Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

Chord uninqueness and controllability:
the view from the boundary, I

by

Robert Gulliver and Walter Littman

Preprint no.: 58 2000







Chord Uniqueness and Controllability:
the View from the Boundary, I

Robert Gulliver and Walter Littman

September 12, 2000

SCHOOL OF M ATHEMATICS
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA 55455, USA

gulliver@math.umn.edu, littman@math.umn.edu

Abstract

Consider the problem of a compact, n-dimensional Riemannian manifold-
with-boundary Q and the natural hyperbolic P.D.E. (Riemannian wave equa-
tion):

2

(0.1) (?9% =Agu,

plus possible lower-order terms, where A, is the Riemannian Laplace operator,
or Laplace-Beltrami operator, of (2. We consider the problem of the control in
time T of the wave equation from the boundary 912 of €2, by specifying Dirichlet
boundary controls on 992 x [0,T]. The question we address is whether, for any
Cauchy data on 2 at the initial time ¢ = 0, there is a choice of boundary control
which will achieve any prescribed Cauchy data at the terminal time ¢t = 7.

In order to reduce this controllability question to a computable problem
about geodesics on 2, we pose the question: are chords unique? Here, a chord
is a length-minimizing geodesic of Q joining two given points of 9. We assume
that any two points of 9 are connected by at most one (and hence exactly
one) chord.

If, in addition, the chords are nondegenerate and 02 has positive second
fundamental form, then the wave equation is controllable from 92 in any time
T greater than the maximum distance in () between points of 9.

This result provides a counterpoint to controllability theorems such as those
in [14], [7] and [8], in which the existence of a convex function, and hence—
roughly speaking— an upper bound on sectional curvature, is assumed. We

require no direct hypothesis on the Riemannian metric in the interior of Q.



1 Introduction

Whenever one approaches a subject from two different directions, there is
bound to be an interesting theorem explaining their relation.
Robert Hartshorne, Notices Amer. Math. Soc. April, 2000, p. 464.

Although the subject of boundary control of partial differential equations is
about a quarter of a century old, and that of Riemannian geometry much older still,
there has been relatively little interaction between the two. This is especially sur-
prising in view of the role bicharacteristics play in boundary control, which naturally
bring to mind geodesics— a basic concept in Riemannian geometry.

One of the raisons d’étre of this conference is the belief that both subjects have
much to gain by closer interaction with one other. We hope that this paper makes a
— perhaps modest — contribution in that direction. To be more specific, we believe
there is a reservoir of as yet untapped Riemannian-geometric tools which could be
applied successfully in boundary control. As one example, we cite Theorem 2 of [6],
which is crucial to the proof of Proposition 5.1 below. On the other side, we expect
that some of the compelling problems of the theory and applications of boundary
control will stimulate the disciplines of Riemannian and Lorentzian geometry to
undertake new areas of research.

Since our focus in this paper is on the relationship between Riemannian geometry
and boundary control, we shall not attempt here to express controllability in terms
of the optimal choice of Sobolev spaces, leaving such questions to other papers such
as [9]; nor shall we attempt to find the optimal smoothness of the Riemannian
metric and of other coefficients of the hyperbolic equation (see Michael Taylor’s
forthcoming book [16].)

Consider a compact, n-dimensional Riemannian manifold-with-boundary Q. We
assume that 9 is smooth and nonempty, and that the metric of € is smooth, i.e.,
C™. We are interested in the boundary control of the following natural hyperbolic

partial differential equation (Riemannian wave equation) on £ x [0,77] :

0%u ~ 10 i Ou
]..]. —_ = A = — LJ R
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for all (z,t) € Qx[0,T], where (z1,...,,) are arbitrary local coordinates, g () are

the entries of the inverse matrix to the coefficients g;;(x) of the Riemannian metric,
and + is the Riemannian volume integrand: y(z) = /det(g;j(x)). We consider the

problem of the control in time T" of equation (1.1) from boundary 9€2. More precisely,



we consider the boundary conditions
(1.2) u(z,t) =U(x,t) for all (z,t) on 9Q x [0,T],

where U € HY/?(99 x [0,T]) is the control, i.e. a function which may be chosen as

needed. The controllability question is whether, given any initial conditions

(1.3) u(z,0) = ug(z), %(m, 0) = uy(x),

with finite energy, there is a choice of controls U € H/?(9 x [0,T7]) such that the
solution of (1.1) with initial conditions (1.3) and boundary conditions (1.2) vanishes
identically on © X [T, 00). Equivalently, we ask whether for some choice of controls
U the terminal Cauchy values vanish: u(z,T) = 0, %(m, T) =0 for all z in Q.
More generally, we shall consider the hyperbolic equation with additional lower-

order terms:

0%u S ou
(1.4) 2 :Agu—i—;v (w,t)a—xi+a(x,t)u,
where (V!,...,V") are the components, in any local system of coordinates z =

(z1,... ,2,) for ©, of a vector field V on Q, and a : Q — IR. The first-order term
S Vi, t) g—;fi is invariant under change of coordinates. We shall assume through-
out that V(z,t) and a(z,t) describe real-analytic mappings from ¢ to the space of
smooth vector fields and smooth functions, resp., on €.

In section 3 below, we shall show how this control problem is related to a problem
about geodesics of €2, namely, their maximum length before leaving 2. In section 4
below, we shall see how this geometric problem is related to the question whether
chords are unique. Here, a chord is defined to be a length-minimizing curve in Q
joining two given points of 0€2. The existence of a chord joining any two points of
0% is well known, although in general it may have nongeodesic segments lying in
0N (see e.g. pp. 147-148 of [4].) If, however, we assume that 0Q is strictly convex,
that is, has positive second fundamental form, then for any length-minimizing curve
o : [s0,51] — Q between two points of ©, we have o((sg,s1)) C Q (see the proof of
Corollary 3.3 or Lemma 4.1 below.) In particular, every chord of Q is a geodesic
in this case. We say that a chord o : [sg,s1] — Q is nondegenerate if there are no
conjugate points to o(sg) along o((sg, s1]) (see Subsection 4.2 below.)

Another way of viewing these hypotheses of chord uniqueness and nondegener-
acy is as follows. Consider any two boundary points p and q. Suppose that, among
all the light rays leaving ¢ simultaneously and propagating in Q (without reflec-
tion), only one ray reaches p first. This is equivalent to the uniqueness of chords.

Nondegeneracy of chords is equivalent to the statement that, in the situation just



described, when a ray leaving ¢ turns out to be a chord from ¢ to p, the boundary
point p depends in a diffeomorphic way on the initial direction of the ray at g (see

also the proof of Proposition 4.6.)

Theorem 1.1 Suppose that any two boundary points of the manifold Q are con-
nected by a unique chord, which is nondegenerate. Assume that 02 has positive
second fundamental form. Then the hyperbolic equation (1.4) is controllable from

0% in the sense of boundary conditions (1.2) in any time
T > Tp := diamg(092).

Here, the diameter of the boundary of €2 is the maximum distance between any
two of its points, with respect to the distance measured in 2, that is: the length of
the longest chord of €2. Our convention for the sign of the second fundamental form
is such that if € is a ball of radius r in IR", with the Euclidean metric, then 92 has
positive second fundamental form B = r~1ds?.

The “uniqueness” of a chord 7 : [0,a] — Q is understood modulo reparameteri-
zations s — y(As + B) (A4, B € IR) of the independent variable s.

We shall refer to the infimal value Ty as the “optimal time of control,” even
though T} itself may not be a control time.

As the reader will verify immediately, Theorem 1.1 follows from Proposition 3.1,
Proposition 3.2 and Theorem 4.5 below. For the main geometric result of this paper,

some readers will prefer the statement of Theorem 4.5 over Theorem 1.1.

Remark 1 A sufficient condition for the uniqueness of chords, and for their nonde-
generacy, is that for any point ¢ € 02, the gradient of the distance function dg(-, q)
is a continuous function of p € 9, p # ¢. In this case, the optimal time of control
Ty is the maximum of dg(p, q) over p,q € 0§2. No further information about the
coefficients in the interior of €2 is required. See Proposition 4.6 below.

If, on the other hand, information is available giving upper bounds on sectional
curvatures in various regions of €2, then Corollary 5.2 below provides a useful crite-
rion for the time of boundary controllability.

Another sufficient condition for chord uniqueness is that every geodesic of Q
starting from 0Q will leave Q before any conjugate point appears. See Proposition
4.7 below.

In Section 2 below, we shall indicate how geometric methods may be introduced
for the analysis of a partial differential equation in IR"™ with coefficients depending

on the space variables.



In Section 4, we shall first outline some of the known concepts and results of
Riemannian geometry which will be relevant to the proof of our theorems. We
shall then introduce the main tools, including especially the chord map, to prove a
new geometric result (Theorem 4.5), which will be a key step towards the proof of
Theorem 1.1.

In Section 5, we shall present five explicit and, we hope, interesting examples
to illuminate the variety of Riemannian manifolds in terms of the existence of a
convex function; the uniqueness of chords; the nondegeneracy of certain geodesics;
and continuity, as opposed to smoothness, of the gradient of the distance function.
We shall also give criteria for the absence of conjugate points (Proposition 5.1),
necessary conditions for the existence of a convex function (Proposition 5.3), and

necessary conditions for chord uniqueness (Proposition 5.4.)

In part IT of this paper, we plan to treat the case where control occurs only on
a prescribed open subset of 9f).

