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Abstract We consider a suitable weak solution to the three-dimensional
Navier-Stokes equations in the space-time cylinder 2x]0,7[. Let ¥ be the
set of singular points for this solution and X(¢) = {(x,t) € £}. For a given
open subset w C Q and for a given moment of time ¢ €]0, 7], we obtain an
upper bound for the number of points of the set X(¢) Nw.
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1 Introduction

The present paper deals with weak solutions to the three-dimensional Navier-
Stokes equations for viscous incompressible fluids

ow+div(iv®@uv)—Av=f—Vp,

(1.1)
dive =0

in the space-time cylinder Qr = Qx]0,T[, where © is a domain in R®, T is
a given positive parameter, v is the velocity field, p is the pressure and f
is a given external force. We are interested in differentiability properties of
functions v and p, assuming that:

v € Loo(0,T5 Lo(Q;R?)) N Ly (0, T; WiH(2; R?)),
(1.2)
peE L%(QT): f € LZ(QT;R?))a

and the local energy inequility holds. Weak solutions of such class are called
suitable weak solutions. They were studied in [7]-[9], [1], [5] and [4]. As far
as the author knows, the first precise and explicit definition of suitable weak
solutions appeared in [1]. However, changing the space for the pressure in an
approriate way, one can obtain other definitions of suitable weak solutions.
We prefer the definition given in [5] (for discussions see [4]).

To show why the notion of suitable weak solutions is so important, let us
recall two facts. At first, among of Hopf’s solutions to the initial-boundary
value problem for (1.1) with homogeneous Dirichlet boundary conditions
there is at least one suitable weak solution (see [1]). For the definition of
Hopf’s solutions and historical remarks we refer the reader to monographs
[2] and [3]. At second, every suitable weak solution possesses so-called partial
regularity (see [1], and also [5] and [4]). Namely, let ¥ be the set of singu-
lar points of a suitable weak solution, then the one-dimensional parabolic
Hausdorff measure of ¥ is equal to zero. As in [4], we say that a point of
space-time cylinder Q)7 is regular if the velocity field v is Hélder continuous
in some neighborhood of this point. A point of ()7 is called singular if it is
not regular.

The aim of our paper is to estimate the number of points in the set

E(to) Nw



for any open subset w C Q and for any moment of time t, €]0,T[. Here

Y(tg) = {(z,t) € L}.

2 Notation and the Main Result

We denote by M2 the space of all real 3 x 3 matrices. Adopting summation
over repeated Latin indices, running from 1 to 3, we shall use the following
notation

u-v=ug,  ul=vVu-u, u=(u) €ER, v=(v;) € R

A:B=trA*"B = Az]sza |A| = \/A . A,
A" = (Aji); trA=A;, A= (AZ]) S M3, B= (BZ]) S M3;
u@v = (uv;) € M*, Au= (Ajyu;) €eR®, wu,veR, AeM.
Let w be a domain in some finite-dimensional space. We denote by
Ly, (w; R?) and W) (w; R") the known Lebesgue and Sobolev spaces of func-
tions from w into R”.

For summable in Q7 = Q2x]0, T[ scalar-valued, vector-valued and tensor-
valued functions, we shall use the following differential operators

ov B ov

ov=—, v;= ,
T T o

Vp = (pi), Vu=(uy),

dive = Vi iy divr = (Tij,j); Au= dinu,

which are understood in the sense of distributions. Here z;, ¢« = 1,2, 3, are
Cartesian coordinates of a point z € R?*, and ¢ €]0,7[ is a moment of time.
Space-time points are denoted by z = (x,t), 2o = (o, ) and etc.

For balls and parabolic cylinders, we shall use the notation

B(zog,R) ={z € R® || |z — 20| < R},

Q(Zo,R) = B(l’o, R)X]to — R2,t0[.

We are going to use a ”parabolic” variant of Morrey’s spaces. Given
domain w in R* x R and positive number ~, we define the space

My (w; RY) = {f € Ly o (@i RY) | dy(f3w) < +00}.
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Here

d,(f;w) = sup {

(/ |f|2dZ’)é|| Q(z,R) €w, R > 0}.

