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Abstract

Combining a local gauge principle� the Pauli Exclusion Principle� and the principles

of General Relativity in a particular way� we obtain the mathematical framework for

the formulation of a new type of variational principle in space�time� The postulate

that physics can be formulated within this framework is called the �principle of the

fermionic projector��

The principle of the fermionic projector is introduced and discussed� We describe

a limiting process with which our variational principles can be analyzed in the setting

of relativistic quantum mechanics�

The principle of the fermionic projector was �rst introduced in ���� In the subsequent
works �������� the foundations of this principle were clari�ed� and necessary mathematical
tools were developed� Based on these papers� the principle of the fermionic projector can
now be stated in its mature form� The present work is the �rst of a series of forthcoming
papers in which the principle of the fermionic projector and its consequences will be worked
out in detail�

� Formulation of the Principle

Although relativistic quantum �eld theory has been very successful� its present mathe	
matical formulation 
in the canonical formalism or with path integrals� is far from being
convincing� Partly� the involved problems seem unavoidable� the interaction of quantized
�elds is simply highly complicated� However� there are also a number of inconsistencies and
conceptual di
culties in the underlying mathematical formalism� The situation becomes
even more problematic if one tries to include gravitation� Therefore� it seems tempting
to look for a mathematical framework which is more appropriate for the formulation of
physics than present QFT� The principle of the fermionic projector is a promising attempt
in this direction�

Since we want to avoid second quantized �elds� our starting point is relativistic quan	
tum mechanics combined with classical �eld theory� This means more precisely that we
consider Dirac particles� described by their quantum mechanical wave functions� which
interact via classical �elds 
e�g� an electromagnetic �eld� a Yang	Mills �eld� or a gravi	
tational �eld�� We use the concept of the Dirac sea to reinterpret the negative	energy
solutions of the Dirac equation as anti	particle states� Although it is not really essential
for what follows� one should keep in mind that the Feynman diagrams of perturbative
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quantum �eld theory can already be derived in the setting of relativistic quantum me	
chanics 
as e�g� explained in ����� this yields consistency of our approach with the high
precision tests of quantum �eld theory 
like the Lamb shift or the anomalous magnetic
moment�� But clearly� relativistic quantum mechanics does not take into account the par	
ticular e�ects of quantized �elds 
like the Planck radiation and the photo electric e�ect��
thus our constructions given below should involve some kind of �quantization procedure�
for the �elds�

Relativistic quantum mechanics and classical �eld theory incorporate several physical
principles� According to the concepts of General Relativity� gravitation is understood in
terms of the Lorentzian geometry of space	time� The gauge principle states that the theory
should be invariant under local gauge transformations of the classical potentials� In our
quantum mechanical context� the Pauli Exclusion Principle says that many	particle wave
functions must be anti	symmetric� this implies that each quantum mechanical state may
be occupied by at most one Dirac particle�

In this section� we will generalize the notions of relativistic quantum mechanics and
classical �eld theory in several construction steps� This will be done in a very intuitive
way� The aim is to work out the essence of the just mentioned physical principles by
dropping all additional and less important structures� This will lead us to a quite abstract
mathematical framework� in which we shall then formulate the principle of the fermionic
projector� We shall end this section with a brief physical overview and discussion�

��� Connection between Local Gauge Freedom and the Measurability

of Position and Time

Let us �rst recall some basic notions of gauge theories in Minkowski space� The local
gauge principle has its origin in the observation that the electromagnetic potential A
x�
of classical electrodynamics is determined only up to gauge transformations of the form

Aj � Aj � �j� 
����

with a real function �
x�� This transformation property was generalized in Yang	Mills
theories� from which physical gauge theories like the standard model evolved� In these
theories� the potential A
x� takes values in a Lie algebra� The corresponding Lie group
G is called the gauge group� Local gauge freedom means that we can choose any section
U
x� � G and transform the potential according to�

Aj � UAjU
�� � iU
�jU

��� � 
����

The gauge transformations of electrodynamics 
���� are recovered from this formula in the
special case of a U
�� gauge group and U � exp
i��� The transformation rule 
���� can
be understood more easily if one introduces the gauge	covariant derivative D by

Dj � �j � iAj � 
����

Namely� 
���� is equivalent to demanding that the gauge	covariant derivative transforms
according to the adjoint representation of the gauge group�

Dj � UDjU
�� � 
����

�Notice that the coupling constant e of the gauge �elds was omitted ������ is often written in the form
Aj � UAjU

�� � ie��U��jU
����� This can be arranged by rescaling the gauge potentials according to

Aj � e�� Aj � One should keep in mind� however� that the coupling constant still appears in the �eld
equations� e�g� the Maxwell equations for a Dirac particle in our convention read �lF

kl � 	� e� 
�k
�
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Following the minimal coupling procedure� the gauge potentials are introduced into the
physical theory by replacing all partial derivatives by the corresponding gauge	covariant
derivatives� Using the requirement that the so	obtained theory should be independent of
the choice of the gauge� one can deduce the behavior of all objects of the theory under
gauge transformations� For example� a quantum mechanical wave function � which is
coupled to the gauge �elds must behave under gauge transformations like

�
x� � U
x� �
x� � 
����

so that its gauge	covariant derivative transforms again according to the fundamental rep	
resentation� Dj�� U Dj��

In this subsection� we shall give a possible explanation as to why local gauge freedom
occurs in physics� Apart from giving some physical insight� this consideration will provide
a formalism which will be the starting point for the constructions leading to the principle
of the fermionic projector�

We begin with the simple example of the U
�� gauge transformations of the magnetic
�eld for a Schr�odinger wave function � in nonrelativistic quantum mechanics� Since it
will be su
cient to consider the situation for �xed time� we only write out the spatial
dependence of the wave function� � � �
�x� with �x � IR�� Taking the nonrelativistic
limit for a U
�� gauge group� the gauge freedom 
���� states that the local phase of the
wave function �
�x� is undetermined� This is consistent with the quantum mechanical
interpretation of the wave function� according to which the phase of a wave function is
not an observable quantity� only its absolute square j�
�x�j� has a physical meaning as the
probability density of the particle� One can even go one step further and take the point
of view that the inability to determine the local phase of a quantum mechanical wave
function is the physical reason for the local gauge freedom 
����� Then the U
�� gauge
transformations of the magnetic �eld become a consequence of the principles of quantum
mechanics� This argument becomes clearer when stated in more mathematical terms as
follows� We consider the usual scalar product on the Schr�odinger wave functions�

�� j �� �

Z
IR�

�
�x� �
�x� d�x �

and denote the corresponding Hilbert space by H� On H� the position operators �X are
given as the multiplication operators with the coordinate functions�

�X �
�x� � �x�
�x� �

As it is common in quantum mechanics� we consider H as an abstract Hilbert space 
i�e�
we forget about the fact that H was introduced as a space of functions�� Then the wave
function �
�x� corresponding to a vector � � H is obtained by constructing a �position
representation� of the Hilbert space� In bra�ket notation�� this is done by choosing an
�eigenvector basis� j�x� of the position operators� i�e�

�X j�x� � �x j�x� � ��x j �y� � ��
�x� �y� � 
����

the wave function is then introduced by

�
�x� � ��x j�� � 
����

�We note that the formal bra�ket notation can be made mathematically precise using spectral measures
�
��
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The important point for us is that the �eigenvectors� j�x� of the position operators are
only determined up to a phase� Namely� the transformation

j�x� � exp 
�i�
�x�� j�x� 
����

leaves invariant the conditions 
���� for the �eigenvector basis�� If we substitute 
���� into

����� we obtain precisely the transformation 
���� of the wave function with U � exp
i���
The transformation properties of the gauge	covariant derivative 
���� and of the gauge
potentials 
���� follow from 
���� if one assumes that 
Dj�j������ are operators on H 
and
thus do not depend on the representation of H as functions in position space�� In physics�
the operators �� � �i �D are called the �canonical momentum operators��

The relation just described between the position representation of quantum mechan	
ical states and the U
�� gauge transformations of the magnetic �eld was noticed a long
time ago� However� the idea of explaining local gauge freedom from quantum mechanical
principles was not recognized as being of general signi�cance� In particular� it was never
extended to the relativistic setting or to more general gauge groups� The probable reason
for this is that these generalizations are not quite straightforward� they make it neces	
sary to formulate relativistic quantum mechanics in a particular way� slightly modifying
the usual physical concepts� We shall now outline how this is done for the Dirac theory�
sketching those constructions of ��� which are essential for our purpose�

We consider on the four	component Dirac spinors 
��
x����������� in Minkowski space
a scalar product of signature 
�� ���

�� j ��
x� �
�X

���

s� ��
x�� ��
x� � s� � s� � �� s� � s� � ��� 
����

called spin scalar product� 
�� is the complex conjugated wave function�� We denote the
vector space of all Dirac wave functions by H� Integrating the spin scalar product over
space	time� we obtain an inde�nite scalar product on H�

�� j �� �

Z
IR�
�� j ��
x� d�x � 
�����

Furthermore� we introduce on H time�position operators 
Xi�i�������� by multiplication
with the coordinate functions�

Xi �
x� � xi �
x� �

We now consider 
H� ��j��� as an abstract scalar product space� In order to con	
struct a time�position representation of H� we must choose an �eigenvector basis� of the
time�position operators� Since the wave functions have four components� an �eigenvector
basis� has in bra�ket notation the form jx��� x � IR�� � � �� � � � � �� it is characterized by
the conditions

Xi jx�� � xi jx�� � �x� j y	� � s� ��� �
�
x� y� 
�����

with s� as in 
����� The wave function corresponding to a vector � � H is de�ned by

��
x� � �x� j�� � 
�����

�We remark for clarity that the spin scalar product is in physics usually denoted by 
� with the
adjoint spinor 
 � 
���� Our de�nition without using the Dirac matrices avoids possible confusion in the
generalization to curved space�time�
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The conditions 
����� determine the basis jx�� only up to local isometries of a scalar
product of signature 
�� ��� i�e� up to transformations of the form

jx�� �
�X

���


U
x������ jx	� with U
x� � U
�� �� � 
�����

If we identify these transformations with gauge transformations and substitute into 
������
we obtain local gauge freedom of the form 
���� with gauge group G � U
�� ��� Since gauge
transformations correspond to changes of the �eigenvector basis� jx��� we also call jx��
a gauge�

From the mathematical point of view� 
������
����� is a straightforward generalization
of 
�����
���� to the four	dimensional setting and four	component wave functions� taking
into account that the scalar product on the Dirac spinors has signature 
�� ��� However� our
construction departs from the usual description of physics� Namely� the time operator X�

is not commonly used in relativistic quantum mechanics� and the scalar product 
����� is
unconventional� But these di�erences are not problematic� as we shall see in the following

see ��� for a more detailed discussion�� To avoid confusion� we remark that the scalar
product 
����� could be in�nite for physical states� because the time integral might diverge�
This problem could be removed for example by considering the system in �nite �	volume
and taking a suitable limit� Generally speaking� we do not worry too much about the
normalization of quantum mechanical states in this introduction� knowing that this issue
can easily be made mathematically precise�

In order to describe the physical interactions with the just obtained U
�� �� gauge
freedom� we must incorporate the principles of General Relativity� taking the Dirac oper	
ator as the basic object in space	time� This yields a uni�ed description of gravitation and
electrodynamics as a classical gauge theory ���� We brie y outline the underlying construc	
tion� According to the equivalence principle� a gravitational �eld makes it necessary to
consider general �curved� coordinate systems in space	time� in other words� space	time is
a manifold� Similar to 
�����
������ we consider on this manifold the scalar product space
of four	component wave functions 
H� ��j��� and introduce for every coordinate system xi

the multiplication operators Xi� The arbitrariness of the time�position representation of
H again yields local U
�� �� gauge freedom� The Dirac operator G is a di�erential operator
of �rst order on H� i�e�� in a chart and a gauge� it takes the form

G � iGj
x�
�

�xj
� B
x� 
�����

with � � � matrices Gj
x� and B
x�� It is a basic fact in General Relativity and gauge
theories that the gravitational �eld� and the gauge potentials� can locally be made zero by
choosing a �freely falling� reference frame and a suitable gauge� respectively� Since we are
here working exclusively with the Dirac operator� we consider instead the condition that
the Dirac operator should coincide locally with the free Dirac operator� More precisely�
we demand that for any space	time point p� there is a coordinate system and a gauge such
that Gj
p� � 
j � �lG

j
p� � �� and B
p� � �� where 
j are the Dirac matrices of Minkowski
space in the Dirac representation� It turns out that� with this local condition� we have
introduced both a gravitational and an electromagnetic �eld� The Lorentzian metric gjk
is given by the anti	commutator

gjk
x� �� �
�

�

n
Gj
x�� Gk
x�

o
� �

�

�
Gj
x�Gk
x� �Gk
x�Gj
x�

�
� 
�����
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Moreover� the Dirac operator uniquely induces a U
�� �� gauge covariant derivative D�
which we call spin derivative� The spin connection contains both metric connection coef	
�cients and the electromagnetic potential A� The curvature Rjk of the spin connection�

Rjk �
i

�
�Dj � Dk� � i

�

DjDk �DkDj� �

is composed of the Riemannian curvature tensor Rijkl and of the electromagnetic �eld
tensor Fjk � �jAk � �kAj�

Rjk � � i

�
Rmnjk G

m Gn �
�

�
Fjk �� �

With these tensor �elds� one can formulate classical �eld theory� Finally� the Dirac equa	
tion in the gravitational and electromagnetic �eld takes the form


G�m� � � � � 
�����

where m is the mass of the Dirac particle� Notice that� in our description� the Dirac
operator determines both the Dirac wave functions and the classical potentials� namely�
the wave functions via the Dirac equation 
������ and the classical potentials via the
construction of the metric and the spin derivative� The minimal coupling procedure is no
longer used�

The U
�� �� gauge symmetry ��� describes gravitation and electrodynamics� but it does
not include the weak and strong interactions� In order to build in additional gauge �elds�
we must extend the gauge group� Since our gauge group is the isometry group of the spin
scalar product� this can be accomplished only by increasing the number of components of
the wave functions� In general� one can take wave functions with p� q components and a
spin scalar product of signature 
p� q��

�� j ��
x� �
p�qX
���

s� ��
x�� ��
x� with

s� � � � � � sp � � � sp�� � � � � � sp�q � �� � 
�����

We call 
p� q� the spin dimension� Repeating the above construction 
������
����� for this
spin scalar product yields local gauge freedom with gauge group G � U
p� q�� However�
it is not possible to introduce the Dirac operator in this generality� Therefore� we will in
what follows always assume that the spin dimension is 
�N� �N� with N � �� In this case�
one can regard the �N component wave functions as the direct sum of N Dirac spinors�
and the above construction of the Dirac operator can be generalized in a straightforward
manner� This leads to a Dirac operator of the form 
����� with �N � �N matrices Gj
x�
and B
x� satisfying the anti	commutation relations 
������ The Dirac equation again has
the form 
������ The direct sum of Dirac spinors can be used to describe di�erent types of
fermions 
e�g� leptons and quarks�� Our concept is that the U
�N� �N� gauge symmetry
should� in the correct model� give rise to the gravitational� strong� and electroweak forces�

For clarity� we �nally mention some di�erences of our approach to standard gauge
theories� Usually� the gauge groups 
e�g� the SU
��w or SU
��s in the standard model�
act on separate indices of the wave functions 
namely� on the isospin and color indices�
respectively�� In contrast to this� our U
�� �� gauge transformations simply act on the
spinor index� In our generalization to higher spin dimension 
������ we make no distinction
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between the spinor index and the index of the gauge �elds� and they are both combined in
one index � � �� � � � � �N � Furthermore� we point out that the gauge group and the coupling
of the gauge �elds to the Dirac particles are� in our setting� completely determined by the
spin dimension� Compared to standard gauge theories� where the gauge groups and their
couplings can be chosen arbitrarily� this is a strong restriction for the formulation of
physical models�

��� Projection on Fermionic States

Our setting so far is that of one	particle quantum mechanics based on the Dirac equation

������ We will now extend our ideas to many	fermion systems�

A single Dirac particle is described by its wave function ��
x� � �x�j��� or� in a
gauge	independent way� by a vector � � H� Since the phase and normalization of � have
no physical signi�cance� we prefer to describe the Dirac particle by the one	dimensional
subspace ��� � f��� � � ICg 	 H� Now consider the system of n Dirac particles�
which occupy the one	particle states ��� � � � ��n � H� Generalizing the subspace ���
of the one	particle system� we will here describe the many	particle state by the subspace
���� � � � ��n� 	 H spanned by ��� � � � ��n� Let us consider for simplicity only the generic
case that this subspace is non	degenerate 
i�e� there should be no vectors � 
� � � Y with
��j�� � � for all � � Y �� Just as in positive de�nite scalar product spaces� every
non	degenerate subspace Y 	 H uniquely determines a projector PY on this subspace�
characterized by the conditions P �

Y � PY � P �
Y and Im
PY � � Y � where ��� denotes the

adjoint with respect to the scalar product ��j��� Instead of working directly with the
subspace ���� � � � ��n� 	 H� it is more convenient for us to consider the corresponding
projector P �

P � P���������n� �

We call P the fermionic projector� In this work� we will always describe the Dirac particles
of our physical system by a fermionic projector�

The concept of the fermionic projector departs from the usual description of a many	
particle state by an anti	symmetric wave function or a vector of the fermionic Fock space�
Let us discuss this di�erence in detail� In many	particle quantum mechanics� the system
of Dirac particles ��� � � � ��n is described by the anti	symmetric product wave function

�������n
x�� � � � � xn� � 
�� � � � � ��n�
������n
x�� � � � � xn� 
�����

� �

n!

X
��S�n	


���j�j ���
���	
x�� � � ���n

��n	
xn� �

where S
n� is the set of all permutations of f�� � � � � ng� The wave functions of the form

����� are called n	particle Hartree	Fock states� They span the n	particle Fock space
F n �

VnH� In the fermionic Fock space formalism of QFT� a quantum state is a linear
combination of Hartree	Fock states� i�e� a vector of the Fock space F �

L�
n�� F

n� In
order to connect the fermionic projector with the Fock space formalism� we associate to a
projector PY on a subspace Y � ���� � � � ��n� 	 H the wave function 
������ Because of
the anti	symmetrization in 
������ this mapping is 
up to a complex factor� independent of
the choice of the basis vectors ��� � � � ��n� and gives a one	to	one correspondence between
the projectors PY on n	dimensional subspaces Y 	 H and n	particle Hartree	Fock states�
In this way� one sees that the description of a many	particle state with the fermionic
projector is equivalent to using a Hartree	Fock state� With this correspondence� the
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formalism of the fermionic projector becomes a special case of the Fock space formalism�
obtained by restricting to Hartree	Fock states� In particular� we conclude that the physical
concepts behind fermionic Fock spaces� namely the Pauli Exclusion Principle and the fact
that quantummechanical particles are indistinguishable from each other� are also respected
by the fermionic projector� However� we point out that the the fermionic projector is not
mathematically equivalent to a state of the Fock space� since a vector of the Fock space
can in general only be represented by a linear combination of Hartree	Fock states�

Let us analyze what this mathematical di�erence means physically� If nature is de	
scribed by a fermionic projector� the joint wave function of all fermions of the Universe
must be a Hartree	Fock state� However� this condition cannot be immediately veri�ed
in experiments� because measurements can never take into account all existing fermions�
In all realistic situations� one must restrict the observations to a small subsystem of the
Universe� As is worked out in Appendix A� the e�ective wave function of a subsystem
need not be a Hartree	Fock state� it corresponds to an arbitrary vector of the Fock space
of the subsystem� assuming that the number of particles of the whole system is su
ciently
large� From this� we conclude that the description of the many	particle system with the
fermionic projector is indeed physically equivalent to the Fock space formalism� For the	
oretical considerations� it must be taken into account that the fermionic projector merely
corresponds to a Hartree	Fock state� for all practical purposes� however� one can just as
well work with the whole Fock space�

We showed after 
����� that the description of a many	particle state with the fermionic
projector implies the Pauli Exclusion Principle� This can also be understood directly in a
non	technical way as follows� For a given state � � H� we can form the projector P���
describing the one	particle state� but there is no projector which would correspond to a
two	particle state 
notice that the naive generalization �P��� is not a projector�� More
generally� every vector � � H either lies in the image of P � � � P 
H�� or it does not� Via
these two conditions� the fermionic projector encodes for every state � � H the occupation
numbers � and �� respectively� but it is not possible to describe higher occupation numbers�
In this way� the fermionic projector naturally incorporates the Pauli Exclusion Principle
in its formulation that each quantum mechanical state may be occupied by at most one
fermion�

Let us now describe the form of the fermionic projector P more concretely� Since the
fermionic projector is composed of one	particle states which should all satisfy the Dirac
equation 
������ we demand that it be a solution of the operator equation


G�m� P � � � 
�����

It is a well	known fact that the Dirac equation admits unphysical solutions of negative
energy 
see e�g� ����� Following Dirac"s original concept� we here remove this problem of
relativistic quantum mechanics by the assumption that all of the negative	energy states
are occupied in the vacuum� We thus describe the fermionic vacuum by the fermionic
projector

P � P sea � 
�����

where P sea� the so	called Dirac sea� is the projector on the space spanned by all negative	
energy states� The main di
culty in introducing the Dirac sea is to give a meaningful
de�nition of �negative	energy� states in the presence of time	dependent classical �elds

e�g� an electromagnetic or gravitational �eld�� A further di
culty is to handle the in�nite
number of states of the Dirac sea in an inde�nite scalar product space� These problems
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are resolved in ��� �� ��� Moreover� the light	cone expansion ��� �� yields explicit formulas
for P sea� which show in detail how the fermionic projector depends on the classical �elds�
These results are the mathematical basis of our approach� and we will frequently use them
throughout this work�

According to Dirac� systems of particles and anti	particles are obtained from the vac	
uum by occupying positive	energy states and removing particles from negative	energy
states� respectively� Thus we describe a many	particle system by the fermionic projector

P � P sea � P p � P a � 
�����

where P p and P a are projectors on the spaces spanned by the particle and anti	particle
states of the system� respectively� Since both P p and P a should be composed of solutions
of the Dirac equation 
������ it is clear they must satisfy the Dirac equation


G�m� P p � � � 
G�m� P a � 
�����

Furthermore� we want that P p and P a are composed only of states of positive and negative
energy� respectively� since P sea projects on all negative	energy states� this can be written
as

P p P sea � � � P sea P p and P a P sea � P a � P sea P a � 
�����

Actually� the results of ��� �� imply that the decomposition 
������
����� of the fermionic
projector into the Dirac sea and the particle�anti	particle states is canonical� i�e� it can be
uniquely constructed for any fermionic projector satisfying the Dirac equation 
������

For simplicity� the Dirac particles just considered all had the same mass m� For
modelling a realistic physical system� the concept of the fermionic projector must be
extended to systems of Dirac particles with di�erent masses 
like e� �� 
 � and quarks� and
massless chiral particles 
like neutrinos�� These generalizations are quite straightforward�
see ��� ���

We �nally mention one general result in ��� �� which will be important for what follows�
Since the classical force �elds act on all particles of the Dirac �eld� the fermionic projector
clearly depends on the classical bosonic �elds� According to our method of constructing the
classical �elds from the Dirac operator 
outlined in Subsection ���� we can say equivalently
that the fermionic projector depends on the Dirac operator� This dependence can also be
understood more directly via the Dirac equation 
������ As is obvious from the formulas of
the light	cone expansion ��� ��� the fermionic projector contains all the information about
the classical �elds� In other words� one can uniquely reconstruct the Dirac operator from
a given fermionic projector� Therefore it is consistent to consider the fermionic projector
as the basic object in space	time and to regard the Dirac operator merely as an auxiliary
object which is useful in describing the interaction of the fermions via classical �elds�

��� Discretization of Space�Time

The ultraviolet divergences of perturbative QFT indicate that the current description of
physics should break down at very small distances� It is generally believed that the length
scale where yet unknown physical e�ects should become important is given by the Planck
length� Here we will assume that space	time consists� on the Planck scale� of discrete
space	time points� The simplest way to discretize space	time would be to replace the
space	time continuum by a four	dimensional lattice 
as it is e�g� done in lattice gauge
theories�� In the following construction� we will go much further and discretize space	time
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in a way where notions like �lattice spacing� and �neighboring lattice points� are given
up� On the other hand� we will retain the principles of General Relativity and our local
gauge freedom�

We �rst consider the situation in a given coordinate system xi in space	time�� For
the discretization� we replace the time�position operators Xi by mutually commuting
operators with a purely discrete spectrum� We take the joint spectrum of these operators�
i�e� the set

M � fx � IR� j there is u � H with Xiu � xiu for all i � �� � � � � �g �

as our discrete space	time points� We assume that the joint eigenspaces ex of the Xi�

ex � fu j Xiu � xiu for all i � �� � � � � �g � x �M�

are �N 	dimensional subspaces of H� on which the scalar product ��j�� has the signature

�N� �N�� Then we can choose a basis jx��� x �M � � � �� � � � � �N satisfying

Xi jx�� � xi jx�� � �x� j y	� � s� ��� �xy with

s� � � � � � s�N � � � s�N�� � � � � � s�N � �� � 
�����

These relations di�er from 
����� only by the replacement ��
x� y�� �xy� It is useful to
introduce the projectors Ex on the eigenspaces ex by

Ex �
p�qX
���

s� jx���x�j � 
�����

they satisfy the relations

Xi Ex � xi Ex and 
�����

E�
x � Ex � Ex Ey � �xy Ex �

X
x�M

Ex � �� � 
�����

where ��� denotes the adjoint with respect to the scalar product ��j�� 
these relations
immediately follow from 
����� and the fact that jx�� is a basis�� Actually� the operators
Ex are independent of the choice of the basis jx��� they are uniquely characterized by

