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� Max�Planck�Institut f�ur Mathematik in den Naturwissenschaften� Leipzig
� Albert�Ludwigs�Universit�at Freiburg

Abstract� This paper surveys the authors� recent results on viscous shock waves in

PDE systems of conservation laws with non�convexity and non�strict hyperbolicity�

Particular attention is paid to the physical model of magnetohydrodynamics� The

plan of the paper is as follows� Sections � and � introduce the classes of systems and

the classes of shock waves we consider and recall how pro�les for small�amplitude

shocks are constructed via center manifold analyses of a corresponding system of

ODEs� Section � describes the global picture� i� e�� large�amplitude shock waves� for

the case of magnetohydrodynamics� �rst the solution set of the Rankine�Hugoniot

jump conditions� then a heteroclinic bifurcation occurring in the ODE system for the

pro�les� Section � presents a method for the numerical identi�cation of heteroclinic

manifolds� which is applied in Sections 	 and 
 to the case of magnetohydrodynam�

ics� The numerical treatment con�rms and details the analytical �ndings and� more

notably� extends them considerably� in particular� it allows to study the existence

� non�existence of pro�les and the aforementioned heteroclinic bifurcation globally�

Section 
 dicusses the stability of viscous shock waves� the important nonuniformity

of the vanishing viscosity limit for� in particular� non�classical MHD shock waves is

not addressed in this paper�

� Classi�cation of shock waves

Let U be an open subset of IRn and g� f � U � IRn smooth functions such

that g maps U di�eomorphic onto its image� while �Dg�u����Df�u� is IR�

diagonalizable at every u � U � Consider the hyperbolic system of conservation

laws

g�u�t � f�u�x 	 
� �����

and a non�characteristic inviscid shock wave

u�x� t� 	

��
�
u� � x� st � 
�

u� � x� st � 
�
�����
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associated with ������ i� e�� the triple �u�� u�� s� � U �U � IR with u� �	 u�

satis
es the Rankine�Hugoniot conditions

�s�g�u��� g�u��� � �f�u��� f�u��� 	 


and s is not an eigenvalue of Df�u�� nor of Df�u���

To classify such objects� introduce� for arbitrary �u� s� � U�IR� the spaces

R��u� s� 	
X
��s

ker�Df�u���Dg�u��� R��u� s� 	
X
��s

ker�Df�u���Dg�u���

The shock wave is called Laxian� or classical� if the linearized Rankine�

Hugoniot conditions

g�u��� g�u������

� �Df�u��� sDg�u����u�� � �Df�u��� sDg�u����u��

	 ��Df�u��� sDg�u����u�� � �Df�u��� sDg�u����u��

�����

have a unique solution ��u��� �u
�
�� ��

�� � R��u�� s� � R��u�� s� � IR for any

��u��� �u
�
�� � R��u�� s��R��u�� s�� Generally� let

l 	 dim R��u�� s� � dim R��u�� s� � �

and

r 	 dim �R��u�� s� �R��u�� s� � IR�u� � u���

be the number of unknowns and the rank� respectively� of ������ Let

� 	 l � r � 
� � 	 n� r � 


denote the degrees of under� resp� overdeterminacy of this linear algebraic

system� A shock wave with � � 
 �and � 	 
� is called �purely� undercompres�

sive� a shock wave with � � 
 �and � 	 
� is called �purely� overcompressive�

For any shock wave� call the ordered pair

��� �� the algebraic type of the shock wave

and the integer

� 	 �� �� �

its multiplicity� Letting n�� n� denote the dimensions of the spaces of �in�

coming� modes to the left and right of the shock wave� respectively� i� e��

n� 	 dim R��u�� s�� n� 	 dim R��u�� s��
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we have

