nothing to prove� We can then
write u� locally in a neighborhood of �B in the form u� � �ei�� for a positive
function �� Although � is in general multivalued� D� is a well	de�ned function
near �B taking values in R� � and Du� � D�ei�  �D�iei�� Then

Du� 
Du� � D�
D� ��D�
D� � m�D�
D� on �B�������

Let � be a unit tangent vector �eld to �B and � a unit normal� Note thatZ
�B

� 
 � �
�

�

Z
�B

� 
 �  � 
 � �
�

�

Z
�B

id � 	r id�������
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Note also that the condition jdeg�u�� �B�j � d means precisely thatZ
�B

D� � � � �	d�������

if � is oriented appropriately� De�ne w � D�� d��r� so that from ������� �������Z
�B

Du� 
Du� � m�

Z
�B

D�
D� � m�	
d�

r
id M������

where M � m� d
r

R
�B�� 
ww
 �� m�

R
�B w
w� Note that because of �������

TrM � �m� d

r

Z
�B

w � � m�

Z
�B

jwj� � m�

Z
�B

jwj��

Since jw 
 �  � 
 wj � �j� j jwj � �jwj� Cauchy	Schwartz thus yields

jM j � �dm�

r

Z
�B

jwj  m�

Z
�B

jwj�

� �dm�

r



�	r

Z
�B

jwj�
����

 m�

Z
�B

jwj�

� c�



	m� d

�

r
TrM

����
 c�TrM�������

where for example we can take c� � �
p
�� c� � �� In view of ������� the conclusion

of the Lemma follows from ������ and ������

For t � ��� �� and � � ��� �� we de�ne

U ��t� �� fx � U � ju��x�j � tg�
We will write ��t �� �U ��t� � U and for any set A  R� we use the notation

H�
��A� � inff�

X
ri � A  �iBri�xi�g�

It is not hard to check that whenever A is a subset of U �

H���A � U� � H�
��A��������

This uses the fact that U is a ball� We now prove

Lemma �� Assume the hypotheses of Proposition �� Then for every t � ��� ���

��� t��H�
��U ��t�� � C�

Z
U

E��u��dx�

The proof is very similar to one given in Sandier �����

Proof� We write ju�j � �� and note that jD�j � jDu�j� Thus Cauchy"s inequality

implies that E��u�� � �
� jD�j� �

���W ��� � �
� jD�j

p
W ���� So by the coarea formula

and ������Z
U

E��u��dx � �

C�

Z �

�

Z
��t

W �t����dH� dt � �

C�

Z �

�

H����t �j�� tj dt�

From ������ we immediately see that H����t � � H�
��U ��t��� and it is clear that

t �� H�
��U ��t�� is nondecreasing� So for any t � ��� ���Z

U

E��u��dx � �

C�
H�
��U ��t��

Z �

t

��� s� ds�
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which readily implies the conclusion of the lemma�

Remark �� If we de�ne #U ��t� � fx � U � ju��x�j � tg for t � �� then the same

argument shows that ��� t��H�
�� #U ��t�� � C�

R
U E

��u��dx for all t � ��� ���

We use the notation

F ��A� �� �


Z
A

Du� 
Du�
�
�

The monotonicity of ���� implies that

F ���Ai� �
X

F ��Ai�� and F ��A� � F ��B� whenever A  B�������

Recall that we are writing k� �� j ln �j��� Let B���a� n B���a� be an annulus that
is contained in U nU ���� k��� Since by de�nition ju�j � �� k� in the complement
of U ���� k��� the degree deg�u

�� �B��a�� is well	de�ned and in fact constant for all
� � ���� ���� So if jdeg�u�� �B���a��j � d� then Lemma � and Lemma � imply that