The first author would like to acknowledge partial research support by the Max
Planck Institute for Mathematics in the Sciences, Leipzig, Germany, by the Univer-

sity of Melbourne, Australia and by Monash University, Australia.

2 Geometry and Partial Differential Equations

This section and Section 4.1 below are of a tutorial character, and will outline
some well-known concepts and results of differential geometry. Specifically, we shall
illustrate here how Riemannian geometry can be introduced to aid in understanding
properties of a hyperbolic P.D.E. In the reverse direction, this framework may be
applied to any Riemannian manifold Q which is diffeomorphic to the closure of a
smooth domain in IR".

Counsider a hyperbolic equation with time-independent coefficients in a smooth
domain 2 C IR" :

(2.1) 88271; = a% (gij (x)aa—wu]> + lower order terms
(the summation over 1 < i, 7,k < n is implicit where the index appears twice in one
term.) For each z € €, let g;j(x) be the inverse matrix of g”/(z). Then the metric
ds? = g;j(z) dz; dz; makes Q into a Riemannian manifold-with-boundary (see [4].)
After adding appropriate lower-order terms, (2.1) becomes the Riemannian wave
equation (1.1) above. Observe that, since equations (1.1), (1.4) and (2.1) have the
same bicharacteristics, they will also have the same controllability properties (cf.

Proposition 3.2 below.)



The length of a curve in 2 is the integral of ds, and a geodesic is a curve o =

(01,...,04) : (a,b) — Q which satisfies the equation

Lo | pp doi doj _
ds? Yods ds
Here I‘fj = Ffj(x) are the Christoffel symbols, evaluated at = o(s). The Christoffel

symbols are the coefficients of the Levi-Civita connection of Q, determined by

(2.2)

O9ik _ 99ij Ogrj.

20 T =
Ikt Y 8$j a’L‘k 8:1:1

Given a vector field J = Ji(s)a%i(o(s)) along o, the covariant derivative J'(s) = %

of J with respect to s may be written in terms of the Christoffel symbols:

e
| ds

D95 | 2 (o(s)).

!
T(s) ds oz,

+ Ffj(o(s))Ji(s)
which is independent of the choice of coordinates. With this notation, the geodesic
equation becomes oy (s) = 0.

The hypothesis of Theorem 1.1 that 02 have positive second fundamental form
at each point p € 9Q may be computed most easily by making a linear change of
coordinates so that the coordinate hyperplane x, = const. which passes through
p is tangent to Jf) there, and so that the nth coordinate vector is the inward unit
normal to 9N at p. Let 0 be represented locally as the graph z,, = f(z1,...,2Zp_1).

Then one requires that the symmetric matrix with entries

By —rye Oy gy O 00
i zj z; Ox

1 <1i,5 <n—1,evaluated at p, be positive definite. The matrix (B;;) represents the
second fundamental form of S in these coordinates. Equivalently, if  is extended
to be a smooth subdomain of a Riemannian manifold M, one requires that any
geodesic of M which is tangent to €2 at p remain outside of €2 to second order at p.
This property has been called “pseudo-convexity” in the P.D.E. literature; in this
paper, since we deal only with quantities which are invariant under smooth changes
of coordinates, the convexity of a domain with respect to the affine structure of IR"

will not be relevant.

3 Bicharacteristics and Controllability

In this section, we shall indicate the relationship between the geodesics of the Rie-
mannian manifold  and the boundary controllability of equation (1.1), equation

(1.4) or of equation (2.1) above.



For the two propositions below, we assume that Q is a compact n-dimensional
Riemannian manifold-with-boundary. Let © be extended to become a subset of an

open n-dimensional Riemannian manifold M.

Proposition 3.1 Let M be a Riemannian manifold. Then the bicharacteristics of
equation (1.4) are the graphs in M x IR of geodesics of M, with unit-speed parameter
identified with time € IR.

Proof. See [5], p. 209. Q.E.D.

Proposition 3.2 If every bicharacteristic in  x (0,T) enters or leaves Q x (0,T)
across the lateral boundary 0Q x (0,T), then boundary control is available in any
time > T. Conversely, if there is a single bicharacteristic in  x (0,T) that enters
Q x [0,T] through the open bottom Q x {0} and leaves through Q x {T}, without

hitting the lateral boundary, then boundary control in time T is not possible.

Proof. See [11], where the proof, which is given for a bounded domain in R",
carries over without difficulty to manifolds. The assumption made in [11] that the
coefficients be real-analytic is easily removed in the case of time-independent C'*°
coefficients. See for example [1], p. 1050, where a proof is given (in IR") with optimal
Sobolev spaces. The proof of [11] also works if the lower-order terms (i.e. not in
the principal part) are real-analytic mappings from t to the space of C'*° vector
fields or C* functions on Q. The proof should then be supplemented by uniqueness
theorem 2’ of [12]. Recent results in propagation of singularities by M. Taylor (see
[16]) further indicate that the required smoothness in z of the coefficients can be
reduced to C>.

The converse follows from the propagation of singularities (see [13].) Namely,
initial data can be constructed which is not C*° near a point inside Q such that
this singularity is propagated along the bicharacteristic, without being affected by
boundary values, to form a singularity at time 7" inside {2. Thus the solution cannot
have terminal Cauchy conditions u(-,7") = 0, %(-, T)=0. Q.E.D.

Remark 2 The reader might note, in particular, that if (2 contains a closed geodesic,

then boundary control is impossible in any finite time.

Remark 3 It will be observed that if the hypothesis of the first part of Proposition
3.2 holds for a Riemannian manifold 2, then it also holds for any compact subdomain
ﬁl C Q.



Corollary 3.3 If 05 has positive second fundamental form, and if Q is not simply
connected, then equation (1.1) is not controllable from the boundary in any finite

time.

Proof. Let v, be a non-contractible closed curve in 2. The infimum of lengths
of curves in the homotopy class of ; in € is assumed by a closed curve 7. Since
the second fundamental form of 02 is positive, 7y lies entirely in the interior €2.
Otherwise, pushing off locally from 02, with distance equal to a smooth nonnegative
function of small support on 0f2, would decrease length strictly. Therefore, v is a

closed geodesic. The conclusion now follows from Remark 2. Q.E.D.

4 Chord Uniqueness and Identification of Geodesics

4.1 Geodesics and Jacobi Fields in a Riemannian Manifold

Let Q be a smooth, compact Riemannian manifold-with-boundary, of dimension
n, and write <X,Y > for the Riemannian metric applied to tangent vectors X,Y
at a point of Q. A curve o : [0,a] — Q is a geodesic if its tangent vector o'(s)
has vanishing covariant derivative along [0,a] (see equation (2.2) above.) A curve
with constant speed and of shortest length among curves joining its endpoints is a
geodesic, as long as it remains in the open manifold €2, although not all geodesics
have shortest length, even when they lie entirely in the open manifold 2. Given
p,q € Q, write d(p, ¢) for the infimum of lengths of curves in Q joining p to ¢. Since
Q is compact, and assuming that 9§ has positive second fundamental form, any two
points p, g of Q may be joined by a geodesic of minimum length d(p, q) (see [4], pp.
147-148.)

Where convenient, and without loss of generality, we shall assume that € is
a compact subset of an open Riemannian manifold M, from which it inherits its
Riemannian metric. In particular, at each point z € , the tangent space T,(Q)
will be isomorphic to the vector space IR™.

Let og : [0,a0] — € be a geodesic. Consider the linearized geodesic equation, or

Jacobi equation, for a vector field J(s) along oy :
(4.1) J"(s) + R(og(s), J(s))og(s) = 0.

Here, R(-,)- is the curvature tensor of the Riemannian manifold Q. For example, if Q
is an open subset of the n-dimensional sphere of radius  in IR" !, then R(o’, J)7' =
r2[<o’, "> J— < J,7'> 0'] (see [4], p. 89.) J'(s) and J"(s) are the first and second
covariant derivatives of J(s) with respect to s along og. A solution to (4.1) is called
a Jacobi field.



We begin by recalling three well-known facts about the Jacobi equation (see e.g.
4])

First, let {o) : —¢ < A < €} be a one-parameter family of geodesics o : [0,a)] —
2, each parameterized with constant speed. Then the transverse vector field J(s) =
&%\(SH ar—0 1s a Jacobi field. Conversely, any Jacobi field along oy arises as the
transverse vector field to some family {0y : —e < A < ¢} of geodesics.

Next, if ¢ : [0,a0] — Q minimizes the length between its endpoints, then any
Jacobi field J(s) along o¢ with the initial condition J(0) = 0 will remain nonzero
for 0 < s < ag. This is Jacobi’s theorem; see [4], p. 248. As a partial converse, if
every Jacobi field along op with the initial value zero remains nonzero on (0, ag],
then op has minimum length among curves connecting o¢(0) with og(ao) and lying
in a sufficiently small neighborhood of o¢([0, ag]). This is proved by invoking the
Gauss Lemma and constructing a field of extremals; see [4], p. T1.

Last, a Jacobi field with initial inner products <J(0),0((0)> = <.J'(0),04(0)>

= 0 will remain orthogonal to the tangent vector o((s) on 0 < s < aq.

We define the sphere bundle S(Q) of Q as the set of all (z,w) where z € Q
and w is a unit tangent vector to Q at z. Since the value of the constant speed
of a geodesic o will be unimportant, it will be convenient to use initial conditions

(0(0),0'(0)) = (z,w) € S(2) for the geodesic equation. Then convergence of the
initial values € S(Q) is equivalent to convergence in C*°([0,ag]) of the unit-speed
geodesics. In the context of the sphere bundle, 7 : S(Q) — Q will denote the natural
projection m(z,w) := x.