� 	 n� l � � 	 n� ��n� �n� � n��� 	 n� � n� � n� �����

Together with the �inviscid� system ������ we consider the �viscous� system

g�u�t � f�u�x 	 �B�u�ux�x �����

with some appropriate viscosity B � U � IRn�n� A traveling wave solution

u�t� x� 	 ��x � st� of ����� corresponding to a given inviscid shock wave

����� is called its viscous pro�le� Writing q � �sg�u�� � f�u��� such pro
le

technically is a heteroclinic orbit of

B����� 	 f���� sg���� q� �����

with end states

����� 	 u��

u

u +

−
u

u

-

+

t

x

x = st

Fig� �� Laxian shock� ��� �� � ��� ��� Example with n � �� � � � � k�

Assuming for a moment that B has full rank n and the rest points u� of

����� are hyperbolic� we let

k� 	 dimW u�u��� k� 	 dimW s�u��

denote the dimensions of the unstable manifold of ����� at u� and the dimen�

sion of the stable manifold of ����� at u�� respectively� and de
ne the index

of the viscous pro
le � as

k 	 k� � k� � n�
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u

u +

−

u

u

-

+

t

x

x = st

Fig� �� Overcompressive shock� � � �� Example with n � �� ��� �� � ��� ��� � �

� � k�

u

u +

−u

u

-

+

t

x

x = st

Fig� �� Undercompressive shock� � � �� Example with n � �� ��� �� � ��� ��� � �

� � k�

Under certain conditions on B� the dimensions of W u�u�� and W s�u�� are

equal to those of R��u�� s� and R��u�� s�� i� e�� k� 	 n�� k� 	 n� so that�

by ������

multiplicity � of the shock 	 index k of its pro
le� �����

This holds� e� g�� for B 	 I � the identity matrix� in which case R��u�� s��

R��u�� s� are the tangent spaces� at u�� u�� of W u�u���W s�u���� In each

of Figures ������ the left picture shows an inviscid shock wave together with

characteristics � �x 	 ��u��� ��u�� eigenvalues of Df�u��� while the right

picture sketches a corresponding phase portrait for the pro
le ODE ������

� Pro�les for small�amplitude shock waves

We henceforth restrict attention to symmetric� canonically splitting systems�

i� e�� we assume that G � Dg� F � Df � and B are symmetric matrices with
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G positive de
nite and B positive semide
nite� and ����� decomposes as�
G���v� w� G���v� w�

G���v� w� G���v� w�

��
v

w

�
t

�

�
F���v� w� F���v� w�

F���v� w� F���v� w�

��
v

w

�
x

	

��

 



 �B�v� w�

��
v

w

�
x

�
x

�����

with �B positive de
nite�

Theorem �� Consider a simple mode ��� r�� i� e��

�F �u�� ��u�G�u��r�u� 	 
� �����

where � is real�valued and the vector �eld r �	 
 is unique up to a scalar

factor� Writing

F � �G � A �
�
A�� A��

A�� A��

�
�

assume that at some state u��

A���u�� is invertible� ����
�

Then any small ��shock near u� �i� e�� any shock with end states u�� u� 	 u�

satisfying ��u�� � s � ��u��� has a viscous pro�le w� r� t� the viscosity B if

and only if it satis�es the strict version �E�s of Liu�s entropy condition �L�	�

In particular� if the mode is convex �cf� �
���� below�� every su�ciently small

��shock has a pro�le�

Proof of Theorem ���� Analogously to ������ we decompose ����� in the

form


 	 f��v� w� � sg��v� w� � q� ������

�B�v� w�w� 	 f��v� w� � sg��v� w� � q�� ������

Consider ����� resp� ������������� for u 	 �v� w� near u� 	 �v�� w�� and �q� s�

near �q�� s�� with

s� 	 ��u�� and q� 	 f�u��� s�g�u���

Assumption ����
� implies that ������ can be solved locally for v as

v 	 V �w� q� s�� ������
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i� e��


 	 f��V �w� q� s�� w� � sg��V �w� q� s�� w� � q�� ������

Plugging V into ������� we obtain the reduced system

�B�w� q� s�w� 	 h�w� q� s�� ������

with

�B�w� q� s� � �B�V �w� q� s�� w�� ������

h�w� q� s� � f��V �w� q� s�� w� � sg��V �w� q� s�� w� � q��

More precisely� ������ and ������ together are equivalent to ������ We claim

now that any two states su�ciently close to u� that form a ��shock are located

on a one�dimensional invariant manifold C of ������ To see this� note 
rst that

Dwhj�q�s���q��s��r� 	 
 ������


 Ar 	 
 with r 	 �r�� r��� r� 	 ��A���
��A��r��

Equivalence ������ follows from


 	