����� and 
����� as the spectral projectors of the operators Xi�

If we change the coordinate system to #xi � #xi
x�� the discrete space	time points
M 	 IR� are mapped to di�erent points in IR�� more precisely

#M � #x
M� � #E
x�x	 � Ex � 
�����

With such coordinate transformations� the relative position of the discrete space	time
points in IR� can be arbitrarily changed� Taking general coordinate invariance seriously
on the Planck scale� this is consistent only if we forget about the fact that M and #M
are subsets of IR� and consider them merely as index sets for the spectral projectors� In
other words� we give up the ordering of the discrete space	time points� which is inherited
from the ambient vector space IR�� and consider M and #M only as point sets� After
this generalization� we can identify M with #M 
via the equivalence relation #x
x� � x��

�We assume for simplicity that the chart xi describes all of space�time� The generalization to a non�
trivial space�time topology is done in a straightforward way by gluing together di�erent charts�

��



According to 
������ the spectral projectors 
Ep�p�M are then independent of the choice
of coordinates�

We regard the projectors 
Ep�p�M as the basic objects describing space	time� The
time�position operators can be deduced from them� Namely� every coordinate system
yields an injection of the discrete space	time points

x � M �� IR� � 
�����

and the corresponding time�position operators Xi can be written as

Xi �
X
p�M

xi
p�Ep � 
�����

Since every injection of the discrete space	time points into IR� can be realized by a suitable
choice of coordinates 
i�e� for every injection � � M �� IR� there is a chart xi such that
x
M� � �
M��� we can drop the condition that x is induced by a coordinate system� We
can thus take for x in 
������
����� any embedding of M into IR��

Let us summarize the result of our construction� We shall describe space	time by an
inde�nite scalar product space 
H� ��j��� and projectors 
Ep�p�M on H� where M is a

�nite or countable� index set� The projectors Ep are characterized by the conditions

������ Furthermore� we assume that the spin dimension is 
�N� �N�� i�e� Ep
H� 	 H is�
for all p � M � a subspace of signature 
�N� �N�� We call 
H� ��j��� 
Ep�p�M � discrete
space�time� The equivalence principle is taken into account via the freedom in choosing
the embeddings 
������
����� of the discrete space	time points� Moreover� one can choose
a basis jp��� p �M � � � �� � � � � �N � of H satisfying the conditions

Ep jq�� � �pq jp�� � �p� j q	� � s� ��� �pq

with s� as in 
������ such a basis is called a gauge� It is determined only up to transfor	
mations of the form

jp�� �
�NX
���


U
p������ jp	� with U
p� � U
�N� �N� � 
�����

These are the local gauge transformations of discrete space	time�

��� The Principle of the Fermionic Projector

For the complete description of a physical system� we must introduce additional objects in
discrete space	time 
H� ��j��� 
Ep�p�M �� As described at the end of Subsection ���� one
can� in the space	time continuum� regard the fermionic projector as the basic physical ob	
ject� namely� it yields via 
����� the quantum mechanical states� and moreover determines
the Dirac operator and thus the classical �elds� Therefore� it seems promising to carry
over the fermionic projector to discrete space	time� We introduce the fermionic projector
of discrete space�time P as a projector acting on the vector space H of discrete space	time�

In analogy to the situation for the continuum� we expect that a physical system can
be completely characterized by a fermionic projector in discrete space	time� At this stage�
however� it is not at all clear whether this description makes any physical sense� In partic	
ular� it seems problematic that neither the Dirac equation nor the classical �eld equations
can be formulated in or extended to discrete space	time� thus it becomes necessary to
replace them by equations of completely di�erent type� We take it as an ad	hoc postulate
that this can actually be done� namely we assert

��



The Principle of the Fermionic Projector� A physical system is completely de	
scribed by the fermionic projector in discrete space	time� The physical equa	
tions should be formulated exclusively with the fermionic projector in discrete
space	time� i�e� they must be stated in terms of the operators P and 
Ep�p�M
on H�

Clearly� the validity and consequences of this postulate still need to be investigated� this
is precisely the aim of the present work� The physical equations formulated with P and

Ep�p�M are called the equations of discrete space�time�

��� A Variational Principle

Before coming to the general discussion of the principle of the fermionic projector� we give
in this subsection an example of a variational principle in discrete space	time� This is done
to give the reader an idea of how one can formulate equations in discrete space	time� This
example will serve as our model variational principle� and we will often come back to it�

Let us �rst discuss the general mathematical form of possible equations in discrete
space	time� The operators P and 
Ep�p�M all have a very simple structure in that they
are projectors acting on H� Therefore� it is certainly not worth studying these operators
separately� for physically promising equations� we must combine the projectors P and

Ep�p�M in a mathematically interesting way� Composite expressions in these operators
can be manipulated using the idempotence of P and the relations 
����� between the
projectors 
Ep�p�M � First of all� the identities

P
p�M Ep � �� and E�

p � Ep allow us to
insert factors Ep into the formulas� e�g�

Ex P � � Ex P

�
�X
y�M

Ey

�
A� �

X
y�M


Ex P Ey� Ey � �

Writing
P 
x� y� � Ex P Ey �

we obtain the identity
Ex 
P �� �

X
y�M

P 
x� y� Ey � �

This representation of P by a sum over the discrete space	time points resembles the integral
representation of an operator in the continuum with an integral kernel� Therefore� we call
P 
x� y� the discrete kernel of the fermionic projector� The discrete kernel can be regarded
as a canonical representation of the fermionic projector of discrete space	time� induced by
the projectors 
Ep�p�M � Now consider a general product of the operators P and 
Ep�p�M �
Using the relations P � � P and ExEy � �xy Ex� every operator product can be simpli�ed
to one with alternating factors P and Ep� i�e� to an operator product of the form

Ex� P Ex� P Ex� � � �Exn�� P Exn with xj �M � 
�����

Again using E�
p � Ep� we can rewrite this product with the discrete kernel as

P 
x�� x�� P 
x�� x�� � � � P 
xn��� xn� � 
�����

We conclude that the equations of discrete space	time should be formed of products of
the discrete kernel� where the second argument of each factor must coincide with the �rst
argument of the following factor� We refer to 
����� as a chain�
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In analogy to the Lagrangian formulation of classical �eld theory� we want to set up a
variational principle� Our �action� should be a scalar functional depending on the oper	
ators P and Ep� Most scalar functionals on operators 
e�g� the trace or the determinant�
can only be applied to endomorphisms 
i�e� to operators which map a vector space into
itself�� The chain 
����� is a mapping from the subspace Exn
H� 	 H to Ex�
H�� This
makes it di
cult to form a scalar� unless x� � xn� Therefore� we will only consider closed
chains

P 
x� y�� P 
y�� y�� � � �P 
yk� x� � Ex
H�� Ex
H� �

In the simplest case k � �� the closed chain degenerates to a single factor P 
x� x�� This
turns out to be too simple for the formulation of a physically interesting action� because
the o�	diagonal elements of the discrete kernel P 
x� y�� x 
� y� should enter the varia	
tional principle� Thus we are led to considering closed chains of two factors� i�e� to the
operator product P 
x� y� P 
y� x�� Suppose that we are given a real	valued functional L
on the endomorphisms of Ex
H� 	 H 
this will be discussed and speci�ed below�� Then
L�P 
x� y� P 
y� x�� is a real function depending on two space	time arguments� and we get
a scalar by summing over x and y� Therefore� we take for our action S the ansatz

S �
X

x�y�M

L�P 
x� y� P 
y� x�� � 
�����

This ansatz is called a two�point action� and in analogy to classical �eld theory� we call L
the corresponding Lagrangian�

We shall now introduce a particular Lagrangian L� The requirement which will lead us
quite naturally to this Lagrangian is that L should be positive� Positivity of the action is
desirable because it is a more convincing concept to look for a local minimum of the action
than merely for a critical point of an action which is unbounded below� Also� our positive
action is simpler and will turn out to work better than for example the action presented
in ���� Let us �rst consider how one can form a positive functional on P 
x� y� P 
y� x��
The closed chain P 
x� y� P 
y� x� is an endomorphism of Ex
H�� we abbreviate it in what
follows by A� In a given gauge� A is represented by a �N � �N matrix� Under gauge
transformations 
������ this matrix transforms according to the adjoint representation�

A � U
x� A U
x��� �

Furthermore� A is Hermitian on Ex
H�� i�e�

�A� j �� � �� j A �� for ��� � Ex
H�� 
�����

or simplyA� � A� In positive de�nite scalar product spaces� the natural positive functional
on operators is an operator norm� e�g� the Hilbert	Schmidt norm kBk� � tr
B�B�

�
� � In

our setting� the situation is more di
cult because our scalar product ��j�� is inde�nite
on Ex
H� 
of signature 
�N� �N��� As a consequence� Hermitian matrices do not have the
same nice properties as in positive de�nite scalar product spaces� in particular� the matrix
A might have complex eigenvalues� and it is in general not even diagonalizable� Also�
the operator product A�A need not be positive� so that we cannot introduce a Hilbert	
Schmidt norm� In order to analyze the situation more systematically� we decompose the
characteristic polynomial of A into linear factors

det
��A� �
KY
k��


�� �k�
nk � 
�����

��



This decomposition is useful because every functional on A can be expressed in terms of the
roots and multiplicities of the characteristic polynomial� thus it is su
cient to consider
the �k"s and nk"s in what follows� Each root �k corresponds to an nk	dimensional A	
invariant subspace of Ex
H�� as one sees immediately from a Jordan representation of A�
The roots �k may be complex� But since A is Hermitian� 
������ we know at least that
the characteristic polynomial of A is real�

det
��A� � det
��A� for � � IR�

This means that the complex conjugate of every root is also a root with the same mul	
tiplicity 
i�e� for every �k there is a �l with �k � �l and nk � nl�� The reality of the
characteristic polynomial is veri�ed in detail as follows� In a given gauge� we can form
the transposed� complex conjugated matrix of A� denoted by Ay� For clarity� we point
out that Ay is not an endomorphism of Ex
H�� because it has the wrong behavior under
gauge transformations 
in particular� the trace tr
AyA� depends on the gauge and is thus
ill	de�ned�� Nevertheless� the matrix Ay is useful because we can write the adjoint of A in
the form A� � SAyS� where S is the spin signature matrix� S � diag

s�����������N �� Since
S� � ��� and since the determinant is multiplicative� we conclude that for any real ��

det
��A� � det
��Ay� � det
�� S� Ay�

� det
�� SAyS� � det
��A�� � det
��A� �

An obvious way to form a positive functional is to add up the absolute squares of the
roots� taking into account their multiplicities� We thus de�ne the spectral weight jAj of A
by

jAj �
�

KX
k��

nk j�kj�
� �

�

� 
�����

This functional depends continuously on the �k� furthermore� it behaves continuously when
the roots of the characteristic polynomial degenerate and the multiplicities nk change�
Thus the spectral weight j � j is a continuous functional� Furthermore� the spectral weight
is zero if and only if the characteristic polynomial is trivial� det
� � A� � ��N � This
is equivalent to A being nilpotent 
i�e� Ak � � for some k�� Thus� in contrast to an
operator norm� the vanishing of the spectral weight does not imply that the operator is
zero� On the other hand� it does not seem possible to de�ne an operator norm in inde�nite
scalar product spaces� For our purpose� nilpotent operators are a su
ciently small class
of operators� so that the spectral weight is a reasonable concept�

Using the spectral weight� one can write down many positive Lagrangians� The easiest
choice would be L�A� � jAj�� Minimizing the corresponding action 
����� yields a varia	
tional principle which attempts to make the absolute values of the roots j�kj as small as
possible� This turns out to be a too strong minimizing principle� It makes more sense to
formulate a variational principle which aspires to equalize the absolute values of all roots�
This can be accomplished by combining the expressions jA�j� and jAj�� Namely� using that
the sum of the multiplicities equals the dimension of the vector space�

PK
k�� nk � �N � the

Schwarz inequality yields that

jA�j� �
KX
k��

nk j�kj� � �

�N

�
KX
k��

nk j�kj�
��

�
�

�N
jAj� �

��



and equality holds only if the absolute values of all roots are equal� Thus it is reasonable
to minimize jA�j�� keeping jAj� �xed� This is our motivation for considering the two	point
action�

minimize S �
X

x�y�M

���
P 
x� y� P 
y� x������� 
�����

with the constraint
T ��

X
x�y�M

jP 
x� y� P 
y� x�j� � const � 
�����

This is our model variational principle�
We next derive the corresponding �Euler	Lagrange equations�� For simplicity� we only

consider the case that P 
x� y� P 
y� x� can be diagonalized� This is the generic situation�
the case of a non	diagonalizable matrix can be obtained from it by an approximation
procedure�� Thus we assume that the endomorphism A � P 
x� y� P 
y� x� has a spectral
decomposition

A �
KX
k��

�k Fk � 
�����

where �k are the roots in 
������ and Fk are operators mapping onto the corresponding
eigenspaces 
A� K� the �k� and the Fk clearly depend on x and y� but we will� for ease
in notation� usually not write out this dependence�� Since the underlying scalar product
space is inde�nite� the spectral decomposition 
����� requires a brief explanation� Suppose
that we choose a basis where A is diagonal� In this basis� the operators Fk are simply
the diagonal matrices with diagonal entries � if the corresponding diagonal elements of
A are �k� and � otherwise� Clearly� these operators map onto the eigenspaces and are
orthonormal and complete� i�e�

A Fk � �k Fk � Fk Fl � �kl Fk � and
KX
k��

Fk � ��Ex�H	 �

However� the Fk are in general not Hermitian 
with respect to the spin scalar product��
More precisely� taking the adjoint swaps the operators corresponding to complex conju	
gated eigenvalues�

F �
k � Fl when �k � �l � 
�����

These relations can be understood immediately because they ensure that the spectral
decomposition 
����� is Hermitian�

�
KX
k��

�k Fk

��
�

KX
k��

�k F
�
k

�����	
�

KX
k��

�k Fk �

We now consider continuous variations P 

� and 
Ep

��p�M � �� � 
 � �� of our
operators� The structure of the operators must be respected by the variations� i�e� P 

�
should be a projector� and the relations 
����� between the operators 
Ep�p�M should hold

�We mention that the case when P �x� y�P �y� x� is not diagonalizable is a bit subtle because our action in
this case is continuous� but not di�erentiable� In other words� the corresponding Euler�Lagrange equations
have discontinuities� This e�ect can be described by taking one�sided limits of the generic equations
���	������	��� this is the method we will describe and use later on�
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for all 
 � Continuity of the variation implies that the rank of P and the signature of its
image do not change� Thus the variation of P can be realized by a unitary transformation

P 

� � U

� P U

��� � 
�����

where U

� is a unitary operator on H with U
�� � ��� Similarly� the variations of the
projectors 
Ep�p�M are also unitary� From 
������ we can conclude the stronger statement
that the variations of all operators 
Ep�p�M can be realized by one unitary transformation�
i�e�

Ep

� � V 

� Ep V 

�
��

with a unitary operator V 

� and V 
�� � ��� Since our action is invariant under unitary
transformations of the vector space H� we can� instead of unitarily transforming both P
and 
Ep�p�M � just as well keep the 
Ep�p�M �xed and vary only the fermionic projector
by 
������ To �rst order in 
 � this variation becomes

�P � d

d

P 

�j��� � i �B� P � � 
�����

where B � �iU �
�� is a Hermitian operator on H� We will only consider variations where
B has �nite support� i�e� where the kernel B
x� y� � Ex B Ey of B satis�es the condition

B
x� y� � � except for x� y � N 	M with N �nite�

This condition can be regarded as the analogue of the assumption in the classical calculus
of variations that the variation should have compact support�

Let us compute the variation of the action 
����� 
the constraint 
����� will be consid	
ered afterwards�� Writing out the action with the eigenvalues �k and multiplicities nk� we
obtain

S �
X

x�y�M

KX
k��

nk j�kj� �

The variation can be computed in perturbation theory to �rst order�

�S � � Re
X

x�y�M

KX
k��

nk �k
�
�k tr
Fk �A�

� � Re
X

x�y�M

KX
k��

nk �k
�
�k tr 
Fk 
�P 
x� y� P 
y� x� � P 
x� y� �P 
y� x��� �

Exchanging the names of x and y in the �rst summand in the trace and using cyclicity of
the trace� this expression can be written as an operator product�

�S � � Re tr
Q� �P � � 
�����

where the kernel Q�
x� y� � Ex Q� Ey of Q� has the form

Q�
x� y� �

�
KX
k��

nk �k
�
�k Fk

	
xy

P 
x� y� � P 
x� y�

�
KX
k��

nk �k
�
�k Fk

	
yx

� 
�����

and the subscripts �xy� and �yx� indicate that the corresponding brackets contain the
spectral decomposition of the operators P 
x� y� P 
y� x� and P 
y� x� P 
x� y�� respectively�

��



We note that the trace in 
����� is well	de�ned because the trace is actually taken only
over a �nite	dimensional subspace of H� A short straightforward computation using 
�����
shows that the operator Q� is Hermitian� Thus the trace in 
����� is real� and we conclude
that

�S � � tr
Q� �P � �

The variation of our constraint 
����� can be computed similarly� and one gets

�T � � tr
Q� �P � with

Q�
x� y� �

�


KX
l��

nl j�lj��
KX
k��

nk �k Fk

	
xy

P 
x� y� � P 
x� y�

�


KX
l��

nl j�lj��
KX
k��

nk �k Fk

	
yx

�

Now consider a local minimum of the action� Handling the constraint with a Lagrange
multiplier �� we obtain the condition

� � �S � � �T � � tr 

Q� � �Q�� �P �
�����	
� �i tr 

Q� � �Q�� �B�P �� �

Assume that the products 
Q� � �Q�� P and P 
Q� � �Q�� are well	de�ned operators�
Since B has �nite support� we can then cyclically commute the operators in the trace and
obtain

� � �i tr 
B �P� Q� � �Q��� �

Since B is arbitrary� we conclude that �P� Q� � �Q�� � �� where our notation with the
commutator implicitly contains the condition that the involved operator products are
well	de�ned� Thus our Euler�Lagrange equations are the commutator equations

�P� Q� � � with Q
x� y� � Cxy P 
x� y� � P 
x� y� Cyx � 
�����

Cxy �
KX
k��

nk

�
�k

�
�k � � �k

KX
l��

nl j�lj�
	
xy

Fk � 
�����

In the formula 
����� for Cxy� we consider the spectral decomposition 
������
����� of
the closed chain P 
x� y� P 
y� x� 
similarly� Cyx refers to the spectral decomposition of
P 
y� x� P 
x� y��� The equations 
������
����� are the equations of discrete space	time
corresponding to the variational principle 
������
������

��� Discussion

In the previous subsections� the principle of the fermionic projector was introduced in a
rather abstract mathematical way� Our constructions departed radically from the conven	
tional formulation of physics� so much so� that the precise relation between the principle
of the fermionic projector and the notions of classical and quantum physics is not obvious�
In order to clarify the situation� we shall now describe the general physical concept behind
the principle of the fermionic projector and explain in words the connection to classical
�eld theory� relativistic quantum mechanics� and quantum �eld theory� Since we must
anticipate results which will be worked out later in this and the following papers� the
description in this subsection is clearly not rigorous� and is intended only to give a brief
qualitative overview�

The constructions in Subsections ��� and ��� are merely a reformulation of classical
�eld theory and relativistic quantum mechanics� Although they are an important prepa	
ration for the following construction steps� they do not by themselves have new physical
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implications� Therefore� we need not consider them here� and begin by discussing the con	
cept of discrete space	time of Subsection ���� With our de�nition of discrete space	time�
the usual space	time continuum is given up and resolved into discrete space	time points�
A	priori� the discrete space	time points are merely a point set� i�e� there are no relations

like e�g� the nearest	neighbor relation on a lattice� between them� Thus one may think
of discrete space	time as a �disordered accumulation of isolated points�� There exists no
time parameter� nor does it make sense to speak of the �spatial distance� between the
space	time points� Clearly� this concept of a pure point set is too general for a reasonable
description of space	time� Namely� we introduced discrete space	time with the intention
of discretizing the space	time continuum on the Planck scale� Thus� for systems which
are large compared to the Planck length� the discrete nature of space	time should not be
apparent� This means that discrete space	time should� in a certain continuum limit� go
over to a Lorentzian manifold� However� sinceM is merely a point set� discrete space	time

H� ��j��� 
Ep�p�M � is symmetric under permutations of the space	time points� Taking
a naive continuum limit would imply that the points of space	time could be arbitrarily
exchanged� in clear contradiction to the topological and causal structure of a Lorentzian
manifold�

In order to avoid this seeming inconsistency� one must keep in mind that we introduced
an additional object in discrete space	time� the fermionic projector P � Via its discrete
kernel P 
x� y�� the fermionic projector yields relations between the discrete space	time
points� Our idea is that the discrete kernel should provide all structures needed for a
reasonable continuum limit� In more detail� our concept is as follows� In the space	time
continuum� the fermionic projector is built up of all quantum mechanical states of the
fermionic particles of the system� Closely following Dirac"s original concept� we describe
the vacuum by the �sea� of all negative	energy states� systems with particles and anti	
particles are obtained by occupying positive	energy states and removing states from the
Dirac sea� respectively� The fermionic projector of the continuum completely characterizes
the physical system� In particular� it is shown in ��� �� that its integral kernel P 
x� y� is
singular if and only if y lies on the light cone centered at x� In this way� the fermionic
projector of the continuum encodes the causal� and thus also topological� structure of the
underlying space	time� We have in mind that the fermionic projector of discrete space	time
should� similar to a regularization on the Planck scale� approximate the fermionic projector
of the continuum� This means that on a macroscopic scale 
i�e� for systems comprising
a very large number of space	time points�� the fermionic projector of discrete space	time
can� to good approximation� be identi�ed with a fermionic projector of the continuum�
Using the just	mentioned properties of the continuum kernel� we thus conclude that the
discrete kernel induces on discrete space	time a structure which is well	approximated by
a Lorentzian manifold� However� on the Planck scale 
i�e� for systems involving only few
space	time points�� the discrete nature of space	time becomes manifest� and the notions
of space� time� and causality cease to exit�

The critical step for making this concept precise is the formulation of the physical
equations intrinsically in discrete space	time� Let us describe in principle how this is
supposed to work� In the continuum description� the fermionic projector satis�es the
Dirac equation 
������ furthermore� the classical potentials entering the Dirac equation
obey classical �eld equations� As a consequence of these equations� the fermionic projector
of the continuum is an object with very speci�c properties� this is worked out in detail in
��� �� ��� Our idea is that� using the special form of the fermionic projector� it should be
possible to restate the Dirac equation and classical �eld equations directly in terms of the
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fermionic projector� Thus we wish to formulate equations in which the fermionic projector
enters as the basic object� and which are equivalent to� or a generalization of� both the
Dirac equation and the classical �eld equations� It turns out that it is impossible to state
equations of this type in the space	time continuum� because composite expressions in the
fermionic projector are mathematically ill	de�ned� But one can formulate mathematically
meaningful equations in discrete space	time� removing at the same time the ultraviolet
problems of the continuum theory� The variational principle 
������
����� leading to the
Euler	Lagrange equations 
������
����� is an example for such equations� Note that this
variational principle and the corresponding Euler	Lagrange equations in discrete space	
time are clearly not causal� but� for consistency with relativistic quantum mechanics and
classical �eld theory� we demand that they should� in the continuum limit� reduce to
local and causal equations 
namely� to the Dirac and classical �eld equations�� Since the
fermionic projector is not an object which is commonly considered in physics� it is di
cult
to give an immediate physical interpretation for the equations of discrete space	time� only
a detailed mathematical analysis can provide an understanding of the variational principle�
If one wishes� one can regard the equations of discrete space	time as describing a direct
particle	particle interaction between all the states of the fermionic projector� The collective
interaction of the fermions of the Dirac sea with the additional particles and holes should�
in the continuum limit� give rise to an e�ective interaction of fermions and anti	fermions via
classical bosonic �elds� Eventually� the collective particle	particle interaction should even
give a microscopic justi�cation for the appearance of a continuous space	time structure�

Let us now describe the relation to quantum �eld theory� Since the coupled Dirac
and classical �eld equations� combined with the pair creation�annihilation of Dirac"s hole
theory� yield precisely the Feynman diagrams of QFT 
see e�g� ����� it is clear that all results
of perturbative quantum �eld theory� in particular the high precision tests of QFT� are
also respected by our ansatz 
assuming that the equations of discrete space	time have the
correct continuum limit�� Thus the only question is if the particular e�ects of quantized
�elds� namely the Planck radiation and the photo electric e�ect� can be explained in
our framework� The basic physical assumption behind Planck"s radiation law is that the
energy levels of an electromagnetic radiation mode do not take continuous values� but are
quantized in steps of E � $h�� While the quantitative value $h� of the energy quanta can
be understood via the quantum mechanical identi�cation of energy and frequency 
which
is already used in classical Dirac theory�� the crucial point of Planck"s assumption lies in
the occurrence of discrete energy levels� The photo electric e�ect� on the other hand� can
be explained by a �discreteness� of the electromagnetic interaction� the electromagnetic
wave tends not to transmit its energy continuously� but prefers to excite few atoms of
the photographic material� We have the conception that these di�erent manifestations of
�discreteness� should follow from the equations of discrete space	time if one goes beyond
the approximation of an interaction via classical bosonic �elds�

If this concept of explaining the e�ects of quantized �elds from the equations of dis	
crete space	time were correct� it would even have consequences for the interpretation of
quantum mechanics� Namely� according to the statistical interpretation� quantum me	
chanical particles are point	like� the absolute value j�
�x�j� of the wave function gives the
probability density for the particle to be at the position �x� Here� we could regard the wave
function itself as the physical object� the particle character would come about merely as
a consequence of the �discreteness� of the interaction of the wave function with e�g� the
atoms of a photographic material� The loss of determinism could be naturally explained
by the non	causality of the equations of discrete space	time�
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We conclude that the principle of the fermionic projector raises quite fundamental
questions on the structure of space	time� the nature of �eld quantization� and the inter	
pretation of quantum mechanics� Before entering the study of these general questions�
however� it is most essential to establish a quantitative connection between the equations
of discrete space	time and the Dirac and classical �eld equations� Namely� the principle
of the fermionic projector can make physical sense only if it is consistent with classical
�eld theory and relativistic quantum mechanics� thus it is of importance to �rst check this
consistency� Even this comparatively simple limiting case is of highest physical interest�
Indeed� the principle of the fermionic projector provides a very restricted framework for
the formulation of physical models� e�g�� there is no freedom in choosing the gauge groups�
the coupling of the gauge �elds to the fermions� or the masses of the gauge bosons� This
means that� if a connection could be established to relativistic quantum mechanics and
classical �eld theory� the principle of the fermionic projector would give an explanation
for the interactions observed in nature� and would yield theoretical predictions for particle
masses and coupling constants� We begin with this study in the following section�

� The Continuum Limit

According to the principle of the fermionic projector� a physical system is described by
the fermionic projector P in discrete space	time 
H� ��j��� 
Ep�p�M �� In this section�
we shall establish a mathematically sound connection between this description and the
usual formulation of physics in a space	time continuum� More precisely� we will develop a
method with which equations in discrete space	time 
like e�g� the Euler	Lagrange equations

������
������ can be analyzed within the framework of relativistic quantum mechanics
and classical �eld theory� Our approach is based on the assumption that the fermionic
projector of discrete space	time can be obtained from the well	known fermionic projector
of the continuum ��� �� �� by a suitable regularization process on the Planck scale� The
basic di
culty is that composite expressions in the fermionic projector 
like e�g� in 
������
depend essentially on how the regularization is carried out� our task is to analyze this
dependence in detail� We will show that� if we study the behavior close to the light cone�
the dependence on the regularization simpli�es considerably and can be described by a
�nite number of parameters� Taking these parameters as free parameters� we will end up
with a meaningful e�ective continuum theory�

We point out that� since we deduce the fermionic projector of discrete space	time
from the fermionic projector of the continuum� the causal and topological structure of the
space	time continuum� as well as the Dirac equation and Dirac"s hole theory� enter our
construction from the very beginning� Thus our procedure cannot give a justi�cation or
even derivation of these structures from the equations of discrete space	time� The reason
why our method is nevertheless interesting is that we do not need to specify the classical
potentials which enter the Dirac equation� in particular� we do not assume that they satisfy
the classical �eld equations� Thus we can hope that an analysis of the equations of discrete
space	time should give constraints for the classical potentials� this means physically that
the equations of discrete space	time should in the continuum limit yield a quantitative
description of the interaction of the Dirac particles via classical �elds� This is the �rst
important step in the analysis of the principle of the fermionic projector�

For clarity� we will mainly restrict attention to the case of one type of fermions 
N � ��
which all have the same mass m� The generalizations to systems of fermions with di�erent
masses and to chiral fermions 
as considered in ��� ��� are given in the last Subsection ����
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��� The Continuum Description

We begin by reviewing some basic facts about the fermionic projector in the space	time
continuum 
see ��� �� �� for details�� The fermionic projector was introduced in Subsec	
tion ��� as the projector on all occupied one	particle states of the physical system� 
������

������ For the detailed study of the fermionic projector� it is convenient to consider its
integral kernel P 
x� y�� which is de�ned in a gauge and coordinate system by


P���
x� �

Z �X
���

P�
� 
x� y� �

�
y�
p�g d�y �

If we were in a Hilbert space� we could choose an orthonormal basis 
�a� in the image of
P and represent the kernel in the form P 
x� y� �

P
a�a
x��a
y�� On a formal level� such

a representation is also true in an inde�nite scalar product space� more precisely

P 
x� y�
formally
�

XZ
a
j�a
x����a
y�j � 
����

where a runs over all 
discrete or continuous� quantum numbers of the occupied one	
particle states� By a careful analysis of the in�nite sum and of the normalization of the
states �a� the decomposition 
���� can be made mathematically precise 
cf� ��� �� ����

In the vacuum� the fermionic projector is composed of all plane	wave solutions 
��ks�

of the Dirac equation of negative energy� where �k � IR� is momentum and s � �� � denotes
the two spin orientations� The formula 
���� yields� if we integrate over �k and sum over s�
the integral over the lower mass shell

P 
x� y� �

Z
d�p


����

p��m� �
p� �m�� %
�p�� e�ip�x�y	 � 
����

where p� � pj
j � and where % is the Heaviside function %
t� � � for t � � and %
t� � �
otherwise� This Fourier integral is a well	de�ned tempered distribution� In order to
compute it� one pulls the Dirac matrices out of the integral by setting

P 
x� y� � 
i��x �m� Tm�
x� y� with 
����

Ta
x� y� �

Z
d�p


����
�
p� � a� %
�p�� e�ip�x�y	 � 
����

The remaining Fourier integral 
���� can be calculated explicitly� and one gets an expression
involving Bessel functions� The important point for us is that Ta has singularities and
poles on the light cone� Namely� using the series representation of the Bessel functions�
one obtains

Ta
x� y� � � �

���



PP

��
� i� �
��� �
���

�

�
a

����

�
log
a j��j� � i� %
��� �
���

� �X
l��


���l
l! 
l � ��!


a���l

�l

� 
smooth contributions� � 
����

where � � y � x� � is the step function �
t� � � for t � � and �
t� � �� otherwise� and
�PP� denotes the principal value of the pole� Thus the singularities have the form of a
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�	distribution and of a discontinuity on the light cone� the poles are of the order ��� or of
logarithmic type� By substituting 
���� into 
���� and carrying out the derivative ��x� one
can immediately derive a similar formula for P 
x� y�� Hence also the fermionic projector of
the vacuum has singularities and poles on the light cone� the most singular contributions
are of the order ��
��� and ���� respectively�

In the case involving interactions� the physical system contains particles and anti	
particles� furthermore� all the Dirac particles are moving in a 
classical� bosonic �eld�
This is described mathematically as follows� According to 
����� and 
����� the integral
kernel of the fermionic projector can be written in the form

P 
x� y� � P sea
x� y� �

nfX
a��

j�a
x����a
y�j �
naX
a��

j�a
x����a
y�j � 
����

where 
�a�a�������nf and 
�a�a�������na are an orthonormal basis for the particle and anti	
particle states� respectively 
for simplicity� we assume in what follows that the number of
particles of our system is �nite� i�e� nf � na �
�� Similar to the situation in the vacuum�
the Dirac sea P sea has singularities and poles on the light cone� on the other hand� we can
in most situations assume that the wave functions �a and �a are smooth� The motion
of the Dirac particles in the bosonic �elds is described by the Dirac equation 
������ As
a consequence� both P sea and the wave functions �a� �a depend on the bosonic �elds�
In particular� the singularities and poles of P sea on the light cone are in uenced by the
bosonic �elds� This e�ect is described quantitatively by the formulas of the light	cone
expansion ��� ��� which give a representation of P sea
x� y� of the following general form�

P sea
x� y� �
X
n


iterated line integrals over bosonic potentials and �elds� T reg �n	
x� y�

� 
smooth contributions� � 
����

where

T reg �n	 �



d

da

�n
T reg
a j a�� and 
����

T reg
a 
x� y� � � �

���



PP

��
� i� �
��� �
���

�

�
a

����

�
log
j��j� � i� %
��� �
���

� �X
l��


���l
l! 
l � ��!


a���l

�l

� 
smooth contributions� � 
����

The detailed expressions for the line integrals in 
���� are not needed at this point� it
su
ces to note that they are smooth functions in the bosonic �eld� Note that T reg

a di�ers
from Ta in that the term log
aj��j� in 
���� was replaced by log
j��j�� This �regularization�
is important because otherwise the a	derivatives in 
���� would not exist 
but clearly� it
has nothing to do with the regularizations of the fermionic projector which we will consider
later on�� The expression 
���� is a power series in a� The higher powers in a contain more
factors �� and thus have a weaker singularity on the light cone� Thus 
���� is an expansion
in the order of the singularity on the light cone�

��� The Method of Variable Regularization

Let us consider how one can get a relation between the continuum fermionic projector and
the description of physics in discrete space	time� As discussed in Section �� discrete space	
time should� for macroscopic systems� be equivalent to the usual space	time continuum�
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For consistency with relativistic quantum mechanics� the fermionic projector of discrete
space	time should in this limit go over to the continuum fermionic projector� Using fur	
thermore that the discretization length should be of the order of the Planck length� we
conclude that the fermionic projector of discrete space	time should correspond to a certain
�regularization� of the continuum fermionic projector on the Planck scale� Thus it is a
physically reasonable method to construct the fermionic projector of discrete space	time
from the fermionic projector of the continuum by a suitable regularization process on the
Planck scale�

Regularizations of the continuum theory are also used in perturbative QFT in order
to make the divergent Feynman diagrams �nite� However� there is the following major
di�erence between the regularizations used in QFT and our regularization of the fermionic
projector� In contrast to QFT� where the regularization is merely a mathematical tech	
nique within the renormalization procedure� we here consider the regularized fermionic
projector as the object describing the physical reality� More precisely� the regularized
fermionic projector should be a model for the fermionic projector of discrete space	time�
which we consider as the basic physical object� As an important consequence� it is not
inconsistent for us if the e�ective continuum theory depends on how the regularization
is carried out� Namely in this case� we must regularize in such a way that the regular	
ized fermionic projector is a good microscopic approximation to the �physical� fermionic
projector of discrete space	time� only such a regularization can yield the correct e�ective
continuum theory� This concept of giving the regularization a physical signi�cance clearly
su�ers from the shortcoming that we have no detailed information about the microscopic
structure of the fermionic projector in discrete space	time� and thus do not know how
the correct regularization should look like� In order to deal with this problem� we shall
consider a general class of regularizations� We will analyze in detail how the e�ective
continuum theory depends on the regularization� Many quantities will depend sensitively
on the regularization� so much so� that they are undetermined and thus ill	de�ned in
the continuum limit� However� certain quantities will be independent of the regulariza	
tion and have a simple correspondence in the continuum theory� we call these quantities
macroscopic� We will try to express the e�ective continuum theory purely in terms of
macroscopic quantities� We cannot expect that the e�ective continuum theory will be
completely independent of the regularization� But for a meaningful continuum limit� it
must be possible to describe the dependence on the regularization by a small number of
parameters� which we consider as empiric parameters modelling the unknown microscopic
structure of discrete space	time� We refer to this general procedure for constructing the
e�ective continuum theory as the method of variable regularization�

In order to illustrate the method of variable regularization� we mention an analogy
to solid state physics� On the microscopic scale� a solid is composed of atoms� which
interact with each other quantum mechanically� On the macroscopic scale� however� a
solid can be regarded as a continuous material� described by macroscopic quantities like the
density� the pressure� the conductivity� etc� The macroscopic quantities satisfy macroscopic
physical equations like the equations of continuum mechanics� Ohm"s law� etc� Both the
macroscopic characteristics of the solid and the macroscopic physical laws can� at least in
principle� be derived microscopically from many	particle quantum mechanics� However�
since the details of the microscopic system 
e�g� the precise form of the electron wave
functions� are usually not known� this derivation often does not completely determine
the macroscopic physical equations� For example� it may happen that a macroscopic
equation can be derived only up to a proportionality factor� which depends on unknown
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microscopic properties of the solid and is thus treated in the macroscopic theory as an
empirical parameter� The physical picture behind the method of variable regularization
is very similar to the physics of a solid� if one considers on the microscopic scale our
description of physics in discrete space	time and takes as the macroscopic theory both
relativistic quantum mechanics and classical �eld theory� Clearly� the concept of discrete
space	time is more hypothetical than atomic physics because it cannot at the moment be
veri�ed directly in experiments� But we can nevertheless get indirect physical evidence for
the principle of the fermionic projector by studying whether or not the method of variable
regularization leads to interesting results for the continuum theory�

In the remainder of this subsection� we specify for which class of regularizations we shall
apply the method of variable regularization� Our choice of the regularization scheme is an
attempt to combine two di�erent requirements� On one hand� we must ensure that the
class of regularizations is large enough to clarify the dependence of the e�ective continuum
theory on the regularization in su
cient detail� on the other hand� we must keep the tech	
nical e�ort on a reasonable level� Consider the integral kernel of the continuum fermionic
projector 
�����
����� Under the reasonable assumption that the fermionic wave functions
�a� �a and the bosonic potentials are smooth� both the projectors on the particle�anti	
particle states in 
���� and the iterated line integrals in 
���� are smooth in x and y� The
factors T reg �n	� however� have singularities and poles on the light cone� 
�����
����� Let
us consider what would happen if we tried to formulate a variational principle similar
to that in Subsection ��� with the continuum kernel 
instead of the discrete kernel�� The
just	mentioned smooth terms in the kernel would not lead to any di
culties� we could just
multiply them with each other when forming the closed chain P 
x� y�P 
y� x�� the resulting
smooth functions would in uence the eigenvalues �k
x� y� in 
����� in a continuous way�
However� the singularities of T reg �n	 would cause severe mathematical problems because
the multiplication of T reg �n	
x� y� with T reg �n	
y� x� leads to singularities which are ill	
de�ned even in the distributional sense� For example� the naive product P 
x� y� P 
y� x�
would involve singularities of the form � ��

y� x��� �

y� x��� and � �

y� x����� This
simple consideration shows why composite expressions in the fermionic projector make
mathematical sense only after regularization� Furthermore� one sees that the regulariza	
tion is merely needed to remove the singularities of T reg �n	� Hence� it seems reasonable to
regularize only the factors T reg �n	 in 
����� but to leave the fermionic wave functions �a�
�a as well as the bosonic potentials unchanged� This regularization method implies that
the fermionic wave functions and the bosonic potentials are well	de�ned also for the regu	
larized fermionic projector� using the notation of page ��� they are macroscopic quantities�
Therefore� we call our method of only regularizing T reg �n	 the assumption of macroscopic
potentials and wave functions�

The assumption of macroscopic potentials and wave functions means physically that
energy and momentum of all bosonic �elds� and of each particle�anti	particle of the phys	
ical system� should be small compared to the Planck energy� In other words� we exclude
the case that the physical potentials and wave functions have oscillations or  uctuations
on the Planck scale� Namely� such microscopic inhomogeneities could not be described by
smooth functions in the continuum limit� and are thus not taken into account by our reg	
ularization method� If� conversely� the potentials and wave functions are nearly constant
on the Planck scale� the unregularized and the 
no matter by which method� regularized
quantities almost coincide� and it is a good approximation to work in the regularized
fermionic projector with the unregularized potentials and wave functions�

According to the assumption of macroscopic potentials and wave functions� it remains
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to regularize the factors T reg �n	 in 
����� Recall that we constructed the distributions
T reg �n	 from the continuum kernel of the fermionic projector of the vacuum 
���� via

���� and the expansion in the mass parameter 
����� An essential step for getting a
meaningful regularization scheme is to extend this construction to the case with regu	
larization� Namely� this extension makes it su
cient to specify the regularization of the
fermionic projector of the vacuum� we can then deduce the regularized T reg �n	 and ob	
tain� by substitution into 
����� the regularized fermionic projector with interaction 
if it
were� on the contrary� impossible to derive the regularized T reg �n	 from the regularized
fermionic projector of the vacuum� the independent regularizations of all functions T reg �n	�
n � �� �� �� � � �� would involve so many free parameters that the e�ective continuum theory
would be under	determined�� Having in mind the extension of 
���� and 
���� to the case
with regularization 
which will be carried out in Subsection ��� and Appendix B�� we now
proceed to describe our regularization method for the fermionic projector of the vacuum�
In the vacuum� the kernel of the continuum fermionic projector P 
x� y� is given by the
Fourier integral 
����� P 
x� y� is invariant under translations in space	time� i�e� it depends
only on the di�erence vector y � x� It seems natural and is most convenient to preserve
the translation symmetry in the regularization� We thus assume that the kernel of the
regularized fermionic projector of the vacuum� which we denote for simplicity again by
P 
x� y�� is translation invariant�

P 
x� y� � P 
y � x� for x� y �M 	 IR� � 
�����

We refer to 
����� as a homogeneous regularization of the vacuum� Notice that the as	
sumption 
����� allows for both discrete and continuum regularizations� In the �rst case�
the set M is taken to be a discrete subset of IR� 
e�g� a lattice�� whereas in the latter
case� M � IR�� According to our concept of discrete space	time� it seems preferable to
work with discrete regularizations� But since continuous regularizations give the same
results and are a bit easier to handle� it is worth considering them� too� The assumption
of a homogeneous regularization of the vacuum means physically that the inhomogeneities
of the fermionic projector on the Planck scale should be irrelevant for the e�ective con	
tinuum theory� Since such microscopic inhomogeneities can� at least in special cases� be
described by microscopic gravitational or gauge �elds� this assumption is closely related
to the assumption of macroscopic potentials and wave functions discussed above�

Taking the Fourier transform in the variable y � x� we write 
����� as the Fourier
integral

P 
x� y� �

Z
d�p


����
#P 
p� e�ip�x�y	 
�����

with a distribution #P � If one considers a discrete regularization� #P may be de�ned only in
a bounded region of IR� 
for a lattice regularization with lattice spacing d� for example�
one can restrict the momenta to the ��rst Brillouin zone� p � 
��

d �
�
d �

��� In this case�

we extend #P to all of IR� by setting it to zero outside this bounded region� Although it
is of no relevance for what follows� one should clearly keep in mind that for a discrete
regularization� x and y take values only in the discrete set M � Let us brie y discuss the
distribution #P � First of all� P 
x� y� should be the kernel of a Hermitian operator� this
implies that P 
x� y�� � P 
y� x� and thus

#P 
p�� � #P 
p� for all p � 
�����

where ��� again denotes the adjoint with respect to the spin scalar product 
i�e� #P 
p�� �

� #P 
p�y 
��� For consistency with the continuum theory� the regularized kernel 
�����
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Figure �� Example for #P � the regularized fermionic projector of the vacuum in momentum
space�

should� for macroscopic systems� go over to the continuum kernel 
����� Thus we know
that #P 
p� should� for small energy	momentum p 
i�e� when both the energy p� and the
momentum j�pj are small compared to the Planck energy�� coincide with the distribution

p��m� �
p� �m�� %
�p��� This is illustrated in the example of Figure �� In the region I
close to the origin� #P looks similar to a hyperbola on the lower mass shell� Furthermore�
we know that #P is a regularization on the Planck scale� This means that� in contrast to the
integrand in 
����� #P should decay at in�nity� at least so rapidly that the integral 
�����
is �nite for all x and y� The length scale for this decay in momentum space should be of
the order of the Planck energy EP � However� the precise form of #P for large energy or
momentum is completely arbitrary� as is indicated in Figure � by the �high energy region�
II� This arbitrariness re ects our freedom in choosing the regularization�

We �nally make an ansatz for #P which seems general enough to include all relevant
regularization e�ects� and which will considerably simplify our analysis in what follows�
According to 
������ #P 
p� is a Hermitian � � � matrix� and can thus be written as a
real linear combination of the basis of the Dirac algebra ��� i
�� 
�
j� and �jk 
with
the pseudoscalar matrix 
� � i
�
�
�
� and the bilinear covariants �jk � i

� �

j � 
k���

The integrand of the continuum kernel 
���� contains only vector and scalar components�
It is reasonable to assume that the regularized kernel also contains no pseudoscalar and
pseudovector components� because the regularization would otherwise break the symmetry
under parity transformations� The inclusion of a bilinear component in #P � on the other
hand� would cause technical complications without giving anything essentially new� Thus
we make an ansatz where #P is composed only of a vector and a scalar component� more
precisely

#P 
p� � 
vj
p� 

j � �
p� ��� f
p� 
�����

with a vector �eld v and a scalar �eld �� f is a distribution� We also need to assume that #P
is reasonably regular and well	behaved� this will be speci�ed in the following subsections�
We refer to the ansatz 
����� as the assumption of a vector�scalar structure for the fermionic
projector of the vacuum�

��� The Regularized Product P �x� y� P �y� x� in the Vacuum

According to the method of variable regularization� we must analyze how the e�ective
continuum theory depends on the choice of the regularization� We shall now consider this
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problem for the simplest composite expression in the fermionic projector� the closed chain
P 
x� y� P 
y� x� in the vacuum� The discussion of this example will explain why we need
to analyze the fermionic projector on the light cone� Working out this concept mathemat	
ically will eventually lead us to the general formalism described in Subsection ����

Using the Fourier representation 
������ we can calculate the closed chain to be

P 
x� y� P 
y� x� �

Z
d�k�

����

Z
d�k�

����

#P 
k�� #P 
k�� e
�i�k��k�	�x�y	

�

Z
d�p


����

�Z
d�q


����
#P 
p� q� #P 
q�

	
e�ip�x�y	 � 
�����

where we introduced new integration variables p � k� � k� and q � k�� Thus the Fourier
transform of the closed chain is given by the convolution in the square brackets� This
reveals the following basic problem� The convolution in the square bracket involves #P
for small and for large energy	momentum� Even when p is small� a large q leads to a
contribution where both factors #P 
p�q� and #P 
q� are evaluated for large energy	momenta�
If we look at the example of Figure �� this means that 
����� depends essentially on the
behavior of #P in the high	energy region II and can thus have an arbitrary value� More
generally� we conclude that� since the form of #P for large energy or momentum is unknown�
the value of 
����� is undetermined�

At �rst sight� it might seem confusing that the pointwise product P 
x� y� P 
y� x� of
the regularized fermionic projector should be undetermined� although the unregularized
kernel 
���� is� for y � x away from the light cone� a smooth function� so that pointwise
multiplication causes no di
culties� In order to explain the situation in a simple example�
we brie y discuss the fermionic projector &P obtained by adding to P a plane wave�

&P 
x� y� � P 
x� y� � e�ik�x�y	 �� �

If the energy or the momentum of the plane wave is of the order of the Planck energy�
the plane wave is highly oscillating in space	time� Such an oscillating term is irrelevant
on the macroscopic scale� Namely� if &P acts on a macroscopic function �� the oscillating
term is evaluated in the weak sense� and the resulting integral

R
exp
iky� �
y� d�y gives

almost zero because the contributions with opposite signs compensate each other� This
�oscillation argument� can be made mathematically precise using integration by parts�
e�g� in the case of high energy k� � EP �Z

eiky f
y� d�y � � �

ik�

Z
eiky 
�tf� d

�y � �

EP
�

In the corresponding closed chain

&P 
x� y� &P 
y� x� � P 
x� y� P 
y� x� � P 
x� y� e�ik�y�x	 � e�ik�x�y	 P 
y� x� � �� �

the second and third summands are also oscillating� In the last summand� however� the
oscillations have dropped out� so that this term a�ects the macroscopic behavior of the
closed chain� This elementary consideration illustrates why the unknown high	energy con	
tribution to the fermionic projector makes it impossible to determine the closed chain
pointwise� We remark that for very special regularizations� for example the regularization
by convolution with a smooth �molli�er� function having compact support� the point	
wise product makes sense away from the light cone and coincides approximately with the

��



product of the unregularized kernels� But such regularizations are much too restrictive�
Namely� we must allow for the possibility that the fermionic projector describes non	
trivial 
yet unknown� high	energy e�ects� Thus the high	energy behavior of the fermionic
projector must not be constrained by a too simple regularization method�

The fact that the product P 
x� y� P 
y� x� is undetermined for �xed x and y does
not imply that a pointwise analysis of the closed chain is mathematically or physically
meaningless� But it means that a pointwise analysis would essentially involve the unknown
high	energy behavior of #P � at present this is a problem completely out of reach� Therefore�
our strategy is to �nd a method for evaluating the closed chain in a way where the high	
energy behavior of #P becomes so unimportant that the dependence on the regularization
can be described in a simple way� We hope that this method will lead us to a certain
limiting case in which the equations of discrete space	time become manageable�

The simplest method to avoid the pointwise analysis is to evaluate the closed chain in
the weak sense� The Fourier representation 
����� yields that

Z
P 
x� y� P 
y� x� �
x� d�x �

Z
d�p


����
#�
p�

�Z
d�q


����
#P 
p� q� #P 
q�

	
� 
�����

where #� is the Fourier transform of a smooth function �� For macroscopic � 
i�e� a function
which is almost constant on the Planck scale�� the function #�
p� is localized in a small
neighborhood of p � � and has rapid decay� Thus exactly as 
������ the integral 
�����
depends on the form of #P for large energy	momentum� Hence this type of weak analysis
is not helpful� In order to �nd a better method� we consider again the Fourier integral

����� in the example of Figure �� We want to �nd a regime for y � x where the �low
energy� region I plays an important role� whereas the region II is irrelevant� This can be
accomplished only by exploiting the special form of #P in the low	energy region as follows�
The hyperbola of the lower mass shell in region I comes asymptotically close to the cone
C � fp� � �g� If we choose a vector 
y � x� 
� � on the light cone L � f
y � x�� � �g�
then the hypersurface H � fp j p
y � x� � �g is null and thus tangential to the cone C�
This means that for all states on the hyperbola which are close to the straight line C �H�
the exponential in 
����� is approximately one� Hence all these states are �in phase�� and
thus yield a large contribution to the Fourier integral 
������ The states in the high	energy
region II� however� are not in phase� they will give only a small contribution to 
������
at least when the vector 
y � x� � L is large� so that the exponential in 
����� is highly
oscillating on the scale p � EP � This qualitative argument shows that by considering the
fermionic projector on the light cone� one can �lter out information on the behavior of #P
in the neighborhood of a straight line along the cone C� This should enable us to analyze
the states on the lower mass shell without being a�ected too much by the unknown high	
energy behavior of #P � We point out that if P 
x� y� depends only on the behavior of #P
close to the cone C� then the same is immediately true for composite expressions like the
product P 
x� y� P 
y� x�� Thus restricting our analysis to the light cone should simplify
the dependence on the regularization considerably� also for composite expressions like the
closed chain� Our program for the remainder of this paper is to make this qualitative
argument mathematically precise and to quantify it in increasing generality�

��



��� The Regularized Vacuum on the Light Cone� Scalar Component

For clarity� we begin the analysis on the light cone for the scalar component of 
������ i�e�
we consider the case

#P 
p� � �
p� f
p� � 
�����

the vector component will be treated in the next subsection� We can assume that the
spatial component of the vector y� x in 
����� points in the direction of the x	axis of our
Cartesian coordinate system� i�e� y�x � 
t� r� �� �� with r � �� Choosing cylindrical coordi	
nates �� k� �� and � in momentum space� de�ned by p � 
�� �p� and �p � 
k� � cos�� � sin���
the Fourier integral 
����� takes the form

P 
x� y� �
�


����

Z �

��
d�

Z �

��
dk

Z �

�
� d�

Z ��

�
d� #P 
�� k� �� �� ei�t�ikr � 
�����

Since the exponential factor in this formula is independent of � and �� we can write the
fermionic projector as the two	dimensional Fourier transform

P 
x� y� � �

Z �

��
d�

Z �

��
dk h
�� k� ei�t�ikr 
�����

of a function h de�ned by

h
�� k� �
�

� 
����

Z �

�
� d�

Z ��

�
d� 
� f�
�� k� �� �� � 
�����

We want to analyze P 
x� y� close to the light cone 
y � x�� � � away from the origin
y � x� Without loss of generality� we can restrict our attention to the upper light cone
t � r� Thus we are interested in the region t � r � �� The �light	cone coordinates�

s �
�

�

t� r� � l �

�

�

t� r� 
�����

are well	suited to this region� because the �small� variable s vanishes for t � r� whereas
the �large� variable l is positive and non	zero� Introducing also the associated momenta

u � �k � � � v � k � � � 
�����

we can write the fermionic projector as

P 
s� l� �

Z �

��
du

Z �

��
dv h
u� v� e�i�us�vl	 � 
�����

Let us brie y discuss the qualitative form of the function h� 
������ According to the
continuum kernel 
����� the scalar component 
����� should� for energy and momentum
small compared to the Planck energy EP � go over to the �	distribution on the lower mass
shell #P � m �
p� �m�� %
�p��� In this limit� the integral 
����� can be evaluated to be

h �
m

� 
����

Z �

�
� d�

Z ��

�
d� �
�� � k� � �� �m�� %
���

�
m

� 
����
%
�� � k� �m�� %
��� �

m

����
%
uv �m�� %
u� � 
�����

thus integrating out � and � yields a constant function in the interior of the two	dimen	
sional �lower mass shell� ���k� � m�� � � �� From this we conclude that for u� v � EP �

��
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Figure �� Example for h
u� v�� the reduced two	dimensional distribution�

h
u� v� should have a discontinuity along the hyperbola fuv � m�� u � �g� be zero below

i�e� for uv � m�� and be nearly constant above� Furthermore� we know that h decays at
in�nity on the scale of the Planck energy� Similar to our discussion of #P 
after 
�������
the precise form of h for large energy or momentum is completely arbitrary� The function
h
u� v� corresponding to the example of Figure � is shown in Figure �� The two branches
of the hyperbola asymptotic to the u and v axes are labelled by �A� and �B�� respectively�

It is instructive to consider the energy scales of our system� The scale for high energies
is clearly given by the Planck energy EP � The relevant low	energy scale� on the other
hand� is m��EP 
it is zero for massless fermions�� Namely� the hyperbola uv �m� comes
as close to the v	axis as as v � m��EP before leaving the low	energy region� These two
energy scales are also marked in Figure �� Since we want to analyze the situation close to
the light cone� we choose the �small� light	cone parameter s on the Planck scale� i�e�

s � E��
P or s � E��

P � 
�����

The �large� light	cone parameter l� on the other hand� is non	zero and thus yields a third
energy scale� We shall always choose this scale between the two extremal energy scales�
more precisely

�

EP
� l � lmax � EP

m�
� 
�����

The parameter lmax was introduced here in order to avoid l being chosen too large� Namely�
we will always regard l as being small compared to the length scales of macroscopic physics

a reasonable value for lmax would e�g� be the Fermi length�� One should keep in mind that
the quotient of the two fundamental energy scales is in all physical situations extremely
large� namely E�

P�m
� � ����� Thus the constraints 
����� can be easily satis�ed and still

leave us the freedom to vary l on many orders of magnitude�
In the remainder of this subsection� we will evaluate the Fourier integral 
����� using

the scales 
����� and 
������ In preparation� we discuss and specify the function h
u� v�
for �xed u� also denoted by hu
v�� As one sees in Figure �� hu will in general not be
continuous� More precisely in the example of Figure �� hu has a discontinuous �jump�
from zero to a �nite value on the hyperbola 
and its extension to the high	energy region��
and maybe has a second jump to zero for large v 
e�g� on line �a��� For simplicity� we

��



assume that hu is always of this general form� i�e�

hu
v� �

�
� for v � �u or v � 	u

smooth for �u � v � 	u

�����

with parameters �u � 	u� The case of less than two discontinuities can be obtained from

����� by setting hu
�u� or hu
	u� equal to zero� or alternatively by moving the position
of the discontinuities �u or 	u to in�nity� We remark that the discontinuity at v � 	u
will become irrelevant later� it is here included only to illustrate why the behavior of
the fermionic projector on the light cone is independent of many regularization details�
Without regularization� hu
v� is for v � �u a constant function� 
������ Thus the v	
dependence of hu
v� for �u � v � 	u is merely a consequence of the regularization� and it
is therefore reasonable to assume that the v	derivatives of hu
v� scale in inverse powers of
the regularization length EP � More precisely� we demand that there is a constant c� � lEP

with

jh�n	u 
v�j �


c�
EP

�n
max jhuj for �u � v � 	u � 
�����

where the derivatives at v � �u and 	u are understood as the right	 and left	sided limits�
respectively� This regularity condition is typically satis�ed for polynomial� exponential�
and trigonometric functions� but it excludes small	scale  uctuations of hu� Clearly� we
could also consider a more general ansatz for hu with more than two discontinuities or
weaker regularity assumptions� But this does not seem to be the point at the moment�
because all interesting e�ects� namely the in uence of discontinuities for small and large
v� as well as of smooth regions� can already be studied in the setting 
������
������

Let us analyze the v	integral of the Fourier transform 
������

Pu
l� ��

Z �

��
hu
v� e

�ivl dv � 
�����

According to the �rst part of 
������ the exponential factor in 
����� is highly oscillating
on the scale v � EP � Thus we can expect that the smooth component of hu gives only
a small contribution to the integral 
������ so that the discontinuities at �u and 	u play
the dominant role� In order to make this picture mathematically precise� we iteratively
integrate in 
����� K times by parts�

Pu
l� �

Z �u

�u
hu
v� e

�ivl dv � � �

il

Z �u

�u
dv hu
v�

d

dv
e�ivl

� � �

il
hu
v� e

�ivl
����u
�u

�
�

il

Z �u

�u
h�u
v� e

�ivl dl

� � � � � � �

il

K��X
n��



�

il

�n
h�n	u 
v� e�ivl

����u
�u

�



�

il

�K Z �u

�u
h�K	
u 
v� e�ivl dl � 
�����

If we bound all summands in 
����� using the �rst part of 
����� and the regularity condi	
tion 
������ each v	derivative appears in combination with a power of l��� and this gives
a factor c��
lEP �� �� Thus we can in the limit K �
 drop the integral term in 
�����
and obtain

Pu
l� � � �

il

�X
n��



�

il

�n
h�n	u 
v� e�ivl

����u
�u

� 
�����

This expansion converges fast� as its summands decay like 
c��
lEP ��
n�

��



Using 
������ we can write the Fourier transform 
����� as

P 
s� l� �

Z �

��
Pu
l� e

�ius du � 
�����

Notice that� apart from the constraints 
������ the �large� variable l can be freely chosen�
We want to study the functional dependence of 
����� on the parameter l� In preparation�
we consider an integral of the general form

Z b

a
f
u� e�i	�u	 l du � 
�����

where we assume that 
u� 

u�� is a curve in the high	energy region� more precisely 
 � EP �
Assume furthermore that 
 is monotone with j
�j � � and that 
b � a� � EP � By
transforming the integration variable� we can then write 
����� as the Fourier integral

Z 	�b	

	�a	
f j
�j�� e�i	l d
 � 
�����

If the function f j
�j�� is smooth� its Fourier transform 
����� has rapid decay in the
variable l� Under the stronger assumption that f j
�j�� varies on the scale EP � we conclude
that the length scale for this rapid decay is of the order l � E��

P � As a consequence� the
rapid decay can be detected even under the constraint l � lmax imposed by 
������ and we
say that 
����� has rapid decay in l� The reader who feels uncomfortable with this informal
de�nition can immediately make this notion mathematically precise by an integration by
parts argument similar to 
����� imposing for f j
�j�� a condition of type 
������ The
precise mathematical meaning of rapid decay in l for the integral 
����� is that for every
integer k there should be constants c � � and lmin � lmax such that for all l � 
lmin� lmax��

Z b

a
f
u� e�i	�u	 l du � c 
lEP �

�k
Z b

a
jf
u�j du �

We return to the analysis of the integral 
������ The boundary terms of 
����� at 	u
yield contributions to P 
s� l� of the form

�


�

il

�n�� Z �

��
h�n	u 
	u� e

�i�ul�ius du � 
�����

Recall that the points 
u� 	u� are in the high	energy region 
in the example of Figure ��
these points lie on curve �a��� According to 
������ the length scale for the oscillations of
the factor exp
�ius� is u � EP � Under the reasonable assumption that 	u is monotone

and that the functions j	�
u�j�� and h
�n	
u 
	u� vary on the scale EP � the integral 
����� is

of the form 
������ and the above consideration yields that 
����� has rapid decay in l� We
remark that this argument could be extended to the case where 	u has extremal points

basically because the extrema give contributions only for isolated momenta u and thus
can be shown to be negligible�� but we will not go into this here� Having established rapid
decay in l for 
������ it remains to consider the boundary terms in 
����� at �u� more
precisely

P 
s� l� �
�X
n��



�

il

�n�� Z �

��
h�n	u 
�u� e

�i�ul�ius du � 
rapid decay in l� � 
�����

��



We cannot again apply our �oscillation argument� after 
������ because �u tends asymptot	
ically to zero on branch �A� of the hyperbola 
see Figure ��� so that the factor exp
�i�ul�
is non	oscillating in this region� We expand this factor in a Taylor series�

P 
s� l� �
�X

n�k��

�

k!

il�k�n��

Z �

��
h�n	u 
�u� 
��u�k e�ius du � 
�����

In the region where l�u 
� �� this expansion might seem problematic and requires a
brief explanation� First of all� �u becomes large near u � � 
on branch �B� of the
hyperbola in Figure ��� In the case without regularization� the power expansion of the
factor exp
�i�u l� corresponds to an expansion in the mass parameter 
recall that in this
case� �u � m��u according to 
������� and it would lead in 
����� to a singularity of the
integrand at the origin� Indeed� this di
culty is a special case of the logarithmic mass
problem� which is discussed in ��� �� and �nally resolved by working with the �regularized�
distribution T reg

a � 
����� Using these results� the behavior of the unregularized P 
s� l� for
small momenta u � EP is well understood� Our oscillation argument after 
����� yields
that the regularization for u � EP 
i�e� the form of the extension of branch �B� of the
hyperbola to the high	energy region� a�ects P 
s� l� merely by rapidly decaying terms�
Thus it is su
cient to consider here the integrand in 
����� away from the origin u � ��
When combined with the results in ��� ��� our analysis immediately yields a complete
description of the regularized fermionic projector near the light cone� Furthermore� the
function �u might become large for u � EP � and this is a more subtle point� One way of
justifying 
����� would be to simply assume that lmax�u � � along the whole extension of
branch �A� to the high	energy region� A more general method would be to split up the
curve 
u� �u� in the high	energy region u � EP into one branch where the expansion 
�����
is justi�ed and another branch where our oscillation argument after 
����� applies� The
intermediate region l�u � �� where none of the two methods can be used� is generically so
small that it can be neglected� In order to keep our analysis reasonably simple� we here
assume that �u is su
ciently small away from the origin� more precisely

�u � �max � l��max for u � EP � 
�����

For a �xed value of k�n� all summands in 
����� have the same l	dependence� Let us
compare the relative size of these terms� According to our regularity assumption 
������

the derivatives of h scale like h
�n	
u � E�n

P � Using the bound 
������ we conclude that� for a
�xed power of l� the summands in 
����� decrease like 
�max�EP �

n� Thus it is a very good
approximation to drop the summands for large n� At �rst sight� it might seem admissible
to take into account only the �rst summand n � �� Unfortunately� the situation is not
quite so simple� For example� it may happen that� when restricted to the curve 
u� �u��
the function h
u� v� is so small that the summands for n � � in 
����� are indeed not

dominant� More generally� we need to know that for some n� � �� the function h
�n�	
u 
�u�

is really of the order given in 
������ i�e�

jh�n�	u 
�u�j � c



c�
EP

�n�
max jhuj for u � EP 
�����

and a positive constant c� If this condition is satis�ed� we may neglect all summands for
n � n�� and collecting the terms in powers of l� we conclude that

P 
s� l� �
�


il�n���

�X
k��


�il�k
n�X

n�max�n��k��	


���n��n

k � n� � n�!

Z �

��
h�n	u 
�u� �

k�n��n
u e�ius du

��



�
�X

n�n���

�


il�n��

Z �

��
h�n	u 
�u� e

�ius du

� 
rapid decay in l� � 
higher orders in 
�max�EP �� 
lmaxEP �
��� � 
�����

In our case� the function hu has in the low	energy region according to 
����� the form
hu
�u� � m�
����� %
u�� Hence it is natural to assume that 
����� is satis�ed for n� � ��
Introducing the shorter notation

h
u� �� hu
�
u�� � h�n

u� �� h�n	u 
�u� � �
u� �� �u � 
�����

we have thus derived the following result�

Expansion of the scalar component� Close to the light cone �����������	�� the scalar
component ���
�� of the fermionic projector of the vacuum has the expansion

P 
s� l� �
�

il

�X
k��


�il�k
k!

Z �

��
h �k e�ius du 
�����

�
�X
n��

�


il�n��

Z �

��
h�n
 e�ius du 
�����

� 
rapid decay in l� � 
higher orders in 
�max�EP �� 
lmaxEP �
��� 
�����

with suitable regularization functions h� h�n
� and �� In the low�energy region u � EP �
the regularization functions are

h
u� �
m

����
%
u� � h�n

u� � � � �
u� � �u �

m�

u
� 
�����

In this expansion� the l	dependence is written out similar to a Laurent expansion� The
main simpli�cation compared to our earlier Fourier representation 
����� is that the de	
pendence on the regularization is now described by functions of only one variable� denoted
by h� h�n
� and �� In composite expressions in P 
s� l�� we will typically get convolutions
of these functions� such one	dimensional convolutions are convenient and can be easily
analyzed� The simpli�cation to one	dimensional regularization functions became possible
because many details of the regularization a�ect only the contribution with rapid decay
in l� which we do not consider here� Notice that the summands in 
����� and 
����� decay
like 
l �max�

k�k!� 
l�lmax�
k�k! and 
lEP �

�n� respectively� In the low	energy limit 
������
the expansion 
����� goes over to a power series in m�� and we thus refer to 
����� as
the mass expansion� In the mass expansion� the regularization is described by only two
functions h and �� The series 
������ on the other hand� is a pure regularization e�ect and
is thus called the regularization expansion� It involves an in�nite number of regularization
functions h�n
� Accordingly� we will use the notions of mass and regularization expansions
also for other expansions of type 
������

In the expansion 
������ the fermionic projector is described exclusively in terms of the
function h
u� v� in a neighborhood of the discontinuity along the curve 
u� �u�� Let us go
back to the de�nition of h� 
������ and consider what this result means for the regularized
fermionic projector in momentum space 
������ In the case without regularization 
������
we saw that integrating out the cylindrical coordinates � and � yields a discontinuity of h
whenever the �	plane �� k � const meets and is tangential to the hyperboloid ���k���� �
m�� Indeed� this picture is true in the general case� i�e� the discontinuity of h can always

��



be associated to a contribution to #P which describes a hypersurface in four	dimensional
momentum space� The simplest way to recover the discontinuity of h when integrating
out the cylindrical coordinates would be to choose #P of the form 
����� with a function �
and the spherically symmetric distribution f � �
j�pj ����
�j�pj ����� Since spherically
symmetric regularizations seem too restrictive� it is preferable to describe the discontinuity
of h more generally by a contribution to #P of the form

�
�p� �
� � '
�p�� � 
�����

which is singular on the hypersurface � � '
�p�� For small momentum j�pj � EP � the
surface should clearly go over to the mass shell given by ' � �pj�pj� �m� and � � m�j�'j�
also� it is reasonable to assume that � and ' are smooth and su
ciently regular� This
consideration shows that that for the behavior of the fermionic projector on the light cone

������ the essential role is played by states lying on a hypersurface� We refer to these one	
particle states as the surface states of the fermionic projector of the vacuum� This result
seems physically convincing because the surface states naturally generalize the states on
the lower mass shell known from relativistic quantum mechanics� By integrating out the
cylindrical coordinates for the ansatz 
������ one can express the regularization functions

h
�n	
u in 
����� in terms of � and the geometry of the hypersurface� But we point out that

in contrast to the just discussed discontinuity of h� the partial derivatives of h depend
also on states other than surface states� For example� a contribution to #P of the form
b
�� �p� %
� � '
�p�� with ' as in 
����� and a smooth function b has a discontinuity on

the surface ' and a�ects all of the regularization functions h
�n	
u for n � � 
as one veri�es

by a short computation�� Thinking of the decomposition of the fermionic projector into
the one	particle states� such non	surface contributions would consist of a large number
of states� and would thus make it necessary to introduce many additional fermions into
our system� It does not seem quite reasonable or appropriate to considerably increase
the number of particles of the system with the only purpose of having more freedom for
the derivative terms of h in 
������ It seems easiest and is physically most convincing to
assume that all of the regularization functions in 
����� come about as a consequence of
surface states� We refer to this assumption as the restriction to surface states� It is of
no relevance for the scalar component 
������
������ but will yield an important relation
between the regularization functions for the vector component in the next subsection�
To avoid confusion� we point out that the restriction to surface states clearly does not
imply that #P is of the form 
������ It imposes a condition only on the behavior of #P in
a neighborhood of our hypersurface� namely that the only distributional or non	regular
contribution to #P in this neighborhood should be the hypersurface itself�

For clarity� we �nally review our assumptions on the regularization� Our �rst assump	
tion was that the function h
u� v� has� for every �xed u� at most two discontinuities at �
u�
and 	
u�� and is su
ciently regular otherwise� 
������ Furthermore� the function 	
u� had
to be monotone and again su
ciently regular� For the function �
u�� we assumed that

����� holds� Since h is obtained from #P � 
������ by integrating out the cylindrical coordi	
nates 
������ these assumptions implicitly pose conditions on the fermionic projector of the
vacuum� Although they could clearly be weakened with more mathematical e�ort� these
conditions seem su
ciently general for the moment� In order to understand this better�
one should realize that integrating out the cylindrical coordinates does in the generic case

i�e� unless if there are singularities parallel to the plane �� k � const� improve the regu	
larity� The restriction to the generic case is in most situations justi�ed by the fact that the
direction y� x and the coordinate system in 
����� can be freely chosen� Using the above

��



assumptions on h
u� v�� we showed that the dominant contribution to the fermionic projec	
tor on the light cone is made by states on a hypersurface in four	dimensional momentum
space� With the �restriction to surface states�� we assumed �nally that the behavior on
the light cone 
����� is completely characterized by these states�

��� The Regularized Vacuum on the Light Cone� Vector Component

We shall now extend the previous analysis to the vector component in 
������ More
precisely� we will analyze the Fourier integral 
����� for

#P 
p� � vj
p� 

j f
p� 
�����

close to the light cone� We again choose light	cone coordinates 
s� l� x�� x�� with y �
x � 
s� l� �� �� 
s and l are given by 
������ while x� and x� are Cartesian coordinates
in the orthogonal complement of the sl	plane�� The associated momenta are denoted by
p � 
u� v� p�� p�� with u and v according to 
������ As in 
������ we integrate out the
coordinates perpendicular to u and v�

hj
u� v� ��
�

� 
����

Z �

��
dp�

Z �

��
dp� 
vj f�
u� v� p�� p�� � 
�����

and obtain a representation of the fermionic projector involving two	dimensional Fourier
integrals�

P 
s� l� � 
j Pj
s� l� with Pj
s� l� ��

Z �

��
du

Z �

��
dv hj
u� v� e

�i�us�vl	 � 
�����

The tensor indices in 
����� and 
����� refer to the coordinate system 
s� l� x�� x��� For
clarity� we denote the range of the indices by j � s� l� �� �� thus


s �
�

�


� � 
�� � 
l �

�

�


� � 
�� � 
�����

where 
�� � � � � 
� are the usual Dirac matrices of Minkowski space� According to the
continuum kernel 
����� #P has in the case without regularization the form #P � p� �
p� �
m�� %
�p��� and hj can be computed similar to 
����� to be


j hj
u� v� �
�

����

�u
s � v
l� %
uv �m�� %
u� � 
�����

This limiting case speci�es the regularized hj
u� v� for small energy	momentum u� v � EP �
In order to keep the form of the functions hj in the high	energy region su
ciently general�
we merely assume in what follows that the hj satisfy all the conditions we considered
for the function h in the previous subsection 
see the summary in the last paragraph of
Subsection �����

Our main result is the following�

Expansion of the vector component� Close to the light cone �����������	�� the vector
component ������ of the fermionic projector of the vacuum has the expansion P � 
jPj
with

Ps
s� l� �
�
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�u gs �k e�ius du

��



�
�X
n��

�


il�n��

Z �

��
�u g�n
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� 
rapid decay in l� � 
higher orders in 
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lmaxEP �
��� 
�����

Pl
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�


il��

�X
k��


�il�k
k!

Z �

��




k � �� �k � k
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rapid decay in l� � 
higher orders in 
�max�EP �� 
lmaxEP �
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�����

P�
�
s� l� �
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il��

�X
k��


�il�k
k!

