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Abstract

Consider the problem of a compact� n�dimensional Riemannian manifold�

with�boundary � and the natural hyperbolic P�D�E� �Riemannian wave equa�

tion��

��u

�t�
� �gu ��	�
�

plus possible lower�order terms� where �g is the Riemannian Laplace operator�

or Laplace�Beltrami operator� of �� We consider the problem of the control in

time T of the wave equation from the boundary �� of �� by specifying Dirichlet

boundary controls on ��� �	� T �� The question we address is whether� for any

Cauchy data on � at the initial time t � 	� there is a choice of boundary control

which will achieve any prescribed Cauchy data at the terminal time t � T�

In order to reduce this controllability question to a computable problem

about geodesics on �� we pose the question� are chords unique� Here� a chord

is a length�minimizing geodesic of � joining two given points of ��� We assume

that any two points of �� are connected by at most one �and hence exactly

one� chord�

If� in addition� the chords are nondegenerate and �� has positive second

fundamental form� then the wave equation is controllable from �� in any time

T greater than the maximum distance in � between points of ���

This result provides a counterpoint to controllability theorems such as those

in �

�� ��� and ���� in which the existence of a convex function� and hence�

roughly speaking� an upper bound on sectional curvature� is assumed� We

require no direct hypothesis on the Riemannian metric in the interior of ��

�



� Introduction

Whenever one approaches a subject from two di�erent directions� there is

bound to be an interesting theorem explaining their relation�

Robert Hartshorne� Notices Amer� Math� Soc� April� ����� p� ����

Although the subject of boundary control of partial di�erential equations is

about a quarter of a century old� and that of Riemannian geometry much older still�

there has been relatively little interaction between the two� This is especially sur�

prising in view of the r�ole bicharacteristics play in boundary control� which naturally

bring to mind geodesics� a basic concept in Riemannian geometry�

One of the raisons d��etre of this conference is the belief that both subjects have

much to gain by closer interaction with one other� We hope that this paper makes a

� perhaps modest � contribution in that direction� To be more speci�c� we believe

there is a reservoir of as yet untapped Riemannian�geometric tools which could be

applied successfully in boundary control� As one example� we cite Theorem � of 	
��

which is crucial to the proof of Proposition ��� below� On the other side� we expect

that some of the compelling problems of the theory and applications of boundary

control will stimulate the disciplines of Riemannian and Lorentzian geometry to

undertake new areas of research�

Since our focus in this paper is on the relationship between Riemannian geometry

and boundary control� we shall not attempt here to express controllability in terms

of the optimal choice of Sobolev spaces� leaving such questions to other papers such

as 	
�� nor shall we attempt to �nd the optimal smoothness of the Riemannian

metric and of other coe�cients of the hyperbolic equation �see Michael Taylor�s

forthcoming book 	�
���

Consider a compact� n�dimensional Riemannian manifold�with�boundary �� We

assume that �� is smooth and nonempty� and that the metric of � is smooth� i�e��

C�� We are interested in the boundary control of the following natural hyperbolic
partial di�erential equation �Riemannian wave equation� on �� 	�� T � �

��u

�t�
� �gu ��
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i�j��

�

�

�
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�
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�
�����

for all �x� t� � ��	�� T �� where �x�� � � � � xn� are arbitrary local coordinates� gij�x� are
the entries of the inverse matrix to the coe�cients gij�x� of the Riemannian metric�

and � is the Riemannian volume integrand� ��x� �
p
det�gij�x��� We consider the

problem of the control in time T of equation ����� from boundary ���More precisely�

�



we consider the boundary conditions

u�x� t� � U�x� t� for all �x� t� on ��� 	�� T �������

where U � H������� 	�� T �� is the control� i�e� a function which may be chosen as

needed� The controllability question is whether� given any initial conditions

u�x� �� � u��x��
�u

�t
�x� �� � u��x�������

with �nite energy� there is a choice of controls U � H������� 	�� T �� such that the

solution of ����� with initial conditions ����� and boundary conditions ����� vanishes

identically on �� 	T���� Equivalently� we ask whether for some choice of controls

U the terminal Cauchy values vanish� u�x� T � � �� �u
�t �x� T � � � for all x in ��

More generally� we shall consider the hyperbolic equation with additional lower�

order terms�

��u

�t�
� �gu�

nX
i��

V i�x� t�
�u

�xi
� a�x� t�u ������

where �V �� � � � � V n� are the components� in any local system of coordinates x �

�x�� � � � � xn� for �� of a vector �eld V on �� and a � � � IR� The �rst�order termPn
i�� V

i�x� t� �u
�xi

is invariant under change of coordinates� We shall assume through�

out that V �x� t� and a�x� t� describe real�analytic mappings from t to the space of

smooth vector �elds and smooth functions� resp�� on ��

In section � below� we shall show how this control problem is related to a problem

about geodesics of �� namely� their maximum length before leaving �� In section �

below� we shall see how this geometric problem is related to the question whether

chords are unique� Here� a chord is de�ned to be a length�minimizing curve in �

joining two given points of ��� The existence of a chord joining any two points of

�� is well known� although in general it may have nongeodesic segments lying in

�� �see e�g� pp� ������� of 	���� If� however� we assume that �� is strictly convex�

that is� has positive second fundamental form� then for any length�minimizing curve

� � 	s�� s�� � � between two points of �� we have ���s�� s��� � � �see the proof of

Corollary ��� or Lemma ��� below�� In particular� every chord of � is a geodesic

in this case� We say that a chord � � 	s�� s�� � � is nondegenerate if there are no

conjugate points to ��s�� along ���s�� s��� �see Subsection ��� below��

Another way of viewing these hypotheses of chord uniqueness and nondegener�

acy is as follows� Consider any two boundary points p and q� Suppose that� among

all the light rays leaving q simultaneously and propagating in � �without re�ec�

tion�� only one ray reaches p �rst� This is equivalent to the uniqueness of chords�

Nondegeneracy of chords is equivalent to the statement that� in the situation just

�



described� when a ray leaving q turns out to be a chord from q to p� the boundary

point p depends in a di�eomorphic way on the initial direction of the ray at q �see

also the proof of Proposition ��
��

Theorem ��� Suppose that any two boundary points of the manifold � are con�

nected by a unique chord� which is nondegenerate� Assume that �� has positive

second fundamental form� Then the hyperbolic equation ����� is controllable from

�� in the sense of boundary conditions ���	� in any time

T � T� �� diam������

Here� the diameter of the boundary of � is the maximum distance between any

two of its points� with respect to the distance measured in �� that is� the length of

the longest chord of �� Our convention for the sign of the second fundamental form

is such that if � is a ball of radius r in IRn� with the Euclidean metric� then �� has

positive second fundamental form B � r��ds��
The �uniqueness� of a chord � � 	�� a� � � is understood modulo reparameteri�

zations s �� ��As�B� �A�B � IR� of the independent variable s�

We shall refer to the in�mal value T� as the �optimal time of control�� even

though T� itself may not be a control time�

As the reader will verify immediately� Theorem ��� follows from Proposition ����

Proposition ��� and Theorem ��� below� For the main geometric result of this paper�

some readers will prefer the statement of Theorem ��� over Theorem ����

Remark � A su�cient condition for the uniqueness of chords� and for their nonde�

generacy� is that for any point q � ��� the gradient of the distance function d���� q�
is a continuous function of p � ��� p �� q� In this case� the optimal time of control

T� is the maximum of d��p� q� over p� q � ��� No further information about the

coe�cients in the interior of � is required� See Proposition ��
 below�

If� on the other hand� information is available giving upper bounds on sectional

curvatures in various regions of �� then Corollary ��� below provides a useful crite�

rion for the time of boundary controllability�

Another su�cient condition for chord uniqueness is that every geodesic of �

starting from �� will leave � before any conjugate point appears� See Proposition

��� below�

In Section � below� we shall indicate how geometric methods may be introduced

for the analysis of a partial di�erential equation in IRn with coe�cients depending

on the space variables�

�



In Section �� we shall �rst outline some of the known concepts and results of

Riemannian geometry which will be relevant to the proof of our theorems� We

shall then introduce the main tools� including especially the chord map� to prove a

new geometric result �Theorem ����� which will be a key step towards the proof of

Theorem ����

In Section �� we shall present �ve explicit and� we hope� interesting examples

to illuminate the variety of Riemannian manifolds in terms of the existence of a

convex function� the uniqueness of chords� the nondegeneracy of certain geodesics�

and continuity� as opposed to smoothness� of the gradient of the distance function�

We shall also give criteria for the absence of conjugate points �Proposition �����

necessary conditions for the existence of a convex function �Proposition ����� and

necessary conditions for chord uniqueness �Proposition �����

In part II of this paper� we plan to treat the case where control occurs only on

a prescribed open subset of ���

The �rst author would like to acknowledge partial research support by the Max

Planck Institute for Mathematics in the Sciences� Leipzig� Germany� by the Univer�

sity of Melbourne� Australia and by Monash University� Australia�

� Geometry and Partial Di�erential Equations

This section and Section ��� below are of a tutorial character� and will outline

some well�known concepts and results of di�erential geometry� Speci�cally� we shall

illustrate here how Riemannian geometry can be introduced to aid in understanding

properties of a hyperbolic P�D�E� In the reverse direction� this framework may be

applied to any Riemannian manifold � which is di�eomorphic to the closure of a

smooth domain in IRn�

Consider a hyperbolic equation with time�independent coe�cients in a smooth

domain � � IRn �

��u

�t�
�

�

�xi

�
gij�x�

�u

�xj

�
� lower order terms�����

�the summation over � � i� j� k � n is implicit where the index appears twice in one

term�� For each x � �� let gij�x� be the inverse matrix of g
ij�x�� Then the metric

ds� � gij�x� dxi dxj makes � into a Riemannian manifold�with�boundary �see 	����

After adding appropriate lower�order terms� ����� becomes the Riemannian wave

equation ����� above� Observe that� since equations ������ ����� and ����� have the

same bicharacteristics� they will also have the same controllability properties �cf�

Proposition ��� below��
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The length of a curve in � is the integral of ds� and a geodesic is a curve � �

���� � � � � �n� � �a� b�� � which satis�es the equation

d��k
ds�

�  kij
d�i
ds

d�j
ds

� �������

Here  kij �  kij�x� are the Christo�el symbols� evaluated at x � ��s�� The Christo�el

symbols are the coe�cients of the Levi�Civita connection of �� determined by

� gkl  
l
ij �

�gik
�xj

	 �gij
�xk

�
�gkj
�xi

�

Given a vector �eld J � J i�s� �
�xi

���s�� along �� the covariant derivative J ��s� � DJ
ds

of J with respect to s may be written in terms of the Christo�el symbols�

J ��s� �
�
dJk

ds
�  kij���s��J

i�s�
d�j
ds

�s�

�
�

�xk
���s���

which is independent of the choice of coordinates� With this notation� the geodesic

equation becomes �����s� � ��

The hypothesis of Theorem ��� that �� have positive second fundamental form

at each point p � �� may be computed most easily by making a linear change of

coordinates so that the coordinate hyperplane xn � const� which passes through

p is tangent to �� there� and so that the nth coordinate vector is the inward unit

normal to �� at p� Let �� be represented locally as the graph xn � f�x�� � � � � xn����
Then one requires that the symmetric matrix with entries

Bij �  nij �
�f

�xi
 nnj �

�f

�xj
 nin �

�f

�xi

�f

�xj
 nnn�

� � i� j � n	�� evaluated at p� be positive de�nite� The matrix �Bij� represents the

second fundamental form of �� in these coordinates� Equivalently� if � is extended

to be a smooth subdomain of a Riemannian manifold M� one requires that any

geodesic of M which is tangent to �� at p remain outside of � to second order at p�

This property has been called �pseudo�convexity� in the P�D�E� literature� in this

paper� since we deal only with quantities which are invariant under smooth changes

of coordinates� the convexity of a domain with respect to the a�ne structure of IRn

will not be relevant�

� Bicharacteristics and Controllability

In this section� we shall indicate the relationship between the geodesics of the Rie�

mannian manifold � and the boundary controllability of equation ������ equation

����� or of equation ����� above�






For the two propositions below� we assume that � is a compact n�dimensional

Riemannian manifold�with�boundary� Let � be extended to become a subset of an

open n�dimensional Riemannian manifold M�

Proposition ��� Let M be a Riemannian manifold� Then the bicharacteristics of

equation ����� are the graphs in M�IR of geodesics of M� with unit�speed parameter

identi
ed with time � IR�

Proof� See 	��� p� ��
� Q�E�D�

Proposition ��� If every bicharacteristic in �� ��� T � enters or leaves �� ��� T �

across the lateral boundary �� � ��� T �� then boundary control is available in any

time 
 T� Conversely� if there is a single bicharacteristic in �� ��� T � that enters

� � 	�� T � through the open bottom � � f�g and leaves through � � fTg� without
hitting the lateral boundary� then boundary control in time T is not possible�

Proof� See 	���� where the proof� which is given for a bounded domain in IRn�

carries over without di�culty to manifolds� The assumption made in 	��� that the

coe�cients be real�analytic is easily removed in the case of time�independent C�

coe�cients� See for example 	��� p� ����� where a proof is given �in IRn� with optimal

Sobolev spaces� The proof of 	��� also works if the lower�order terms �i�e� not in

the principal part� are real�analytic mappings from t to the space of C� vector

�elds or C� functions on �� The proof should then be supplemented by uniqueness

theorem �� of 	���� Recent results in propagation of singularities by M� Taylor �see

	�
�� further indicate that the required smoothness in x of the coe�cients can be

reduced to C����

The converse follows from the propagation of singularities �see 	����� Namely�

initial data can be constructed which is not C� near a point inside � such that

this singularity is propagated along the bicharacteristic� without being a�ected by

boundary values� to form a singularity at time T inside �� Thus the solution cannot

have terminal Cauchy conditions u��� T � � �� �u
�t ��� T � � �� Q�E�D�

Remark � The reader might note� in particular� that if � contains a closed geodesic�

then boundary control is impossible in any �nite time�

Remark � It will be observed that if the hypothesis of the �rst part of Proposition

��� holds for a Riemannian manifold �� then it also holds for any compact subdomain

�� � ��

�



Corollary ��� If �� has positive second fundamental form� and if � is not simply

connected� then equation ����� is not controllable from the boundary in any 
nite

time�

Proof� Let �� be a non�contractible closed curve in �� The in�mum of lengths

of curves in the homotopy class of �� in � is assumed by a closed curve ��� Since

the second fundamental form of �� is positive� �� lies entirely in the interior ��

Otherwise� pushing o� locally from ��� with distance equal to a smooth nonnegative

function of small support on ��� would decrease length strictly� Therefore� �� is a

closed geodesic� The conclusion now follows from Remark �� Q�E�D�

� Chord Uniqueness and Identi�cation of Geodesics

��� Geodesics and Jacobi Fields in a Riemannian Manifold

Let � be a smooth� compact Riemannian manifold�with�boundary� of dimension

n� and write �X�Y � for the Riemannian metric applied to tangent vectors X�Y

at a point of �� A curve � � 	�� a� � � is a geodesic if its tangent vector ���s�
has vanishing covariant derivative along 	�� a� �see equation ����� above�� A curve

with constant speed and of shortest length among curves joining its endpoints is a

geodesic� as long as it remains in the open manifold �� although not all geodesics

have shortest length� even when they lie entirely in the open manifold �� Given

p� q � �� write d�p� q� for the in�mum of lengths of curves in � joining p to q� Since

� is compact� and assuming that �� has positive second fundamental form� any two

points p� q of � may be joined by a geodesic of minimum length d�p� q� �see 	��� pp�

���������

Where convenient� and without loss of generality� we shall assume that � is

a compact subset of an open Riemannian manifold M� from which it inherits its

Riemannian metric� In particular� at each point x � �� the tangent space Tx���

will be isomorphic to the vector space IRn�

Let �� � 	�� a��� � be a geodesic� Consider the linearized geodesic equation� or

Jacobi equation� for a vector �eld J�s� along �� �

J ���s� �R�����s�� J�s���
�
��s� � �������

Here� R��� ��� is the curvature tensor of the Riemannian manifold �� For example� if �
is an open subset of the n�dimensional sphere of radius r in IRn��� then R���� J�� � �
r��	���� � �� J	 �J� � �� ��� �see 	��� p� �
�� J ��s� and J ���s� are the �rst and second
covariant derivatives of J�s� with respect to s along ��� A solution to ����� is called

a Jacobi 
eld�

�



We begin by recalling three well�known facts about the Jacobi equation �see e�g�

	����

First� let f�� � 	� � 	 � �g be a one�parameter family of geodesics �� � 	�� a���
�� each parameterized with constant speed� Then the transverse vector �eld J�s� �
����s�
�� j��� is a Jacobi �eld� Conversely� any Jacobi �eld along �� arises as the

transverse vector �eld to some family f�� � 	� � 	 � �g of geodesics�
Next� if �� � 	�� a�� � � minimizes the length between its endpoints� then any

Jacobi �eld J�s� along �� with the initial condition J��� � � will remain nonzero

for � � s � a�� This is Jacobi�s theorem� see 	��� p� ���� As a partial converse� if

every Jacobi �eld along �� with the initial value zero remains nonzero on ��� a���

then �� has minimum length among curves connecting ����� with ���a�� and lying

in a su�ciently small neighborhood of ���	�� a���� This is proved by invoking the

Gauss Lemma and constructing a �eld of extremals� see 	��� p� ���

Last� a Jacobi �eld with initial inner products �J���� ���������J ����� �������
� � will remain orthogonal to the tangent vector ����s� on � � s � a��

We de�ne the sphere bundle S��� of � as the set of all �x�w� where x � �

and w is a unit tangent vector to � at x� Since the value of the constant speed

of a geodesic � will be unimportant� it will be convenient to use initial conditions