For z € Q, the ezponential map exp, : T, — Q is defined on a star-shaped
subset of the tangent space T,§) so that for (z,w) € S(Q) and t > 0, t — exp,(tw) =
v(t) is the geodesic with initial conditions v(0) = z, 7'(0) = w.

The distance to the cut point ¢ : S(2) — (0, 00] is defined by
c(xz,w) := sup {t : exp,(tw) is defined and d(z, exp, (tw)) =t} .

According to the proof of Theorem 3.1 of [2], the function ¢ : S(Q) — (0,00)
is continuous provided that €2 is compact and that any minimizing geodesic from
a point of Q to a boundary point ¢ is transversal to 92 at ¢. We may define a
star-shaped open set £, C T, as {tw € TpQ : |lw| =1, 0 <t < ¢(z,w)}, and write
W, C § for its image under exp, . Then OW, = exp, (0&,) is called the cut locus of
x. Note that exp, maps &, diffeomorphically onto W,. A cut point y € OW,, is either
a boundary point of €; the first conjugate point along a length-minimizing geodesic
from z (see section 4.2 below); or the end point of two distinct length-minimizing

geodesics from z.



4.2 Conjugate points

Two points y(s1) and y(sy) of a geodesic v are called conjugate points if s; # s9
and there exists a nontrivial Jacobi field J along v with J(s1) = 0 and J(s2) = 0.
Although a chord, since it has minimum length, may in general have its end-
points conjugate to each other, no two interior points may be conjugate, by Jacobi’s
theorem. The case when a chord 7p : [0, ag] — € has conjugate endpoints is therefore

somewhat special, and we have called such a chord degenerate.

Lemma 4.1 Suppose that Q) has positive second fundamental form. Let-y : [0,a] —
Q be a geodesic with v(0) € 8. Then y meets O transversally at (0).

Proof. Let Q be extended as a Riemannian manifold to an open manifold M, and
extend 7 as a geodesic to a longer interval [—b,d], for some positive b,d. If 4/(0)
were tangent to Jf2, since the second fundamental form of 02 is positive, (s) could
only lie outside €, to second order as s — 0. This would contradict the assumption
that ([0, a]) € Q. Q.E.D.

Our next result is essentially a consequence of the Gauss Lemma.

Lemma 4.2 Suppose 02 has positive second fundamental form. Let vy : [0,a0] — Q
be a nondegenerate chord with unit speed, and write pg = v(0), wo = 7'(0). For

(p,w) € S(Q), write
Yu(8) i= expp(sw).

Then there is a neighborhood V of (pg,wo) in S(Q) N 7=1(0N) such that for all
(p,w) € V, w points into Q, and the mazimal segment v, ([0,ay]) lying in Q has
minimum length among those curves in Q connecting p = 7, (0) to Yw(ay). In

particular, for all (p,w) €V, vy is a chord. Moreover, ay — ay, = ag as (p,w) —

(po,wo).

Proof. Recall that, since v is a chord, 7 : [0,a] — Q is an embedding. Since v is a
nondegenerate chord, there are no conjugate points to pg = (0) along v((0, a]). Let
Q be extended as a Riemannian manifold to an open manifold M, and extend ~y as
a geodesic to a longer interval [—bg, dy] on which 7 : [—bg, dg] — M is an embedding
and has no conjugate-point pairs.

Note that wy points into 992, by Lemma 4.1. If (p,w) € S(M) N 7~1(99) is
sufficiently close to (po,wp), the above properties of v will also be valid for 7,
by the continuous dependence of solutions of the Jacobi equation (4.1) on initial
conditions. That is, w points into 99, v, ([0, ay]) is a geodesic in Q with endpoints

on 02, and there is a longer interval [—b,,d,] on which ,, is an embedding into

10



M and has no conjugate-point pairs. By Lemma 4.1, a,, depends continuously on
(p,w) € S(M) N7 1(09Q).

Fix w so that 7, has the properties just discussed. Write y := 7,,(—by) € M.
Then as v ranges over a sufficiently small neighborhood of ~,,'(—b,,) in the sphere
Sy(M), we claim that the geodesics 7,([0,c¢,]) sweep out a neighborhood U, of
Yw ((—by, dy)) diffeomorphically. Here v, (0) = y and we choose 7,(c,) to be a point
in M near 7, (d,) and after -y, leaves , such that ¢, is a continous function of v and
such that v, : [0,¢,] = M is an embedding without conjugate-point pairs. In fact,
the absence of conjugate points implies that the radial segment [0, c,|v in Ty (M)
lies inside &,. Therefore, (v, s) — 7,(s) is a local diffeomorphism on a neighborhood
of {w} x (—by,dy), and by suitable restriction, using the embedded property of
Yw ([—bw, dw]), we may obtain a diffeomorphism, as claimed. Let § > 0 be a lower
bound for the distance from 7, ([0, a,]) to the complement of U,, in M, for all (p, w)
in a neighborhood of (pg,wp) in S(M).

We may now apply the Gauss Lemma to show that 7, ([0, ay]) is the unique
curve of shortest length inside U,, joining ,,(0) to vy (ay). Specifically, each point
z € U, may be represented uniquely as z = 7,(s) for a unit tangent vector v
at y near 7,,(—by). This defines a smooth real-valued function s = s(z) on U,.
The Gauss Lemma shows that on U,,, the Riemannian gradient of s(z) equals the
tangent vector to -y,, so that any curve o has length at least as large as the change
in s along o, as long as o stays inside U,,. Therefore, any minimizing curve inside
U, must be everywhere transverse or everywhere tangent to the family of geodesics
{vw v € Sy(M)}. It follows that -y, is the unique curve inside U, of minimum
length between 7,,(0) and vy, (ay).

It remains to show that, if (p,w) € S(M) N 7~ 1(89) is sufficiently close to
(po, wo), then 7, ([0, ay,]) has shortest length among all curves in Q joining v, (0) to
Yw(aw), that is, that v, is a chord of Q.

Otherwise, there are points py in 0Q and (pg,wy) € Sp, (M), with (pg, wi) —
(po,wo) as k — oo, such that 7,, is not a chord. This means that for each k,
there is a unit-speed curve oy : [0,Ck] = Q from pr = Yu, (0) t0 Yu, (ay, ) Which
is shorter than -y, ([0, ay, ). Since 7, has shortest length inside the open set U, ,
the curve o, must include at least one point oj(sy) in the complement of U, in

Q. After passing to a subsequence, we may assume that s — s9, Cr — Cp and
(ok(sk), 0% (sk)) — (2,0) € S(). But for all k, d(ok(sk), Y, ([0,aw,]) > §, and
hence d(z,v([0, ao])) > 9.

Define o(s) := exp,((s — s0)v), 0 < s < Cy. Then o}, — o in the C? norm as
k — o0, so that o(0) = pg and o(Cy) = v(ap). By Lemma 4.1, o meets 02 transver-

sally at o(0) and at o(Cp). We may compute that the lengths [(o) = limy [(oy) <

11



limg I(yx) = I(7y). That is, o is also a chord. The uniqueness of v now implies that
v = o, which contradicts the fact that d(o(so),7v([0,ag])) > ¢. This contradiction
shows that -, is a chord of €.

The continuity of a,, as a function of (p,w) € S() follows from Lemma 4.1, as
noted above. Q.E.D.

Remark 4 For another variation on the proof of Lemma 4.2, see Step 3 of Example
5.5 below. In that example, the original chord is degenerate, but nearby geodesics

are free of conjugate points and are shown to be chords.

4.3 The Chord Map, and a Geometric Theorem

Assume that Q has unique chords. Given p,q € 99, p # ¢, and given 0 < s < d(p, q),

we define the chord map

@(p,q,s) = (7(s),7'(s)) € S(Q)

where 7 : [0,d(p, q)] — Q is the unique unit-speed chord joining p to q. (® will also
be defined at the diagonal p = ¢, below.)

The domain of definition of ®, as given above, may be written as U := {(p, ¢, s) €
0 x 0N XxR:p+#q,0<s<d(p,q)}

Lemma 4.3 Suppose that any two points of 0S) are connected by a unique chord
of Q, and that OQ has positive second fundamental form. Then ® : U — S(Q) is

continuous on U.

Proof. Consider sequences py — po, qx — qo and s — sg, where pg, qp €
0 qr # pr, 0 < s < d(pk,qr)- Write yo : [0,d(po,q0)] — Q for the unique
unit-speed chord joining pg to qg, and write y; for the unique unit-speed chord join-
ing pi to gg. Then, by definition, ®(pk, g, sk) = (Yk(sk), 7% (sk)) and @(po, qo, s0) =
(70(s0),70(s0))- After passing to a subsequence, we may assume that (4 (sg), 75 (sx)) =
(z,v) in S(Q). Let v be the the geodesic in € with initial conditions ~(sg) =
z, 7' (s9) = v and having the maximal domain of definition (the value sq is deter-
mined so that -y enters 2 at s = 0.) By the uniqueness of solutions to the initial-value
problem for the geodesic equation, we have v = 7. Since the limit is the same for

all subsequences, this shows that ®(pg, gk, sx) — P (po, g0, S0)- Q.E.D.