Q(z,R)

RYt3

Definition 2.1 Let Q be a domain in R* and T be a positive parameter.
Suppose that a function f satisfies the condition

f € Moy (Qr; R) (2.1)

for some positive y. We say that a pair of functions v and p is a suitable weak
solution to the Navier-Stokes equations in Qr if v and p satisfy conditions
(1.2) and meet equations (1.1) in the sense of distributions, and the inequality

[ @, )Po(,t)dz+2 [ |Vo|P¢pdedt <
Q Qx]0,t]
(2.2)
< [ AlP@id+A9)+ (o] +2p)v - V§ +2f - v} dudi

Qx]0,¢[
holds for a. a. t € [0,T] and for all non-negative functions ¢ € C§°(Qr).

Our aim is to prove the following fact.

Theorem 2.2 Let vy be an arbitrary positive constant. Let {Q, T, f,v,p} be
an arbitrary collection, satisfying Definition 2.1 with this constant . There
s a positive number gg, depending only on v, with the following property. For
any open subset w C Q0 and for any moment of time ty €]0,T|, the inequality

to
1
N(to,w) < eo(7y) limsup —; dt/ lv(z,t)Pda (2.3)
R—0 R
_R2 w

holds. Here N(ty,w) = card{3(ty) Nw}, i.e. the number of points in the set
E(to) Nw.

We would like to mention interesting paper [6], containing some estimate
in the spirit of (2.3). The author of [6] considered any Hopf’s solution v
to the initial-boundary value problem for the Navier-Stokes equations with



homogeneous Dirichlet boundary conditions under the additional assumption
v € Loo(0,T; L3(2;R3?)). His upper bound for card{X(¢y)} is proportional to

||U ||?ioo(0,T;L3(Q;R3)) )

But, as it was shown in [11], from the assumption v € L (0,T; L3(Q; R?)) it
follows that, for any Hopf’s solution v to the initial-boundary value problem
mentioned above, one can define the associated pressure p so that the pair
of functions v and p is a suitable weak solution to (1.1). Therefore, (2.3)
implies the bound obtained in [6]. Moreover, even in this particular case our
estimate is slightly better since

to
1
lim sup 2 / dt/|v(ac,t)|3dx§ess sup /|U(a:,t)|3dx.
_R2 Q Q

R—0 0<t<to

In what follows we shall denote by ¢y, ¢o, and etc all positve absolute
constants, and by €y, €9, and etc all positve constants depending on v only.

3 The Main Lemma

Lemma 3.1 Assume that
f € MZ,w(QT) (3'1)

for some v > —1. Let functions v € L3(Qr;R®) and p € L%(QT) satisfy
equations (1.1) in Qr in the sense of distributions. Suppose that

Q(Z(h p) C QT-

Then the following estimate

=2l
-
[N
)
+
=
N———
—_
—
w
[\
SN—

D(z,75p) < ¢4 [%D(zo, p;p) + (g)Q(C(ZO, p;v) +d

holds for all r €]0, p]. Here d, = d,(f;Qr) and

R? R?
Q(z0,R) Q(20,R)

1 1
Clnti)=my [ 1oPds Demin=g [ it



Proof. We use arguments of [10] and [4] (see Lemma 5.3).
By assumptions of the lemma,

1l (—v-@tw—(v@)v):Vw—v-Aw)dz
Q(20,p)
(3.3)

:Q(wa) (f-w+pdivw)dz

for all w € C§°(Q(z0, p); R?). For any x € C°(ty — p?, 1) and q € C°(B(x,
p)), we substitute x V ¢ for w in (3.3). As a result, we obtain
— / xpAqdz = / X(f-Vq—i—(v@v) :V2q> dz.
Q(z0,p) Q(z0,p)

By the arbitrariness of x, for a.a. t € [ty — p?, 1], we have the identity

- [ pandg@de= [ (f(o0)- V@)