F ��B�� nB���a�� �
Z ��

��

�

�Z
�B�

Du� 
Du�

	
d� � ��� k��

�	d ln
��
��
�������

We will use this fact in the proof of

Lemma 	� Assume the hypotheses of Proposition �� Then given � � ��� ��� for
every � � � there exists a collection of pairwise disjoint open balls B��� � fB

i g
such that

U ���� k��  �iB
i �������

F ��B
i � � ��� k��

�di ln� if B
i  U �������

X
ri � C���ln

�

�
 ����������

Here ri denotes the radius of B
i and di �� jdeg�u�� �B

i �j�
The proof is also very similar to one given in Sandier �����
We will say the � � 	expansion of the ball B��x�  to denote the ball B���x� ball

with the same center and radius expanded by a factor � �

Proof� �� We �rst consider the case � � �� Fix an arbitrary � � ��� ��� From Lemma
� and ������ we see that H�

��U ���� k��� � C��ln �
� ���� By the de�nition of H�

��
we can then �nd a collection of open balls that cover U ���� k��� with the sum of
their radii bounded by C��ln �

� ���� We have assumed that u� is continuous� which
implies that U ���� k�� is compact� and so we can take this collection of balls to be
�nite� Suppose two balls Bi and Bj intersect� We then replace them by a single
larger ball B� � Bi �Bj whose radius is no greater than the sum of the radii of Bi

and Bj � This can be repeated until we obtain a collection that is pairwise disjoint�
with the same bound on

P
ri� This collection has the desired properties for � � ��

�� Let ( denote the set of all numbers � � � for which the conclusions of the
lemma hold� We have shown that � � (� We now claim that� if �� � (� then there
exists some � � � such that ���� ��  ��  ��

To see this� �x some such ��� There exists some � � � such that the ����
expansions of the balls B�

i are pairwise disjoint for all � � ��  �� Taking �
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smaller if necessary� we can also assume that if B�
i  U � then the ���� expansion

of B�
i does not intersect �U for all � � ��  ��

For all � � ���� ��  �� de�ne B
i to be the ���� expansion of B�

i if B�
i  U �

and if B�
i intersects �U leave B�

i unchanged� that is� de�ne B
i � B�

i � It is clear
that for every � � ���� ��  �� the collection of balls thus obtained satis�es �������
To verify that ������ holds� �x some i such that B

i  U � and note that the annulus
B
i nB�

i does not intersect U ���� k��  �jB�
j � So ������ implies that

F ��B
i nB�

i � � di ��� k��
� ln

�

��
�

Since B�
i satis�es ������� the above estimate and ������ imply that B

i satis�es
������� Finally� ������ holds because ri �� is nonincreasing for every i� it is either
constant or decreasing� depending on whether Bi is expanded or left unchanged�

�� Suppose now that ���� ���  (� We will show that �� � (� thereby completing
the proof of the lemma�

To do this� de�ne #B�
i as in Step �� to be the ����� expansion of B�

i if B�
i  U �

and if B�
i intersects �U de�ne #B�

i � B�
i � These balls have all the required prop	

erties� except that in general they need not be pairwise disjoint� So we combine
balls to form a new collection that is pairwise disjoint� as in Step �� without increas	
ing the sum of the radii� Call these balls B�

i � Again ������ and ������ are easily
checked� and ������ is a consequence of ������ and the fact that d�i is bounded by

the sum of the degrees of the balls from the collection f #B�
j gj that were combined

to form B�
i �

Lemma 
� Assume the hypotheses of Proposition �� De�ne

G�n �� fs � ��� R� � deg�u�n � �Bs�x��� � dg�������

Then

L��G�n�� R as �n � ��������

Remark �� A very similar result appears in ����

Proof� First de�ne

I�n� �� fs � ��� R� � �� k�n � ju�n j � �  k�non�Bs�x��g
�� fs � ��� R� � �Bs�x�� � U �n��� k�n� � �Bs�x�� � #U �n��  k�n� � �g�

Lemma � and ������ imply thatH�
��U �n���k�n��� � as �n � �� Similarly Remark

� and ������ imply that H�
�� #U �n��  k�n�� � �� It follows that L��I�n� � � R as