Z �
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�
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�k��
�
g�
� e

�ius du

�
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n��
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il�n��
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rapid decay in l� � 
higher orders in 
�max�EP �� 
lmaxEP �
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and suitable regularization functions gj� g
�n

j � b� b�
�� and the mass regularization function

� as in ������� In the low energy region u � EP � the regularization functions have the
form

gs
u� �
�

����
%
u� � g�n
s 
u� � � 
�����

gl
u� �
�

����
%
u� � g

�n

l 
u� � b
u� � � 
�����

g�
�
u� � g�
�
u� � b�
�
u� � � � 
�����

Before entering the derivation� we brie y discuss these formulas� For this� we consider
the situation where� like in the case without regularization� the vector v
p� in 
����� points
into the direction p� In this case� we can write the vector component as

#P 
p� � pj

j 
�f�
p� � 
�����

where 
�f� has the form of the scalar component considered in Subsection ���� Since
multiplication in momentum space corresponds to di�erentiation in position space� we
obtain for 
�����

P 
s� l� � �i



s

�

�s
� 
l

�

�l
� 
�

�

�x�
� 
�

�

�x�

�
Pscalar
s� l� �

where Pscalar is the scalar component 
����� with h as in 
������ We now substitute for
Pscalar the expansion on the light cone 
������
����� and carry out the partial derivatives�
For the s	 and l	components� this gives exactly the expansions 
����� and 
����� with

gs � gl � h � g�n
s � g
�n

l � h�n
 � b � � � 
�����

For the components j � �� �� the calculation of the partial derivatives is not quite so
straightforward because the expansion of the scalar component 
������
����� was carried
out for �xed x� and x�� Nevertheless� one can deduce also the expansion 
����� from

������
����� if one considers x� and x� as parameters of the regularization functions
h� h�n
� and �� and di�erentiates through� keeping in mind that di�erentiation yields a

��



factor ��l 
to get the scaling dimensions right�� In this way� the simple example 
�����
explains the general structure of the expansions 
����� and 
������ We point out that
the regularization function b vanishes identically in 
������ This means that b is non	zero
only when the direction of the vector �eld v is modi�ed by the regularization� Thinking
in terms of the decomposition into the one	particle states� we refer to this regularization
e�ect as the shear of the surface states�

We shall now derive the expansions 
������
������ Since the Fourier integrals in 
�����
are of the form 
������ they have the expansion 
������ valid close to the light cone

������
������ It remains to determine the parameter n� in 
������ We consider the compo	
nents j � s� l� �� and � separately� According to 
������ the function hs in the low	energy
region looks similar to the hyperbola depicted in Figure �� The main di�erence to the
low	energy behavior of the scalar component 
����� is the additional factor u in hs which
grows linearly along branch �A� of the hyperbola� Thus in the low	energy region away
from the origin�


hs�u
�u� � EP and max
v����EP 	

j
hs�u
v�j � EP � 
�����

From this behavior it is natural to assume that hs satis�es the bound 
����� with n� � ��
Because of the linearly growing factor u in the low	energy region� it is convenient to write
the regularization functions in the form


hs�u
�u� �� �u gs
u� � 
hs�
�n	
u 
�u� �� �u g�n
s 
u� 
�����

with suitable functions gs and g
�n

s 
this can be done because� as explained after 
������

close to the origin u � �� we can work with the unregularized fermionic projector�� This
yields the expansion 
������ According to 
����� and 
������ the regularization functions
have the low	energy limit 
������ For the l	component� the situation is much di�erent�
According to 
������ the function hl in the low	energy limit has the form

hl
u� v� � � �

����
v %
uv �m�� � 
�����

The factor v decreases like m��u along branch �A� of the hyperbola� Thus in the low	
energy region away from the origin�


hl�u
�u� � m��EP whereas max
v����EP 	

j
hl�u
v�j � EP � 
�����

Therefore� we cannot assume that hl satis�es the bound 
����� with n� � �� But


hl�
��	
u 
�u� � � in the low	energy region� and thus we may choose n� � �� We conclude

that it is necessary to take into account two inner summands in 
������ more precisely

Pl
s� l� �
�
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�
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k
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hl�u
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i
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where �� � �� stands for the regularization expansion and all terms neglected in 
������ In
the low	energy region� we have according to 
����� and 
������


hl�u
�u� � � �

����
m�

u
� 
hl�

�
u
�u� �u �

��



Thus in this region� the two summands in the square brackets of 
����� are of the same
order of magnitude� and none of them can be neglected� In view of the low	energy limit�
we introduce the regularization functions as


hl�
�
u
�u� �� �gl
u� � 
hl�

���n

u 
�u� �� �
n� �� g

�n

l 
u�


hl�
�
u
�u� �u � 
hl�u
�u� ��

b
u�

u
gl
u� � 
�����

this yields the expansion 
������ According to 
������ the regularization functions have
the low	energy limit 
������ We �nally consider the components j � � and �� According
to 
������ these components are identically equal to zero in the low	energy limit� But for
u � EP � they might behave similar to Ps or Pl� To be on the safe side� we choose n� � ��
Denoting the regularization functions by


h�
��
�
u
�u� �� g�
�
u� � 
h�
��

���n

u 
�u� �� g

�n

�
�
u�

�
h�
��u
�u� ��
b�
�
u�

u
g�
�
u� � 
�����

we obtain the expansion 
������ According to 
������ the regularization functions g�
�� g
�h

�
��

and b�
� vanish in the low	energy region� 
������
For clarity� we point out that choosing n� � � 
as in 
����� and 
������ is an extension

of setting n� � � 
as in 
������� obtained by taking into account more summands of the
general expansion 
������ Nevertheless� the di�erent behavior in the low	energy region

������
����� suggests that 
����� and 
����� should not be merely more general formulas
than 
������ but that the behavior of Pj
s� l�� j � l� �� �� should be really di�erent from
that of Ps
s� l�� We shall now make this di�erence precise� Comparing 
����� and 
�����

and using that h�
� vanishes in the low	energy region�� it is reasonable to impose that
there should be a constant �shear � � with

j
hj�u
�u�j � �shear j
hs�u
�u�j for u � EP and j � l� �� or �� 
�����

In view of 
����� and 
������ �shear should be as small as

�shear � m�

E�
P

� 
�����

However� if the surface states have shear 
as de�ned earlier in this subsection�� the con	
stant �shear must in general be chosen larger� In order to keep our analysis as general as
possible� we will not specify here how �shear scales in the Planck energy� but merely assume
that m��E�

P � �shear � �� Using 
������ 
������ and 
������ the condition 
����� can be
expressed in terms of the regularization functions gj and bj as


b

u
� �u

�
gl�

b�
�

u
g�
� � �shear u gs for u � EP � 
�����

It is interesting to analyze what the condition 
����� means for the functions Pj � We
begin with the case without regularization� In this case� the vector component of P 
x� y�
points into the direction y � x� more precisely P 
x� y� � i
y � x�j


j S
x� y� with a scalar
distribution S� In a composite expression like the closed chain P 
x� y� P 
y� x�� one can
contract the tensor indices and obtains in a formal calculation P 
x� y� P 
y� x� � 
y �

��



x�� S
x� y� S
y� x� with a scalar factor 
y � x�� which vanishes on the light cone� Let
us consider this contraction in our light	cone coordinates� Before the contraction� each
factor 
y � x�j


j � �l 
s � �s 
l � �l
s is� if we take only the leading contribution on
the light cone 
i�e� the lowest order in s�l�� proportional to l� After the contraction�
however� the product 
y�x�� � �ls is proportional to both l and s� Thus the contraction
yields� to leading order on the light cone� a dimensionless factor s�l� While the factor
l�� changes the scaling behavior in the �large� variable� the factor s tends to make the
composite expression �small� near the light cone� The analysis of the scaling behavior in l
can immediately be extended to the case with regularization by looking at the expansions

����� and 
������ Let us consider as an example the leading term of the mass expansion�
For the expansion 
������ this is the summand k � �� and it scales like Ps
s� l� � ��l�
If we assume that 
����� holds with �shear according to 
������ then 
����� shows that
b
u� � �� and the summands in the square bracket are in 
����� are of comparable size�
Hence the leading term of the expansion 
����� is also the summand k � �� and it scales
in l like Pl
s� l� � ��l�� Hence the leading term of the sum 
lPl � 
sPs behaves like
P � ��l�O
��l��� Since s and l are null directions� a contraction of the tensor indices in
the closed chain leads only to mixed products of the form Ps Pl� and this mixed product
scales in l like Ps Pl � ��l�� Thus� exactly as in the case without regularization� the
contraction of the tensor indices yields an additional factor l��� If on the other hand� the
condition 
����� were violated� the regularization function b could be chosen arbitrarily
large� But if b becomes large enough� the cominant contribution to 
����� is the summand
k � � 
notice that b does not appear in the summand k � ��� and hence Pl
s� l� � ��l� This
implies that Ps Pl � ��l�� and the contraction does no longer yield an additional factor
l��� This consideration is immediately extended to the components P�
� by considering
the l	dependence of the summands in 
������ We conclude that the condition 
����� with
�shear � � means that the contraction of the tensor indices yields a scalar factor which
vanishes on the light cone� Therefore� we refer to this condition by saying that the vector
component is null on the light cone� If one wishes� one can simply take this condition as an
additional assumption on the fermionic projector of the vacuum� However� the property
of the vector component being null on the light cone also arises in the study of composite
expressions in the fermionic projector as a compatibility condition� and can thus be derived
from the equations of discrete space	time 
we shall come back to this derivation in our
analysis of the equations of discrete space	time in forthcoming papers��

The next question is if our regularization functions �� gj � g
�n

j � and b� which appear

in our expansions 
������
������ are all independent of each other� or whether there are
some relations between them� Recall that the regularization functions are derived from the
boundary values of the functions �nv hj
u� v�� n � �� on the curve 
u� �u� 
see 
������ 
������
and 
������� Since the 
hj�j�s�l���� were treated in our two	dimensional Fourier analysis
as four independent and 
apart from our regularity assumptions� arbitrary functions� we
can certainly not get relations between the regularization functions by looking at the
situation in the uv	plane� But we can hope that when we consider the surface states
in four	dimensional momentum space 
as introduced in Subsection ����� the geometry
of the hypersurface de�ned by these states might yield interesting restrictions for the
regularization functions� First of all� we mention that our discussion of surface states of
the previous subsection applies without changes also to the vector component� we will in
what follows make use of the restriction to surface states� Since in the low	energy region
the regularization is irrelevant and the results of ��� �� apply� we can furthermore restrict
our attention to large energy and momentum �� j�kj � EP � We choose polar coordinates

��




�� k � j�kj� �� �� in momentum space and introduce the �mass shell coordinates�

U � �j�kj � � � V � j�kj � � � 
�����

Notice that� in contrast to the coordinates u and v� 
������ the variables 
����� are the
spherically symmetric part of a four	dimensional coordinate system 
U� V� �� ��� Extending
also the notation 
����� in a spherically symmetric way� we introduce the Dirac matrix


S �
�

�

�

� � �
�k

k

�
�

Let us consider what the expansions 
������ 
������ and 
����� tell us about the surface
states� As explained before 
������ the discontinuities of hj come about in 
����� when the
plane u� v � const meets and is tangential to the hypersurface of the surface states� We
denote the tangential intersection point of the surface u� v � const with the hypersurface
by Q � 
U� V� �� ��� In the high	energy region under consideration� the variable U is of
the order EP � The variable V � on the other hand� will be of order �
U� � �max� Thus
our hypersurface is close to the mass cone in the sense that V�U � �max�EP � �� As a
consequence� the angle � is small 
more precisely� � � p�max�EP �� and we conclude that�
to leading order in �max�EP � V � �
U�� Hence we can write the hypersurface as a graph
V � A
U� �� �� with a function A satisfying the condition

A
U� � � �� � �
U� � 
higher orders in �max�EP � �

One can think of the functions A
u� �� �� as the extension of � to the four	dimensional
setting� In order to determine the structure of the Dirac matrices� we �rst recall that the
assumption that the vector component is null on the light cone implied in our consideration
after 
����� that the parameter n� corresponding to Pl� P�� and P� was equal to one� This
means that to leading order in �max�EP � only the function hs
u� v� is discontinuous on
the curve 
u� �u�� and we conclude that the distribution #P is on the hypersurface at the
point Q a scalar multiple of 
s� we use the short notation #P 
Q� � 
s� Using again that
� is small� we obtain that to leading order in �max�EP � #P 
U�A
U� � � ��� � � �� � 
s�
Since the spatial direction of the vector y�x in 
����� can be chosen arbitrarily� we can by
rotating our coordinate system� immediately extend this result to general � and �� namely
#P 
U��
U� �� ��� �� �� � 
S � Hence the surface states are described by a contribution to #P
of the form

����� g
U� �� �� 
S �
V �A
U� �� ��� � 
higher orders in �max�EP � 
�����

with some function g� It is reasonable to assume that the functions in 
����� are su
ciently
regular� Similar to our regularity condition 
����� for h� we here assume that the derivatives
of A and gS have the natural scaling behavior in EP � More precisely� for all n�� n�� n� � �
there should exist a constant c� lEP with

j�n�U �n�� �n�� A
U� �� ��j � j�n�U �n�� �n�� g
U� �� ��j � c E�n�
P max
jAj� jgj� 
�����

for all U � EP �
The form of the surface states 
����� allows us to calculate the regularization functions

gj � g
�n

j � and bj� For this� we �rst represent the matrix 
S in 
����� in the Dirac basis



j�j�s�l����� this yields the contributions of the surface states to the distributions 
vj f��

��



By substituting into 
����� and carrying out the integrals over p� and p�� one obtains the
functions hj � The regularization functions can �nally be computed via 
������ 
������ and

������ This whole calculation is quite straightforward� and we only state the main results�
To leading order in v�u� we can take A and g as constant functions in the calculation of
the s	 and l	components � and thus the calculation of 
shs � 
lhl reduces to the integral

� �

�

Z �

��
dp�

Z �

��
dp�




s �

v

u

l
�
g
u� � � �� �

�
v � �u � p�� � p��

u

�

�
higher orders in v�u� �max�EP � �

An evaluation in cylindrical coordinates yields that both gs
u� and gl
u� are equal to
g
u� � � ��� and we thus have the important relation

gs
u� � gl
u� �� g
u� � 
�����

In the case without shear of the surface states� this relation was already found in 
������
we now see that it holds in a much more general setting� The calculation of the angular
components j � �� � gives for g�
� contributions proportional to u��
�A and u��
�g� Unfor	
tunately� this is not very helpful to us because we have no information on the derivatives of

A and g� The computation of the regularization functions g
�n

j involves higher derivatives of

the functions in 
����� and becomes quite complicated� We remark that the above analysis
of the surface states can be carried out similarly for the scalar component of the previous
subsection and gives relations between the regularization functions h and h�n
� 
������ but
these relations all depend on unknown details of the geometry of the hypersurface� We
thus conclude that 
����� is the only relation between the regularization functions which
can be derived with our present knowledge on the surface states�

We �nally mention one assumption on the regularization which� although we will not
use it in the present work� might be worth considering later� The � � � matrix 
p� �m�
in the integrand of the unregularized fermionic projector 
���� has the special property
of being singular of rank two� This means that the fermionic projector is composed
of only two occupied fermionic states� for every momentum p on the mass shell� The
natural extension of this property to the case with regularization is that for every p on the
hypersurface de�ned by the surface states� the matrix #P 
p� corresponding to the vector	
scalar structure 
����� should be of rank two� We refer to this property as the assumption
of half occupied surface states� In terms of the functions h
u� v� and hj
u� v�� it means that
hs
u� �
u�� hl
u� �u� � h
u� �u�

�� Using 
������ 
������ 
������ and 
������ the assumption
of half occupied surface states yields the following relation between the regularization
functions of the scalar and vector components�


�
u� u� b
u�� g
u�� � h
u�� � 
�����

��� The General Formalism

In this subsection� we shall extend our previous analysis on the light cone in three ways� to
the case with interaction� to systems of Dirac seas as introduced in ���� and to composite
expressions in the fermionic projector� Our �rst step is to develop a method which allows
us to introduce a regularization into the formulas of the light	cone expansion 
����� We
will here only motivate and describe this method� the rigorous justi�cation is given in
Appendix B� Since the formulas of the light	cone expansion involve the factors T reg �n	�

��




�����
����� we begin by bringing these distributions into a form similar to our expansion
of the regularized scalar component 
������ By partly carrying out the Fourier integral

���� in the light	cone coordinates introduced in Subsection ��� 
see 
����� and 
������� we
can write the distribution Ta as

Ta
s� l� �
�

����
�

il

Z �

�
e�

ial
u
� ius du � 
�����

This formula can be regarded as a special case of the expansion 
����� 
notice that the
function h
u� v� corresponding to Ta is computed similar to 
������� but 
����� holds also
away from the light cone� The distribution Ta is not di�erentiable in a at a � �� as one sees
either directly in position space 
���� or equivalently in 
������ where formal di�erentiation
leads to a singularity of the integrand at u � �� This problem is bypassed in ��� �� by
working instead of Ta with the distribution T reg

a � 
����� Let us brie y consider what this
�regularization� means in the integral representation 
������ The formal a	derivative of

������

d

da
Ta
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u
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ial
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is well	de�ned and �nite for a 
� � because of the oscillating factor exp
�ial�u�� However�
the limit a� � leads to a logarithmic divergence� Thus one must subtract a logarithmic
counterterm before taking the limit� more precisely�
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The higher a	derivatives T reg �n	� n � �� are de�ned similarly using suitable counterterms
which are localized at u � �� Since we do not need the details in what follows� we simply
write

T reg �n	
s� l� � � �
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Consider a summand of the light	cone expansion 
�����


iterated line integrals in bosonic potentials and �elds� T reg �n	
s� l� � 
�����

According to our assumption of macroscopic potentials and wave functions described in
Subsection ���� we shall regularize only the distribution T reg �n	� keeping the iterated line
integral unchanged� Let us brie y analyze what this assumption means quantitatively�
Not regularizing the iterated line integral in 
������ denoted in what follows by F � will be
a good approximation if and only if F is almost constant on the Planck scale� In other
words� not regularizing F is admissible if we keep in mind that this method can describe
the regularized fermionic projector only modulo contributions of the order �jF�EP � In
the case that this last derivative acts on the bosonic potentials and �elds contained in F �
we obtain the limitation already mentioned in Subsection ��� that energy and momentum
of the bosonic �elds should be small compared to the Planck energy� More precisely� we
can describe the fermionic projector only to leading order in 
lmacroEP �

��� where lmacro

is a typical length scale of macroscopic physics� A point we did not pay attention to
earlier is that the iterated line integrals also involve factors 
y � x� which are contracted
with the bosonic potentials and �elds 
see ��� �� for many examples�� Thus in light	cone
coordinates� F will in general contain factors of l� If the derivative in �jF acts on a factor
l� this factor is annihilated� Hence keeping the iterated line integrals in 
����� unchanged

��



can describe only the leading order in 
lEP �
�� of the fermionic projector� We conclude

that the assumption of macroscopic potentials and wave functions is justi�ed if and only
if we restrict our analysis to the leading order in 
lEP �

�� and 
lmacroEP �
��� We remark

that going beyond the leading order in 
lEP �
�� or 
lmacroEP �

�� would make it impossible
to describe the interaction by classical �elds� and is thus at present out of reach�

The restriction to the leading order in 
lEP �
�� is a considerable simpli�cation for what

follows� First of all� we can neglect all regularization expansions 
which are just expansions
in powers of 
lEP �

��� see e�g� 
����� and the discussion thereafter�� and thus we do not

need to consider the regularization functions h�n
 and g
�n

j � Next we compare for given k the

summands in 
������
����� 
the analysis for �xed k is justi�ed assuming that the vector
component is null on the light cone� see 
����� and the discussion thereafter�� One sees that
the tensor index j � s gives the leading contribution in 
lEP �

�� to the vector component�
This is a great simpli�cation when tensor indices are contracted in composite expressions�
Namely� when the vector component is contracted with the bosonic potentials or �elds� it
su
ces to consider the contribution Ps� 
������ If vector components are contracted with
each other� the products of type P�
� P�
� are according to 
������
����� of higher order in

lEP �

�� or �shear than corresponding products of type Ps Pl� Hence in such contractions�
we must take into account both Ps and Pl� but we can again neglect the components P�
and P�� We conclude that the only regularization functions which should be of relevance
here are those appearing in 
����� and in the mass expansions of 
����� and 
������ i�e� the
four functions

�
u� � g
u� � h
u� � and b
u� 
�����

with g given by 
������
Under the assumption of macroscopic potentials and wave functions� it su
ces to

regularize the factor T reg �n	 in 
������ Our method for regularizing T reg �n	 is to go over to
the integral representation 
����� and to insert the regularization functions 
����� into the
integrand� The procedure depends on whether the contribution to the light	cone expansion
is of even or odd order in the mass parameter m� Furthermore� we must treat the factors

y�x�j


j in the light	cone expansion separately� The precise regularization method is the
following�

Regularization of the light�cone expansion� A summand of the light�cone expansion
����� which is proportional to mp�
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iterated line integrals in bosonic potentials and �elds� T reg �n	
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A contribution to the light�cone expansion ����� which is proportional to mp and con�
tains a factor 
y � x�j


j�

mp 
iterated line integrals in bosonic potentials and �elds�
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j T reg �n	
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is properly regularized according to
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In these formulas� the regularization function a is given by

a
u� � u �
u� � 
�����

�shear is de�ned via ������� and lmacro is a macroscopic length scale�

Let us brie y explain and motivate this regularization method 
see Appendix B for the
derivation�� First of all� we note that� after writing the factor 
y�x�j


j together with the
iterated line integrals� the expression 
����� is of the form 
������ and the regularization
rule 
����� applies� Thus 
����� is an extension of 
����� giving additional information
on the l	component of the factor 
y � x�j


j� As we shall see later� this information is
essential when the factor 
y�x�j in 
����� is to be contracted with another factor 
y�x�j

in a composite expression� To explain the formula 
������ we �rst point out that the
expansions of the scalar and vector components 
������
������ 
������ and 
����� do not
involve the mass parameter m� The reason is that m was absorbed into the regularization
functions g� h� and �� as one sees by considering the low	energy limit� see 
������ 
������
and 
������ Furthermore� we note that each contribution to the mass expansions of the
scalar or vector components contains either a factor h or g 
see 
������ 
������ and 
�������
and it is therefore reasonable that we should also use exactly one of these factors here�
As a consequence� the power mp in 
����� uniquely determines how many factors of each
regularization function we should take� Namely for even p� we must take one factor g and
p�� factors �� whereas the case of odd p gives rise to one factor h and 
p� ���� factors ��
On the other hand� we know that the insertion of the regularization functions into 
�����
should modify the behavior of the integrand only for large u � EP � in particular� we
should for small u have a behavior � u�n� In order to comply with all of these conditions�
one must insert the regularization functions precisely as in 
������ In order to motivate

������ we consider the expansion of the vector component 
������
������ Recall that the
regularization function b vanishes in the low	energy region 
����� and describes the shear
of the surface states 
as explained after 
������� Since this e�ect is not related to the mass
of the Dirac particle� it is plausible that we should not associate to b a power of m� For
the mass expansion of the vector component� we should thus collect all terms to a given
power of �� The contribution � �k to 
sPs � 
lPl takes� according to 
����� and 
�������
the form
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In order to obtain the correct behavior in the low	energy region� we must multiply this
formula by ��l and choose k � n � �� This explains the form of the square bracket
in 
������ The combination of the regularization functions g� h� and a in 
����� can be
understood exactly as in 
����� using power counting in m�

��



Our constructions so far were carried out for the case N � � of one Dirac sea� We
shall now generalize our regularization method to systems of Dirac seas as de�ned in ���
Section �� and will also introduce a compact notation for the regularization� We �rst
outline how chiral particles 
e�g� neutrinos� can be described� Without regularization ����
a chiral Dirac sea is obtained by multiplying the Dirac sea of massless particles with the
chiral projectors �L
R � �

� 
�� � 
��� for example in the vacuum and left�right handed
particles�

#P 
p� � �L
R p� �
p�� %
�p�� � 
�����

The most obvious regularization method is to deduce the regularized chiral Dirac sea from
a Dirac sea regularized with our above methods again by multiplying from the left with
a chiral projector� This simple method indeed works� under the following assumptions�
First of all� we must ensure that the regularized fermionic projector of the vacuum is a
Hermitian operator� To this end� we must assume that the scalar component � in 
�����
be identically equal to zero 
this generalizes the requirement of massless particles needed
in the case without regularization�� Hence we regularize 
����� by setting

#P 
p� � �L
R vj
p�

j f
p� �

The expansions near the light cone are then obtained from 
������
����� and 
������
�����
by setting the scalar regularization functions h and h�n
 to zero and by multiplying with
�L
R� Assuming furthermore that the external �eld is causality compatible ���� the for	
mulas of the light	cone expansion are regularized likewise by taking the regularizations

����� and 
����� with h set identically equal to zero� and by multiplying from the left
with a chiral projector �L
R� We next consider the generalization to systems of Dirac
seas� In the vacuum� we can describe a system of Dirac seas by taking� similar to the
construction in ��� Section ��� a direct sum of regularized Dirac seas and by using instead
of the chiral projectors �L
R the chiral asymmetry matrix X� Since we may choose the
regularization functions for each Dirac sea independently� this procedure clearly increases
the total number of regularization functions� However� it is natural to impose that the
regularization should respect all symmetries among the Dirac seas� More precisely� if the
fermionic projector of the vacuum contains identical Dirac seas 
e�g� corresponding to
an underlying color SU
�� symmetry�� then we will always use the same regularization
functions for all of these Dirac seas� Once the regularization has been speci�ed for the
vacuum� we can again apply the rules 
������
����� to regularize the light	cone expansion�
Namely� in the special case that the external �eld is diagonal in the Dirac sea index� we
can simply take the direct sum of the contributions 
������
������ using in each summand
the regularization functions of the corresponding vacuum Dirac sea� In the general case
of a non	diagonal external �eld� the regularization functions can be inserted uniquely if
one uses that� according to the assumption of macroscopic potentials and wave functions
of Subsection ���� the fermionic projector is modi�ed by the external �eld only on the
macroscopic scale� so that its microscopic structure is the same as in the vacuum� For
example� one can in the case of a gravitational and YM �eld make the external �eld lo	
cally to zero by transforming to a suitable coordinate sytem and gauge� can in this system
insert the regularization functions as in the vacuum� and can �nally transform back to
the original system� We conclude that the generalization of our regularization method to
systems of Dirac seas is quite straightforward and canonical� Therefore� we can introduce
a short notation for the regularizations of the factors T reg �n	 in the light	cone expansion
by simply adding a label for the order in the mass parameter� More precisely� we introduce

��



in the case N � � of one Dirac sea the following abbreviations for the Fourier integrals in
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In the case of a system of Dirac seas� we use the same notation for the corresponding
direct sum� With this notation� the regularization of the light	cone expansion is carried
out 
modulo all the contributions neglected in 
����� and 
������ merely by the replacement

mp T �n	
x� y�� T
�n	
�p
 � and by marking with brackets that the factors 
y � x�j


j and T
�n	
�p


belong together� where we use as in ��� �� the abbreviation � � y � x� We call a factor

�� inside the brackets 
��T
�n	
�p
 � an inner factor ��� Notice that the functions T

�n	
fpg in 
�����

involve the regularization function b� they will be needed below to handle contractions
between the inner factors�

We �nally come to the analysis of composite expressions in the fermionic projector� In
Subsection ���� we already discussed the simplest composite expression� the closed chain
P 
x� y� P 
y� x� in the vacuum� In order to analyze the closed chain near the light cone�
we substitute for P 
x� y� and P 
y� x� the regularized formulas of the light	cone expansion
and multiply out� It is convenient to use that the fermionic projector is Hermitian and
thus P 
y� x� � P 
x� y�� 
where ��� denotes the adjoint with respect to the spin scalar
product�� hence the light	cone expansion of P 
y� x� is obtained from that for P 
x� y� by
taking the adjoint 
with respect to the spin scalar product�� The iterated line integrals can
be multiplied with each other giving a smooth function� also we can simplify the resulting
product of Dirac matrices using their anti	commutation relations� Denoting the adjoints

of 
����� and 
����� by T
�n	
�p
 and 
��T

�n	
�p
 �� respectively� we thus obtain for the closed chain

a sum of terms of the following forms�
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where F is a smooth function in x and y� and nj� rj are integer parameters� Here the tensor
indices of the inner factors � are contracted either with each other or with tensor indices in
the smooth prefactor F � Actually� the closed chain is a too simple example for us� what we
really have in mind are Euler	Lagrange equations like 
������
������ Anticipating a result
in a forthcoming paper on the principle of the fermionic projector� we mention that the
analysis of such Euler	Lagrange equations can be reduced to products of the form 
������

if we allow for more than two factors T
��	
��
 � Hence our key problem is to mathematically

handle products of the form
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� � � T �nd	
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�����
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with � � a � b � c � d� parameters ni� pi� and tensor indices ji� Here the tensor indices
of the inner factors �i are again contracted either with other inner factors or with tensor
indices in the smooth prefactor� We mention for clarity that� since the factors in 
����� are
complex functions or� in the case N � � of systems of Dirac seas� direct sums of complex
functions� the product 
����� clearly is commutative�

The inner factors in 
����� can be simpli�ed using the particular form 
������
����� of

T
�n	
�r
 and 
�jT

�n	
�r
 �� We begin with the case of an inner factor which is contracted with a

tensor index in the smooth prefactor� i�e� with products of the form
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and a smooth vector �eld F � where �� � �� stands for any other factors of the form as in

������ According to 
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the light cone with ��� we conclude that� to leading order in 
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These relations coincide with what one would have expected naively� We next consider
the case of two inner factors which are contracted with each other� i�e� products of the
form
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In this case� the product cannot be calculated naively because the factor �j�
j � �� vanishes

on the light cone� But we can still compute the product using the Fourier representation

������ Since the s	 and l	directions are null� only the mixed products of the s	 and
l	components in 
����� contribute� and we obtain
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where we omitted for ease in notation the indices �reg��� and similarly for the two other
products in 
������ In the case of systems of Dirac seas� this calculation can be done for
each summand of the direct sum separately� Rewriting the Fourier integrals using the
notation 
����� and 
������ we get the following result�

Contraction rules� To leading order in 
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By iteratively applying 
����� and the contraction rules 
������
������ we can in 
�����
eliminate all inner factors �� and end up with products of the form


smooth function� T
�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� 
�����

with parameters ai� bi and p� q � �� where each subscript ��� stands for an index �r� or

frg� We call the product T
�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� a monomial�
We point out that the above transformation rules for the inner factors 
����� and


������
����� are identities valid pointwise 
i�e� for �xed x and y� close to the light cone�
We anticipate that Euler	Lagrange equations like 
������
����� do not lead us to evaluate
the products of the form 
����� pointwise� but merely in the weak sense 
this will be
explained in detail in the forthcoming papers on the principle of the fermionic projector��
Therefore� we now go over to a weak analysis of the monomials� In the case of a continuous
regularization� we thus consider the integralZ

d�x �
x� T
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� T
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with a test function �� Before coming to the derivation of calculation rules for the integrand
in 
������ we must think about how the test function � is to be chosen� As explained
in Subsection ��� in the example of the closed chain 
������ a weak integral in general
depends essentially on the unknown high	energy behavior of the fermionic projector and
is therefore undetermined� To avoid this problem� we must evaluate 
����� in such a way
that our expansions near the light cone become applicable� To this end� we assume that
� has its support near the light cone� meaning that in light	cone coordinates 
s� l� x�� x���
the �large� variable l satis�es on the support of � the conditions 
������ For clarity� we
remark that this de�nition does not state that the support of � should be in a small
neighborhood of the light cone� but merely in a strip away from the origin� This is
su
cient because we shall extract information on the behavior near the light cone by
considering the singularities of the integral for EP �
 
see ����� below�� Furthermore�
we assume that � is macroscopic in the sense that its partial derivatives scale in powers
of l�� or l��macro� Under these assumptions� the integrand in 
����� is macroscopic in l�
and carrying out the s	 and l	integrals in 
����� gives a function which is macroscopic in
the �transversal� variables x� and x�� Therefore in the three variables 
l� x�� x��� a weak
analysis is equivalent to a pointwise analysis� and thus it su
ces to consider the s	integral
in 
������ i�e� the expressionZ �
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for �xed l� x�� and x�� In the case of a discrete regularization� the integral in 
����� must
be replaced by a sum over all space	time points� i�e� we must consider instead of 
�����
the weak sum X
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where M 	 IR� are the discrete space	time points� and � is a macroscopic function in IR�

with support near the light cone� Up to a normalization factor� 
����� can be regarded
as a Riemann sum which approximates the integral 
������ Assuming that the space	time
points have a generic position in IR� and keeping in mind that the function inside the sum

����� is macroscopic in the variables l� x�� and x�� the Riemann sum and the integral
indeed coincide to leading order in 
lEP �

�� and 
lmacroEP �
��� Hence it is reasonable to

work also in the discrete case with the one	dimensional integral 
������
Let us analyze the integral 
����� in more detail� We �rst consider how 
����� scales in

the Planck energy� In the limit EP �
� the factors T
�n	
� go over to distributions which

are in general singular on the light cone� Hence their product in 
����� becomes ill	de�ned
for EP �
 even in the distributional sense� and thus we expect that the integral 
�����
should diverge for EP � 
� The order of this divergence can be determined using the
following power counting argument� Keeping in mind that the regularization functions
decay on the Planck scale u � EP � the Fourier integrals 
����� and 
����� behave on the
light cone 
i�e� for s � �� like

T �n	 � logg
EP �E
�n��
P

with g � � in the case n � � and g � � otherwise� Hence the product in the integrand of

����� scales on the light cone as

T
�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� � logg
EP �E
L
P 
�����

with an integer g � � and

L � p� q �
pX

j��

aj �
qX

k��

bk � 
�����

We call L the degree of the monomial� We restrict attention to the case L � �� In this case�
the product 
����� diverges in the limit EP �
 at least quadratically� If s is not zero� the

oscillations of the factor exp
�ius� in 
����� and 
����� lead to a decay of T �n	
� on the scale

s � E��
P � This consideration shows that the dominant contribution to the integral 
�����

when EP �
 is obtained by evaluating � on the light cone� and the scaling behavior of
this contribution is computed by multiplying 
����� with a factor E��

P � We conclude that

����� diverges in the limit EP �
� and its leading divergence is proportional to

�
s � �� logg
EP �E
L��
P with g � � � 
������

By substituting the Fourier representations 
����� and 
����� into 
������ one can rewrite
the products in 
����� as convolutions of the regularization functions 
this is explained
in detail in Appendix C for a particular choice of regularization functions�� This calcu	
lation� which is straightforward and shall not be given here� shows that� to leading order
in 
lEP �

�� and 
lmacroEP �
��� the integral 
����� is indeed proportional to 
������� this

calculation also allows one to compute the parameter g� Collecting the factors of l in

����� and 
������ we obtain the following result�

Weak evaluation of the monomials near the light cone� Consider the integral ���
��
for a monomial of degree L � �� Then there is an integer g � � and a real coe�cient creg
independent of s and l such that for every macroscopic test function ��Z �

��
ds � T

�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� �
creg

il�L

�
s � �� logg
EP � E
L��
P

� 
higher orders in 
lEP �
�� and 
lmacroEP �

��� � 
������

��



The coe
cient creg clearly depends on the indices of the monomial and on the details of
the regularization� We call creg a regularization parameter�

Integrals of type 
����� can be transformed using integration by parts� More precisely�

Z �

��
ds



d

ds
�

�
T
�a�	
� � � � T �bq	

� � �
Z �

��
ds �

d

ds



T
�a�	
� � � � T �bq	

�

�

������

� �
Z �

��
ds �




d

ds
T
�a�	
�

�
T
�a�	
� � � � T �bq	

� � � � �� T
�a�	
� � � � T �bq��	

�



d

ds
T
�bq	
�

��
�
������

where we applied the Leibniz rule in the last step� Di�erentiating 
����� and 
����� with
respect to s yields that

d

ds
T
�n	
� � �l T �n��	

� and
d

ds
T
�n	
� � �l T �n��	

� � 
������

With these relations� we can carry out the derivatives in 
������� Notice that the dif	
ferentiation rules 
������ decrease the index n by one� According to 
����� and 
�������

decrementing the upper index of a factor T
�aj	
� or T

�bk	
� increments the degree of the mono	

mial and yields in the weak integral a factor of the order EP�l� Using furthermore that �
is macroscopic 
as de�ned after 
������� we conclude that each summand in 
������ dom	
inates the left side of 
������ by one order in 
lEP � or 
lmacroEP �� We have thus derived
the following result�

Integration�by�parts rule� Consider a monomial of degree L � �� In a weak analysis
near the light cone� we have to leading order in 
lEP �

�� and 
lmacroEP �
���

T
�a���	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� � � � � � T
�a�	
� � � � T �ap��	

� T
�b�	
� � � � T �bq	

�

T
�a�	
� � � � T �ap	

� T
�b���	
� � � � T �bq	

� � � � � � T
�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq��	

� � � � 
������

This calculation rule yields relations between the monomials� In the case p � � of only
one factor T �a�	� one can by iteratively applying the integration	by	parts rule arrange that
a� is zero� thus it su
ces to consider monomials of the form

T ��	 T
�b�	
� � � � T �bq	

� with b� � � � � � bq� 
������

In the case p � �� one can likewise express every monomial as a unique linear combination
of monomials of the following form�

T
�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� with a� � a� � � � � � ap and b� � � � � � bq � 
������

as is veri�ed by simple induction� Notice that in 
������ and 
������� we ordered the

factors T
�aj 	
� and T

�bk	
� for increasing values of aj and bk� This does not completely �x the

ordering� namely one can arbitrarily reorder those factors for which the indices aj or bk
coincide� Since the products in 
������ and 
������ are commutative� con�gurations which
can be transformed into each other by such reorderings clearly describe the same monomial
and shall be identi�ed� We call the monomials of the form 
������ and 
������ the basic
monomials and the corresponding regularization parameters creg the basic regularization
parameters�

With the above constructions� we have developed the mathematical framework for an	
alyzing composite expressions in the fermionic projector in the continuum� Our procedure

��



is outlined as follows� We �rst substitute for the fermionic projector the regularized formu	
las of the light	cone expansion� this yields sums of products of the form 
������ where the
smooth prefactor involves the bosonic potentials and �elds as well as the wave functions
of the Dirac particles and anti	particles of the system� Applying our contraction rules� we
then eliminate all inner factors and obtain terms of the form 
������ When evaluated in
the weak sense 
������� the l	dependence determines the degree L of the monomial� and
the dependence on the regularization is described for each monomial by the corresponding
regularization parameters creg� Using our integration	by	parts rule� we can furthermore
restrict attention to the basic monomials 
�������
������ and the corresponding basic reg	
ularization parameters� As is shown in Appendix C for the physically most relevant case
p 
� q� the basic monomials are linearly independent in the sense that there are no further
identities between them� Therefore� it is a reasonable method to take the basic regulariza	
tion parameters as empirical parameters modelling the unknown microscopic structure of
space	time� If this is done� the composite expressions in the fermionic projector reduce to
expressions in the bosonic �elds and fermionic wave functions� involving a small number
of free parameters� This procedure for analyzing composite expressions in the fermionic
projector is called the continuum limit� In the forthcoming papers on the principle of
the fermionic projector� we shall apply these methods to variational principles like the
example described in Subsection ����

��



A Connection to the Fock Space Formalism

In this appendix it is shown that for an observer who is making measurements only in a
subsystem of the whole physical system� the concept of the fermionic projector is equivalent
to the fermionic Fock space formalism� assuming that the number of fermions of the whole
system is in�nite� The following consideration applies in the same way to either a space	
time continuum or to discrete space	time�

Let P be a fermionic projector acting on the vector space H� The observables cor	
respond to operators O on H 
for simplicity� we only consider one	particle observables�
the generalization to many	particle observables is straightforward by repeating the fol	
lowing argument on a �nite tensor product over H�� Our subsystem is described by a
non	degenerate subspace K 	 H� we decompose H as a direct sum H � K � L with
L � K�� We assume that the observables are localized in N � i�e� they are trivial on L�

OjL � ��jL � 
A���

We choose a 
properly normalized� basis ��� � � � ��n of the subspace P 
H� 	 H� and
decompose the states �j in the form

�j � �K
j ��L

j with �K
j � K � �L

j � L �

If we substitute into 
������ we obtain for the many	particle wave function the expression

� �
X

��P�n	


���j�j
�
��
j��

�K
j

�
A �

�
��
j 	��

�L
j

�
A � 
A���

where P
n� denotes the set of all subsets of f�� � � � � ng� For measurements in our subsystem�
we must calculate the expectation value ��jOj��F

�� where the operators O act on the
Fock space according to

O
�� � � � � ��n� � 
O��� � � � � ��n � �� � 
O��� � � � ��n � �� � � � � � 
O�n� �

and where ��j��F is the scalar product on the Fock space� induced by the scalar product
��j�� on H� It is useful to rewrite the expectation value with the statistical operator S�
i�e�

��jOj��F � trF 
S O� with S � j����jF �

where trF denotes the trace over the Fock space� Using 
A���� we can take the partial
trace over L and obtain� using 
A����

��jOj��F � trFK 
S
K O� with 
A���

SK �
nX

k��

X
�� �� � P�n	�
�� � ��� � k

c���� j �i�� �K
i �� �j��� �K

j jFK 
A���

c���� � 
���j�j�j��j � �i	�� �L
i j �j 	��� �L

j �F �

�We remark for clarity that this expectation value does not coincide with that of a measurement in
nonrelativistic quantum mechanics� Namely� in the continuum� the scalar product ��j�� involves a time
integration� But one can get a connection to nonrelativistic measurements by considering operators O
with a special time dependence �which� for example� act on the wave functions only in a short time interval
�t� t��t���

��



where trFK is the trace over the Fock space FK � ��
k�� �k K generated by K� Thus our

subsystem is described by a statistical operator SK on FK � which is composed of mixed
states consisting of di�erent numbers of particles� Since the constants c���� depend on the
wave functions �L outside our subsystem� we can consider them as arbitrary numbers�

In the limit when the number n of particles of the whole system tends to in�nity� 
A���
goes over to a statistical operator of the form

SK �
�X
k��

�X
�����

c
�k	
�� j��k	

� ���
�k	
� jFK 
A���

with arbitrary complex coe
cients c
�k	
�� and k	particle states �

�k	
� � F k

K � This statistical

operator di�ers from a general statistical operator SKgen in that it is diagonal on the k	
particle subspaces 
i�e� that the wave functions in the �bra� and in the �ket� of 
A��� are
both k	particle states�� more precisely� SKgen has� compared to 
A���� the more general form

SKgen �
�X

k�l��

�X
�����

c
�k�l	
�� j��k	

� ���
�l	
� jFK � 
A���

We remark for clarity that a pure state of the Fock space � � FK has a decomposition
� �

P�
k�� �k�

�k	� and thus the corresponding statistical operator is

S � j����jFK �
�X

k�l��

�k �l j��k	����l	jFK �

This statistical operator is a special case of 
A���� but it is not of the form 
A����
The di�erence between 
A��� and 
A��� becomes irrelevant if we keep in mind that

all physically relevant observables commute with the particle number operator� Namely
in this case� every expectation value reduces to the sum of the expectation values in the
k	particle Fock spaces�

trFK 
S
K
gen O� �

�X
k�l��

�X
�����

c
�k�l	
�� ��

�l	
� j O j��k	

� �FK

�
�X
k��

�X
�����

c
�k�k	
�� ��

�k	
� j O j��k	

� �FK �

If we choose the coe
cients c
�k	
�� in 
A��� to be c

�k	
�� � c

�k�k	
�� � these expectation values are

also obtained from the statistical operator SK �

trFK 
S
K
gen O� � trFK 
S

K O� �

We conclude that it is no loss of generality to describe the subsystem by the statistical
operator SK �

B The Regularized Causal Perturbation Theory

In Subsection ���� we gave a procedure for regularizing the formulas of the light	cone ex	
pansion 
������
������ We shall now derive this regularization procedure� The basic idea

��



is to extend the causal perturbation expansion ��� to the case with regularization� in such
a way that the causality and gauge symmetry are preserved for macroscopic perturba	
tions� Using the methods of ��� ��� one can then analyze the behavior of the so	regularized
Feynman diagrams near the light cone� For simplicity� we will restrict attention to the
�rst order in perturbation theory� But our methods could also be applied to higher or	
der Feynman diagrams� and the required gauge symmetry suggests that our main result�
Theorem B��� should hold to higher order in perturbation theory as well� Our analysis is
based on ��� ��� and we will use also the notation introduced in these papers�

We �rst state our assumptions on the fermionic projector of the vacuum� As in Sec	
tion �� we describe the vacuum by a fermionic projector P 
x� y� of the form 
����� with
vector	scalar structure 
������ For small energy	momentum� #P should coincide with the
unregularized fermionic projector of the vacuum� i�e�

#P 
k� � 
k� �m� �
k� �m�� %
�k�� if jk�j � EP and j�kj � EP � 
B���

Furthermore� we assume that the vector component is null on the light cone 
i�e� that 
�����
holds with �shear � ��� and that P satis�es all the regularity assumptions considered in
Subsections ��� and ���� For simplicity� we �nally assume that the support of #P lies in the
interior of the lower mass cone�

supp #P 	 fk j k� � � and k� � �g � 
B���

This last condition is quite strong� but nevertheless reasonable� In particular� it is satis�ed
when P is composed of one	particle states wich are small perturbations of the Dirac
eigenstates on the lower mass shell�

In this appendix� we shall address the question of how one can introduce a classical
external �eld into the system� For clarity� we will develop our methods mainly in the
example of an external electromagnetic �eld� As described in Subsection ���� we consider
the regularized fermionic projector as a model for the fermionic projector of discrete space	
time� In this sense� the regularization speci�es the microscopic structure of space	time�
Following the concept of macroscopic potentials and wave functions introduced in Subsec	
tion ���� the electromagnetic �eld should modify the fermionic projector only on length
scales which are large compared to the Planck length� but should leave the microscopic
structure of space	time unchanged� In order to ful�ll this requirement� we impose the fol	
lowing conditions� First of all� we assume that the electromagnetic �eld be �macroscopic�
in the sense that it can be described by an electromagnetic potential A which vanishes
outside the low	energy region� i�e�

#A
k� � � unless jk�j � EP and j�kj � EP � 
B���

where #A is the Fourier transform of A� We denote the fermionic projector in the presence of
the electromagnetic �eld by P �A��� In order to prevent that the electromagnetic potential
might in uence the microscopic structure of space	time locally� we demand that A can
locally be made to zero by a gauge transformation� Thus we impose that the usual
behavior under U
�� gauge transformations

P �A�� 
�����
x� y� � ei��x	 P �A��
x� y� e�i��y	 
B���


with a real function �� should hold also for the regularized fermionic projector� assuming
that the involved potentials A and 
A � ��� are both macroscopic 
B���� We point out

��



that� because of the gauge symmetry in discrete space	time 
following from the freedom
in choosing the gauge 
������� the local phase transformations in 
B��� are irrelevant in
the equations of discrete space	time� and thus the transformation law 
B��� implies the
freedom to transform the electromagnetic potential according to A� � A� � ���� Finally�
we must rule out the possibility that the electromagnetic potential might in uence the
microscopic structure of space	time in a nonlocal way� For this purpose� we impose that
the perturbation expansion for the regularized fermionic projector be causal� in the sense
introduced in ����

Let us consider how these conditions can be implemented in the perturbation theory
to �rst order� We �rst recall the standard perturbation theory for Dirac eigenstates� For
a solution � of the free Dirac equation 
i�� �m�� � �� the perturbation to �rst order in
A� which we denote by (��A��� is given by

(��A��
x� � �
Z
d�y sm
x� y� A�
y� �
y� � 
B���

where sm
x� y� is the Dirac Green"s function

sm
x� y� �

Z
d�k


����
PP

k� �m�

k� �m� e�ik�x�y	 � 
B���

and �PP� denotes the principal value 
see ��� �� for details�� If we consider sm
x� y� as the
integral kernel of an operator sm and the potentials as multiplication operators� we can
calculate (� in the case A� � ��� to be

(������ � �sm 
���� � � ism �i���m� �� �

� i

i���m�sm� � � � ism � 

i���m��� � i� � � 
B���

Thus in this case� (�
x� � i�
x� �
x� is simply the contribution linear in � to the phase
transformed wave function exp
i�
x�� �
x�� this shows explicitly that the perturbation
calculation is gauge invariant�

As a consequence of the regularization� the fermionic projector P 
x� y� is in general
not composed of Dirac eigenstates� Therefore� we next consider a wave function � which
is not necessarily a solution of the free Dirac equation� But according to 
B���� we may
assume that its Fourier transform #� has its support in the interior of the mass cone�

supp #� 	 fk j k� � �g � 
B���

In this case� we can introduce (��A�� as follows� The spectral projector p
 of the free
Dirac operator i�� corresponding to the eigenvalue � � IR has the form

p

x� y� �

Z
d�k


����
�
�� 
k� � �� �
k� � ��� e�ik�x�y	 
B���


see ���� notice that we added the step function �
�� to allow for the case � � ��� Since the
real axis is only part of the spectrum of the free Dirac operator 
namely� the free Dirac
operator has also an imaginary spectrum�� the spectral projectors 
p
�
�IR are clearly not
complete� i�e�

R�
�� p
d� 
� ��� By integrating 
B��� over ��

Z �

��
p

x� y� d� �

Z
d�k


����
%
k�� e�ik�x�y	 � 
B����

��



one sees more precisely that the operator
R�
�� p
d� is the projector on all the momenta in

the mass cone fk j k� � �g� But according to 
B���� � lies in the image of this projector�
and we can thus use the spectral projectors p
 to decompose � into eigenstates of the
free Dirac operator� Each eigenstate can then be perturbed using 
B���� This leads us to
introduce (��A�� according to

(��A�� � �
Z �

��
d� s
 A� p
 � � 
B����

This de�nition of (� shows the correct behavior under gauge transformations� namely�
we have similar to 
B����

(������ � i

Z �

��
d� s
 �i����� ��p
� � i�


Z �

��
p
 d�

�
�

�B���	��B��	
� i�� � 
B����

Thinking in terms of the decomposition 
���� of the fermionic projector into the one	
particle states� it seems natural to introduce the perturbation of the fermionic projector
(P �A�� by perturbing each one	particle state according to 
B����� This leads to the formula

(P �A�� � �
Z �

��
d� 
s
 A� p
 P � P p
 A� s
� � 
B����

The gauge symmetry can again be veri�ed explicitly� Namely� a calculation similar to

B���� using 
B��� yields that

(P �����
x� y� � i�
x� P 
x� y�� iP 
x� y� �
y� �

and this is the contribution linear in � to 
B���� The perturbation calculation 
B���� is
immediately extended to a general perturbation B as considered in ��� by setting

(P �B� � �
Z �

��
d� 
s
 B p
 P � P p
 B s
� � 
B����

Let us verify if the perturbation calculation 
B���� is causal in the sense of ���� Since
it seems impossible to write 
B���� in a manifestly causal form 
like e�g� ��� equation

������� we apply here a di�erent method� which allows us to analyze the causality of the
perturbation expansion in momentum space� As mentioned in ��� Section ��� the causality
of the perturbation expansion can be understood via the causality of the line integrals
over the external potentials and �elds which appear in the light cone expansion� More
precisely� causality means that the light	cone expansion of (P 
x� y� should involve only
line integrals along the line segment xy� but no unbounded line integrals like for exampleR�
� d� B
�y � 
� � ��x�� This way of understanding the causality of the perturbation
expansion yields a simple condition in momentum space� Namely if B has the form of a
plane wave of momentum q� i�e� B
x� � Bq exp
�iqx�� then the unbounded line integrals
become in�nite when q goes to zero 
for Bq �xed�� whereas integrals along the line segment
xy are clearly bounded in this limit� Hence we can say that the perturbation calculation

B���� is causal only if it is regular in the limit q � �� In order to analyze this condition�
we substitute the explicit formulas 
B��� and 
B��� into 
B���� and obtain

(P �B�
x� y� � �
Z �

��
d� �
��

Z
d�k


����

�



PP


k � q�� � ��

k� � q�� �� Bq 
k� � �� �
k� � ��� #P 
k� e�i�k�q	x�iky

� #P 
k� �
k� � ��� 
k� � �� Bq 
k� � q�� ��
PP


k � q�� � ��
e�ikx�i�k�q	y

�
�

��



We set q � �&q with a �xed vector &q and consider the behavior for �� �� Taking only the
leading order in �� one can easily carry out the �	integration and gets

(P �B�
x� y� � ��

�

Z
d�k


����
e�ik�x�y	

�



PP

�k&q � �&q�

k� Bq � Bq k�� #P 
k� � #P 
k� 
k� Bq � Bq k�� PP

��k&q � �&q�

�
�O
��� � 
B����

Since

lim
�
�

PP

�k&q � �&q�
� lim

�
�

PP

�k&q � �&q�
�

PP

�k&q

in the sense of distributions in the argument k&q 
notice that this kind of convergence is
su
cient using the regularity of #P �� the leading singularity of 
B���� for � � � has the
form

��

�

Z
d�k


����
e�ik�x�y	

PP

�k&q

h
fBq� k�g� #P 
k�

i
� 
B����

Taking the Fourier transform in the variable 
x � y�� it is clear that 
B���� vanishes
only if the commutator�anti	commutator combination �fBq� k�g� #P 
k�� is zero for all k�
Since the perturbation Bq can be arbitrary� one sees 
for example by considering a scalar
perturbation� Bq � ��� that it is a necessary condition for the perturbation calculation

B���� to be regular in the limit q � � that

�k�� #P 
k�� � � for all k� 
B����

This commutator vanishes only if the vector �eld v
k� in 
����� is a multiple of k� or� using
the notation of Subsection ���� if the surface states have no shear� We conclude that the
perturbation calculation 
B���� is in general not causal�

Before resolving this causality problem� we brie y discuss how this problem comes
about� The condition 
B���� can be stated equivalently that the operator P must commute
with the free Dirac operator� In other words� the perturbation calculation 
B���� is causal
only if the fermionic projector of the vacuum is composed of eigenstates of the free Dirac
operator� In this formulation� our causality problem can be understood directly� Namely�
since our perturbation method is based on the perturbation calculation 
B��� for Dirac
eigenstates� it is not astonishing that the method is inappropriate for non	eigenstates�
because the perturbation expansion is then performed around the wrong unperturbed
states� It is interesting to see that this shortcoming leads to a breakdown of causality in
the perturbation expansion�

In order to comply with causality� we must modify the perturbation calculation 
B�����
Our idea is to deduce the perturbation calculation for the fermionic projector from that for
a modi�ed fermionic projector� which satis�es the causality condition 
B����� The simplest
idea for modifying the fermionic projector would be to introduce a unitary transformation
#U
k� � U
�� �� which makes the vector v
k� in 
����� parallel to k� more precisely

#U
k��� vj
k� 

j #U
k� � �
k� k� with �
k� � IR�

However� a unitary transformation is too restrictive because it keeps the Lorentzian scalar
product v
k�� invariant� and thus cannot be used for example in the case where v
k� is
space	like� but k is time	like� Therefore� we shall consider here a linear combination of

��



unitary transformations� More precisely� we introduce for L � � and l � �� � � � � L unitary
operators #Ul
k� � U
�� �� and real coe
cients cl such that

LX
l��

cl
k� � � and vj
k� 

j �

LX
l��

cl
k� #Ul
k� �
k� k� #Ul
k�
�� 
B����

with �
k� � IR� The existence of 
 #Ul� cl� is guaranteed by the fact that the U
�� �� transfor	
mations comprise Lorentzian transformations ���� Clearly� the representation 
B���� is not
unique� According to 
B���� we can choose the transformation 
B���� to be the identity
in the low	energy region� and can thus assume that

#Ul
k� � �� if jk�j � EP and j�kj � EP � 
B����

Furthermore� the regularity assumptions and the particular properties of the fermionic
projector mentioned before 
B��� give rise to corresponding properties of the operators #Ul�
this will be speci�ed below 
see 
B���� and 
B������ The operators obtained by multipli	
cation with #Ul
k� in momentum space are denoted by Ul� they have in position space the
kernels

Ul
x� y� �

Z
d�k


����
#Ul
k� e

�ik�x�y	 � 
B����

Finally� we introduce the �modi�ed fermionic projector� Q by replacing the vector �eld
v
k� in 
����� by �
k� k�� i�e�

#Q
k� � 
�
k� k� � �
k� ��� f
k� � 
B����

According to 
B����� the fermionic projector P is obtained from Q by the transformation

P �
LX
l��

cl Ul QU��
l � 
B����

The modi�ed fermionic projector 
B���� satis�es the condition � #Q
k�� k�� � �� Hence
the perturbation calculation for Q does not su�er from our above causality problem� and
we can introduce (Q�B� in analogy to 
B���� by

(Q�B� �� �
Z �

��
d� 
s
 B p
 Q � Q p
 B s
� � 
B����

We now deduce the perturbation of P by applying to 
B���� a transformation analogous
to that in 
B����� namely

(P �B� ��
LX
l��

cl Ul (Q�B� U��
l 
B����

� �
LX
l��

cl

Z �

��
d� Ul 
s
 B p
 Q � Q p
 B s
�U

��
l � 
B����

This last transformation should not a�ect the causality 
in the sense of ���� because if

B���� is regular when the momentum q of the bosonic potential goes to zero� then the
transformed operator 
B���� will clearly also be regular in this limit� We call 
B���� the
regularized causal perturbation of the fermionic projector to �rst order�

��



The perturbation calculation 
B���� requires a detailed explanation� Qualitatively
speaking� the di�erence between 
B���� and 
B���� is that the spectral projectors p
� the
Green"s functions s
� and the perturbation operator B have been replaced by the unitarily
transformed operators

Ul p
 U
��
l � Ul s
 U

��
l � and Ul B U��

l � 
B����

and that a linear combination is taken� According to 
B����� the unitary transformations
in 
B���� have no in uence on the macroscopic properties of these operators� i�e� on the
behavior when these operators are applied to wave functions with support in the low	energy
region� But the transformation 
B���� changes the operators on the microscopic scale� in
such a way that causality is ful�lled in the perturbation expansion� We point out that
in the case where B is the usual operator of multiplication with the external potentials�
the transformed operator UlBU��

l is in general no longer a multiplication operator in
position space� thus one can say that the classical potentials have become nonlocal on
the microscopic scale� In order to better understand why the causality problem of 
B����
has disappeared in 
B����� it is useful to observe that Q commutes with the spectral
projectors p
� This means that Q is composed of eigenstates of the Dirac operator� so
that the perturbation expansion is now performed around the correct unperturbed states�

Let us consider a gauge transformation� In the case B � ���� the perturbation 
B����
is computed to be

(P ����� � i
LX
l��

cl

Z �

��
d� Ul 
s
 �i��� �� �� p
 Q � Q p
 �i��� �� �� s
�U

��
l

� i
LX
l��

cl

Z �

��
d� Ul 
� p
 Q � Q p
 ��U

��
l

�
LX
l��

cl



iUl�


Z �

��
p
 d�

�
QU��

l � iUlQ


Z �

��
p
 d�

�
�U��

l

�
� 
B����

By construction of #Q� we can assume that the distributions #P and #Q have the same
support� and thus 
B��� holds for #Q as well�

supp #Q 	 fk j k� � � and k� � �g � 
B����

Hence� according to 
B����� the projectors
R�
�� p
d� in 
B���� can be omitted� and we

conclude that

(P ����� �
LX
l��

cl
�
iUl�U

��
l UlQU

��
l � iUlQU

��
l Ul�U

��
l

�
� 
B����

If in this formula we were allowed to replace the factors Ul�U
��
l by �� we could substitute


B���� and would obtain the contribution linear in � to the required transformation law

B���� Indeed� the di�erence between � and Ul�U

��
l is irrelevant� as one sees in detail

as follows� We consider one summand in 
B���� and set for ease in notation U � Ul�
According to 
B����� the operators � and U�U�� coincide macroscopically 
i�e� when
applied to functions with support in the low	energy region�� and thus 
B���� yields gauge
symmetry on the macroscopic scale� However� such a macroscopic gauge symmetry is not
su
cient for us� namely� to ensure that the microscopic structure of space	time is not

��



in uenced by the electromagnetic �eld� it is essential that 
B��� holds even on the Planck
scale� In order to show microscopic gauge invariance� we consider the operator U�U�� in
momentum space�


U�U�� f�
q� �

Z
d�p


����
#U
q� #�
q � p� #U
p��� f
p� � 
B����

where #� is the Fourier transform of �� and f is a test function in momentum space� Since
we assume that the electromagnetic potential A� � ��� is macroscopic 
B���� the integrand
in 
B���� vanishes unless q�p is in the low	energy region� More precisely� we can say that

jq� � p�j� j�q � �pj � l��macro �

where lmacro denotes a typical length scale of macroscopic physics� Since the vector q � p
is in this sense small� it is reasonable to expand the factor #U
q� in 
B���� in a Taylor series
around p� As the operators #Ul are characterized via 
B����� we can assume that they
have similar regularity properties as P � In particular� we may assume that the partial
derivatives of #Ul
p� scale in powers of E��

P � in the sense that there should be a constant
c� lmacroEP such that

j�� #Ul
p�j �



c

EP

�j�j
for any multi	index �� 
B����

From this we conclude that the Taylor expansion of #U
q� around p is an expansion in
powers of 
lmacroEP �

��� and thus


U�U�� f�
q� �

Z
d�p


����
#U
p� #�
q � p� #U
p��� f
p�

� 
higher orders in 
lmacroEP �
���� 
B����

Using that #�
q � p� is a multiple of the identity matrix� the factors #U
p� and #U
p��� in

B���� cancel each other� We conclude that the operators U�U�� and � coincide up to
higher order in 
lmacroEP �

��� For the integral kernels in position space� we thus have


U�U���
x� y� � �
x� ��
x� y� � 
higher orders in 
lmacroEP �
���� 
B����

We point out that this statement is much stronger than the equality of the operators
U�U�� and � on the macroscopic scale that was mentioned at the beginning of this
paragraph� Namely� 
B���� shows that these operators coincide even microscopically� up
to a very small error term� Notice that it was essential for the derivation that � is a scalar
function 
for example� 
B���� would in general be false if we replaced � by A��� Using

B���� in each summand of 
B���� and applying 
B����� we conclude that

(P �����
x� y� � i�
x� P 
x� y� � iP 
x� y� �
y�

� 
higher orders in 
lmacroEP �
���� 
B����

This shows gauge symmetry of the perturbation calculation 
B�����
It is interesting that� according to 
B����� gauge symmetry holds only up to an error

term� This is unproblematic as long as the length scales of macroscopic physics are large
compared to the Planck length� But 
B���� indicates that the regularized causal perturba	
tion theory fails when energy or momentum of the perturbation B are of the order of the

��



Planck energy� In this case� the distinction between the �macroscopic� and �microscopic�
length scales� on which our constructions relied from the very beginning 
cf� 
B����� can
no longer be made� and it becomes impossible to introduce a causal and gauge invariant
perturbation theory�

We conclude the discussion of the regularized causal perturbation expansion by point	
ing out that our construction was based on condition 
B����� which is only a necessary
condition for causality� Hence the causality of 
B���� has not yet been proved� We shall
now perform the light	cone expansion of 
B����� This will show explicitly that the light	
cone expansion involves� to leading orders in 
lmacroEP �

�� and 
lEP �
��� no unbounded

line integrals� thereby establishing causality in the sense of ����
In the remainder of this appendix� we will analyze the regularized causal perturbation

calculation 
B���� near the light cone� Our method is to �rst perform the light	cone ex	
pansion of (Q� and then to transform the resulting formulas according to 
B���� to �nally
obtain the light	cone expansion of (P � In preparation� we describe how a decomposition
into Dirac eigenstates can be used for an analysis of the operator Q near the light cone� A
short computation using 
B���� and 
B���� yields that #Q can be represented in the form

#Q
k� �

Z �

��
d� w

�k� �
�� 
k� � �� �
k� � ��� %
�k�� 
B����

with the real	valued distribution

w

�k� � 
�
k� � � �
k�� f
k� and k
�k� � 
�
q
j�kj� � ��� �k�� 
B����

This representation can be understood as follows� According to 
B���� the distributions
�
�� 
k� � �� �
k� � ��� in the integrand of 
B���� are the spectral projectors of the free
Dirac operator in momentum space� The factor %
�k�� projects out all states on the
upper mass cone� and the function w

�k� multiplies the states on the lower mass shell

k � 
�
q
j�kj� � ��� �k� with a scalar weight factor� In this sense� 
B���� can be regarded

as the spectral decomposition of the operator Q into Dirac eigenstates� Notice that the
factor �
k� � ��� %
�k�� in 
B���� is the Fourier transform of the distribution Ta� 
�����
Exactly as described for the scalar component in Subsection ���� we are here interested
only in the regularization e�ects for large energy or momentum and may thus disregard the
logarithmic mass problem 
see ��� �� for details�� Therefore� we �regularize� Ta according
to 
���� and consider instead of 
B���� the operator

#Qreg
k� ��

Z �

��
d� �
�� w

�k� 
k� � �� T reg


� 
k� �

where T reg
a 
k� is the Fourier transform of 
����� We expand the distribution T reg


� in a

power series in ���

#Qreg
k� �

Z �

��
d� �
�� w

�k� 
k� � ��

�X
n��

�

n!
T reg �n	
k� ��n �

where T reg �n	 is given by 
����� Commuting the integral and the sum� we obtain

#Qreg
k� � ����
�X
n��

�

n!

�
g�n

�k� k� � h�n

�k�

�
T reg �n	
k� 
B����

��



with

g�n

�k� �
�

����

Z �

��
d� �
�� w

�k� �

�n 
B����

h�n

�k� �
�

����

Z �

��
d� �
�� w

�k� �

�n�� � 
B����

The representation 
B���� is very useful because it reveals the behavior of the operator Q
near the light cone� To see this� we consider the Fourier transform of 
B���� in light	cone
coordinates 
s� l� x�� x��� For the Fourier transform of the factor T reg �n	
k�� we have the
representation 
������ This representation can immediately be extended to the Fourier
transform of k� T reg �n	
k� by acting on 
����� with the di�erential operator i��� more pre	
cisely in light	cone coordinates y � x � 
s� l� x�� x���Z

d�k


����
k� T reg �n	
k� e�ik�x�y	

� � �

����

�il�n��

Z �

�



il 
s



�

un��

�reg
� 
n� �� 
l



�

un

�reg�
e�ius � 
B����

In order to treat the factors g�n
 and h�n
 in 
B����� we note that the Fourier transform
of 
B���� can be computed similar as described in Subsection ��� by integrating out the
transversal momenta according to 
����� and analyzing the remaining two	dimensional
Fourier integral 
����� with the integration	by	parts method 
������ If this is done� the
functions g�n
 and h�n
 appear in the integrand of 
������ Our regularity assumption on the
fermionic projector of the vacuum 
see Subsections ��� and ���� imply that g�n
 and h�n
 are

smooth functions� whose partial derivatives scale in powers of E��
P � Hence all derivative

terms of the functions g�n
 and h�n
 which arise in the integration	by	parts procedure 
�����
are of higher order in 
lEP �

��� Taking into account only the leading order in 
lEP �
��� we

thus obtain a representation of the fermionic projector of the vacuum involving only g�n

and h�n
 at the boundary v � �u� Comparing this representation with 
����� and 
B�����
we conclude that the Fourier transform of 
B���� is obtained� to leading order in 
lEP �

���
simply by inserting the functions g�n
 and h�n
 into the integrands of 
����� and 
B�����

evaluated along the line �k � 
kx � �u� ky � �� kz � ��� Thus

Qreg
s� l� � �
�X
n��

�

n!

�il�n��

Z �

�



�

un

�reg

e�ius h�n

u� du

�
�X
n��

�

n!

�il�n��

Z �

�



il 
s



�

un��

�reg

� 
n� �� 
l


�

un

�reg�
e�ius g�n

u� du

� 
higher orders in 
lEP �
���� 
B����

where h�n

u� and g�n

u� are the functions 
B���� and 
B���� with �k � 
��u� �� ���
The decomposition of the operator Q into Dirac eigenstates 
B���� is also useful for

analyzing its perturbation (Q�

Lemma B�� Let B
x� � C�
IR�� � L�
IR�� be a matrix potential which decays so fast at
in�nity that the functions xiB
x� and xixjB
x� are also L�� Then the light�cone expansion
of the operator (Q�B�� �B����� is obtained by regularizing the light�cone expansion of the
Dirac sea to �rst order in the external potential �	� as follows� A summand of the light�cone
expansion of the Dirac sea which is proportional to mp�

mp �iterated line integrals in bosonic potentials and �elds� T reg �n	
s� l� �

��



must be replaced by


��� �iterated line integrals in bosonic potentials and �elds�

�
�il�n��
Z �

��
du



�

un

�reg
e�ius �

�
h� p��

�

 for p odd

g� p
�

 for p even

� �rapid decay in l� � �higher orders in 
lEP �
��� 
lmacroEP �

���� 
B����

A contribution � mp which contains a factor 
y � x�j

j�

mp �iterated line integrals in bosonic potentials and �elds� 
y � x�j

j T reg �n	
s� l� �

is to be replaced by


��� �iterated line integrals in bosonic potentials and �elds�

�
�il�n��
Z �

��
du



�l 
s



�

un

�reg
� �in 
l



�

un��

�reg�

� e�ius �
�

h� p��
�


 for p odd

g� p
�

 for p even

� �contributions � 
�� 
��

� �rapid decay in l� � �higher orders in 
lEP �
��� 
lmacroEP �

��� � 
B����

In these formulas� g�n
 and h�n
 are the functions �B������B��
� with �k � 
��u� �� ���
Proof� By substituting 
B��� and 
B���� into 
B����� we obtain the following representa	
tion for (Q in momentum space�

(Q�B�


k �

q

�
� k � q

�

�
� �

Z �

��
d� �
�� 
k� �

q�

�
� �� Bq 
k� � q�

�
� ��

�
�

PP


k � q
��

� � ��
w

�k � �q

�
� T
�
k �

q

�
� � w

�k �

�q

�
� T
�
k �

q

�
�

PP


k � q
��

� � ��

�

�

Z �

��
d� �
�� 
k��

q�

�
� �� Bq 
k�� q�

�
� ��

� PP

�kq



w

�k �

�q

�
� T
�
k �

q

�
� � w

�k � �q

�
� T
�
k �

q

�
�

�
� 
B����

Since we are here interested in the regularization e�ects for large energy or momentum�
we may disregard the logarithmic mass problem and work on the level of the formal
light	cone expansion of ��� Section �� 
our constructions could be made rigorous using the
resummation method of ��� Section ���� As in ��� Section ��� we expand the distributions
T
� in a Taylor series in q and rewrite the resulting k	derivatives as derivatives with respect
to ��� This gives

T
�
k �
q

�
� �

�X
l�r��

clr 
�kq�l
�
q�

�

�r

T
�l�r	

� 
k� 
B����

with combinatorial factors clr whose detailed form is not needed in what follows� Next�
we expand 
B���� in a Taylor series in �� and obtain

T
�
k �
q

�
� �

�X
n�l�r��

cnlr �
�n 
�kq�l

�
q�

�

�r

T �n�l�r	
k� 
B����

��



with new combinatorial factors cnlr� We substitute the expansions 
B���� into 
B���� and
write the even and odd terms in kq together�

(Q�B�


k �

q

�
� k � q

�

�
� �

Z �

��
d� �
�� 
k� �

q�

�
� �� Bq 
k� � q�

�
� ��

�
�
�PP

�kq

�X
n�l�r��� l even

cnlr �
�n 
kq�l

�
q�

�

�r
T �n�l�r	
k�



w

�k �

�q

�
�� w

�k � �q

�
�

�

�
PP

�kq

�X
n�l�r��� l odd

cnlr �
�n 
kq�l

�
q�

�

�r

T �n�l�r	
k�



w

�k �

�q

�
� � w

�k � �q

�
�

��A � 
B����

We �rst consider the contributions to 
B���� for even l� These terms contain the factor

w

�k�

�q
���w

�k� �q

���� If the distribution w
 were a smooth function and its derivatives
had the natural scaling behavior in powers of the Planck length� we could immediately
conclude that jw

�k �

�q
���w

�k � �q

��j � j�qj j�w
j � 
lmacroEP �
��� and thus all the terms

for even l would be negligible� Unfortunately� the situation is more di
cult because w


is in general not a smooth function 
cf� 
B������ and we obtain the desired regularity in
�k only after the �	integration has been carried out� This makes it necessary to use the
following argument� Consider one summand in 
B���� for even l� After carrying out the
�	integration� this summand yields a �nite number of contributions to (Q
k � q

� � k � q
��

of the following form�

PP

kq

kq�l

�
q�

�

�r
� � � Bq � � � T �n�l�r	
k�



g
�k �

�q

�
�� g
�k �

�q

�
�

�
� 
B����

where each symbol �� � �� stands for a possible factor k� or q�� and where g is a scalar
function� which coincides with one of the functions g�n
 or h�n
 
see 
B���� and 
B������ As
already mentioned after 
B����� our regularity assumptions on the fermionic projector of
the vacuum imply that the functions g�n
 and h�n
� and thus also g� are smooth� and that
their derivatives scale in powers of the Planck length� We now transform 
B���� to position
space� Our regularity assumptions on B mean in momentum space that B
q� � C� � L��
As a consequence� we can carry out the q	integration in the Fourier integral and obtain a
contribution to (Q
x� y� of the form

Z
d�k


����
T �n�l�r	
k� �F 
k� x� y� �q�� F 
k� x� y���q�� e�ik�x�y	 
B����

with a 
matrix	valued� function F which is di�erentiable in �q and whose �q	derivative is of
the order E��

P � In the low	energy region� the function g in 
B���� is constant and thus F
is homogeneous in k of degree at most l��� After transforming to light	cone coordinates�
this implies that 
B���� is close to the light cone dominated by the fermionic projector of
the vacuum 
i�e� in light	cone coordinates� j
B����j � const
l� jP 
s� l�j�� The mean value
theorem yields that the square bracket in 
B���� is of the order 
lmacroEP �

��� and we
conclude that all summands in 
B���� for even l are of higher order in 
lmacroEP �

���
It remains to consider the summands in 
B���� for odd l� In this case� one factor kq

cancels the principal value� and we obtain

(Q�B�


k �

q

�
� k � q

�

�
� �

Z �

��
d� �
�� 
k� �

q�

�
� �� Bq 
k� � q�

�
� ��

��



�
�X

n�l�r��

Cnlr �
�n 
kq��l

�
q�

�

�r
T �n��l���r	
k�



w

�k �

�q

�
� � w

�k � �q

�
�

�

�
higher orders in 
lmacroEP �
��� 
B����

with some combinatorial factors Cnlr� This formula has similarities to the light	cone
expansion of the Dirac sea in momentum space ��� equation 
������� In ��� Section ��� we
proceeded by rewriting the factors kq as k	derivatives acting on T ��	� When taking the
Fourier transform� these k	derivatives were integrated by parts onto the exponential factor
exp
�ik
x�y�� to yield factors 
y�x�� After collecting and rearranging all resulting terms�
we obtained the line	integrals of the light	cone expansion� This method can be applied
also to the integrand of 
B����� and we can carry out the �	integration afterwards� We
shall not go through all these constructions steps in detail here� but merely consider what
happens in principle� Whenever a k	derivative �kj acts on the factors w
 in the integration	
by	parts procedure� we get instead of a factor 
y � x�j w
 
which is obtained when the
k	derivative acts on the exponential exp
�ik
x � y��� a factor �jw
� After carrying out
the �	integration� one sees that the resulting term is of higher order in 
lEP �

��� Thus
we can� to leading order in 
lEP �

��� neglect all derivatives of the factors w
� But then�
the integration	by	parts procedure reduces to the construction in ��� Section ��� and we
thus obtain precisely the line integrals of the light	cone expansion ���� Furthermore� we
can replace the factor 
w

�k �

�q
�� � w

�k � �q

��� in 
B���� by �w

�k�� because a Taylor
expansion of this factor around �q � � amounts� again after carrying out the �	integration�
to an expansion in powers of 
lmacroEP �

��� and it thus su
ces to take into account the
leading term of this expansion� These considerations show that the light	cone expansion
of 
B���� di�ers from that in ��� merely by the additional �	integration and the factor
w

�k�� Hence the light	cone expansion of 
B���� is obtained from that of the Dirac sea by
the following replacements�

mp T �n	
x� y� �
Z

d�k


����

Z �

��
d� �
�� �p T �n	
k� e�ik�x�y	 w

�k�

mp 
y � x�j

j T �n	
x� y� �

Z
d�k


����

Z �

��
d� �
�� �p 
��ik�� T �n��	
k� e�ik�x�y	 w

�k�


where we used that 
y � x�jT �n	
x� y� � ��xjT
�n��	
x� y�� see ��� equation 
������� The

lemma follows by carrying out the �	integrals applying 
B�����
B����� and by analyzing
the behavior near the light cone as explained before 
B�����

From this lemma� we can deduce the light	cone expansion of the regularized fermionic
projector�

Theorem B�� The light�cone expansion of the regularized causal perturbation �B��	� is
obtained by regularizing the light�cone expansion of the Dirac sea to �rst order in the
external potential �	� as follows� A summand of the light�cone expansion of the Dirac sea
which is proportional to mp�

mp �iterated line integrals in bosonic potentials and �elds� T reg �n	
s� l� �

must be replaced by ����
�� A contribution � mp which contains a factor 
y � x�j

j�

mp �iterated line integrals in bosonic potentials and �elds� 
y � x�j

j T reg �n	
s� l� �

is to be replaced by ����
�� In these formulas� g� h� a� and b are the regularization functions
introduced in Subsections ��� and ��	 �see ������� ������� ������� and ��������

��



Proof� As mentioned at the beginning of this appendix� we assume here that the vector
component is null on the light cone 
������ Let us consider what this condition tells us
about the operators Ul� According to 
B����� the operators #Ul are trivial in the low	energy
region� Conversely� for large energy or momentum� 
����� yields that the vector �eld v
k�
is parallel to k� up to a perturbation of the order �shear� Hence we can assume that the
transformation 
B���� is a small perturbation of the identity� in the sense that

cl j #Ul
k�� ��j � �shear for all k� 
B����

We next derive the light	cone expansion of (P by transforming the result of Lemma B��
according to 
B����� Since the transformation 
B���� is small in the sense of 
B����� it
leaves the iterated line integrals in 
B���� and 
B���� unchanged to leading order in �shear�
Hence it su
ces to consider the transformation of the u	integrals in 
B���� and 
B�����
The u	integral in 
B���� is as a homogeneous scalar operator invariant under the unitary
transformations� In the u	integral in 
B����� on the other hand� only the Dirac matrices

l and 
s are modi�ed� More precisely� we have to leading order in �shear�

LX
l��

cl 
 #Ul

s #U��

l �
u� v � �u� � 
s �
b�
u�

u�

l � 
contributions � 
�� 
��

LX
l��

cl 
 #Ul

l #U��

l �
u� v � �u� � 
l �
b�
u�

u�

s � 
contributions � 
�� 
��

with suitable regularization functions bs and bl which are small in the following sense�

b�
�
u�

u�
� �shear �

Notice that in the high	energy region u � EP � the contribution � 
l in the integrand of

B���� is smaller than the contribution � 
s by a relative factor of 
lEP �

��� Hence we can
neglect b�� whereas b� must be taken into account� We conclude that the transformation

B���� of the contributions 
B���� and 
B���� is carried out simply by the replacement


s � 
s �
b�
u�

u�

l � 
B����

It remains to derive relations between the regularization functions g�n
� h�n
� and bs�
which appear in the transformed contributions 
B���� and 
B����� and the regularization
functions g� h� a� and b in 
����� and 
������ For this� we apply the transformation 
B���� to
Qreg� 
B����� Exactly as described above� this transformation reduces to the replacement

B����� and we obtain the following expansion of the fermionic projector near the light
cone�

P reg
s� l� � �
�X
n��

�

n!