������ ������ � �x�w� � S��� for the geodesic equation� Then convergence of the

initial values � S��� is equivalent to convergence in C��	�� a��� of the unit�speed
geodesics� In the context of the sphere bundle� 
 � S���� � will denote the natural

projection 
�x�w� �� x�

For x � �� the exponential map expx � Tx� � � is de�ned on a star�shaped

subset of the tangent space Tx� so that for �x�w� � S��� and t 
 �� t �� expx�tw� �

��t� is the geodesic with initial conditions ���� � x� ����� � w�

The distance to the cut point c � S���� ����� is de�ned by

c�x�w� �� sup ft � expx�tw� is de�ned and d�x� expx�tw�� � tg �

According to the proof of Theorem ��� of 	��� the function c � S��� � �����

is continuous provided that � is compact and that any minimizing geodesic from

a point of � to a boundary point q is transversal to �� at q� We may de�ne a

star�shaped open set Ex � Tx� as ftw � Tx� � jwj � �� � � t � c�x�w�g � and write
Wx � � for its image under expx � Then �Wx � expx ��Ex� is called the cut locus of
x� Note that expx maps Ex di�eomorphically ontoWx� A cut point y � �Wx is either

a boundary point of �� the �rst conjugate point along a length�minimizing geodesic

from x �see section ��� below�� or the end point of two distinct length�minimizing

geodesics from x�






��� Conjugate points

Two points ��s�� and ��s�� of a geodesic � are called conjugate points if s� �� s�

and there exists a nontrivial Jacobi �eld J along � with J�s�� � � and J�s�� � ��

Although a chord� since it has minimum length� may in general have its end�

points conjugate to each other� no two interior points may be conjugate� by Jacobi�s

theorem� The case when a chord �� � 	�� a��� � has conjugate endpoints is therefore

somewhat special� and we have called such a chord degenerate�

Lemma ��� Suppose that �� has positive second fundamental form� Let � � 	�� a��
� be a geodesic with ���� � ��� Then � meets �� transversally at �����

Proof� Let � be extended as a Riemannian manifold to an open manifoldM� and

extend � as a geodesic to a longer interval 		b� d�� for some positive b� d� If �����
were tangent to ��� since the second fundamental form of �� is positive� ��s� could

only lie outside �� to second order as s� �� This would contradict the assumption

that ��	�� a�� � �� Q�E�D�

Our next result is essentially a consequence of the Gauss Lemma�

Lemma ��� Suppose �� has positive second fundamental form� Let � � 	�� a��� �

be a nondegenerate chord with unit speed� and write p� � ����� w� � ������ For
�p�w� � S���� write

�w�s� �� expp�sw��

Then there is a neighborhood V of �p�� w�� in S��� � 
������ such that for all

�p�w� � V� w points into �� and the maximal segment �w�	�� aw�� lying in � has

minimum length among those curves in � connecting p � �w��� to �w�aw�� In

particular� for all �p�w� � V� �w is a chord� Moreover� aw � aw�
� a� as �p�w��

�p�� w���

Proof� Recall that� since � is a chord� � � 	�� a�� � is an embedding� Since � is a

nondegenerate chord� there are no conjugate points to p� � ���� along ����� a��� Let

� be extended as a Riemannian manifold to an open manifold M� and extend � as

a geodesic to a longer interval 		b�� d�� on which � � 		b�� d���M is an embedding

and has no conjugate�point pairs�

Note that w� points into ��� by Lemma ���� If �p�w� � S�M� � 
������ is
su�ciently close to �p�� w��� the above properties of � will also be valid for �w�

by the continuous dependence of solutions of the Jacobi equation ����� on initial

conditions� That is� w points into ��� �w�	�� aw �� is a geodesic in � with endpoints

on ��� and there is a longer interval 		bw� dw� on which �w is an embedding into

��



M and has no conjugate�point pairs� By Lemma ���� aw depends continuously on

�p�w� � S�M� � 
�������
Fix w so that �w has the properties just discussed� Write y �� �w�	bw� � M�

Then as v ranges over a su�ciently small neighborhood of �w
��	bw� in the sphere

Sy�M�� we claim that the geodesics �v�	�� cv �� sweep out a neighborhood Uw of

�w��	bw� dw�� di�eomorphically� Here �v��� � y and we choose �v�cv� to be a point

inM near �w�dw� and after �v leaves �� such that cv is a continous function of v and

such that �v � 	�� cv � � M is an embedding without conjugate�point pairs� In fact�

the absence of conjugate points implies that the radial segment 	�� cv �v in Ty�M�

lies inside Ey� Therefore� �v� s� �� �v�s� is a local di�eomorphism on a neighborhood

of fwg � �	bw� dw�� and by suitable restriction� using the embedded property of

�w�		bw� dw��� we may obtain a di�eomorphism� as claimed� Let � � � be a lower

bound for the distance from �w�	�� aw�� to the complement of Uw inM� for all �p�w�

in a neighborhood of �p�� w�� in S�M��

We may now apply the Gauss Lemma to show that �w�	�� aw�� is the unique

curve of shortest length inside Uw joining �w��� to �w�aw�� Speci�cally� each point

z � Uw may be represented uniquely as z � �v�s� for a unit tangent vector v

at y near ��w�	bw�� This de�nes a smooth real�valued function s � s�z� on Uw�
The Gauss Lemma shows that on Uw� the Riemannian gradient of s�z� equals the
tangent vector to �v� so that any curve � has length at least as large as the change

in s along �� as long as � stays inside Uw� Therefore� any minimizing curve inside
Uw must be everywhere transverse or everywhere tangent to the family of geodesics

f�v � v � Sy�M�g� It follows that �w is the unique curve inside Uw of minimum

length between �w��� and �w�aw��

It remains to show that� if �p�w� � S�M� � 
������ is su�ciently close to

�p�� w��� then �w�	�� aw�� has shortest length among all curves in � joining �w��� to

�w�aw�� that is� that �w is a chord of ��

Otherwise� there are points pk in �� and �pk� wk� � Spk�M�� with �pk� wk� �
�p�� w�� as k � �� such that �wk

is not a chord� This means that for each k�

there is a unit�speed curve �k � 	�� Ck� � � from pk � �wk
��� to �wk

�awk
� which

is shorter than �wk
�	�� awk

��� Since �wk
has shortest length inside the open set Uwk

�

the curve �k must include at least one point �k�sk� in the complement of Uwk
in

�� After passing to a subsequence� we may assume that sk � s�� Ck � C� and

��k�sk�� �
�
k�sk�� � �z� v� � S���� But for all k� d��k�sk�� �wk

�	�� awk
�� 
 �� and

hence d�z� ��	�� a���� 
 ��

De�ne ��s� �� expz��s 	 s��v�� � � s � C�� Then �k � � in the C� norm as

k ��� so that ���� � p� and ��C�� � ��a��� By Lemma ���� � meets �� transver�

sally at ���� and at ��C��� We may compute that the lengths l��� � limk l��k� �

��



limk l��k� � l���� That is� � is also a chord� The uniqueness of � now implies that

� � �� which contradicts the fact that d���s��� ��	�� a���� 
 �� This contradiction

shows that �w is a chord of ��

The continuity of aw as a function of �p�w� � S��� follows from Lemma ���� as

noted above� Q�E�D�

Remark � For another variation on the proof of Lemma ���� see Step � of Example

��� below� In that example� the original chord is degenerate� but nearby geodesics

are free of conjugate points and are shown to be chords�

��� The Chord Map� and a Geometric Theorem

Assume that � has unique chords� Given p� q � ��� p �� q� and given � � s � d�p� q��

we de�ne the chord map

!�p� q� s� �� ���s�� ���s�� � S���

where � � 	�� d�p� q�� � � is the unique unit�speed chord joining p to q� �! will also

be de�ned at the diagonal p � q� below��

The domain of de�nition of !� as given above� may be written as U �� f�p� q� s� �
��� ��� IR � p �� q� � � s � d�p� q�g�

Lemma ��� Suppose that any two points of �� are connected by a unique chord

of �� and that �� has positive second fundamental form� Then ! � U � S��� is

continuous on U�

Proof� Consider sequences pk � p�� qk � q� and sk � s�� where pk� qk �
��� qk �� pk� � � sk � d�pk� qk�� Write �� � 	�� d�p�� q��� � � for the unique

unit�speed chord joining p� to q�� and write �k for the unique unit�speed chord join�

ing pk to qk� Then� by de�nition� !�pk� qk� sk� � ��k�sk�� �
�
k�sk�� and !�p�� q�� s�� �

����s��� �
�
��s���� After passing to a subsequence� we may assume that ��k�sk�� �

�
k�sk���

�x� v� in S���� Let � be the the geodesic in � with initial conditions ��s�� �

x� ���s�� � v and having the maximal domain of de�nition �the value s� is deter�

mined so that � enters � at s � ��� By the uniqueness of solutions to the initial�value

problem for the geodesic equation� we have � � ��� Since the limit is the same for

all subsequences� this shows that !�pk� qk� sk�� !�p�� q�� s��� Q�E�D�

The domain U is a ��n 	 ���dimensional manifold�with�boundary� which is not

compact because the diagonal fp � q� s � �g of �� � �� � IR has been omitted�

We shall de�ne a compacti�cation U of U� by adding to U� in place of each point

��



�p� p� ��� p � ��� a copy of the �n 	 ���sphere Sp�M� � Tp���� of unit tangent

vectors to the boundary of � at p� We shall also write this �n 	 ���dimensional

sphere as Sp����� U will become a compact topological manifold�with�boundary�

possibly with non�smooth boundary� By abuse of notation� we shall write �p� v� ��

for the point of UnU corresponding to �p� v� � Sp����� A sequence �pk� qk� sk� from

U will converge to the point �p� v� �� in UnU if and only if qk � p� sk � � and

�pk� vk� � �p� v�� where vk is the initial tangent vector to the chord from pk to qk�

Convergence within UnU will be equivalent to convergence in S����� The chord

map ! may then be extended to all of U by de�ning !�p� v� �� �� �p� v� � Sp����

for each �p� v� �� � UnU�

Lemma ��� Suppose that any two points of �� are connected by a unique chord

of �� and that �� has positive second fundamental form� Then ! � U � S��� is

continuous on U�

Proof� If �pk� qk� sk� � �p�� q�� s��� p� �� q�� then the conclusion follows from

Lemma ���� If �pk� vk� �� � UnU� and if �pk� vk� �� � �p� v� �� � UnU� then the

conclusion is immediate from the de�nition !�p� v� �� �� �p� v��

Suppose �pk� qk� sk� � �p� v� �� � UnU� Then by de�nition� !�pk� qk� sk� �

��k�sk�� �
�
k�sk��� where �k is the unit�speed chord from pk to qk� while !�p� v� �� �

�p� v� � Sp����� But �pk� �
�
k���� � �p� v� in S���� since �pk� qk� sk� � �p� v� ��� and

hence ��k�sk�� �
�
k�sk�� � �p� v�� This shows that ! is continuous on the compact

topological manifold�with�boundary U� Q�E�D�

We are ready to prove the following geometric theorem�

Theorem ��� Assume that the boundary �� of the compact Riemannian

manifold�with�boundary � has positive second fundamental form� Suppose that any

two points of �� are connected by a unique chord� which is nondegenerate� Then

any interior geodesic segment � � �b 	 �� b � �� � � may be extended to a geodesic

� � 	s�� s��� � which is a chord� that is� which realizes the minimum length between

two distinct points ��s�� and ��s�� in ���

Proof� Without loss of generality� we may assume that � is connected� otherwise�

we may work in the connected component of � containing ��b�� The conclusion is

immediate if the dimension n � �� we shall assume from now on n 
 ��

We shall show that the image !�U� of the chord map is both open and closed

in S���� Since S��� is a bundle with �ber Sn��� n 
 �� over the connected space

�� S��� is connected� it will then follow that ! is surjective�

��



To show that !�U� is open� �rst consider any point �p�� q�� s�� � U and denote

�x�� v�� �� !�p�� q�� s��� Write �� for the chord from p� � ����� to q� � ���a��� and

let w� � ������� Then �x�� v�� � ����s��� �
�
��s���� by de�nition of !� By Lemma ����

������ cannot be tangent to ��� and in fact must point into �� Meanwhile� from

Lemma ��� we know that there is a neighborhood V of �p�� w�� in S��� � 
������
such that every �p�w� � V is the initial datum ��w���� �

�
w���� for a chord �w �

	�� aw�� �� So in our case� for every �p�w� � V� �p�w� � ��w���� �
�
w���� where �w is

a chord� Now consider a unit vector �x� v� � S��� close to �x�� v��� Let � � 	�� a�� �

be the unit�speed geodesic with initial conditions ��s�� � x� ���s�� � v and having

maximal interval of de�nition 	�� a�� choosing the value s� � � so that � enters �

at s � �� Note that since ������ is not tangent to ��� if �x� v� is su�ciently close to
�x�� v��� then � must enter � nontangentially� Further� �p�w� �� ������ ������ will be
close to �p�� w��� in particular� we may achieve that �p�w� � V� But this implies that
� is a chord� Therefore !�p� ��a�� s�� � �x� v�� But �x� v� was an arbitrary point of

S��� near �x�� v��� so this shows that the restriction of ! to U is an open mapping�

Next� consider a point �p�� w�� �� � UnU� and recall that !�p�� w�� �� � �p�� w�� �
Sp������ Consider any point �x� v� � S��� close to �p�� w��� If x � �� and the vector

v points into �� or if x is not a boundary point� we form the geodesic � � 	�� a�� �

with ��s�� � x� ���s�� � v� ���� � ��� Since �x� v� is close to �p�� w��� we �nd that

also �p�w� �� ������ ������ is close to �p�� w��� and we conclude as before that �x� v�

is in the image of !� If x is a boundary point and v points out of �� we choose

p � x� w � 	v and the conclusion follows in the same way�
This shows that the image of ! � U � S��� is an open subset of S����

In order to show that !�U� is closed� we may apply Lemma ��� and recall that

U is compact� Q�E�D�

Remark � The reader might observe that under the hypotheses of Theorem ���� !

in fact maps U homeomorphically onto S���� This observation implies a necessary

topological condition for any manifold � satisfying the hypotheses of the theorem�

��� Criteria for Chord Uniqueness

We shall conclude this section with two criteria which imply certain of the hypotheses

of Theorem ���� The �rst is especially appropriate in a situation where observations

about � can only be made from its boundary�

Proposition ��� Assume that �� has positive second fundamental form� For 
xed

q � ��� let � � � � 	���� be given by ��x� �� d��x� q�
�� ��� If� for each q � ���

r� is continuous along ��� then any two points of �� are connected by a unique

��



chord� �	� If� moreover� for each q � ��� r� is continuously di�erentiable along

��� then the chords are nondegenerate�

Proof� Note that the distance function 
 ��
p
� is a solution of the Riemannian

Hamilton�Jacobi equation �r
�r
�� �� 
�q� � �� The unit vector r
�p� is the
�nal tangent vector to a chord from q to p�

��� Of course� in general the �rst derivatives of the Lipschitz function 
 need not

exist everywhere on ��nfqg� Our assumption here implies that r
�p� does exist at
each p � ��� p �� q� and is continuous there� Then the chord from q to p is unique�

Namely� if there were two chords � and � from q to p� then they would have distinct

terminal tangent vectors� by the uniqueness of solutions to the Cauchy problem for

the Jacobi equation ������ But then the chord from q to a point x � �� near p would

jump from a chord near � to a chord near �� as x moves past p in the direction of

the di�erence of �nal tangent vectors ���
�p�� 	 ���
�p��� contradicting continuity
of r
�p��

��� Now suppose that for all q � ��� the gradient r
 is continuously di�eren�
tiable along ��nfqg� In terms of the chord map !� this means that �p�r
�p�� �
!�q� p� 
�p�� is continuously di�erentiable as a function of p � ��� p �� q� for any

�xed q � ��� But the chord � from q to p� since it is a solution of the system

����� of ODE�s� depends smoothly on its terminal conditions ���
�p��� ���
�p��� �
!�q� p� 
�p��� In consequence� its initial values ������� ������ � !�q� p� �� � Sq���

depend on p in a C� manner� For similar reasons� !�q� p� 
�p�� depends smoothly on

!�q� p� ���� Thus� the correspondence p �� !�q� p� ��� is a C� local di�eomorphism

from ��nfqg to Sq����
Consider a chord �� from q to p� � ��� and let f�� � 	� � 	 � �g be a smooth

one�parameter family of geodesics starting from q � ������ with
�
���

�
���� �� � at

	 � �� Then for small 	� the geodesic �� is also a chord� from q to a point p� � ���

Namely� the C� local di�eomorphism p �� !�q� p� ��� maps a neighborhood of p�

in �� onto a neighborhood of ����� in Sq���� by the inverse function theorem�

Recall that �� meets �� transversely at p� � ���
�p���� Since !�q� �� �� is a C�

local di�eomorphism� and since �
��!�q� p�� �� �

�
���

�
���� �� � at 	 � �� it follows

that �
��p� �� � at 	 � �� Now any normal Jacobi �eld J along ��� with J��� � ��

arises from a one�parameter family f�� � 	� � 	 � �g� as the variation vector �eld
J�s� � �

�����s� at 	 � �� Since J��� � �� we may assume that for all 	� ����� � q�

But J�
�p��� is the component orthogonal to ����
�p��� of
�
��p� at 	 � �� which is

nonzero� using what we have just shown and transversality� Therefore J�s� �� � at

s � 
�p��� and since �� is a chord� at all � � s � 
�p�� as well� This shows that ��

is nondegenerate� Q�E�D�

��



Remark � Somewhat surprisingly� it is not true that the continuity of r� implies
disconjugacy of the chords of �� That is� the stronger hypothesis of part ��� of

Proposition ��
 is required to imply the stronger conclusion� See Example ��� below�

The second� rather di�erent criterion concludes that chords are unique� assuming

a condition which implies their nondegeneracy �compare Proposition ��� below��

Proposition ��� Consider a Riemannian manifold�with�boundary �� whose bound�

ary has positive second fundamental form� Suppose for all q � ��� each geodesic

starting from q leaves � strictly before any conjugate point along the geodesic� Then

� has unique chords �which are nondegenerate��

Proof� Let � be extended to become the closure of an open subset of an open

Riemannian manifold M� Consider p�� q� � ��� and write a� � d�p�� q��� Let �� �

	�� a��� � be a chord from q� � ����� to p� � ���a��� Write w� � ������� It follows
from Lemma ��� that w� points into �� Since �� is nondegenerate� according to

Lemma ��� there is a neighborhood V of �q�� w�� in S��� � 
������ such that for
all �q� w� � V� �w � 	�� aw�� �� de�ned by �w�s� � expq�sw�� is a chord� Moreover�

using Lemma ���� aw � a� as �q� w�� �q�� w��� Another application of Lemma ���

shows that aw � ����� is smooth as a function of �q� w�� Meanwhile� since �� � �w�

is nondegenerate� expq� maps a neighborhood U of w� in Tq�� di�eomorphically onto

a neighborhood of p� in M� We may assume that U is a subset of V� In particular�
for p in a neighborhood of p� in ��� there is a unique w�p� � U � Sq�M such that

�w�p��aw�p�� � p� and w�p� varies smoothly as a function of p� Also� �w�p� is a chord�

so that 
�p� � aw�p�� Therefore r
�p� � ��w�p��aw�p�� is smooth near p�� Chord

uniqueness now follows from Proposition ��
� Q�E�D�

� Examples

��� Manifold with a Big Bulge

Let � be a Riemannian manifold�with�boundary� di�eomorphic to the closed ball of

IR�� which contains in its interior a smooth subdomain D isometric to the closed

hemisphere of the unit sphere S� � IR��We assume that �� has positive second fun�

damental form� Such a manifold may be constructed as a hypersurface of revolution

in IR�� with a generating curve which begins orthogonally to the axis of revolution

with a quarter�circle of radius �� and ends at a moment when it is travelling away

from the axis of rotation� Alternatively� such an example may be constructed by

�pasting in� an isometric copy of the closed hemisphere in the interior of a reference

manifold whose boundary has positive second fundamental form�

�




We claim that � will not have unique chords� Namely� any geodesic � of � which

enters D� crossing �D transversally at x� will remain inside D for a distance exactly


� until it crosses �D transversally at y� The points x and y will be conjugate along

�� These properties follow from the behavior of geodesics �great circles� of S�� or

from the Jacobi equation ����� above� Also� if � is tangent to �D at one point� then

it remains forever inside �D� This implies that no chord of � can meet D�

Observe that the curves in the annulus �nD joining two points p� q � �� fall

into an in�nite sequence of homotopy classes� Since �D is a geodesic� there is a

curve of minimum length in each of these homotopy classes� Now if q remains �xed

while p moves along �� and a point �p over p moves along the universal covering

space of ��� these minimum lengths will vary continuously� each will assume the

value � once� at a moment when �p is one of the sequence of points over q� while

all the others will be positive� It follows that for a speci�c choice of p �� q� two of

these minimum lengths for homotopy classes will coincide and provide the minimum

length among all homotopy classes� Meanwhile� we have seen that all chords must

lie in �nD� Thus� there will be at least two chords joining q to p�

The nonuniqueness of chords also follows from Theorem ��� above� assuming

the chords are nondegenerate� For if � had unique and nondegenerate chords� then

every interior geodesic would be part of a chord� but a geodesic segment inside D

cannot be a segment of a chord� as we have seen above� Alternatively� one may

form a simpler argument from the existence of closed geodesics in the boundary

of D� These closed geodesics also show that the wave equation ����� on � is not

controllable from �� �cf� Remark ���

The manifold � also does not allow any convex functions� as follows from Propo�

sition ��� below using a domain slightly larger than D�

In the context of boundary control of hyperbolic equations� a similar example

was introduced and discussed in detail by Yao �	�����

��� Manifold with a Bulge of Moderate Size

Let � be a spherical cap� of intrinsic radius R � �
� � in the unit n�sphere S

n� Then

�� has positive second fundamental form� Also� � has unique chords� which are

nondegenerate and have lengths � �R� so that Theorem ��� may be applied to show

that the spherical wave equation ����� may be controlled from the boundary in any

time T � T� � �R� Note that the requirement R � �
� is sharp� since the normal

curvatures of �� equal cotR� which becomes negative for R � �
� �

A second method for proving controllability in the recent literature has been to

show that certain Carleman estimates hold� relying on the quantitative properties of

a strictly convex function on �� A real�valued function v on � is said to be convex if

��



r�v�X�X� 
 � for all tangent vectors X� It is strictly convex ifr�v�X�X� � � for all

X �� �� For example� Lasiecka�Triggiani�Yao 	�� show that boundary control in any

time � T� is possible� provided there is a uniformly convex function v � �� IR� with

T� �� �max jrvj
c�

� where the uniform convexity of v is quanti�ed by the minimum value

c� � � of the Hessian r�v�X�X� over unit tangent vectors X to �� Note that� with

certain other hypotheses strengthened� Yao �	���� requires only a coercive vector

�eld� which need not be a gradient� rather than a convex function� The paper

	��� introduced the use of geometric methods of Bochner type to the control of

hyperbolic P�D�E� See also Tataru�s paper 	���� In order to apply the method of

	��� an apparently optimal choice of convex function for the spherical�cap example

of this subsection would be v�x� �� 	 cos r�x�� where r�x� is the distance from x to

the center x�� Since r�v�X�X� � 	v �X�X� �see 	��� p� ����� and since jrrj � ��

we compute c� � cosR and T� � � tanR� But this estimate blows up as R� �
� � so

that the requirement R � �
� is again seen to be sharp� We have not found a way

to improve on the control time T� using Yao�s result with an appropriate coercive

vector �eld� By comparison� the time of control which follows from Theorem ��� in

this case is T� � �R � � tanR � T��

A far more general class of examples may be given� with analogous properties�

Proposition ��� Let � be a smooth� compact subdomain of a Riemannian manifold

M� whose sectional curvatures at x �M are bounded above by f�r�x��� where r�x� �

d�x� x��� for some x� � �� Assume that expx� � the exponential map of M at x�� is

de
ned and injective on the closed ball BR��� � Tx�M� and that r�x� � R on ��

We assume that f � 	�� R� � IR satis
es� ��� f is monotone decreasing
 �	� the

solution u� of the O�D�E� u�� � fu � � with initial conditions u���� � �� u����� � �

remains positive on 	�� R�� and ��� the solution u� of the same O�D�E� with initial

conditions u���� � �� u����� � � has positive 
rst derivative on 	�� R�� Suppose also

that �� has positive second fundamental form� Then � has unique chords� which

are nondegenerate�

Proof� According to Theorem � of 	
�� any geodesic of BR�x�� � expx��BR����

has length at most �R and is free of conjugate points� provided that all hypotheses

of this proposition are satis�ed� except perhaps the hypothesis of positive second

fundamental form� Thus� a unit�speed geodesic � entering BR�x�� at ���� will leave

BR�x�� at ��s��� where s� � �R� and where ��	�� s��� has no conjugate points� That

is� with the Riemannian metric of M� BR�x�� ful�lls the hypotheses of Proposition

���� and so must have unique chords� We may now apply Theorem ��� to BR�x���

and conclude that any geodesic arc in BR�x�� is the restriction of a chord of BR�x���

and therefore is free of conjugate points�

��



In particular� � satis�es the hypotheses of Proposition ���� and so has unique

chords� Since each chord of � is the restriction of a geodesic ��	�� s��� of M without

conjugate points� it must be nondegenerate� Q�E�D�

Remark � Consider any compact subdomain �� � �� and any solution u of �����

having �nite energy� It follows from Remark � above and from Tataru�s trace theo�

rem 	��� that the trace of the conormal derivative of u will be in L����� � ��� T ���

This gives us boundary control for either Neumann or Robin controls in optimal

Sobolev spaces�

For example� under the hypotheses of Proposition ���� we have boundary control

for either Neumann or Robin controls in optimal Sobolev spaces for �� ��� T ��

Corollary ��� Suppose that for some radius R� the Riemannian manifold�with�

boundary � satis
es the hypotheses of Proposition ���� Then the wave equation

����� on � is controllable from �� in any time T � T� � �R�

Proof� In order to compute the optimal time T� for boundary control� according

to Theorem ��� above� we only need to know an upper bound for the diameter of

�� in the Riemannian distance of �� But each chord of � is a segment of a geodesic

of BR�x�� which has length � �R� as shown in the proof of Proposition ���� Hence

T� � diam����� � �R� Optimality of T� follows from Proposition ���� Q�E�D�

The reader will note that Corollary ��� may be proved more directly� without

referring to Proposition ���� since Theorem � of 	
� implies that any geodesic has

length at most �R� and the conclusion follows from Proposition ����

The spherical�cap example just considered is the special case of Proposition ���

with sectional curvatures � f�r� � �� In this special case� the precise interval allowed

for either of the conditions ��� or ��� of Proposition ��� is R � �
� � When f�r� is

not constant� however� these maximum intervals may di�er� compare Example ���

below�

The reader will notice that if � has curvature satisfying the hypotheses of Propo�

sition ���� then the function r�x� has convex level sets� This follows from condition