�
A�� A��

A�� A��

��
r�

r�

�


 r� 	 ��A���
��A��r� and ��A���A���

��A�� �A���r� 	 


and

Dwh 	 A��DwV �A�� 	 �A���A���
��A�� �A���

the latter identity coming from ������ as 
 	 A��DwV �A���

Note now that Assumption ����
� implies that the w�component r� of the

eigenvector r 	 �r�� r�� does not vanish� This means thatDwh�w�� q�� s��� and

thus �B���w�� q�� s��Dwh�w�� q�� s��� have a one�dimensional kernel spanned

by r�� As �B and hw are symmetric and �B is positive� �B��hw cannot have

any purely imaginary eigenvalue other than 
� Applying the Center Manifold

Theorem to system ������ as augmented by the further equations

q� 	 
� s� 	 
� ������

we see that the augmented system has� near �w�� q�� s��� a center manifold

with ��dimensional w�
bres ��q� s��sections�� The left and right states u�� u�
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of any small shock under consideration are rest points of ������ As any center

manifold contains locally all rest points of the  ow to which it belongs� there

is precisely one 
bre C �!lifting via ������� we immediately view C as lying

in u�space!� that contains u� and u�� It is now easy to see that the open

segment of C between u� and u� is the desired pro
le if and only if there

exists no other 
xed point between these two� This is however equivalent to

Liu�s condition in its strict version �E�s� For any u located between u� and

u� on the Hugoniot locus

H�u�� 	 fu � U � �s 	 s�u� u�� � s�u�� u��g�u�� g�u��� 	 f�u�� f�u��g�

the strict inequality s�u� u�� � s�u�� u�� holds� Cf� "Fre�# for details� Theo�

rem ��� is considered proved�

A number of important systems from continuum mechanics are of the form

������ Instances are the equations of compressible viscous� heat�conducting

 uids as well as those of compressible magnetohydrodynamics in various vari�

ants corresponding to the simultaneous presence or non�presence of dissipa�

tive mechanisms associated with viscosity� heat conductivity� and electrical

resistivity� when written in entropy variables� Cf� "Kw# for the identi
cation

of this class of systems and that of the mentioned physical systems as exam�

ples� Notice that in most!though not all!of these examples� the existence of

viscous pro
les� even for shocks of large amplitude� has been shown through

ad hoc considerations "Gi�CS#� The purpose of the above part of the present

section is to demonstrate the use of the Center Manifold Theorem in the con�

text of degenerate viscosity which is in fact quite similar to the nondegenerate

case"MP#�

We now turn to non�classical shock waves� Non�classical shock waves of

small amplitude arise near umbilic points� i� e�� points near which modes� see

������ change multiplicity� For the construction of viscous pro
les for small

non�classical shock waves� one considers center manifolds as above� but with


bers C of dimension higher than �� To illustrate what one can obtain in

this way� we now focus on the concrete system that constitutes the primary

object of our more detailed investigations� Plane waves in viscous� resistive�
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heat�conductive magnetohydrodynamics �MHD� satisfy the equations

�t � ��v�x 	 


��v�t � ��v� � p�
�

�
jbj��x 	 	vxx

��w�t � ��vw � ab�x 	 
wxx ������

bt � �vb� aw�x 	 �bxx

Et � �v�E � p�
�

�
�jbj� � a���� aw � b�x 	 ��xx � 	�vvx�x

� 
�w �wx�x � ��b � bx�x�

where v�w and a�b are the longitudinal and transverse components of the

 uid�s velocity V 	 �v�w� 	 �v� w�� w�� and the magnetic 
eld B 	 �a�b� 	

�a� b�� b��� respectively� �a � const as div B 	 
� and E 	 �� �� jVj��
�� �
� jBj��

is the density of total energy� The variables �� p� �� 
� describing density� pres�

sure� temperature� and internal energy of the  uid� are intrinsically related

with each other through the equation of state 
 	 
��� �� and the identities

� 	 ���� p 	 �
� ��� ��� � 	 
���� ��� where � denotes the speci
c volume

and � the entropy of the  uid� The internal energy 
 is required to satisfy

the conditions �
� � 
� 
� � 
� D�
 � 
� �
�� � 
� �
��� � 
� the 
rst

two of these requirements amount to the positivity of pressure and temper�

ature� the third to the concavity of entropy � as a function of � and e� and

the fourth and 
fth are known as �Weyl�s conditions�� The two dissipation

coe�cients 
 � 
 and 	 � 
 correspond to the intrinsic viscosity of the  uid�

more precisely� 
 	 	�� 	 	 	� �
�
�	� with 	�� 	� � 
 the 
rst and second

viscosity coe�cients of the  uid� The two remaining coe�cients � � 
 and

� � 
 denote the electrical resistivity and the thermal conductivity of the

 uid� We recall �e� g� from "KuLi#� some basic properties of ideal MHD� i� e��

Eqs� ������ with 	 	 
 	 � 	 � 	 
�

The seven characteristic speeds ��� 
 ��� 
 ��� 
 �� 
 �� 
 �� 
 ��

of this �� � hyperbolic system of conservation laws are of the form

�� 	 v� ��� 	 v � c�� ��� 	 v � cA� ��� 	 v � c� ����
�

with the fast and slow magnetoacoustic speeds c� � c� � 
 given by c�� 	
�
� "�c

�
s � ����a� � b��� �p�c�s � ����a� � b���� � �c�s�

��a�# �where cs is the

sound speed� c�s 	 ����� �� with ���� �� 	 p 	 �
� ��� ��� and the Alfv$en

speed cA � 
 by c�A 	 ���a�� We assume henceforth that a �	 
� Obviously�
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 � c� � cA � c� if b �	 
� For b 	 
 however�


 � c� 	 cA � c� if �a � 
�


 � c� 	 cA 	 c� if �a 	 
�


 � c� � cA 	 c� if �a � 
�

������

with �a 	 �c�s � a�� Typically� all three cases in ������ occur� with �a van�

ishing along a smooth manifold which separates its own complement into two

open sets where �a � 
 and �a � 
� respectively� E� g�� �a 	 �p� a� for a

perfect gas 
��� �� 	 cv exp���cv��
��� � For shock waves� with� say w� l� o� g��

s 	 
� the Rankine�Hugoniot conditions require u� and u� to satisfy

f�u� 	 q ������

with the same value of the relative  ux q� For q � Q� the set of regular

values of the mapping f � Eqs� ������ have up to four solutions u�� u�� u�� u�

satisfying


 � �����u��
�����u�� � 
 � �����u��
�����u�� � 
 � �����u��
�����u�� � 
 � ��� �u��

������

With the two cases in ������ di�ering only by a direction reversal x �� �x�
we restrict attention to 
rst one �upper signs� without loss of generality� The

four states u�� u�� u�� u� combinatorially allow for various inviscid shock waves

���� namely the twelve species u� 	 ui� u� 	 uj � i� j � f
� �� �� �g� i �	 j�

which are brie y referred to as being of species i � j� As entropy increases

with the index� i� e�� ��u�� � ��u�� � ��u�� � ��u��� only shocks of species

i� j with i � j are thermodynamically possible� One distinguishes between

the classical shocks of species 
� �� �� � which are associated with the fast

and slow magnetoacoustic modes c�� c�� respectively� and the non�classical

or �intermediate� shocks of species 
� �� �� �� 
� �� and �� ��

Theorem �� Consider an arbitrary state u� with transverse magnetic �eld

b� 	 
� and an arbitrary array � 	 �	� 
� �� �� of positive dissipation coe��

cients� Then for any � � 
� there exist shock waves� with ju� � u�j � �� of

types 
 � �� 
 � �� and � � � �if c� � cA 	 c� at u��� of types � � ��

�� �� and �� � �if c� 	 cA � c� at u��� or of types 
� �� �� �� 
� ��
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� � �� 
 � �� and � � � �if c� 	 cA 	 c� at u��� which possess a viscous