B(zo,p) B(zo,p) (3'4)
F(o(z,t) ®v(z,t)) : qu(ac)) dz
for all ¢ € C§°(B (w0, p)).
Let us define the function
p € Ly(QLeo, ) (35
in the following way. For a.a. t € [ty — p?, ty], it satisfies the identity
- [ n@nAg@)de= [ (1) V@)
B($07p) B(m():p) (36)

F(u(z,t) ® v(z, 1)) : V2q(ac)) da

for all ¢ € W3(B(xo, p)) such that ¢ = 0 on dB(zg, p). The existence of p,
satisfying (3.5) and (3.6), can be proved with the help of a priori estimate
for

| p1(-5 1) HL%(B(ﬂ?o,ﬂ))
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and suitable approximations for v(+, t) and f(-,¢). To obtain a priori estimate,
we solve, for a.a. t € [ty — p?, o], the following boundary value problem: to
find the function

such that
Ago(-,t) = —|pi (- 1) Psign {pr(-, )} in Blao, p),
q0(,t) =0 on JB(xo,p).
This problem is uniquely solvable. Moreover, for its solution the estimate

([ wacora) <2 [ [watora)’

B(zo,p) B(zo,p)

SCZ( / |p1(',t)|%dx)§, t € [to — p°, o,
B(z0,p)
is valid. From identity (3.6) for ¢(-) = qo(+,t) it follows that

([ wmeopa)

B(zo,p)
<al( [ weora) ol [ ireoia)]
B(zo,p) B(zo,p)
<al( [ weora) est( [ oineore)’
B(zo,p) B(zo,p)

After integration in ¢ over the interval |to — p?, to[, we arrive at the bound

[ |p1|§dz§c4[ [ |wPdz )
Q(20,p) Q(z0,p)

w

ot f dt( I |f(x,t)|2dx)1 (3.7)

to—p? B(z0,p)

3
< cﬁlp2{0(zo, p;v) + df,p%(7+1)}.

/
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According to (3.4) and (3.6), for a.a. t € [ty — p?, to], the function
P2=p—D
is harmonic in B(xy, p), i.e.
Aps(-,t) =0 in B(zo, p).

We therefore have

1
73

1
/ ol O do < s / pa( 1) da

B(zo,r) B(zo,p)
and after integration in ¢ we obtain
e} / P22 dz < 055 / |p2|? dz. (3.8)
Q(20,7) Q(z0,p)

On the other hand, by (3.7),

3
/ p2|? dz < cop? [D(Zo, ;) + C(20, p; v) + d‘ipg(w)] (3.9)
Q(Z():p)

Now, we have (see (3.7)-(3.9))

1 1
D(ZO;TQP)S@[T—Q / |p1|5dz+r—2 / |p2|5dz]

Q(zo,r) Q(z0,r)
1 3 r o1 3
§C7[—2 / Ip1]2 dz + —c5— / |p2|2d2’]
r p P
Q(zo,7) Q(zo0,r)

< CGED(Zo,p; p) + <§)2<C(Z’o,p; v) + dgp%*”)]
Lemma 3.1 is proved.
Corollary 3.2 Assume that all conditions of Lemma 3.1 hold. Let
Q(20, ) C Qr
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and a number 0 €]0,1[ is chosen so that

1
Then, for any k = 1,2, ..., we have
1 (e 1
1 i
D(z,0"R;p) < ﬁD(zo, R;p) + 0 Z W@(zo, 0'R;v), (3.11)
i=0

where .
q)(Z(], Jou U) = C(zo, 0; v) + d$p§(7+1)

Indeed, we can use Lemma 2.1 for r = *"'R and p = 6°R and obtain

1
D(z0, 0" B; p) < 5D (20,0 R:p) + 550 (20, 0°F;0)

1
02
for all s = 0,1,.... Iterating the latter inequality with respect to s, we
establish (3.11).