���� along with the Rauch Comparison Theorem in its di�erentiated form �see 	���

pp� ���"����� In fact� for a tangent vector V to the distance sphere �Br��x��� the

Rauch Comparison Theorem implies that the second fundamental form of �Br��x��

satis�es the inequality

B�V� V � 
 u���r��
u��r��

jV j��

The presumably optimal choice of convex function is then v�x� �� ��r�x��� where

���r� � u��r�� Thus� by the methods of 	��� one may prove boundary control in any

�




time greater than

T� �
�u��R�

minfu���r� � � � r � Rg �

Again in this general case� it may be seen that T� � T� � �R� unless f�r� � ��

��� Disconjugate Cross Sections� but No Convex Function� the

Frisbee

For a rotationally symmetric Riemannian manifold� we may use the term cross

section for a geodesic through the center of symmetry of the manifold� The language

is suggested by the special case n � �� where this geodesic cuts the manifold into two

congruent pieces� This curve would be called a �diameter� in elementary geometry�

a term we shall avoid� since diam����� may be substantially less than the length

of a cross section in a general rotationally symmetric manifold� and in the example

we are about to present in particular�

Example ���� and the �rst part of Example ���� above� deal with rotationally

symmetric manifolds of constant sectional curvature one� We saw in that situation

that three properties are lost simultaneously as the radius R increases beyond the

critical radius �
� # � chord uniqueness� the existence of a convex function and discon�

jugacy �the absence of any pair of conjugate points� of the cross sections� The �rst

two properties are major hypotheses in theorems about boundary controllability of

����� �see Theorem ��� and 	���� The third property is intuitively related to discon�

jugacy of all geodesics which start at the boundary� which implies the �rst property�

assuming that the boundary has positive second fundamental form �Proposition ���

above��

In order to compare the various hypotheses of Theorem ��� above with the hy�

pothesis of the existence of a convex function whose gradient is outward along ���

as required by 	��� for example� we shall consider an example with nonconstant sec�

tional curvatures� We shall construct a rotationally symmetric manifold whose cross

sections are locally length�minimizing� but which does not support a convex func�

tion� Chords will not be unique� This example is a large �at n�disk surrounded by a

moderate�sized region of positive curvatures and a thin region of negative curvature�

resembling the inside surface of the �ying toy known as the Frisbee �apologies to

the Wham�O Corporation��

Let � be di�eomorphic to the ball Bn and radially symmetric� Then the Rie�

mannian metric may be given in spherical coordinates by ds� � dr� � u�r��d���

where d�� denotes the Riemannian metric of the unit �n 	 ��"sphere� The param�

eter r � r�x� is then the distance from x � � to the center x�� The sectional

curvatures of � at x will lie between K��r� and K��r�� where u satis�es the Jacobi

��



equation d�u
dr� �K��r�u � �� and where K��r� � u��

�
�	 �dudr ��� � as may be veri�ed

using the Gauss equations for the hypersurfaces r � const� In the special case n � ��

of course� there is only one sectional curvature at each point� the Gauss curvature�

which equals K��r��

For our example� we choose � to be the closed ball r � R� in IRn� Let u�r� �

r� � � r � R�� u�r� � R�
cos�r�r��
cos�R��r�� � R� � r � R�� and u�r� � u�R��

cosh��r�r��
cosh��R��r�� � R� �

r � R�� Here r�� r�� R� � R� � R� and � are positive constants to be determined�

Then u will have a Lipschitz�continuous �rst derivative provided that r� and r� are

chosen so that 	 tan�R� 	 r�� �
�
R�
� � tanh��R� 	 r�� � 	 tan�R� 	 r��� 	
�� �

R�	r� � � and � � R�	r� � arctan �� The radial�normal sectional curvatures of ��

in a distributional sense� are then K��r� � �� � � r � R�� K��r� � �� R� � r � R��

and K��r� � 	��� R� � r � R�� The boundary of � will have positive second

fundamental form provided that du
dr �R�� � �� that is� R� � r�� We require also that

the boundary of the ball D � � described by the inequality r � R� have negative

second fundamental form� that is� � � R� 	 r� � 
���

To be speci�c� based on casual examination of a Frisbee� we choose � � 
� For

mathematical convenience� we choose R� 
 �� which entails that r� be slightly

greater than R�� We shall further choose R� so that �D has small negative normal

curvatures� thus � � R� 	 r� � �� and choose R� to give �� small positive normal

curvatures� � � R� 	 r� � ��

Then any cross section � of �� given by � � r � R� with two antipodal points of

Sn�� as spherical coordinate� is a geodesic of � without conjugate points� Namely�

a Jacobi �eld J which starts out at the center x� � ���� with jJ���j � � and

J ���� � � will have length jJ�r�j � � for all � � r � R�� and jJ�r�j � cos�r 	 R��

for all R� � r � R�� But � � R� 	R� � �� which implies that jJ�r�j remains close
to � on the interval 	�� R��� We assume that tan�R� 	 R�� � �� then jJ�r�j � �

on the �nal interval 	R�� R�� as well� Since� for all r� J
��r� is a scalar multiple of

J�r�� the length of any normal Jacobi �eld J�r� satis�es the scalar Jacobi equation
d�jJ j
dr�

� K��r�jJ j � �� and a Sturm theorem shows that J cannot have two zeroes

in the interval 		R�� R��� This implies that a cross section cannot have conjugate

points� This also implies that the cross sections of � have shortest length in a C�

neighborhood�

We claim that there can be no strictly convex function v � � � IR which has

positive normal derivative on ��� In support of our claim� we shall �rst show

Proposition ��� Suppose a Riemannian manifold � contains a subdomain D whose

boundary has negative 
rst fundamental form� If w � �� IR is subharmonic on D�

the Hessian of w is nonnegative at points of �D� and w is constant on �D� then w

is constant on D�

��



Proof� We integrate �w over D� and �nd thatZ
�D

�w

��
�

Z
D
�w 
 ��

where � is the outward unit normal vector to �D� In particular� either there is a

point p� of �D at which �w
�� is positive� or else w is harmonic everywhere in D� and

hence constant on D �since it has constant boundary values��

Let X be any nonzero tangent vector to �D at p�� Since w is constant on �D� we

compute that the Hessian r�w�X�X� � 	�w
��B�X�X� � �� where B is the second

fundamental form of �D� This contradicts local convexity of w at p�� Q�E�D�

Since a convex function is a fortiori subharmonic� our claim follows from Propo�

sition ��� by symmetrizing a given strictly convex function v in the rotationally�

symmetric manifold � constructed above� to form a rotationally invariant� strictly

convex function w � � � IR� Recall that � contains the subdomain D described

by the inequality r � R�� whose boundary has negative second fundamental form�

Rotational symmetry implies that w is constant on �D� Proposition ��� now implies

that w is constant on D� which contradicts the strict convexity of w�

In order to investigate chord uniqueness for this Frisbee example� it will be useful

to have the following proposition�

Proposition ��� Assume that �� has positive second fundamental form� Suppose

there is a subdomain D � � such that �D has negative second fundamental form�

If the dimension n � �� assume further that � and D are rotationally symmetric�

Then � does not have unique chords�

Proof� We �rst consider the case n � �� Choose a point p � ��� Suppose on

the contrary that any two points of �� are connected by a unique chord� Then�

according to Lemma ���� the chord map ! � U � S��� is continuous� This means in

particular that as a second point q � �� moves around the connected component of

p in ��� the chord joining p to q varies continuously� and the initial tangent vector

to the chord sweeps out the half�circle of Sp��� from one tangent vector v to �� at

p to the other� 	v� The chords themselves sweep out all of � continuously� It follows

that there is a �rst point q� �� p so that the chord from p to q� meets D� at a point

x � �D� where it is tangent to �D� But �D has negative second fundamental form

at x� implying that this chord would lie inside D � fxg near x� However� q� was the

rst point such that the chord from p to q� meets D� which implies that the chord

from p to q� lies in �nD� a contradiction�

For the case n � �� we have assumed that � and D are rotationally symmetric�

Suppose� contrary to what we want to show� that � has unique chords� Choose

��



p � ��� and choose a totally geodesic two�dimensional submanifold N of � which

contains p �N is the image of an appropriate two�dimensional subspace ot Tx����

under the exponential mapping at the center x� of symmetry�� Then N is the

�xed�point set of an isometry f of � with itself� and is totally geodesic� Since

D is rotationally symmetric� N meets �D orthogonally� implying that N �D is a

subdomain of N whose boundary has negative second fundamental form� For the

same reasons� �N � �� � N has positive second fundamental form� By the n � �

case of this Lemma� which we have already proved� N� considered as a Riemannian

��manifold with the metric induced from �� does not have unique chords�

Now any curve in N from p to another point q � �N is also a curve of �� and

thus dN �p� q� 
 d��p� q�� Meanwhile� any chord of � from p to any point q � �N

must lie in N � since otherwise its image under f would be another chord� violating

uniqueness� Thus the chord of � joining p to q is a chord of N� and is therefore the

unique chord in N from p to q� But this is a contradiction of the n � � case� Q�E�D�

We may now conclude from Proposition ��� that the Frisbee example constructed

above does not have unique chords� For D in the hypothesis of Proposition ���� we

may choose the subdomain described by r � R��

Finally� observe that� for the Frisbee example� the wave equation ����� is not

controllable from the boundary� In fact� the sphere fr � r�g is totally geodesic

as a submanifold of �� and therefore any of the sphere�s own great circles will be

closed geodesics of �� Any one of these closed geodesics su�ces to make boundary

controllability impossible �see Remark ���

Remark � Although the example constructed in this section is only C���� i�e� the

gij are only Lipschitz continuous� we may smooth the function u�r� in small neigh�

borhoods of R� and of R�� so that u
���r� remains monotone in each of the small

neighborhoods� This C� example will enjoy the same properties we have demon�

strated for the original C��� example� The metric of the C� example will be arbi�

trarily close in the C� norm or in the C��� norm �� � � � �� to the metric of the

original example�

��� Convex Function but Nonunique Chords� the Salt Shaker

In this rotationally symmetric example� positive sectional curvature � � is concen�

trated in a ball BR�
�x�� near the center of �� while the sectional curvature K��r�

which a�ects Jacobi �elds along a cross section becomes identically zero outside that

ball� This allocation of curvatures is opposite to Example ���� Moreover� we shall

construct the metric so that there is a convex function v � � � IR� although there

��



will be conjugate points along the cross sections� and chords will not be unique�

Control is possible in a �nite time� but the optimal time of control may be much

less than diam������ The example is a truncated cone� topped o� at the smaller end

with a spherical cap� This resembles a design for salt shakers which are commonly

found in American roadside diners� for example�

Let � be di�eomorphic to the ball BR�
�x��� with the Riemannian metric ds

� �

dr� � u�r��d��� We choose speci�cally u�r� � sin r� � � r � R�� and u�r� �

cosR��r 	 R�� � sinR�� R� � r � R�� Any choice of � � R� �
�
� will su�ce� We

require R� � R� � cotR� � we claim that this will imply that there are conjugate

points along any cross section� The extreme sectional curvatures at x � � are

K��r� � K��r� � �� � � r � R�� and K��r� � �� K��r� � tan�R��r 	 R� �

tanR��
��� R� � r � R�� Here r � r�x�� There is a Jacobi �eld J�s� along any cross

section � � 		R�� R�� � �� with length jJ�s�j � u��jsj�� where u� is the solution
of the scalar Jacobi equation d�u�

dr�
� K��r�u� � � with initial conditions u���� �

�� u����� � �� We may compute that u��r�� � �� where r� � R� � cotR� � R�� so

that the points ��	r�� and ��r�� are conjugate� as claimed�

It follows that chords of � are not unique� Namely� let p and q be two opposite

points of ��� that is� �R������ � 	�� R�� � Sn�� in spherical coordinates� If the

chord joining p and q were unique� then it would necessarily be the cross section

��s� � �jsj� s
jsj��� which joins them� since this is the only curve which is symmetric

under all re�ections of � that �x q and p� But � has a pair of conjugate points

���r�� in the open interval �	R�� R��� and therefore cannot have shortest length�

In particular� Theorem ��� above does not apply to this salt�shaker example�

On the other hand� � does support a convex function v with �v
�� � � on ��� For

example� the function v may be constructed in the rotationally�symmetric form v �

��r�� with ���� � � and d	
dr � u�r�� We may apply the results of Lasiecka�Triggiani�

Yao 	�� to obtain boundary control in any time greater than T� �� �max jrvj
c�

� where c�

is a positive lower bound on convexity of v� as in the second paragraph of subsection

��� above� With the convex function v just constructed� we �nd c� � cosR� and

max jrvj � u�R��� so that T� � ��L� tanR��� Here we have written L �� R� 	R�

for convenience�

In order to �nd an estimate for the optimal time of control T� for this example�

we may apply Proposition ���� T� is the maximum length of any geodesic � in

�� This requires also some explicit geometrical computations� Note that � has no

closed geodesics� since v���s�� is a convex function of s� Any unit�speed geodesic

� has a unique point where r���s�� assumes a minimum value� which we write as

	 �� r������� Since � is rotationally symmetric� � lies in a totally geodesic two�

dimensional submanifold� Therefore� to compute the length of �� we may assume

��



with no loss of generality that � has dimension n � �� Write ���s�� for the points
where � meets ��� Then the length of � is �s� � �s��	��

If 	 
 R�� then � lies entirely in the �at subset A �� fx � R� � r�x� � R�g of
�� and we may compute its length by working in the euclidean annulus eA �� fy �
IR� � tanR� � jyj � L� tanR�g� since eA has the same Riemannian universal cover

as A� We �nd that the length of � is maximized if 	 � R�� Therefore in this case�

� has length at most �
p
L�L� � tanR��� by the Pythagorean theorem� Similarly�

the length of any geodesic segment crossing A from one boundary component to the

other is at most
p
L�L� � tanR���

If 	 � R�� then a central segment ��		s�� s��� of the geodesic is a small circle in
the spherical cap fx � � � r�x� � R�g� Its length �s� is less than or equal to �R��

This leads to the rough estimate T� � �R� � �
p
L�L� � tanR��� This estimate

has the same asymptotic behavior as T� in the limit as L � �� for �xed R� �
�
� �

However� in the approach R� � �
� to the non�controllable geometry� this estimate

is substantially better than T��

Note that for �xed L� if R� is close to
�
� � then the conclusion T� � diam�����

of Theorem ��� may easily fail� Namely� if the inner radius tanR� of the Euclidean

annulus eA is large enough� then diam����� will be the length of a chord of the outer

circle� which has radius L�tanR�� subtending an arc of length 
	sinR��L cosR���

As R� � �
� � this chord length approaches 
� which is much less than the length

�
p
L�L� � tanR�� of the geodesic tangent to the circle fr � R�g� which is a lower

bound for the optimal time of control T��

This example also serves as an illustration for Proposition ��� above� with f�r� �
�� � � r � R�� and f�r� � �� R� � r � R�� Condition ��� of that proposition holds

on any interval 	�� R�� R ��� and in fact u� � u has positive derivative on 	�����

However� condition ��� of Proposition ��� fails when R 
 r� �recall that we required

R� � r� �� R� � cotR���

Remark � above applies to this example� as well as to Example ���� showing

that there are C� manifolds� in every C� neighborhood of the salt�shaker example�

enjoying the same properties�

��� Nonsmooth r� � the Last Bite of the Bagel

In this last example� we shall contrast the hypotheses of the two parts of Proposition

��
� by constructing an example where the gradient r
 of the distance function 


from a boundary point q is continuous but not C�� and where one of the chords

is degenerate� In this two�dimensional example� chords are not unique �since the

manifold is not simply connected� there are minimizing curves in each homotopy

��



class of curves from q to p� whose lengths become equal when p is moved around

���� and� indeed� the wave equation ����� is not controllable from the boundary

�since there are closed geodesics� cf� Remark ��� The reader may �nd it interesting

to make the further e�ort to �nd a similar example� such as a subdomain of ��

with these additional properties� Most of our e�ort in this example is devoted to

identifying the distance function 
 from a point q � ���

Consider a torus of revolution M in �x� y� z��space� obtained by rotating a circle

of radius � in the open half�space fy � �g of the �y� z��plane about the z�axis� At
the maximum distance R � � from the z�axis� M contains a plane circle � of radius

R� which is a geodesic in M� The closed subdomain � � M will be the �last bite

of the bagel� bounded by two circles �of radius �� in planes containing the z�axis�

chosen so that the distance � � L��� between them� measured along �� equals 

p
R�

Then� in light of the Jacobi equation ������ and since the Gauss curvature equals �
R

at points of �� there is a Jacobi �eld along � which has zeroes fq� p�g at the point
q where it enters � and at the point p� where it leaves �� That is� p� and q are

conjugate points along �� Write �� for the segment of � from q to p��

Our next aim is to prove� in three steps� that �� is one of a foliating family of

chords �
 of � starting at q� Let � be parameterized by

X��� �� �

�
B	w��� cos �w��� sin �

sin�



CA �

where w��� � R	 � � cos�� 	
 � � � 
� � � � � �� ��
�p
R
� Then the unit�speed

geodesic arc ���s� � X��� s
R �� Recall Clairaut�s relation for a geodesic � on a surface

of revolution�

w���s�� sin��s� � const��

where w���s�� is� as above� the distance in IR� from ��s� to the z�axis� and where