�n � ��
If ������ is false� we can �nd a subsequence� still denoted �n� and subsets I�n� 

I�n� such that L��I�n� � is bounded away from � and either deg�u�n � �Bs�x��� � d�
or deg�u�n � �Bs�x��� � d � � for all s � I�n� � Assume that the former holds� the
other case is similar� We can then de�ne a sequence of test functions of the form
�n�x� � fn�jx � x�j� � C���

c �U� such that

�fn���s� �
� �� a�e s � I�n�

� a�e s �� I�n�
In fact fn�s� �� L� ��s�R� � I�n� �� and so �n��� � L��I�n� ��
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Write u�n � �ei�� Then using the fact that Ju�n � �
�r� j�u�n� � �

�r� ���D��
and the coarea formula� one computes thatZ

�n Ju�n dx �
�

�

Z
I�n�

Z
�Bs	x�


��D� � �dH� ds

� �

�

Z
I�n�

�
	deg�u�n � �Bs�x����

Z
�Bs	x�


����� � ��D�
�� dH�

	
ds�

Since deg�u�n � �Bs�x��� � d � for s � I�n� � it is clear that

�

�

Z
I�n�

	deg�u�n � �Bs�x��� ds � 	�d ��L��I�n� ��

Suppose that s � I�n� � Because I�n�  I�n� � we have � � k�n � � � �  k�n on
�Bs�x��� Thus ����� implies that ��� � ��� � CW ���� on �Bs�x��� and so

����� � ��D�
�� � �n

�
jD�j�  �

��n
��� � ���

� C�n�
�

�
��jD�j�  �

���n
W ������ � C�nE

�n�u�n�

on �Bs�x��� Hence �using the coarea formula again�

�

�

Z
I�n�

Z
�Bs	x�


����� � ��D�
�� dH� ds � C�n

Z
U

E�n�u�n� � K�n�ln
�

�n
 ���

So we conclude that
R
�nJu�ndx � 	�d  ��L��I�n� � � o��� as �n � �� However�

this is impossible� since the weak convergence Ju�n � �J implies that����
Z
�nJu�ndx� 	d�n���

���� �
����
Z
�nJu�ndx� 	dL��I�n� �

����� �

as n���

We now give the

Proof of Proposition �� Recalling the de�nition of F �n � it will su$ce to demonstrate
that F �n�U� � dj ln �nj��� o���� as n���

Fix n� so large that L��G�n� � R�� for all n � n�� This is possible by Lemma ��
Fix some n � n� and let �� � R���C�n�j ln �nj  ����� where C is the constant

in ������� Consider the collection of balls B���� given by Lemma �� The choice of
�� with ������ guarantees that

P
r�i � R��� It follows that there must be some

s � G�n such that �Bs�x���B�
i � � for all i� Then the additivity of degree implies

that

d � deg�u�� �Bs�x��� �
X

fi � B��
i 
Bs	x�
g

deg�u�� �B�
i � �

X
d�i �

Then ������� ������� and our choice of �� imply that

F �n�U� �
X

F �n�B�
i � � d��� k�n�

� ln �� � dj ln �nj ��� o����

as n���
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�� limits of k�Du
� 
Du�� continued�

In this �nal section we analyze the relationship between limits of Ju� and k�Du
�


Du� in m � � space dimensions� The main result of this section is

Theorem �� Suppose that u� � H��&�R� � for � � ��� ��� where & is an open subset
of Rm � m � �� Assume that

lim sup
���

k�

Z
�

E��u��dx � ������

and let �n � � be a sequence such that

Ju�n � �J in C����
loc

�&� 	� � ������

where �J has the form 	��Hm��j� for some oriented i�m� recti�able ��� �� 
��� and

k�nDu
�n 
Du�n � Q � C���&�Sm�m� weakly in C���&�������

Let Qd �� Q � P�jJ j� where for Hm�� a�e� x � �� P��x� is the projection onto
�apTx��

�� Then TrQd � �� and there exist constants c�� c� �depending on the
dimension m� such that

jQd�A�j � c�
�
TrQd�A� j �J j�A�

����
 c�TrQd�A�������

for every measurable A  &� In particular� if TrQ�A� � �j �J j�A� for some A  &�
then in fact Q � P�j �J j in A�

The proof of this result relies on a re�nement of Theorem � that asserts that�
roughly speaking� two	dimensional slices of Ju� converge to two	dimensional slices
of �J � This will allow us essentialy to reduce Theorem � to Theorem �� Before
stating this re�ned comapctness theorem we introduce some notation�

We continue to write x to denote typical points in Rm � It will frequently be
convenient to decompose x � Rm in the form x �� �y� z� � Rm��y � R�z � where
yi � xi for i � �� � � � �m� � and zi � xm���i for i � �� ��

Suppose that O  U is an open subset of the form O � Oy � Oz � where Oy 
Rm��y and Oz  Rm��z � We say that a measure � on O is represented by slices
�y�dz� if for Lebesgue almost every y � Oy there exists a measure �y�d �� on Oz

such that y � �y�dz� is weakly measurable andZ
O

��x�d��x� �

Z
Oy

Z
Oz

��y� z��y�dz� dy������

We say that � is locally represented by slices �y�dz� if it is represented by slices on
every open set of the above form�

Theorem 	� Suppose that fu�g��	���� is a family of functions in H��U �Rm � for

U  R� such that lim sup��� I
��u�� � K� Then fJu�g��	���� is strongly precompact

in �C����� for all � � �� Moreover� if �J � �J ijei � ej is any weak limit of a
subsequence Ju�n that converges in the above sense� then

�i� �J has the form 	��Hm��j� where ��� �� 
�� is some oriented i�m� recti�able
set�

�ii� For any choice of orthonormal basis for Rm �determining a decomposition of
Rm into Rm��y � R�z ��

�Jz � dz � �J is locally represented by slices �Jy�dz�� and these

slices have the form �Jy�dz� � 	
P

i di�ai�dz� for integers di and points ai � R
�
z �
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�iii� Suppose that O  U is an open subset of the form O � Oy � Oz� where
Oy  Rm��y and Oz  Rm��z � Then for a�e� y � Oy�

dz � Ju�nk �y� �� � det�u
�nk
z� � u

�nk
z� ��y� ��� �Jy�d ��

in C����Oz�
� for all � � �� whenever �nk is a subsequence such that

lim sup k�nk

Z
Oz

E�nk �u�nk ��y� z�dz ���

�iv� j �J j�Rm � � lim infn�� I�n�u�n�

This is Theorem ��� in ����� Assertion �iii� is not included in the statement of
the theorem in ���� but is established in Steps � and � of the proof�

We will also need the following easy

Lemma �� If Q is a matrix�valued measure and � is a nonnegative measure� then����dQd�
���� � djQj

d�
� almost everywhere������

Proof� By examining the de�nitions one can then check that dQ
d� � dQ

djQj
djQj
d� � � a e�

Since j dQdjQj �x�j � � for jQj a�e� x� and thus for � a�e x � suppdQd� � � suppdjQjd� ��

this implies ������

In the remainder of this section we give the

Proof of Theorem �� �� We �rst claim that it su$ces to show that TrdQd

dj �Jj � � and

djQdj
dj �J j � c�



Tr
dQd

dj �J j
����

 c�Tr
dQd

dj �J j�����

j �J j almost everywhere�
Indeed� suppose that this estimate holds� and let

M ��

Z
A

dQd

dj �J jdj
�J j � Qd�A��

Then

jM j �
Z
A

djQdj
dj �J j dj �J j

�
Z
A

�
c�



Tr
dQd

dj �J j
����

 c�Tr
dQd

dj �J j


dj �J j

� c�


Z
A

Tr
dQd

dj �J j dj
�J j
���� 
Z

A

dj �J j
����

 c�

Z
A

Tr
dQd

dj �J j dj
�J j

� c�
�j �J j�A� TrM����

 c�TrM�

Thus g�M� j �J j�A�� � �� in the notation of ������ Since Qd�A� �M � the monotonic	
ity properties of g imply that g�Qd�A�� j �J j�A�� � �� which is ������

�� We write �J in the form �j �J j� where j �J j � 	�Hm��j�� Recall that � is a
j �J j	measurable function taking values in ��Rm � such that j��x�j � � for j �J j	 a�e�
x � R

m � In addition� � has the form � � �� � �� for orthonormal unit vectors
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�i � ��Rm at j �J j a�e� x� General theorems on di�erentiation of measures imply
that

lim
r��

�

j �J j�Br�x��

Z
Br	x


j��x��� ��x�j j �J j�dx�� � ������

and

lim
r��

Q�Br�x��

j �J j�Br�x��
��

dQ

dj �J j �x� exists�����

for j �J j	a�e� x � Rm � It thus su$ces to prove ����� at every point x where ����� and
����� hold and ��x� � �� � �� is simple with f��� ��g spanning �apTx��

��
Fix a point x� satisfying these conditions� After a change of basis we can assume

that ��x�� � ���x�� � ���x�� � em�� � em� We decompose Rm as Rm��y �R�z � and

we write x� � �y�� z��� We write �J �
P

i�j
�J ijei�ej in the new coordinate system�

We will focus on the scalar signed measure �Jm���m � em���em �� �J � which we will
write �Jz for short�

If r is su$ciently small � which we will henceforth assume to be the case �
then Bm��

r �y���B�
r �z��  &� and so according to Theorem �� for Lebesgue almost

every y � Bm��
r �y�� there exists a measure �Jy�dz� on B�

r �z�� such thatZ
Bm
r 	x�


��x� �Jz�dx� �

Z
Bm��
r 	y�


Z
B�
r	z�


��y� z� �Jy�dz� dy

for all � � Cc�B
m
r �x���� Also� Theorem � asserts that for a�e� y � Bm��

r if �nk is
any subsequence such that

lim sup k�nk

Z
B�
r	z�


E�nk �u�nk ��y� z�dz ���������

then

det�u
�nk
z� � u

�nk
z� ��y� z�� �Jy�dz� in C����B�

r �z���
� 	� � ��������

Note in addition that by ������

�Jz�Br�x��� � ��x�� �
Z
Br	x�


��x�j �J j�dx� � ��� or����j �J j�Br�x����������

A further consequence of ����� is that x� is dP�j �Jj
dj �Jj exists at x� and equals Pz� the

m�m matrix corresponding to projection onto R�z �

�� We will write �Q as shorthand for dQ
dj �Jj�x��� and similarly �Qd for dQd

dj �Jj � Note

that �Qd �
dQ
dj �Jj�x��� dP�j �Jj

dj �Jj �x�� � �Q�Pz� and also that �Q is nonnegative de�nite�

We de�ne submatrices R � Sm���m�� and S � S��� by

Rij � �Qij � i� j � �� � � � �m� �� Sij � �Q	m���i
	m���j
� i� j � �� ��������

Both of these are nonnegative de�nite� We also de�ne Rd and Sd to be the corre	
sponding m� ��m� � and �� � submatrices of �Qd� so that in fact R � Rd and
Sd � S � id�

We now claim that it su$ces to prove that

��S� � ��������

Indeed� suppose that this holds� Since �Q is nonnegative de�nite�

j �Qij j �
�
�Qii

�Qjj

����
������
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for all i� j�
If ��S� � �� then the de�nition and the monotonicity properties of ���� im	

ply that jSdj � c��TrSd�
���  c�TrSd� This immediately implies that j �Qd�ij j �

c��Tr �Qd�
���  c�Tr �Qd if i� j � fm� ��mg�

If i� j � f�� � � � �m� �g then ������ implies that

j �Qd�ij j � j �Qij j � �Qii  �Qjj � TrR � Tr �Qd�

And if i � f�� � � � �m� �g� j � fm� ��mg then ������ yields

j �Qd�ij j � j �Qij j � �TrR TrS�
���

� ��TrR� ��  TrSd��
���

�
p
��TrR����  �TrR TrSd�

���

�
p
��TrR���� 

�

�
�TrRTrSd�

�
p
��Tr �Qd�

��� 
�

�
Tr �Qd�

Thus ������ implies ����� for certain constants c�� c� that depend on the dimension
and in particular are larger than the ci appearing in the de�nition of ��

�� Let Dzu
� � �u�z� � u

�
z��� and de�ne

S�nr � k�n

Z
Bm
r

Dzu
�n 
Dzu

�ndx�

Note that

S � lim
r��

lim
n��

�

j �J j�Br��x��
S�nr �

This limit exists� since we have chosen x� to satisfy ������ We rewrite

S�nr �

Z
Bm��
r 	y�


S�nr �y�dy

where

S�nr �y� �

Z
fyg�B�

r�y�
	z�


k�nDzu
�n 
Dzu

�n H��dz� r�y� � �r� � jy � y�j������

It is not hard to verify from the de�nition that that ���M� � ���M� for all M � �
and � � �� so in view of the continuity of �� to prove ������ we need to show that
lim infn�� ��S�nr � � ��� or����j �J j�Br�x���� Now Lemma � implies that

lim inf
n��

��S�nr � � lim inf
n��

Z
Bm��
r 	y�


��S�nr �y��dy

So it will �nish the proof when we show that

lim inf
n��

Z
Bm��
r 	y�


��S�nr �y��dy � ��� or����j �J j�Br�x����������

�� For y � Bm��
r �y�� we will write j�y� �� j �Jzy j�Br	y
�z���� Note thatZ
Bm��
r 	y�


j�y�dy � j �Jz j�Bm
r �x��� � ��� or����j �J j�Bm

r �x���������

using �������
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For y � Bm��
r �y��� we de�ne #��n�y� �� minf��S�nr �y��� j�y�g� We claim that

#��n��� converges to j��� in measure on Bm��
r �y�� as n���������

To prove this� we show that given any � � �� we can construct a new sequence
f��n� gn	� such that

lim sup
n��

Lm�� �fy � Bm��
r �y�� � #�

�n�y� �� #��n� �y�g� � �������

and such that #��n� �y� � j�y� a�e� y� Indeed� by Chebychev"s inequality and the
upper bound on the energies ������ given any � we can �nd some number K such
that lim supn�� Lm���Zn

K� � �� for

Zn
K ��

�
y � Bm��

r �y�� � k�n

Z
B�
r�y�

	z�


E�n�u�n��y� z�dz � K

�
�

We de�ne

#��n� �y� ��

�
#��n�y� if y � Bm��

r �y�� n ZK �
j�y� if y � ZK �

It is clear from the de�nitions that ������ holds�
Fix y � Bm��

r �y�� and consider any subsequence nk� Passing to a further subse	
quence �which we still label nk� we may assume that either y � Znk

K or y �� Znk
K for

all k� If the former holds then trivially #�
�nk
� �y� � j�y�� If y �� Znk

K for all k� then
������ is satis�ed� and as a result ������ holds� unless y belongs to some exceptional
set of measure zero� According to Remark �� however� ������ and ������ together
imply that

lim inf
k

��S
�nk
r �y�� � j �Jyj�Br	y
�z��� � j�y��

Since #�
�nk
� �y� � #��nk �y� � minf��S�nkr �� j�y�g we conclude that #��nk� converges a�e�

to j� thus establishing �������
�� From ������ and Fatou"s lemma we deduce that

lim inf
n

Z
Bm��
r 	y�


��S�nr �y��dy � lim inf
n

Z
Bm��
r 	y�


#��n�y�dy �
Z
Bm��
r 	y�


j�y� dy�

Thus ������ follows from ������� so we have �nished the proof�
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