The domain U is a (2n — 1)-dimensional manifold-with-boundary, which is not
compact because the diagonal {p = ¢, s = 0} of 92 x 9N x IR has been omitted.
We shall define a compactification U of U, by adding to U, in place of each point
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(p,p,0), p € 0N, a copy of the (n — 2)-sphere S,(M) N T,(0N2) of unit tangent
vectors to the boundary of ©Q at p. We shall also write this (n — 2)-dimensional
sphere as S,(09). U will become a compact topological manifold-with-boundary,
possibly with non-smooth boundary. By abuse of notation, we shall write (p, v, 0)
for the point of U\U corresponding to (p,v) € S,(99). A sequence (pg, gk, si) from
U will converge to the point (p,v,0) in U\U if and only if ¢z — p,sp — 0 and
(pk,vE) = (p,v), where vy is the initial tangent vector to the chord from pj to gx.
Convergence within U\U will be equivalent to convergence in S(0S2). The chord
map ® may then be extended to all of U by defining ®(p,v,0) := (p,v) € S,(99)
for each (p,v,0) € U\U.

Lemma 4.4 Suppose that any two points of 0S) are connected by a unique chord
of Q, and that OQ has positive second fundamental form. Then ® : U — S(Q) is

continuous on U.

Proof. If (pk,qk,sk) — (Po,q0,50), Po # qo, then the conclusion follows from
Lemma 4.3. If (pg,vx,0) € U\U, and if (pg,vx,0) — (p,v,0) € U\U, then the
conclusion is immediate from the definition ®(p,v,0) := (p, v).

Suppose (P, gk, sk) — (p,v,0) € U\U. Then by definition, ®(py,qx,sr) =
(Y& (sk), 75 (sk)), where v is the unit-speed chord from py to gx, while ®(p,v,0) =
(,0) € S,(09). But (pe,7(0)) — (p,v) in S(@), since (pr, g, 55) = (p,v,0), and
hence (v (sk),v;(sk)) — (p,v). This shows that ® is continuous on the compact
topological manifold-with-boundary U. Q.E.D.

We are ready to prove the following geometric theorem.

Theorem 4.5 Assume that the boundary 0 of the compact Riemannian

manifold-with-boundary 0 has positive second fundamental form. Suppose that any
two points of I are connected by a unique chord, which is nondegenerate. Then
any interior geodesic segment v : (b —e,b+ €) — Q may be extended to a geodesic
v : [s0,81] — Q which is a chord, that is, which realizes the minimum length between

two distinct points y(so) and y(s1) in 0.

Proof. Without loss of generality, we may assume that {2 is connected; otherwise,
we may work in the connected component of © containing ~y(b). The conclusion is
immediate if the dimension n = 1; we shall assume from now on n > 2.

We shall show that the image ®(U) of the chord map is both open and closed
in S(). Since S(9) is a bundle with fiber S"~!, n > 2, over the connected space

Q, S(Q) is connected; it will then follow that @ is surjective.
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To show that ®(U) is open, first consider any point (po, go, So) € U and denote
(0,v0) := ®(po, qo, So). Write ~y for the chord from py = 40(0) to go = yo(ap), and
let wy = 7((0). Then (z,v0) = (70(s0),75(s0)), by definition of ®. By Lemma 4.1,
76(0) cannot be tangent to 02, and in fact must point into 2. Meanwhile, from
Lemma, 4.2 we know that there is a neighborhood V of (pg,wg) in S(Q) N7 1(9Q)
such that every (p,w) € V is the initial datum (7,(0),.,(0)) for a chord -, :
[0, a,] — . So in our case, for every (p,w) € V, (p,w) = (74 (0),7.,(0)) where 7,, is
a chord. Now consider a unit vector (z,v) € S(Q) close to (zg,vp). Let v : [0,a] — Q
be the unit-speed geodesic with initial conditions y(s1) = z, 4'(s1) = v and having
maximal interval of definition [0, a], choosing the value s; > 0 so that v enters Q
at s = 0. Note that since ~((0) is not tangent to 0, if (z,v) is sufficiently close to
(z0,v0), then v must enter {2 nontangentially. Further, (p,w) := (7(0),+'(0)) will be
close to (po,wp); in particular, we may achieve that (p, w) € V. But this implies that
7 is a chord. Therefore ®(p,vy(a),s1) = (z,v). But (z,v) was an arbitrary point of
S(€) near (z¢,vg), so this shows that the restriction of ® to U is an open mapping.

Next, consider a point (pg, wp,0) € U\U, and recall that ®(pg, wg,0) = (po,wo) €
Spo (092). Consider any point (z,v) € S(€2) close to (pg, wp). If z € N and the vector
v points into €2, or if z is not a boundary point, we form the geodesic v : [0,a] — Q
with y(s1) =z, 7'(s1) = v, 7(0) € 99Q. Since (z,v) is close to (py, wyp), we find that
also (p,w) := (7(0),~'(0)) is close to (po, wp), and we conclude as before that (z,v)
is in the image of ®. If x is a boundary point and v points out of €2, we choose
p =z, w = —v and the conclusion follows in the same way.

This shows that the image of ® : U — S(2) is an open subset of S((2).

In order to show that ®(U) is closed, we may apply Lemma 4.4 and recall that
U is compact. Q.E.D.

Remark 5 The reader might observe that under the hypotheses of Theorem 4.5, ®
in fact maps U homeomorphically onto S(£2). This observation implies a necessary

topological condition for any manifold 2 satisfying the hypotheses of the theorem.

4.4 Criteria for Chord Uniqueness

We shall conclude this section with two criteria which imply certain of the hypotheses
of Theorem 1.1. The first is especially appropriate in a situation where observations

about © can only be made from its boundary:

Proposition 4.6 Assume that OS2 has positive second fundamental form. For fized
q € 09, let ¢ : @ — [0,00) be given by ¢(z) := dg(z,q)?. (1) If, for each q € 99,

V¢ is continuous along 0L, then any two points of OS2 are connected by a unique
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chord. (2) If, moreover, for each q € 0, V¢ is continuously differentiable along

0f), then the chords are nondegenerate.

Proof. Note that the distance function ¢ := /¢ is a solution of the Riemannian
Hamilton-Jacobi equation <V(,V({>= 1, {(¢) = 0. The unit vector V{(p) is the
final tangent vector to a chord from ¢ to p.

(1) Of course, in general the first derivatives of the Lipschitz function ¢ need not
exist everywhere on 0Q\{¢}. Our assumption here implies that V{(p) does exist at
each p € 00, p # ¢, and is continuous there. Then the chord from ¢ to p is unique.
Namely, if there were two chords v and o from ¢ to p, then they would have distinct
terminal tangent vectors, by the uniqueness of solutions to the Cauchy problem for
the Jacobi equation (4.1). But then the chord from ¢ to a point 2 € 92 near p would
jump from a chord near v to a chord near o, as £ moves past p in the direction of
the difference of final tangent vectors v'({(p)) — o’(¢(p)), contradicting continuity
of V{(p).

(2) Now suppose that for all ¢ € 9, the gradient V( is continuously differen-
tiable along 0Q\{q}. In terms of the chord map @, this means that (p, V{(p)) =
®(q,p,((p)) is continuously differentiable as a function of p € 9, p # ¢, for any
fixed ¢ € 0. But the chord v from ¢ to p, since it is a solution of the system
(2.2) of ODE’s, depends smoothly on its terminal conditions (v({(p)),7' ({(p))) =
®(q,p,¢(p)). In consequence, its initial values (7(0)),7'(0)) = @(g,p,0) € S,(Q)
depend on p in a C! manner. For similar reasons, ®(q,p, {(p)) depends smoothly on
®(q,p,0)). Thus, the correspondence p — ®(q,p,0)) is a C' local diffeomorphism
from 9Q\{q} to S,(9).

Consider a chord vy from ¢ to py € 99, and let {y) : —e < A < €} be a smooth
one-parameter family of geodesics starting from g = 7,(0), with %7;(0) # 0 at
A = 0. Then for small A, the geodesic y, is also a chord, from ¢ to a point p) € 09.
Namely, the C! local diffeomorphism p ~— ®(q,p,0)) maps a neighborhood of pg
in 9 onto a neighborhood of 7/(0) in S,(f2), by the inverse function theorem.
Recall that o meets 9§ transversely at pg = 70(((po)). Since @(q,-,0) is a C!
local diffeomorphism, and since %@(q,pA,O) = %’V:\(O) # 0 at A = 0, it follows
that %pA # 0 at A = 0. Now any normal Jacobi field J along 7, with J(0) = 0,
arises from a one-parameter family {v) : —¢ < A < ¢}, as the variation vector field
J(s) = %'y,\(s) at A = 0. Since J(0) = 0, we may assume that for all A\, v,(0) = gq.
But J(((po)) is the component orthogonal to v;({(po)) of 8‘9—/\p)\ at A = 0, which is
nonzero, using what we have just shown and transversality. Therefore J(s) # 0 at
s = ((po), and since vy is a chord, at all 0 < s < ((po) as well. This shows that

is nondegenerate. Q.E.D.
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Remark 6 Somewhat surprisingly, it is not true that the continuity of V¢ implies
disconjugacy of the chords of €. That is, the stronger hypothesis of part (2) of

Proposition 4.6 is required to imply the stronger conclusion. See Example 5.5 below.