�il�n��

Z �

�



�

un

�reg
e�ius h�n

u� du

�
�X
n��

�

n!

�il�n��

Z �

�



il 
s



�

un��

�reg

� 
n� �� 
l


�

un

�reg
� il 
s b
u�



�

un��

�reg�

� e�ius g�n

u� du � 
higher orders in �shear� 
lEP �
����

��



Comparing this result with the formulas for the fermionic projector derived in Subsec	
tions ��� and ��� 
see 
������
����� and 
������
������� one gets the following identities
between the regularization functions�

g�n

u� � g
u� a
u�n � h�n

u� � h
u� a
u�n � b�
u� � b
u� �

We �nally explain in which sense the regularized causal perturbation theory is unique�
In order to ensure regularity of the perturbation theory in the limit when the momentum
q of the external �eld goes to zero� one must satisfy a causality condition similar to 
B�����
and to this end has to work with a modi�ed fermionic projector Q� Since we must modify
the direction of the vector �eld v� it is natural to describe the transformation from Q
to P by linear combinations of unitary transformations 
B����� Nevertheless� we remark
that one could just as well work with a di�erent or more general transformation Q� P �
The reason is that the particular form of this transformation enters only in the proof
of Theorem B��� and we use merely that this transformation is close to the identity� in
the sense similar to 
B����� Hence the restriction to transformations of type 
B���� is no
loss in generality� Furthermore� we point out that the gauge symmetry 
B���� uniquely
determines the precise form of how the potential B enters into the perturbation calculation

e�g� one may not replace B in 
B���� by U��

l BUl�� We conclude that our construction of
the regularized causal perturbation theory is canonical up to the freedom in choosing the
coe
cients cl
k� and the unitary transformations #Ul
k�� By assuming regularity 
B����
and the bound 
B����� the arbitrariness in choosing 
cl� #Ul� was constrained so much that
it has no in uence on the regularization of the light	cone expansion� Indeed� the cl and
#Ul do not enter the statement of Theorem B��� Thus we can say that the regularized
causal perturbation expansion is unique up to contributions of higher order in 
lEP �

���

lmacroEP �

��� and �shear�

C Linear Independence of the Basic Monomials

In this appendix� we shall prove the following theorem�

Theorem C�� We consider for given p and q� p 
� q� the basic monomials ���
��� or
���
��� and evaluate them according to ���
�� weakly near the light cone� to leading order
in 
lEP �

�� and 
lmacroEP �
��� If the weak integral over a linear combination of the basic

monomials vanishes for every choice of � and the regularization functions� then the linear
combination is trivial�

Before coming to the proof� we make a few remarks� Notice that we consider only the

case p 
� q where the number of factors T
�aj	
� and T

�bk	
� are di�erent� Indeed� this is the

case relevant for our applications� The case p � q is a bit more complicated because

the monomials are then 
up to a sign� invariant under the transformation T
�aj	
� � T

�bj	
� �

which exchanges the �rst p and the last p factors of the monomial� as one sees by taking
the complex conjugate of 
������� But taking into account this additional symmetry� the
statement of our theorem and its proof could be extended immediately�

We point out that Theorem C�� does not imply that the basic monomials are inde	
pendent in the sense that� by choosing suitable regularization functions� the basic regu	
larization parameters can be given arbitrary values� Theorem C�� states that there are
no identities between the basic monomials� but the basic regularization parameters might

��



nevertheless be constrained by inequalities between them 
e�g�� certain regularization pa	
rameters might be always positive�� Furthermore� we remind that the assumption of half
occupied surface states 
cf� the last paragraph of Subsection ���� yields the relation 
�����
between the regularization functions� which might also give constraints for the regular	
ization parameters� For these reasons� one should in applications always verify that the
values for the basic regularization parameters obtained in the e�ective continuum theory
can actually be realized by suitable regularization functions�

Proof of Theorem C�
� The proof is organized as follows� We �rst calculate for a given
monomial the weak integral 
����� to leading order in 
lEP �

�� and 
lmacroEP �
��� choosing

a class of regularization functions which is particularly easy to handle� By analyzing the
dependence on the regularization� we shall �nd a procedure for reconstructing the indices
aj and bk of the basic monomial from the weak integral� Then we will generalize this
construction� with the goal of determining also the lower indices ��� of the monomial� We
conclude the proof indirectly� Namely� assuming a non	trivial linear combination of basic
monomials which vanishes independent of the regularization� we show that at least one
coe
cient of the linear combination must be zero� giving a contradiction�

Before beginning� we reduce the problem to the case p � q as follows� If p � q� we
take the complex conjugate of the basic monomials 
������ or 
������ and revert the roles
of p and q� This yields the monomials

T
�a�	
� � � � T �ap	

� T ��	 with a� � � � � � ap 
C���

and

T
�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� with a� � � � � � ap and b� � b� � � � � � bq � 
C���

respectively� By iteratively applying the integration	by	parts rule 
������� the monomials

C��� and 
C��� can be transformed into linear combinations of the monomials 
������ with
p � q� As is easily veri�ed by going through the combinatorics� this transformation yields a
one	to	one mapping between linear combinations of 
C��� or 
C��� and linear combinations
of the corresponding basic monomials 
������� Hence the linear independence of the basic
monomials 
������ implies the linear independence of both 
C��� and 
C����

We consider for given integers n�� � � � � np�m�� � � � mq � � the following integral over a
product�

E ��
�

��

Z �

��
f �n�	 � � � f �np	 f �m�	 � � � f �mq	 ds � 
C���

where the functions f �n	 are de�ned as the Fourier integrals

f �n	
s� �

Z �

�
un e

� u
�EP e�ius du � 
C���

and f �n	 is the complex conjugate of f �n	� Exactly as required for the Fourier integrals

����� and 
������ the integrand in 
C��� decays on the Planck scale u � EP � Working
with an exponential decay is particularly convenient because� after substituting 
C��� into

C��� and carrying out the s	integration� all exponential factors can be taken out of the
resulting convolution integrals� More precisely� we obtain

E �

Z �

�

p�n�	 � � � � � p�np	�
u� 
p�m�	 � � � � � p�mq	�
u� e

� u
EP du � 
C���

��



where p�n	 is the polynomial p�n	
u� � un� and the convolution ��� is de�ned by


f � g�
u� �

Z u

�
f
v� g
u� v� dv � 
C���

The convolution of two polynomials is computed using integration by parts to be


p�n�	 � p�n�	�
u� � un��n���
Z �

�
tn� 
�� t�n� dt

� un��n��� n�
n� � �

Z �

�
tn��� 
�� t�n��� dt � � � � � n�! n�!


n� � n� � ��!
p�n��n���	
u� �

By iteratively applying this identity in 
C���� we can calculate all convolutions and obtain

E �
n�! � � � np!

N � p� ��!

m�! � � � mq!


M � q � ��!

Z �

�
uN�M�p�q�� e

� u
EP du �

with

N �
pX

j��

nj and M �
qX

k��

mk �

We �nally carry out the remaining u	integral to conclude that

E �
n�! � � � np!

N � p� ��!

m�! � � � mq!


M � q � ��!

N �M � p� q � ��! EN�M�p�q��

P � 
C���

Suppose that the weak integral 
����� is given to leading order in 
lmacroEP �
�� and


lEP �
��� for any choice of � and the regularization functions� We will now show how this

information can be used to reconstruct the indices aj and bk of the monomial� First� we
substitute the Fourier representations 
����� and 
����� into 
������ Collecting the powers
of l� one sees that 
����� � l�L with L given by 
������ We choose the regularization
functions as

g
u� � h
u� �

�
�� � p�qX

j��

�j u
�j

�
A e

� u
�EP %
u� � a
u� � b
u� � � 
C���

with real parameters �j and integers �j with

�j � �
p� q� � L � 
C���

Furthermore� we choose the test function to be one on the light cone� �
s � �� � ��
Then� to leading order in 
lEP �

�� and 
lmacroEP �
��� the integral 
����� is computed by

evaluating � on the light cone and rewriting the products as convolutions in momentum
space� More precisely�Z �

��
ds � T

�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

�

� c 
il��L
Z �

�

e�a�	 � � � � � e�ap	�
u� 
e�b�	 � � � � � e�bq	�
u� e�

u
EP du 
C����

with a real constant c � ��� and the functions

e�n	
u� �

�
�� � p�qX

j��

�j u
�j

�
A
 �

un

�reg

C����

��




��� is again the convolution 
C����� Notice that the expression 
C���� with e�n	 according
to 
C���� is a polynomial in the variables �j� The coe
cients of this polynomial are sums
of terms again of the form 
C����� whereby each factor e�n	 is to be replaced by either

u�n�reg or u�j�n� We want to pick the term which involves no factors 
u�n�reg and
contains each factor u�j�n� j � �� � � � � p � q� exactly once� and thus consider the Taylor
coe
cient

�

���
� � � �

��p�q

Z �

��
ds � T

�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� j��������p�q�� � 
C����

According to the bounds 
C���� both u�i�aj and u�i�bk are positive powers of u 
for every
i � �� � � � � p� q� j � �� � � � � p� and k � �� � � � � q�� Hence the convolution integrals obtained
when computing 
C���� are precisely of the form 
C��� and can be calculated according to

C���� Since we are interested only in the combinatorics of the two fractions in 
C���� it
is convenient to divide by the third and fourth factor in 
C���� This leads us to introduce
the function F by

F 
��� � � � � �p�q�

�

il�L

c R!ER��
P

�

���
� � � �

��p�q

Z �

��
ds � T

�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� j��������p�q�� �
C����

where c is the same constant as in 
C��� and

R � L� � �
p�qX
j��

�j �

Carrying out the partial derivatives with the product rule and applying 
C���� we obtain

F 
��� � � � � �p�q�

�
X

��S�p�q	


����	 � a��! � � � 
���p	 � ap�!


p� � �
Pp

j��
���j	 � aj��!


���p��	 � b��! � � � 
���p�q	 � bq�!


q � � �
Pq

k��
���p�k	 � bk��!
� 
C����

where S
p� q� is the set of all permutations of f�� � � � � p� qg�
In order to reconstruct the parameters �j and 	k from 
C����� we analyze the asymp	

totic behavior when the variables �j tend to in�nity� in successive order� We �rst consider
the asymptotics when �� �
 for �xed ��� � � � � �p�q� Using the formula

�!


�� n�!
�

�

�n

� �O
����� � 
C����

the summands of 
C���� are in the cases ���
�� � p or ���
�� � p to leading order in ��
proportional to

�
��p�

P
j� ��j	�
�

����j	�aj	

� and �
��q�

P
k� ��p�k	�
�

����p�k	�bk	

� � 
C����

respectively� Notice that the sum in the exponent on the left runs over p � � values for
j� whereas the corresponding sum on the right consists of q � � summands� Since p � q
and the �j are su
ciently large 
C���� we conclude that the power on the left of 
C���� is
larger than the power on the right� Furthermore� the power of �� becomes maximal when
the parameter a�����	� which does not appear in the sum on the left of 
C����� is minimal�

��



in other words when a�����	 � a�� Finally� the maximal power of �� is obtained for those
permutations for which the variables ���j	 in the sum on the left of 
C���� are minimal�
Therefore it is convenient to set 	k � �p�k� k � �� � � � � q� and to choose our variables like

��� � � � � �p � 	�� � � � � 	q �

Then to leading order in ��� 
C���� simpli�es to

C
X

��S�f������pg	

�
��p�

Pp

j
�
����j	�aj	

� 
����	 � a��! � � � 
���p	 � ap�!

�
X

��S�q	


	���	 � b��! � � � 
	��q	 � bq�!


q � � �
Pq

k��
	��k	 � bk��!
� 
C����

where S
f�� � � � � pg� denotes the set of all permutations of f�� � � � � pg� and C is a combi	
natorial factor which depends only on the parameters aj and bk� counting degeneracies
among these parameters 
the detailed form of C will not be needed here�� We next con	
sider the behavior of 
C���� when 	� becomes large� for all other parameters �xed� Again
using 
C����� we obtain to leading order in 	� the asymptotic formula

C
X

��S�f������pg	

���p�

pY
j��

�
�����j	�aj	
� 
���j	 � aj�!

�
X

��S�f������qg	

	��q�

qY
k��

	
�����k	�bk	
� 
	��k	 � bk�! 
C����

with a new combinatorial factor C� We divide 
C���� by the product of factorials

P ��

�
� pY
j��

�j !

�
A� qY

k��

	k!

�

C����

and consider the asymptotic behavior when the variables 	�� � � � � 	q� ��� � � � � �p tend to
in�nity� in the order given� Applying 
C���� in each step and picking those permutations �
and � which yield the largest power of the corresponding variable� we obtain the expression

C ���p� 	��q�

�
� pY
j��

�
aj��j
� �

�aj
j

�
A
� qY
k��

	bk��k� 	�bkk

�
� 
C����

According to its construction� this is a formula for F 
��� � � � � �p� 	�� � � � � 	q��P valid asymp	
totically if

�� � 	� � � � � � 	q � �� � � � � � �p � aj � bk � 
C����

The main simpli�cation compared to 
C���� is that the sum over the permutations has
now disappeared� By looking at the dependence of 
C���� on the variables ��� � � � � �p
and 	�� � � � � 	q� one can immediately determine the parameters a�� � � � � ap and b�� � � � � bq�
respectively� Since we are considering a basic monomial 
������� the parameter a� coincides
with a�� We remind that the degree L of the monomial is known from the l	dependence
of the weak integral 
see before 
C����� Thus we can apply 
����� to determine b�� This
concludes our procedure for reconstructing the indices aj and bk of the monomial�

��



We now turn attention to the lower indices ��� of the monomial� In order to distinguish
between square brackets� � � ���� and curly brackets� � � f�g� we modify the above
construction as follows� We choose the regularization functions g� h� and a as in 
C��� and
set

b
u� � � � � u	 
C����

with real parameters � and 
� � � 
 � �� We introduce the function H by adding to

C���� a �	derivative�

H

���� � � � � �p�q�

�

il�L

c R!ER��
P

�

��

�

���
� � � �

��p�q

Z �

��
ds � T

�a�	
� � � � T �ap	

� T
�b�	
� � � � T �bq	

� j
��j�� 
C����

with

R � L� � � 
 �
p�qX
j��

�j �

Carrying out the �	derivative with the Leibniz rule� one gets a sum of terms in which the �	

derivative acts always on one of the factors T
�aj	
f�g or T

�bj	
f�g � According to our ansatz 
C�����

taking the �	derivative of T
�n	
f�g yields an additional factor u	 in the Fourier integral 
������

If combined with 
u�n�reg� this additional factor amounts to the replacement n� n� 
�
Hence computing the products in 
C���� leads to convolutions of the form 
C���� with
the only di�erence that the involved powers nj and mj are no longer integer� but positive
reals� The formula 
C��� is still valid if one replaces the factorials by corresponding Gamma
functions� In the asymptotic region 
C����� we can again expand similar to 
C����� More

precisely� if the �	derivative in 
C���� acts on a factor T
�ai	
f�g with ai 
� a�� then the resulting

contribution toH

���� � � � � �p� 	�� � � � � 	q��P has in the region 
C���� the asymptotic form

n C ���p�	� 	��q� �	i�

�
� pY
j��

�
aj��j
� �

�aj
j

�
A� qY

k��

	bk��k� 	�bkk

�
� 
C����

where i� is the smallest index with ai� � ai� and n is a combinatorial factor counting the

number of factors T
�aj	
f�g with aj � ai� On the other hand� if the �	derivative in 
C����

acts on a factor T
�aj	
f�g with ai � a�� then ai � 
 will be smaller than all aj� � � j � p� and

thus the permutation leading to the largest power of �� in 
C���� will satisfy ���
�� � i�
Using furthermore that 
C���� depends on ���i	 and ai only in the combination ���i	� ai�
the replacement ai � ai � 
 can be stated equivalently as �� � �� � 
� This explains
why the resulting contribution to H

���� � � � � �p� 	�� � � � � 	q��P has in the region 
C����
asymptotically the form

n C 
�� � 
���p 	��q�

�
� pY
j��


�� � 
�aj��j �
�aj
j

�
A
� qY
k��

	bk��k� 	�bkk

�
� 
C����

where n again counts the number of factors T �aj	 with aj � ai� If the �	derivative acts on

the factors T
�bi	
f�g � we have similar formulas� namely in the case bi 
� b��

n C ���p� 	��q�	�

�
� pY
j��

�
aj��j
� �

�aj
j

�
A		i�

� qY
k��

	bk��k� 	�bkk

�
� 
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whereas for ai � a��

n C ���p� 
	� � 
���q

�
� pY
j��

�
aj��j
� �

�aj
j

�
A
� qY
k��


	� � 
�bk��k 	�bkk

�
� 
C����

Here i� in 
C���� is the smallest index with bi� � bi� and n again denotes combinatorial
factors� The asymptotic formulas 
C�����
C���� are promising because the dependence on
the parameters ��� � � � � �p� 	�� � � � � 	q� and 
 allows us to distinguish between the terms of
types 
C�����
C���� and makes it possible to determine the corresponding parameters i and
n� For clarity� we point out that that the condition 
 � � is needed in 
C���� to ensure the
correct ordering of the parameters a� � � � � � ai��� � ai��
 � ai��� � � � � � ap 
choosing

 � � would make it necessary to reorder these parameters� making our construction more
complicated�� Similarly� 
C���� holds only if 
 � �� In 
C���� and 
C����� however� the
condition 
 � � can be dropped� because the required orderings a� � 
 � a� � � � � � ap
and b� � 
 � b� � � � � � bq hold true even for large 
�

In order to get information also on the values r of the lower indices � � �r� or � � frg�
we must extend our construction as follows� We choose the function g as in 
C��� and the
other regularization functions according to

h
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�
� �

�X
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�i u
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�
A e

� u
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�X
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�X
k��

�k u
	k 
C����

with �j� �j as in 
C���� real parameters �i� 
k� and positive parameters �i� 
k� Generalizing
both 
C���� and 
C����� we introduce for integers A�B � � the functions

KAB
��� � � � � �A� 
�� � � � � 
B ���� � � � � �p�q�

�
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�
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�
�
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�
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ds � T
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� T
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k��j�� 
C����

with

R � L� � �
AX
i��

�i �
BX
k��


k �
p�qX
j��

�j �

After carrying out the derivatives with the Leibniz rule and expanding in the region 
C�����
we obtain in generalization of 
C���� and 
C�����
C���� for KAB�P a sum of terms of the
asymptotic form

C 
�� � x��
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��q
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where xj is the sum of the parameters 
k and �i corresponding to those derivatives �
k
and ��i which act on the factor T

�aj	
� � Similarly� yj encodes via a sum of the parameters

��




k and �i which derivatives act on T
�bj	
� � Generalizing our procedure in 
C����� where

we introduced the index i�� we here reorder those factors T
�aj	
� � for which the index aj

coincides� in such a way that the corresponding parameters xj are decreasing� More
precisely� after carrying out the derivatives in 
C���� with the Leibniz rule� we permute

the factors T
�aj 	
� with the same upper index such that if ai � aj for i � j� then xi � xj �

The degeneracies among the parameters bk are treated similarly� The combinatorics of all
these permutations is taken into account by the prefactor C in 
C����� Finally� we point
out that� similar as explained after 
C����� the asymptotic formula 
C���� is correct only
if

xj � � for j � �� � � � � p and yk � � for k � �� � � � ��

However� x� and y� may be chosen arbitrarily large�
Consider a non	trivial linear combination of basic monomimals� i�e� the expression

JX
���

c� T
�a�� 	
�� � � � T �a�p	

�� T
�b�� 	
�� � � � T �b�q 	

�� 
C����

with � � J � 
 and real coe
cients c� 
� �� where the notation �� points out that the
lower indices may depend on 
 � We assume that this linear combination vanishes in a
weak evaluation near the light cone to leading order in 
lEP �

�� and 
lmacroEP �
��� for

any choice of the regularization functions� Since the l	dependence of the weak integral
determines the degree of the monomial 
see before 
C����� we can assume that all the
monomials in 
C���� have the same degree L� We consider the functions KAB � 
C����� for
every monomial in 
C����� and extend them by linearity to the linear combination 
C�����
For every monomial in 
C����� we have for KAB�P in the region 
C���� the asymptotic
formula 
C����� In order to distinguish in 
C���� between the di�erent monomials� we
label the parameters xj and yk by an additional index 
 � Notice that the derivatives in

C���� give zero when A or B are chosen su
ciently large� also the number of monomials
in 
C���� is �nite� We shall in what follows consider the �nite number of con�gurations

A�B� where the derivatives in 
C���� do not give zero� for at least one of the monomials
in 
C����� By choosing 
k and �i small enough� we can arrange that

x�j � � and y�k � � for all 
 � f�� � � � � Jbg 
C����

and j � �� � � � � p� k � �� � � � � q� According to 
C����� �� is dominant parameter� Thus we
may restrict attention to those contributions 
C���� for which the order of �� is maximal�
i�e� to the monomials with

pX
j��

a�j � x�j � max
��f������Jg

pX
j��

a�j � x�j � 
C����

We select the monomials satisfying these conditions and denote the corresponding param	
eters 
 by 
 � A�� Out of the contributions satisfying 
C����� we pick those for which the
power of 	� is maximal�

qX
k��

b�k � y�k � max
��A�

qX
k��

b�k � y�k �

and denote the parameters 
 satisfying these conditions by 
 � A�� Next we choose the
monomials for which the power of 	� is maximal�

b�� � x�� � min
��A�

b�� � x�� �

��



and denote the corresponding parameters 
 by 
 � A�� Proceeding in this way for
the variables 	�� � � � � 	q and ��� � � � � �p� we end up with a non	empty index set � � 
 �
We conclude that� in the asymptotic region 
C���� and to leading order in the variables
��� 	�� � � � � 	q� ��� � � � � �p� it su
ces to consider those monomials with 
 � �� Using 
C�����
all of these monomials satisfy the conditions

a�j � max
���

a�j for j � �� � � � � p and b�k � max
���

b�k for k � �� � � � � q� 
C����

Furthermore� for the corresponding leading contributions to KAB�P of the form 
C�����

x�j � max
���

x�j for j � �� � � � � p and y�k � max
���

y�k for k � �� � � � � q� 
C����

Together with the degree formula 
����� and the condition for basic monomials a� � a�

see 
�������� the relations 
C���� yield that the parameters a�� � � � � � a

�
p and b�� � � � � � b

�
q are

independent of 
 � �� The relations 
C���� imply that the parameters x�� � � � � � x
�
p and

y�� � � � � y
�
q do not depend on 
 � �� too� We remind that the parameters xj and yk

determine how the �	 and �	derivatives act on the factors T
�aj	
� and T

�bk	
� � respectively�

Hence to leading order in the asymptotic region 
C����� the linear combination 
C����
reduces to a linear combination of monomials with �xed parameters 
aj � bk� and a �xed

con�guration of derivatives acting on the factors T
�a�	
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�ap	
� and T

�b�	
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bq
� � We

write the fact that this linear combination vanishes in the symbolic form

X
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where �j and �j are disjoint subsets of f�� � � � � Ag and f�� � � � � Bg� respectively� and
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As indicated by the dots in front of the factors T
�a�	
� and T

�b�	
� in 
C����� the con�guration

of the derivatives acting on these factors has not yet been determined� this is because 
C����
gives no information on x� and y�� In order to determine x� and y�� we go back to the
asymptotic formula 
C����� The di
culty is that the contributions to 
C���� involving the
highest powers of �� and 	�� which we considered so far� do not depend on x� and y�� But
we can use that� as mentioned after 
C����� both x� and y� can be chosen arbitrarily large�
and can in this way in uence 
C���� even when we restrict attention to the highest order
in �� and 	�� More precisely� we increase the parameters 
k and �i corresponding to those
partial derivatives� which are not written out in 
C���� and hence act on one of the factors

T
�a�	
� or T

�b�	
� � and choose them of the order 	�� This allows us to distinguish between all

of the con�gurations of the partial derivatives� We conclude that every con�guration of
the partial derivatives in 
C���� vanishes separately� i�e� again in symbolic notation�

X
���

c� 
�
��
� ���
 T

�a�	
�� � � � � 
��p� ��p
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where �j and �j are now partitions of f�� � � � � Ag and f�� � � � � Bg� respectively� Clearly� we
consider in 
C���� a con�guration of the derivatives which really appears� i�e� at least one
summand in 
C���� should be non	zero�

We choose from the �nite number of con�gurations 
A�B� under consideration those
con�gurations where A is maximal� and out of these con�gurations the one where B
is maximal� For this choice of A and B� the �	 and �	derivatives in 
C���� determine
the monomial� in the sense that every possible con�guration of the derivatives in 
C����
gives zero except for at most one 
 � � 
this is veri�ed by elementary combinatorics��
As a consequence� for our choice of A and B� the derivatives in 
C���� are non	zero for
exactly one summand� Hence in this summand� the coe
cient c� must vanish� giving a
contradiction�
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