4 Proof of Theorem 2.2

So, we assume that all conditions of the theorem hold.
We take an arbitraty point zy € Qr. It was proved in [4] (see Proposition
2.8) that there is a positive number £y(y) with the following property. If

3 3 3 5
lim jnf | (= )"+ (=D, Rip)) | <& 1.1
im inf 47TC(20,R, v)) + p (20, R;p) < &o(7), (4.1)
then 2 is a regular point, i.e. the function z — wv(z) is Hélder continous
in some neighborhood of z;. But this immediately implies the following
important statement.

Proposition 4.1 Let {Q,T, f,v,p} be an arbitrary collection, satisfying Def-
inition 2.1 with given positive constant y. There is a positive number ()
with the following property. If zy € Qr is a singular point of v, then there is
a positive number Ry such that

C('ZO:R;'U) +D('207R7p) > 51(7) (42)
for all R €0, Ry|.



Proof. Sufficient condition (4.1) allows us to conclude that if z; is a singular
point, then there is a positive number Rj such that

(%C(ZO;R;U))% + (%D(ZOaREPD =z

for all R €]0, Ry[. Therefore,

N[5

(%C(ZO,R;U)) Py %D(zo, R;p) > 3[50(7)]

and, by Young’s inequality,

Njw

3 2 3 1
— =C (20, Ry v —D(zy, R;p) > =&
il R+ DG Rip) > gla)

for all R €]0, Ro[. It remains to take

min{ S [50()]1 1).

W

f1(7) = gla()

Proposition 4.1 is proved.
Without loss of generality it can be assumed that

R—0

to
1
A = lim sup 2 / dt/|v(x,t)|3dx < +o0.
_R? w

Let us take any finite subset o of X(ty) Nw. We let M = card{o} < +o0.
Theorem 2.2 is proved if we show that

M < o) A (43)
So, we have
o ={ahit, = {(z, to) iy € E(t) Nw.

By Proposition 4.1, for each [ = 1,2, ..., M, there is a number Ry > 0 such
that
C(zla R; 'U) + D(zla Rap) > 51(7) (44)

for all R €]0, Ry



Since w is an open set, one can choose a positive number R, > 0 so that
Ul]\ilB('xla R-i—) C w, (45)

and
B(.’L‘l,R+) ﬂB(wmaRJr) = ¢ (46)

for all ,m =1,2,..., M such that [ # m. If we let

R, = —min{Ry, Ro1, ..., Rom },

DO | =

then from (4.4) we obtain
C(z1, R;0) + D(z, By p) 2 e1(7) (4.7)

for all R €]0, R,[ and for all [ =1,2,..., M .
Now, we are going to use Corollary 3.2 and inequality (4.7) for R = 0% R,.
We therefore have (see (3.11))

1
C(z, 0" Ry; v) + ﬁD(Zz, Ry;p)
k-1

c 1 ;
+9—322k 1 (zl,HR* U)

> C(21, 0" Re;v) + D(2, 0" Ry p) > 1(7)

forall [ =1,2,...., M and and for all £ =1,2,....
Summing the latter inequalities with respect to [ and taking into account
(4.5) and (4.6), we arrive at the estimate

M

M
Mgl(’)/) S ZC(Z[,QICR*,'U Z Zl; *7p
=1
k
1
2

~.
Il
o
—
Il
_




Sl

-1
_l’_

¢ 1 i .,
9_; ok—1=i |:\I](t07 O'R;v) + Md2(0°R,)>0F |

U(to, p;v) _—Z/dt/|vxt|dx

to—p?

Il
o

where

Passing to the limit as £ — 400, we obtain

Me(y) < A

+ 5 Yim sup — 221[ (to,0'Ry; v )+Md§(0ZR*)g(l+7)].

02 k%+oo
It is easy to show that

lim sup — Zzl[ U(ty, 0 R,;0) + M d2 (0'R, i)

k%+oo

< lim sup [ (to, 0" Ry;v) + M d2 (6" R,)3 1+7>]

k—400

< A.

Now, from the latter inequality we deduce that

MEI( ) < A + 02 A
So, it remains to let
1
go(y) = (1+ 25)-
e1(7) 0?

Theorem 2.2 is proved.
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