��s� is the signed angle from the tangent vector ���s� to the generating curve f� �
const�g through ��s� �see 	���� In particular� since w��� � �� if ���� � ��� 
� then

for all s� we have ��s� � ��� 
��

Step �	 We shall show that �� is one leaf of a foliation f��g of �nfq� p�g�
For each 	 � 		
� 
�� let ���s� � X���s�� ��s�� be the unit�speed geodesic of M

with the initial conditions ���� � �
�
p
R
� ����� � �� ���� � 	� ����� � �� Then �� is the

restriction of �� to the interval 	 �
�
p
R
� s � �

�
p
R
� up to reparameterization� Note

that each of the circles f� � const� � ��� 
�g has constant positive geodesic curvature
in the direction of increasing �� It follows that for � � 	 � 
� along ��� ��s� reaches

a maximum at s � �� with maximum value ���� � 	� Clairaut�s relation implies

�




that � � w���
R � sin��s� everywhere along ��� In particular�

d�
ds �

sin�
w��� is uniformly

positive� implying that �� will reach �� in either direction from ����� in a bounded

distance�

Let � be the unit normal vector to ��� pointing in the direction of increasing

�� Then � is parallel along ��� Since the dimension n � �� the Jacobi �eld J�s� ��
�
�
�� �s� along �� may be written as J�s� � J �s���s�� where J �s� is a real�valued
function� The system of O�D�E�s which form the Jacobi equation ����� becomes a

single O�D�E��

J ���s� �K����s��J �s� � �������

We claim that the family f�� � � � 	 � 
g foliates the upper half f� �
� � 
g of �� except at q and at p�� Our claim is easily veri�ed if � � 


p
R

is replaced by a small positive value �� so that � is replaced by its subdomain

�
���

�
n
X��� �� � 	
 � � � 
�

���� 	 �
�
p
R

��� � �
�R

o
� As � increases� the �rst moment

when our claim fails would imply that one of the geodesics ��� � � 	 � 
 has a pair

of conjugate points� one on each component of ����� � f� � �
�
p
R
� �

�Rg� However�
since the family is a foliation for all smaller values of �� each of the curves �� min�

imizes the length between its endpoints� by a well�known argument about �elds of

extremals� But the curve f� � const�g between the endpoints of �� has length less
than the length � of ��� so that �� must have length � � � 


p
R� At the same time�

the Gauss curvature K � cos�
w��� along �� is at most

�
R � with equality only along ���

It follows from the Jacobi equation ����� and a Sturm comparison theorem that no

conjugate points are possible unless 	 � � and � � 

p
R� This proves our claim�

By symmetry� the family f�� � 	
 � 	 � �g foliates the lower half f	
 �
� � �g of �nfq� p�g� As a result� the entire family f�� � 	 � �	
� 
�g foliates all
of �nfq� p�g� This smooth foliation of �nfq� p�g extends to a continuous foliation
of all of �� Namely� for 	 near �� the point where �� meets one component of ��

is a homeomorphism as a function of 	 � IR��
� This follows from the absence

of conjugate points along �� � � for 	 �� �� It follows from the �eld�of�extremals

argument that each of the geodesics ��� for 	
 � 	 � 
� and �� � �� in particular�

is a chord of ��

Step �	 We shall show that �� is one of a family of geodesics �
� starting from q

and ending at distinct points p
 � ��� and each without conjugate points�

Write v� �� ������ � TqM� The family of geodesics �
 will be de�ned so that �


starts at q with initial direction making an angle � with v�� Given � � �	�
� �

�
�

�
�

let �
�s� �� expq�sv
�� where v
 �� �cos �� v� � �sin�� �X�� ��� ��� The unit�speed

geodesic �
 enters � at q and leaves � after a distance L��� at a point near p��

��



which we shall write as p
 �� �
�L���� �� X�f���� ���� By the smooth dependence

of solutions of ����� on initial data� p
 and f��� will be smooth functions of ��

We need to show that f��� is an increasing function on a neighborhood of ��

Note that df
d
 � � at � � �� since the Jacobi �eld J�s� � J �s���s� � ���

�
 �s�

vanishes at � � �� s � 

p
R� Here� the real�valued function J �s� satis�es equation

����� along �
� Since J �s� �
p
R sin sp

R
when � � �� we have J � � dJ

ds � 	� at
� � �� s � 


p
R� By continuity� J � � � for � close to � and for s close to 


p
R� As

a consequence� cos �
�s� � � for all such � and s� Namely� J �� � J �� which is the
covariant derivative D

�
�
�

� and thus

�

��
cos �
�s� �

�

��
���
�s��

�X

��
���

D

��
��
�s��

�X

��
�� J ��s� ��� �X

��
��

which is negative� Integrating from � � �� where cos ���s� � �� we �nd that

cos �
�s� � � for � small and positive and for s close to 

p
R�

In order to treat quantitative properties of the family f�
g� we shall compare
M to the ��sphere fM of radius

p
R� that is� with constant Gauss curvature eK � �

R �

Choose eq � fM� and identify the tangent space T
eq
fM with TqM in an isometric way�

Write the corresponding family of geodesics in fM as e�
� Since the family of geodesics
�great circles� e�
 have no conjugate points out to distance 


p
R� the same is true

of the family f�
g� by the Rauch Comparison Theorem �see 	��� pp� ���"�����

Now choose � � � and write �� � �� 	 � � for � in some interval around �� by

continuity of the family f�
g� the open geodesic arcs �
���� 

p
R�� cross the circle

� � ��� For �xed �� write s
 � s
���

 � 


p
R for the unique parameter such that

�
�s
� lies on the circle � � ��� We may estimate the length s
 of �
�	�� s
�� using

the �rst variation formula for the length of a curve�

ds

d�

�
�
�V� ��
�


s�
�
�

Z s�

�
�V� ���
� ds�

where V is the variation vector �eld �see 	���� For this variation� V has normal

component �V� ��� J � while its tangential component is chosen so that V remains

tangent to the ��coordinate curves� and in particular� V �s
� is tangent to the curve

�
�s
� of endpoints� This implies that �V �s�� �
�

�s��� J �s� cot �
�s�� For � small

and positive� and � close to �� we have J �s
� � � and cos �
�s
� � �� so that

�V� ��
�� � at s � s
� Meanwhile� all other terms in the �rst variation formula

vanish� implying that
ds�
d
 � �� and hence that s
 � s

���

 � s

���
� � R���

Letting � � �� we see that L��� � s
���

 � R�� � 


p
R� But the curves

�
�	�� 

p
R�� have no conjugate points� This implies in particular that df

d
 ��� � �

for small � � �� while as we have seen� df
d
 ��� � ��

��



Observe that the symmetry of IR� under the re�ection z �� 	z� corresponding
to the symmetry � �� 	� of �� implies that f��� is an odd function� Thus f��� is

strictly increasing on a neighborhood of � � ��

Step �	 We shall show that each �
 is a chord of �� for su�ciently small ��

By Step � above� we know that �� is the unique chord of � from q to p��We shall

argue� analogously to the proof of Lemma ���� to show that for su�ciently small

j�j� �
 is the unique chord from q to p
� Suppose otherwise� then for some sequence

�k � �� there is a unit�speed chord �
k � 	�� bk�� � from q to p
k � distinct from �
k �

As k ��� by compactness of S���� a subsequence� still denoted �
k � converges to

a geodesic �� � 	�� b�� � � from q to p� � ���b��� Since� by Clairaut�s relation� �� is

transverse to the circle f� � ��g� we have b� � limk�� bk� By continuity of distance�

d�q� p�� � limk�� d�q� p
k� � limk�� bk � b�� which shows that �� is a chord from

q to p�� The uniqueness of �� now implies that �� � ��� As a consequence� the

initial tangent vectors � �
k���� � ����� � v�� so for large k there is b�k close to � with
� �
k��� � v

b
k � and thus �
k � �
b
k � But �
k leaves � at p
k � X�f��k�� ���� while �b
k

leaves � at p
b
k � X�f�b�k�� ���� Since the function f��� is strictly increasing� we see

that b�k � �k� This shows that �
 � �
 after all� so that �
 is the unique chord from

q to p
� In particular� L��� � d�q� p
� for su�ciently small j�j�

Conclusion	

As we have seen in Step �� on a neighborhood of � � �� f is a homeomorphism

whose inverse � � f����� has an in�nite derivative at � � f��� � �� In particular�

f��� � O����� with formal �rst di�erentiation �i�e� df
d
 ��� � O������ Since for all �

near �� �
�	�� L����� is a chord of �� we see that the distance function 
 from q has

gradient r
�p
� � ��
�L����� By the de�nition of �
� we have

r
�p
� � cos �
�L����
�X

��
�f���� ��� �

sin�

R

�L����
�X

��
�f���� ����

Next� we apply Clairaut�s relation� w�f���� sin�
�L���� � w��� sin �
��� � R cos��

But w�f���� � R�O�f����� � R�O��	�� which leads to �
�L���� �
�
����O��

���

and thereby r
�p
� � 	 sin� �X
�� �

cos

R

�X
�� �O����� To summarize� for � near �� the

coe�cients of r
�p
� depend locally di�eomorphically on �� while p
 � X�f���� ���

is characterized by the coordinate � � f���� Since f�� has an in�nite derivative at
� � �� the restriction of r
 to �� is not di�erentiable at p��

�
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