The second, rather different criterion concludes that chords are unique, assuming

a condition which implies their nondegeneracy (compare Proposition 5.1 below):

Proposition 4.7 Consider a Riemannian manifold-with-boundary Q, whose bound-
ary has positive second fundamental form. Suppose for all q € 0S), each geodesic
starting from q leaves Q strictly before any conjugate point along the geodesic. Then

Q has unique chords (which are nondegenerate).

Proof. Let Q be extended to become the closure of an open subset of an open
Riemannian manifold M. Consider pg, q¢o € 92, and write a9 = d(po,qo). Let 7 :
[0,a0] — © be a chord from gg = 79(0) to po = Yo(ap). Write wy = ~}(0). It follows
from Lemma 4.1 that wy points into €. Since 7y is nondegenerate, according to
Lemma 4.2 there is a neighborhood V of (qo,wp) in S(Q) N7 1(9) such that for
all (¢,w) €V, Y : [0, a,] — Q, defined by 7, (s) = exp,(sw), is a chord. Moreover,
using Lemma 4.1, a,, — ag as (g, w) — (go, wo). Another application of Lemma 4.1
shows that a,, € (0,00) is smooth as a function of (¢, w). Meanwhile, since vy = Yy,
is nondegenerate, exp,, maps a neighborhood U of wy in quﬁ diffeomorphically onto
a neighborhood of pg in M. We may assume that U/ is a subset of V. In particular,
for p in a neighborhood of py in 0€2, there is a unique w(p) € U N Sy, M such that
Yu(p) (Gw(p)) = P, and w(p) varies smoothly as a function of p. Also, 7, () is a chord,
so that ((p) = ay(p)- Therefore V((p) = ’y{v(p)(aw(p)) is smooth near py. Chord

uniqueness now follows from Proposition 4.6. Q.E.D.

5 Examples

5.1 Manifold with a Big Bulge

Let Q be a Riemannian manifold-with-boundary, diffeomorphic to the closed ball of
IR?, which contains in its interior a smooth subdomain D isometric to the closed
hemisphere of the unit sphere $? C IR3. We assume that 02 has positive second fun-
damental form. Such a manifold may be constructed as a hypersurface of revolution
in IR?, with a generating curve which begins orthogonally to the axis of revolution
with a quarter-circle of radius 1, and ends at a moment when it is travelling away
from the axis of rotation. Alternatively, such an example may be constructed by
“pasting in” an isometric copy of the closed hemisphere in the interior of a reference

manifold whose boundary has positive second fundamental form.
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We claim that € will not have unique chords. Namely, any geodesic o of 2 which
enters D, crossing 0D transversally at x, will remain inside D for a distance exactly
7, until it crosses 0D transversally at y. The points = and y will be conjugate along
o. These properties follow from the behavior of geodesics (great circles) of S2, or
from the Jacobi equation (4.1) above. Also, if o is tangent to dD at one point, then
it remains forever inside dD. This implies that no chord of Q can meet D.

Observe that the curves in the annulus Q\D joining two points p,q € 0 fall
into an infinite sequence of homotopy classes. Since 0D is a geodesic, there is a
curve of minimum length in each of these homotopy classes. Now if ¢ remains fixed
while p moves along 02 and a point p over p moves along the universal covering
space of 0f2, these minimum lengths will vary continuously; each will assume the
value 0 once, at a moment when p is one of the sequence of points over ¢, while
all the others will be positive. It follows that for a specific choice of p # ¢, two of
these minimum lengths for homotopy classes will coincide and provide the minimum
length among all homotopy classes. Meanwhile, we have seen that all chords must
lie in Q\D. Thus, there will be at least two chords joining ¢ to p.

The nonuniqueness of chords also follows from Theorem 4.5 above, assuming
the chords are nondegenerate. For if 2 had unique and nondegenerate chords, then
every interior geodesic would be part of a chord; but a geodesic segment inside D
cannot be a segment of a chord, as we have seen above. Alternatively, one may
form a simpler argument from the existence of closed geodesics in the boundary
of D. These closed geodesics also show that the wave equation (1.1) on € is not
controllable from 09 (cf. Remark 2.)

The manifold Q also does not allow any convex functions, as follows from Propo-
sition 5.3 below using a domain slightly larger than D.

In the context of boundary control of hyperbolic equations, a similar example

was introduced and discussed in detail by Yao ([17]).

5.2 Manifold with a Bulge of Moderate Size

i
29
09 has positive second fundamental form. Also, Q has unique chords, which are

Let © be a spherical cap, of intrinsic radius R < Z, in the unit n-sphere S™. Then
nondegenerate and have lengths < 2R, so that Theorem 1.1 may be applied to show
that the spherical wave equation (1.1) may be controlled from the boundary in any
time 7' > To = 2R. Note that the requirement R < 7 is sharp, since the normal
curvatures of 9¢2 equal cot R, which becomes negative for R > 7.

A second method for proving controllability in the recent literature has been to
show that certain Carleman estimates hold, relying on the quantitative properties of

a strictly convex function on . A real-valued function v on Q is said to be convez if
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V20(X, X) > 0 for all tangent vectors X. It is strictly convez if V2v(X, X) > 0 for all
X # 0. For example, Lasiecka-Triggiani-Yao [8] show that boundary control in any
time > T is possible, provided there is a uniformly convex function v :  — IR, with
T = 2%}?”‘, where the uniform convexity of v is quantified by the minimum value
co > 0 of the Hessian V?v(X, X) over unit tangent vectors X to . Note that, with
certain other hypotheses strengthened, Yao ([17]) requires only a coercive vector
field, which need not be a gradient, rather than a convex function. The paper
[17] introduced the use of geometric methods of Bochner type to the control of
hyperbolic P.D.E. See also Tataru’s paper [14]. In order to apply the method of
[8], an apparently optimal choice of convex function for the spherical-cap example
of this subsection would be v(z) := — cosr(z), where r(z) is the distance from z to
the center xg. Since V20 (X, X) = —v <X, X> (see [3], p. 173), and since |Vr| = 1,
we compute ¢ = cos R and 77 = 2tan R. But this estimate blows up as R — 7, so
that the requirement R < 7 is again seen to be sharp. We have not found a way
to improve on the control time 77 using Yao’s result with an appropriate coercive
vector field. By comparison, the time of control which follows from Theorem 1.1 in
this case is Ty = 2R < 2tan R = T7.

A far more general class of examples may be given, with analogous properties:

Proposition 5.1 Let Q be a smooth, compact subdomain of a Riemannian manifold
M, whose sectional curvatures at z € M are bounded above by f(r(x)), where r(x) =
d(z, ), for some xg € §2. Assume that exp,, the exponential map of M at o, is
defined and injective on the closed ball Br(0) C Ty, M, and that r(z) < R on Q.
We assume that f : [0, R] — IR satisfies: (1) f is monotone decreasing; (2) the
solution uy of the O.D.E. u" + fu = 0 with nitial conditions u1(0) = 1, v} (0) =0
remains positive on [0, R]; and (3) the solution uy of the same O.D.E. with initial
conditions ug(0) = 0, u4(0) = 1 has positive first derivative on [0, R]. Suppose also
that OQ has positive second fundamental form. Then Q has unique chords, which

are nondegenerate.

Proof. According to Theorem 2 of [6], any geodesic of Br(zg) = exp,, (Br(0))
has length at most 2R and is free of conjugate points, provided that all hypotheses
of this proposition are satisfied, except perhaps the hypothesis of positive second
fundamental form. Thus, a unit-speed geodesic v entering Br(z¢) at v(0) will leave
Br(zo) at y(s1), where s; < 2R, and where ([0, 51]) has no conjugate points. That
is, with the Riemannian metric of M, Br(zo) fulfills the hypotheses of Proposition
4.7, and so must have unique chords. We may now apply Theorem 4.5 to Br(zo),
and conclude that any geodesic arc in Bg(xq) is the restriction of a chord of B (),

and therefore is free of conjugate points.
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In particular, ) satisfies the hypotheses of Proposition 4.7, and so has unique
chords. Since each chord of (2 is the restriction of a geodesic ([0, s1]) of M without

conjugate points, it must be nondegenerate. Q.E.D.

Remark 7 Consider any compact subdomain Q; C Q, and any solution u of (1.1)
having finite energy. It follows from Remark 3 above and from Tataru’s trace theo-
rem [15] that the trace of the conormal derivative of u will be in L?(9Q; x (0,T)).
This gives us boundary control for either Neumann or Robin controls in optimal
Sobolev spaces.

For example, under the hypotheses of Proposition 5.1, we have boundary control

for either Neumann or Robin controls in optimal Sobolev spaces for 2 x (0,7").

Corollary 5.2 Suppose that for some radius R, the Riemannian manifold-with-
boundary Q satisfies the hypotheses of Proposition 5.1. Then the wave equation
(1.1) on Q is controllable from 98 in any time T > Ty = 2R.

Proof. In order to compute the optimal time Ty for boundary control, according
to Theorem 1.1 above, we only need to know an upper bound for the diameter of
09 in the Riemannian distance of Q. But each chord of Q is a segment of a geodesic
of Br(zo) which has length < 2R, as shown in the proof of Proposition 5.1. Hence
Ty = diamg(0€Q) < 2R. Optimality of Ty follows from Proposition 3.2. Q.E.D.

The reader will note that Corollary 5.2 may be proved more directly, without
referring to Proposition 4.7, since Theorem 2 of [6] implies that any geodesic has

length at most 2R, and the conclusion follows from Proposition 3.2.

The spherical-cap example just considered is the special case of Proposition 5.1
with sectional curvatures = f(r) = 1. In this special case, the precise interval allowed
for either of the conditions (2) or (3) of Proposition 5.1 is R < 5. When f(r) is
not constant, however, these maximum intervals may differ: compare Example 5.4
below.

The reader will notice that if Q has curvature satisfying the hypotheses of Propo-
sition 5.1, then the function r(z) has convex level sets. This follows from condition
(3), along with the Rauch Comparison Theorem in its differentiated form (see [4],
pp. 215-217.) In fact, for a tangent vector V to the distance sphere 0B, (z¢), the
Rauch Comparison Theorem implies that the second fundamental form of 0B, (z)
satisfies the inequality

B.v) = 2y
U9 (7“1)
The presumably optimal choice of convex function is then v(x) := 9(r(z)), where

' () = ug(r). Thus, by the methods of [8], one may prove boundary control in any
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time greater than
2U2(R)

T = .
! min{u(r) : 0 < r < R}

Again in this general case, it may be seen that 71 > Ty = 2R, unless f(r) = 0.

5.3 Disconjugate Cross Sections, but No Convex Function: the
Frisbee

For a rotationally symmetric Riemannian manifold, we may use the term cross
section for a geodesic through the center of symmetry of the manifold. The language
is suggested by the special case n = 2, where this geodesic cuts the manifold into two
congruent pieces. This curve would be called a “diameter” in elementary geometry,
a term we shall avoid, since diamg(0€2) may be substantially less than the length
of a cross section in a general rotationally symmetric manifold, and in the example
we are about to present in particular.

Example 5.1, and the first part of Example 5.2, above, deal with rotationally
symmetric manifolds of constant sectional curvature one. We saw in that situation
that three properties are lost simultaneously as the radius R increases beyond the
critical radius §!: chord uniqueness, the existence of a convex function and discon-
jugacy (the absence of any pair of conjugate points) of the cross sections. The first
two properties are major hypotheses in theorems about boundary controllability of
(1.1) (see Theorem 1.1 and [8].) The third property is intuitively related to discon-
jugacy of all geodesics which start at the boundary, which implies the first property,
assuming that the boundary has positive second fundamental form (Proposition 4.7
above.)

In order to compare the various hypotheses of Theorem 1.1 above with the hy-
pothesis of the existence of a convex function whose gradient is outward along 02,
as required by [8], for example, we shall consider an example with nonconstant sec-
tional curvatures. We shall construct a rotationally symmetric manifold whose cross
sections are locally length-minimizing, but which does not support a convex func-
tion. Chords will not be unique. This example is a large flat n-disk surrounded by a
moderate-sized region of positive curvatures and a thin region of negative curvature,
resembling the inside surface of the flying toy known as the Frisbee (apologies to
the Wham-O Corporation.)

Let Q be diffeomorphic to the ball B” and radially symmetric. Then the Rie-
mannian metric may be given in spherical coordinates by ds? = dr? + u(r)?d6?,
where df? denotes the Riemannian metric of the unit (n — 1)-sphere. The param-
eter 7 = r(x) is then the distance from x €  to the center xy. The sectional

curvatures of Q at z will lie between Ki(r) and K»(r), where u satisfies the Jacobi
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equation ‘327? + K1 (r)u = 0; and where Ko(r) = u 2 (1 - (%)2) , as may be verified
using the Gauss equations for the hypersurfaces r = const. In the special case n = 2,
of course, there is only one sectional curvature at each point, the Gauss curvature,
which equals K (r).

For our example, we choose € to be the closed ball r < Ry in IR". Let u(r) =
7, 0 <r < Ro;u(r) = RO%’ Ry <r < Rj;andu(r) = u(Rl)%, Ry
r < Ry. Here 1y, 1, Ry < Ry < Ry and [ are positive constants to be determined.
Then v will have a Lipschitz-continuous first derivative provided that rq and r are
chosen so that — tan(Ry — 1) = RLO, Btanh B(Ry — 1) = —tan(Ry — o), —7/2 <
Ry—r9 < 0and 0 < Ry —rg < arctan 8. The radial-normal sectional curvatures of €2,
in a distributional sense, are then K;(r) =0, 0 <r < Rg; Ki(r) =1, Ry <r < Ry;
and Ki(r) = —3?, Ry < r < Ry. The boundary of Q will have positive second
fundamental form provided that %(Rg) > 0, that is, Ry > r1. We require also that
the boundary of the ball D C €2 described by the inequality » < R; have negative
second fundamental form, that is, 0 < Ry — roy < 7/2.

To be specific, based on casual examination of a Frisbee, we choose 8 = 6. For
mathematical convenience, we choose Ry > 1, which entails that r¢ be slightly
greater than Ry. We shall further choose R; so that 0D has small negative normal
curvatures, thus 0 < Ry — rp < 1, and choose Ry to give 0f) small positive normal
curvatures: 0 < Ry —ry < 1.

Then any cross section o of €2, given by 0 < r < Ry with two antipodal points of
S"~1 as spherical coordinate, is a geodesic of  without conjugate points. Namely,
a Jacobi field J which starts out at the center zg = o(0) with |J(0)] = 1 and
J'(0) = 0 will have length |J(r)| = 1 for all 0 < r < Ry, and |J(r)| = cos(r — Ry)
for all Ry <r < R;. But 0 < R; — Ry < 1, which implies that |J(r)| remains close
to 1 on the interval [0, R;]. We assume that tan(R; — Ry) < (; then |J(r)] > 0
on the final interval [Ry, Ro] as well. Since, for all r, J'(r) is a scalar multiple of

J(r), the length of any normal Jacobi field J(r) satisfies the scalar Jacobi equation
7|
dr?

in the interval [—Rg, Ry]. This implies that a cross section cannot have conjugate

+ Ki(r)|J| = 0, and a Sturm theorem shows that J cannot have two zeroes

points. This also implies that the cross sections of € have shortest length in a C°
neighborhood.
We claim that there can be no strictly convex function v : Q — IR which has

positive normal derivative on 9€). In support of our claim, we shall first show

Proposition 5.3 Suppose a Riemannian manifold Q contains a subdomain D whose
boundary has negative first fundamental form. If w : Q — IR is subharmonic on D,
the Hessian of w is nonnegative at points of 0D, and w is constant on 0D, then w

1s constant on D.
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Proof. We integrate Aw over D, and find that
ow = / Aw >0,
op OV D

where v is the outward unit normal vector to dD. In particular, either there is a
point pg of dD at which ‘g—f is positive; or else w is harmonic everywhere in D, and
hence constant on D (since it has constant boundary values.)

Let X be any nonzero tangent vector to D at pg. Since w is constant on 0D, we
compute that the Hessian V2w (X, X) = —g—i’jB(X,X) < 0, where B is the second

fundamental form of dD. This contradicts local convexity of w at pg. Q.E.D.

Since a convex function is a fortiori subharmonic, our claim follows from Propo-
sition 5.3 by symmetrizing a given strictly convex function v in the rotationally-
symmetric manifold Q constructed above, to form a rotationally invariant, strictly
convex function w : Q — IR. Recall that © contains the subdomain D described
by the inequality » < R;, whose boundary has negative second fundamental form.
Rotational symmetry implies that w is constant on dD. Proposition 5.3 now implies

that w is constant on D, which contradicts the strict convexity of w.

In order to investigate chord uniqueness for this Frisbee example, it will be useful

to have the following proposition.

Proposition 5.4 Assume that 02 has positive second fundamental form. Suppose
there is a subdomain D C € such that 0D has negative second fundamental form.
If the dimension n > 2, assume further that Q and D are rotationally symmetric.

Then Q does not have unique chords.

Proof. We first consider the case n = 2. Choose a point p € 9€). Suppose on
the contrary that any two points of 92 are connected by a unique chord. Then,
according to Lemma 4.4, the chord map ® : U — S(9) is continuous. This means in
particular that as a second point ¢ € 92 moves around the connected component of
p in 0€), the chord joining p to ¢ varies continuously, and the initial tangent vector
to the chord sweeps out the half-circle of S,(€2) from one tangent vector v to 02 at
p to the other, —v. The chords themselves sweep out all of  continuously. It follows
that there is a first point g; # p so that the chord from p to g meets D, at a point
x € 0D, where it is tangent to dD. But 0D has negative second fundamental form
at , implying that this chord would lie inside D U {z} near . However, ¢; was the
first point such that the chord from p to ¢; meets D, which implies that the chord
from p to ¢ lies in Q\D, a contradiction.

For the case n > 2, we have assumed that Q and D are rotationally symmetric.

Suppose, contrary to what we want to show, that  has unique chords. Choose
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p € 012, and choose a totally geodesic two-dimensional submanifold N of Q which
contains p (N is the image of an appropriate two-dimensional subspace ot Ty, ()
under the exponential mapping at the center zy of symmetry.) Then N is the
fixed-point set of an isometry f of Q with itself, and is totally geodesic. Since
D is rotationally symmetric, N meets 0D orthogonally, implying that N N D is a
subdomain of N whose boundary has negative second fundamental form. For the
same reasons, N = 02 N N has positive second fundamental form. By the n = 2
case of this Lemma, which we have already proved, N, considered as a Riemannian
2-manifold with the metric induced from Q, does not have unique chords.

Now any curve in N from p to another point ¢ € ON is also a curve of Q, and
thus dx(p,q) > dg(p,q). Meanwhile, any chord of Q from p to any point ¢ € ON
must lie in N, since otherwise its image under f would be another chord, violating
uniqueness. Thus the chord of Q joining p to g is a chord of N, and is therefore the

unique chord in N from p to ¢. But this is a contradiction of the n = 2 case. Q.E.D.

We may now conclude from Proposition 5.4 that the Frisbee example constructed
above does not have unique chords. For D in the hypothesis of Proposition 5.4, we
may choose the subdomain described by r < Rj.

Finally, observe that, for the Frisbee example, the wave equation (1.1) is not
controllable from the boundary. In fact, the sphere {r = r¢} is totally geodesic
as a submanifold of €, and therefore any of the sphere’s own great circles will be
closed geodesics of €2. Any one of these closed geodesics suffices to make boundary

controllability impossible (see Remark 2.)

Remark 8 Although the example constructed in this section is only C!, i.e. the
gij are only Lipschitz continuous, we may smooth the function w(r) in small neigh-
borhoods of Ry and of Rj, so that «”(r) remains monotone in each of the small
neighborhoods. This C*° example will enjoy the same properties we have demon-
strated for the original C''! example. The metric of the C* example will be arbi-
trarily close in the C' norm or in the C%® norm (0 < @ < 1) to the metric of the

original example.

5.4 Convex Function but Nonunique Chords: the Salt Shaker

In this rotationally symmetric example, positive sectional curvature = 1 is concen-
trated in a ball Bg,(zo) near the center of (2, while the sectional curvature Ki(r)
which affects Jacobi fields along a cross section becomes identically zero outside that
ball. This allocation of curvatures is opposite to Example 5.3. Moreover, we shall

construct the metric so that there is a convex function v :  — IR, although there
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will be conjugate points along the cross sections, and chords will not be unique.
Control is possible in a finite time, but the optimal time of control may be much
less than diamg(0€2). The example is a truncated cone, topped off at the smaller end
with a spherical cap. This resembles a design for salt shakers which are commonly
found in American roadside diners, for example.

Let Q be diffeomorphic to the ball Bg, (1), with the Riemannian metric ds? =
dr? + u(r)2df%. We choose specifically u(r) = sinr, 0 < r < Ry; and u(r) =
cos Ry(r — Ry) +sin Ry, Ry < r < R;. Any choice of 0 < Ry < § will suffice. We
require R; > Ry + cot Ry : we claim that this will imply that there are conjugate
points along any cross section. The extreme sectional curvatures at z € Q are
Ki(r) = Ky(r) =1, 0 < r < Rp; and Ki(r) = 0, Ko(r) = tan® Ro(r — Ry +
tan Rg)~2, Ry <r < Ry. Here r = r(z). There is a Jacobi field J(s) along any cross

section o : [~Ry, B1] — Q, with length |J(s)| = ui(]s]), where u; is the solution
of the scalar Jacobi equation d;fgl + Ki(r)u; = 0 with initial conditions u;(0) =

1, u}(0) = 0. We may compute that u;(r1) = 0, where 1 = Ry + cot Ry < Ry, so
that the points o(—r1) and o(r;) are conjugate, as claimed.

It follows that chords of Q are not unique. Namely, let p and ¢ be two opposite
points of 9Q, that is, (Ry,+60p) € [0, R1] x S" ! in spherical coordinates. If the
chord joining p and g were unique, then it would necessarily be the cross section
o(s) = (|s], ﬁﬁo) which joins them, since this is the only curve which is symmetric
under all reflections of 2 that fix ¢ and p. But ¢ has a pair of conjugate points
o(£r1) in the open interval (—Ry, R1), and therefore cannot have shortest length.

In particular, Theorem 1.1 above does not apply to this salt-shaker example.

On the other hand, © does support a convex function v with % > 0 on 0f2. For
example, the function v may be constructed in the rotationally-symmetric form v =
P(r), with 4(0) = 0 and % = u(r). We may apply the results of Lasiecka-Triggiani-

Yao [8] to obtain boundary control in any time greater than 7} := 2%('7”‘

, where ¢
is a positive lower bound on convexity of v, as in the second paragraph of subsection
5.2 above. With the convex function v just constructed, we find ¢y = cos Ry and
max |Vov| = u(Ry), so that 77 = 2(L + tan Ry). Here we have written L := R; — Ry
for convenience.

In order to find an estimate for the optimal time of control Ty for this example,
we may apply Proposition 3.2: Tj is the maximum length of any geodesic v in
Q. This requires also some explicit geometrical computations. Note that Q has no
closed geodesics, since v(y(s)) is a convex function of s. Any unit-speed geodesic
v has a unique point where 7(7y(s)) assumes a minimum value, which we write as
A := r(7(0)). Since Q is rotationally symmetric, 7 lies in a totally geodesic two-

dimensional submanifold. Therefore, to compute the length of v, we may assume
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with no loss of generality that {2 has dimension n = 2. Write y(&£s;) for the points
where v meets 0€2. Then the length of v is 2s; = 2s1(A).

If A > Ry, then ~y lies entirely in the flat subset A := {z : Ry < r(z) < R;} of
Q, and we may compute its length by working in the euclidean annulus A= {y €
IR? : tan Ry < |y| < L + tan Ry}, since A has the same Riemannian universal cover
as A. We find that the length of v is maximized if A = Ry. Therefore in this case,
v has length at most 2\/ L(L + 2tan Ry), by the Pythagorean theorem. Similarly,
the length of any geodesic segment crossing A from one boundary component to the
other is at most \/L(L + 2 tan Ry).

If A < Ry, then a central segment y([—so, so]) of the geodesic is a small circle in

the spherical cap {z : 0 < r(z) < Rp}. Its length 2sg is less than or equal to 2R.
This leads to the rough estimate Ty < 2Ry + 2\/L(L + 2tan Rp). This estimate

has the same asymptotic behavior as 71 in the limit as L — oo, for fixed Ry < 5.

However, in the approach Ry — 5 to the non-controllable geometry, this estimate
is substantially better than T7.

Note that for fixed L, if Ry is close to 7, then the conclusion Ty = diamg(052)
of Theorem 1.1 may easily fail. Namely, if the inner radius tan Ry of the Euclidean
annulus A is large enough, then diamg(0€2) will be the length of a chord of the outer
circle, which has radius L + tan Ry, subtending an arc of length 7[sin Ry + L cos Ry].
As Ry — 3, this chord length approaches 7, which is much less than the length
2¢/L(L + 2tan Ry) of the geodesic tangent to the circle {r = Ry}, which is a lower

bound for the optimal time of control Tj.

This example also serves as an illustration for Proposition 5.1 above, with f(r) =
1,0 <7 < Rp; and f(r) =0, Ry < r < R;. Condition (3) of that proposition holds
on any interval [0, R], R < oo, and in fact us = u has positive derivative on [0, 00).
However, condition (2) of Proposition 5.1 fails when R > rq (recall that we required
Ry >ry := Ry —+ cot Ro.)

Remark 8 above applies to this example, as well as to Example 5.3, showing
that there are C° manifolds, in every C'! neighborhood of the salt-shaker example,

enjoying the same properties.

5.5 Nonsmooth V( : the Last Bite of the Bagel

In this last example, we shall contrast the hypotheses of the two parts of Proposition
4.6, by constructing an example where the gradient V{ of the distance function ¢
from a boundary point ¢ is continuous but not C', and where one of the chords
is degenerate. In this two-dimensional example, chords are not unique (since the

manifold is not simply connected, there are minimizing curves in each homotopy
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class of curves from ¢ to p, whose lengths become equal when p is moved around
09); and, indeed, the wave equation (1.1) is not controllable from the boundary
(since there are closed geodesics, ¢f. Remark 2.) The reader may find it interesting
to make the further effort to find a similar example, such as a subdomain of 2,
with these additional properties. Most of our effort in this example is devoted to
identifying the distance function ¢ from a point ¢ € 0€2.

Cousider a torus of revolution M in (z,y, z)-space, obtained by rotating a circle
of radius 1 in the open half-space {y > 0} of the (y, z)-plane about the z-axis. At
the maximum distance R > 2 from the z-axis, M contains a plane circle -y of radius
R, which is a geodesic in M. The closed subdomain Q C M will be the “last bite
of the bagel” bounded by two circles (of radius 1) in planes containing the z-axis,
chosen so that the distance £ = L(0) between them, measured along vy, equals mVR.
Then, in light of the Jacobi equation (4.1), and since the Gauss curvature equals %
at points of v, there is a Jacobi field along vy which has zeroes {¢q,po} at the point
g where it enters © and at the point py where it leaves Q. That is, po and ¢ are
conjugate points along . Write oy for the segment of v from ¢ to pg.

Our next aim is to prove, in three steps, that og is one of a foliating family of

chords o, of Q starting at ¢. Let Q be parameterized by

w(¢) cos O
X(¢,0) = | w(¢)sinb |,
sin ¢
where w(¢) = R—1+cos¢p, - n<p<m 0<6<6):= #. Then the unit-speed

geodesic arc og(s) = X (0, %). Recall Clairaut’s relation for a geodesic o on a surface

of revolution:
w(¢(s)) sin B(s) = const.,

where w(¢(s)) is, as above, the distance in IR? from o(s) to the z-axis, and where
B(s) is the signed angle from the tangent vector o’(s) to the generating curve {0 =
const.} through o(s) (see [4].) In particular, since w(¢) > 0, if 5(0) € (0,7) then
for all s, we have f(s) € (0, ).

Step 1: We shall show that oq is one leaf of a foliation {vx} of Q\{q,po}.

For each A € [—m, 7], let v\(s) = X (¢(s),0(s)) be the unit-speed geodesic of M
with the initial conditions 0(0) = #ﬁ? 0'(0) =1, ¢(0) = A, ¢'(0) = 0. Then oy is the
restriction of vy to the interval —ﬁ <s< ﬁ, up to reparameterization. Note
that each of the circles {¢ = const. € (0,7)} has constant positive geodesic curvature
in the direction of increasing ¢. It follows that for 0 < A < 7, along 7, ¢(s) reaches

a maximum at s = 0, with maximum value ¢(0) = A. Clairaut’s relation implies
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that 0 < % < sin3(s) everywhere along v,. In particular, ¢ = 51 f)
)

s s = wigy 18 uniformly

positive, implying that v, will reach 9€2 in either direction from ’y,\((() in a bounded
distance.

Let v be the unit normal vector to ), pointing in the direction of increasing
¢. Then v is parallel along 7). Since the dimension n = 2, the Jacobi field J(s) :=
aail\*(s) along v, may be written as J(s) = J(s)v(s), where J(s) is a real-valued
function. The system of O.D.E.s which form the Jacobi equation (4.1) becomes a

single O.D.E.:
(5.1) T"(s) + K(1a(s)) T (s) = 0.

We claim that the family {yy : 0 < XA < =} foliates the upper half {0 <
¢ < m} of Q, except at ¢ and at pg. Our claim is easily verified if £ = VR
is replaced by a small positive value £, so that  is replaced by its subdomain
o = {X(¢,0) - < ¢ <m,

when our claim fails would imply that one of the geodesics vy, 0 < A < 7 has a pair

0 — ﬁ‘ < %}. As / increases, the first moment

T
2VR
since the family is a foliation for all smaller values of ¢, each of the curves ) min-

of conjugate points, one on each component of Q¢ = {9 = + %}. However,

imizes the length between its endpoints, by a well-known argument about fields of

extremals. But the curve {¢ = const.} between the endpoints of v, has length less

than the length ¢ of 7, so that v must have length < ¢ < mv/R. At the same time,

1
R

It follows from the Jacobi equation (5.1) and a Sturm comparison theorem that no

the Gauss curvature K = f;’(sj)’ along 7, is at most

with equality only along ~o.

conjugate points are possible unless A = 0 and ¢ = 7v/R. This proves our claim.

By symmetry, the family {y, : —7 < XA < 0} foliates the lower half {—7 <
¢ < 0} of Q\{q,po}. As a result, the entire family {y\ : A € (—m, 7|} foliates all
of O\{q,po}. This smooth foliation of Q\{q,po} extends to a continuous foliation
of all of Q. Namely, for A near 0, the point where 7, meets one component of 9
is a homeomorphism as a function of A\ € IR/2n. This follows from the absence
of conjugate points along vy N Q for A # 0. It follows from the field-of-extremals
argument that each of the geodesics 7y, for —m < A < 7, and =y = 09 in particular,
is a chord of €.

Step 2: We shall show that oq is one of a family of geodesics o, starting from q
and ending at distinct points p, € 0§, and each without conjugate points.

Write vg := 0((0) € T,M. The family of geodesics o, will be defined so that o,
starts at ¢ with initial direction making an angle y with vy. Given pu € (—%, %) ,
let 0,(s) = exp,(sv,), where v, := (cos p)vo + (sinp) %—;f(0,0). The unit-speed

geodesic o, enters Q at g and leaves Q after a distance L(u) at a point near py,
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which we shall write as p,, := 0,(L(p)) =: X(f(1),00). By the smooth dependence
of solutions of (2.2) on initial data, p, and f(x) will be smooth functions of p.

We need to show that f(u) is an increasing function on a neighborhood of 0.
Note that % = 0 at p = 0, since the Jacobi field J(s) = J(s)v(s) = %(s)
vanishes at p = 0, s = 7v/R. Here, the real-valued function [J(s) satisfies equation
(5.1) along o,. Since J(s) = VR sinﬁ when g = 0, we have J' = Cfi—‘z = —1 at
p =0, s = mv/R. By continuity, J' < 0 for p close to 0 and for s close to 7v/R. As
a consequence, cos f,(s) < 0 for all such p and s. Namely, J'v = J', which is the
covariant derivative a%U;w and thus

9 L0 ) 0X DX ey 09X
o cos Bu(s) = <o,,(s), 9 >_<8MJ“(S)’ 9 >=J'(s) <v, 8¢>’

which is negative. Integrating from p = 0, where cosGy(s) = 0, we find that
cos 3,(s) < 0 for p small and positive and for s close to mVR.

In order to treat quantitative properties of the family {o,}, we shall compare
M to the 2-sphere M of radius VR, that is, with constant Gauss curvature K= %.
Choose ¢ € M , and identify the tangent space ngﬂ with T3 M in an isometric way.
Write the corresponding family of geodesics in M as 0, Since the family of geodesics
(great circles) o, have no conjugate points out to distance VR, the same is true
of the family {0}, by the Rauch Comparison Theorem (see [4], pp. 215-217.)

Now choose € > 0 and write 0, = 0y — ¢ : for p in some interval around 0, by
continuity of the family {c,}, the open geodesic arcs o, ((0,7VR)) cross the circle
6 = 0.. For fixed ¢, write s, = sff) < m/R for the unique parameter such that
ou(sy) lies on the circle 6 = 6.. We may estimate the length s, of 0,([0, s,]) using

the first variation formula for the length of a curve:

sy

Sp
= [<V, ’>s“+/ <V,o"> ds,
m [ I, ]0 ; a, s

where V' is the variation vector field (see [4].) For this variation, V' has normal
component <V,v>= 7, while its tangential component is chosen so that V' remains
tangent to the ¢-coordinate curves, and in particular, V' (s,) is tangent to the curve
ou(sy) of endpoints. This implies that <V (s),o),(s)>= J(s) cot B,(s). For p small
and positive, and € close to 0, we have J(s,) > 0 and cosf,(s,) < 0, so that
<V, UL>< 0 at s = s,. Meanwhile, all other terms in the first variation formula
(fis—; < 0, and hence that s, = SLE) < s((]s) = RO..

Letting ¢ — 0, we see that L(p) = SS)) < ROy = 7v/R. But the curves
0,([0, 7/R]) have no conjugate points. This implies in particular that %(,u) >0

for small g > 0, while as we have seen, %(0) = 0.

vanish, implying that
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Observe that the symmetry of IR? under the reflection z —+ —z, corresponding
to the symmetry ¢ — —¢ of €2, implies that f(u) is an odd function. Thus f(u) is

strictly increasing on a neighborhood of p = 0.

Step 3: We shall show that each o, is a chord of Q, for sufficiently small pu.

By Step 1 above, we know that o is the unique chord of Q from ¢ to py. We shall
argue, analogously to the proof of Lemma 4.2, to show that for sufficiently small
||, oy is the unique chord from ¢ to p,. Suppose otherwise: then for some sequence
k. — 0, there is a unit-speed chord 7, : [0,b] = Q from ¢ to p,,, distinct from oy, .
As k — oo, by compactness of S(Q), a subsequence, still denoted Ty, converges to
a geodesic g : [0,by] — Q from ¢ to pg = 79(bp). Since, by Clairaut’s relation, 7y is
transverse to the circle {6 = 0y}, we have by = limy_,, b;. By continuity of distance,
d(q,po) = limy_,00 d(q, Py, ) = limy_,00 by = by, which shows that 7y is a chord from
q to pg. The uniqueness of oy now implies that 79 = o0¢. As a consequence, the

initial tangent vectors 7, (0) — 7(0) = vo, so for large k there is fij, close to 0 with

!
Ty

leaves Q at py, = X (f(fix), 0o). Since the function f(u) is strictly increasing, we see

(0) = vz, , and thus 7, = o,. But 7, leaves Q at p,, = X (f (1), 00), while o,

that fiy, = . This shows that 7, = 0, after all, so that o, is the unique chord from
q to p,. In particular, L(p) = d(q,p,) for sufficiently small |p|.

Conclusion:

As we have seen in Step 2, on a neighborhood of y = 0, f is a homeomorphism
whose inverse u = f~!(¢) has an infinite derivative at ¢ = f(0) = 0. In particular,

f(p) = O(p?), with formal first differentiation (i.e. %(u) = O(u?).) Since for all p

near 0, 0,([0, L(u)]) is a chord of Q, we see that the distance function ¢ from ¢ has

gradient V{(p,) = o},(L(11)). By the definition of 3,, we have

g (F00,80) + TP (L) G (). 0).

Next, we apply Clairaut’s relation: w(f(ur)) sin8,(L(r)) = w(0) sin 8,(0) = R cos p.
But w(f(4) = R+O(f(1)?) = R+0(u), which leads to ,(L(1)) = &+4+0(u),
and thereby V{(p,) = —sinpu % + <R %—{0{ +0(p?). To summarize, for y near 0, the
coefficients of V((p,) depend locally diffeomorphically on y, while p, = X (f(u),6p)

V{(pu) = cos Bu(L(p))

is characterized by the coordinate ¢ = f(u). Since f ! has an infinite derivative at
¢ = 0, the restriction of V{ to 052 is not differentiable at py.
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