pro�le with respect to the prescribed �� More precisely� in each of these cases�

shocks of type i � j have a �j � i��parameter family of pro�les if j � i � ��

and 
 pro�les if �i� j� 	 ��� ���

The proof via considerations about the  ow on �� respectively ��dimensional

center manifolds can be found in "Fre�#�

We conclude the section by connecting the MHD speci
c distinction of

species �i � j� with the general classi
cation introduced in Section �� It

su�ces to note that shocks of species 
� �� �� � have algebraic type �
� 
��

shocks of species 
� �� �� � have type ��� 
�� shocks of species 
� � type

��� 
�� and shocks of species � � � are of type ��� ��� Thus all intermediate

MHD shock waves are overcompressive�

� Bifurcation analysis for MHD shock waves

In this section we collect 
rst results of a bifurcation analysis for the Rankine�

Hugoniot relations ������ in magnetohydrodynamics� and then recall a con�

jecture on a related global bifurcation occurring for viscous pro
les of MHD

shock waves� Attention is now restricted to a perfect gas� p 	 R��� 
 	 cv��

Equivariance and rescaling considerations entitle restriction� w� l� o� g�� to

the three�parameter family of cases

�v 	 ��

v �R��v � jbj��� 	 j�

w � b 	 ��

vb� � w� 	 c�

vb� � w� 	 
�
v��jwj�

� � �cv �R�� � vjbj� �w � b 	 e�

������

At 
rst consider the case c � 
� It is well known that there can be up to four

distinct states that solve ������� The two fast states u�� u� satisfy v� � v� � �

while the slow states u�� u� satisfy v� � v� � �� The typical con
guration in

the b�v�plane is displayed in Figure �� The subsequent lemma gives a more

precise statement on the existence of physical solutions u�� � � � � u�� i�e� states

with positive pressure�
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Fig� �� Null clines of ������ in b�v�plane and the set Ic�

Lemma �� For the adiabatic coe�cient � 	 � � R�cv� let �c be the smallest

�positive� solution of

c��� �
p
� � �

�� �

��
c 	

�

��
�

For each c � �
� �c� there is a non�empty bounded open set Ic � �
���� such

that for each �j� e� � Ic there exist four distinct physical states u�� � � � � u�

satisfying ���
���

Lemma � is illustrated in the right picture of Figure �� The curve � s
c

denotes the set of all points �j� e� � IR� such that ������ has exactly one

fast solution denoted by u���� For points �j� e� � IR� to the left of � s
c there

are no slow solutions� for �j� e� � IR� to the right of � s
c there are two slow

solutions u�� u�� �
f
c marks the analogous partition of the je�plane for the fast

solutions� The curve P f
c consists of an upper and a lower part� ending in a

cusp�type singularity for �j� e� 	 ��� �
�c

���� ���
�
�c

���� �
�c

����� It identi
es� for

the upper �lower� part� the loci where the pressure p� 	 ��R�� �p� 	 ��R���

vanishes and changes sign� Parts of these three curves �marked with solid

lines in Figure ��form the boundary of Ic�
The singular case c 	 
 is of particular interest� The states u�� u� degenerate

to a onedimensional curve of states solving �������

Lemma �� Let c 	 
 and � 	 ��R�cv� There is a non�empty bounded open

set I� � �
���� such that �j� e� � I� if and only if
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�i� there are two physical states u�� u� � IR	 with v� � � � v� solving ���
���

and

�ii� there is a set A of physical states solving ���
�� given by

A 	
n
��� v�w�b� �� j � 	 v 	 �� jwj 	 jbj 	 r� � 	 �

R �j � r�

� � ���
o
�

r 	
p
��j � ��� � ��e� � � ��

A is called the Alfv�en circle�

Although Lemmas ���� ���!to our knowledge! cannot be found in the

literature� we stress that they just re
ne and complement 
ndings that trace

back to the early work of Germain or Kulikovskii and Liubimov "Ge�KuLi#�

For a proof of �a more detailed statement of� Lemma � and similar results we

refer to "FreR�#� The pro
le ODE ����� in the MHD case� here rather �������

becomes

	 �v 	 v � p� �
� j b j� �j�


 �w 	 w � b�

� �b 	 vb�w� �c� 
�T �

� �� 	 cv� � �
� �jwj� � �b �w � vjbj��� v�

� � jv � b��c� 
�T � e�

����

Obviously solutions of ������ are rest points of�
� Conley and Smoller showed

that the �Laxian� shock waves u� � u� and u� � u� admit a viscous pro
le

"CS# for all � � �
���� and all q such that the associated rest points exist�

The situation for the intermediate waves is more complicated� The known

�analytical and numerical� results from literature support the following con�

jecture�

There exists a threshold �� 	 ���q� 
�	� ��	� � 
 such that the following

holds for all c � �
� �c�� �j� e� � Ic� and � 	 ��� 	� 
� �� � �
����� If ��	 � ���

then all intermediate shocks �for the given q� have viscous pro�les �for the

given ��� Conversely� if ��	 � ��� then no intermediate shock wave has a

pro�le�

A proof of this conjecture for small 
 and �� following "KuLi#� can be

found in "FreSzm#�
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� Numerical Identi�cation of Heteroclinic Manifolds

Motivated by the dynamics of the ODE�system�� we are �mainly� interested

in viscous pro
les of shock waves that appear as several�parameter families

of heteroclinic orbits� In this chapter we review a direct method to approxi�

mate general heteroclinic manifolds that has been presented in "FreR��FreR�#�

Although one key ingredient is strongly connected to the analysis of conser�

vation laws� the method can technically be viewed as a straightforward gen�

eralization of Beyn�s work for single connecting orbits "Be#�

To describe the method in its general context� consider any vector 
eld

H � C��IRn� IRn�� n � N� with two hyperbolic zeros u� and u�� For the

ODE

�� 	 H���� ������

consider a non�empty family � of orbits connecting the rest points u� and

u��

� 	 f� j �� 	 H��� and ����� 	 u�g�

Furthermore� we assume that the intersection of the unstable manifold of

u� and the stable manifold of u�� given by f��x� j� � �� x � ������g�
is a smooth manifold of dimension d for some d � f�� � � � �mg� In order to

parametrize � de
ne a mapping

� � �� IRn

by

���� �
Z
IR

A�x� ��x�����x� � ���x��dx�

with some appropriate function A � IR � IRn � IRn�n and �� either an

element of � or given by

�� 	

��
�
u� � x � 
�

u� � x � 
�

Note that� in the case A 	 Id� ���� is the relative mass of � with respect

to the reference object ��� a quantity with a particular natural meaning in

the case of viscous pro
les� The subsequent assumption means that � is a

chart of ��



�� Heinrich Freist�uhler� Christian Fries� and Christian Rohde

Assumption �� The mapping � is injective and the range S 	 ���� is a

d�dimensional manifold in IRn allowing for a global chart P � S � T �
P�S� � IRd�

The corresponding parameterization of � as f��g��T with �� de�ned by

P���� � 	 �� � � T�

is di�erentiable�

For a detailed discussion of the parametrization by relative masses and

the validity of Assumption �� in particular for conservation laws� we refer

to "FreR�#� Let us note that in this 
eld the validity of Assumption � is a

necessary condition for time�asymptotic stability �in a certain well�de
ned

sense� of � as a solution of the associated PDE� Cf� partly also Section � of

this paper�

By Assumption � the problem

��� 	 H��� �� �� ���� 	 u�� P

Z
IR

�
�� � ��

�
	 �� ������

has a unique solution �� � C��IR�� for � � T �

Following the work of Beyn "Be# we restrict the problem ������ to a bounded

interval I 	 "X�
�� X

�
�#� X

�
� � 
 � X�

�� The approximate solution ��I � C��I�

then is supposed to ful
l

���I 	 H���I � in I� b���
�
I �X

�
��� 	 
� P

Z
I

���I � ��� 	 �� ������

Here the functions b� denote asymptotic boundary conditions� for example

the spectral projections associated with the unstable%stable part of the spec�

trum of DH�u���

Following the analysis of Beyn� as presented in "Be#� it is possible to derive a

rigorous convergence estimate for the error k�����IkC��I� if jX�
�j� X�

� tend to

�� For this sake let us assume that the d�parameter family � is nondegener�

ate in the following sense� The number d�n �d dimension of the heteroclinic

manifold� is given by the sum of the dimensions of the unstable subspace of

DH�u�� and the stable subspace of DH�u��� Furthermore for each � � T

we have

�y 	 DH��� �y� y���� 	 

 y � span

�
���

���
� � � � �

���

��d

�
�

Under these assumptions �and some technical requirements on b�� we can

prove
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Theorem 	� For each � � T there is a �X� � 
 such that for any I 	

"X�
�� X

�
�# with jX�

�j� X�
� � �X� we have�

�i� There is a � � 
 such that there exists a unique solution ��I � C��I� of

the truncated problem ���

� with k��I � ��kC��I� 
 ��

�ii� There is a constant C 	 C��� � 
 such that�

k��I � ��kC��I� 
 CjI j exp 	�minf��X�
�����X�

�g


� ������

where �� ���� are given by the minimal absolute value of the real parts

of the unstable �stable� eigenvalues of DH at u� �u���

For a detailed proof we refer to Section � in "FreR�#� Note that it cannot

be expected that Theorem �� in particular ������� holds uniformly for all

� � T � This issue will be further discussed in Section � below�

� Numerical Study of the Heteroclinic Bifurcation in

MHD

In this section we report on systematic investigations into the MHD pro
les

ODE system �� using the method described in Section �� The results illus�

trate dynamically interesting scenarios� in particular in regimes that could so

far not be� and seem hard to be� covered analytically�

We consider the global bifurcation scenario of �� that has been described in

Section �� While the validity of this conjecture is only proven for small values

of 
 and �� numerical results that we will present in this section support

the conjecture that the scenario remains globally true� i� e�� for all �� 
 � 


and �j� e� � Ic� c � �
� �c�� In "FreR�# we presented two methods to decide

whether the global bifurcation takes place or not� We will not go into detail

but mention that the methods rely on the re
ned conjecture that the bifur�

cation can be completely analyzed in an four�dimensional linear subspace E

that is invariant with respect to the  ow of �� � Figures � show some results�

the bifurcation ratio �� for 
xed 
 	 
�
� and di�erent values of � in the left

picture� the bifurcation ratio �� for 
xed � 	 � and di�erent values of 
 in

the right picture� �� was calculated for a series of values for c� j� e such that

c � �
� �c� and �jc� ec� � Ic�

We observe that �� vanishes for c � 
 which coincides with the fact

that the counterparts of the intermediate shock waves in the degenerate case
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c 	 
 ! the switch�on%o� shock waves ! have pro
les for all values of � and

�j� e� � I� �cf� Section � for the orbit structure in the case c 	 
�� However� it

is not true� that the bifurcation parameter is uniformly bounded from above

for all 
� � � 
 and all c � �
� �c�� �j� e� � Ic as certain partial earlier results of

Wu in "W# may suggest� Figure � shows that the bifurcation ratio �� tends

to � as the heat conductivity � tends to �� for 
 � 
 and q 
xed�
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Now we illustrate the bifurcation by a series of computations with the

method described in Section ��

Before starting let us mention some details of the implementation� The trun�

cated problem ������ can be solved with any kind of BVP�solver� in principle�

We actually use the code COLNEW "BaA# which relies on a variable step�

size collocation method�

Concerning the approximation of the higher dimensional heteroclinic mani�



Pro�les for classical and non�classical shock waves �


folds in �� we will focus on the manifolds of type u� � u� and u� � u� and

proceed as follows� De
ne the set T in ������ by

T 	 f�
� 
� 
� ��� ��� 
� j �� � IR� �� � ���� � �� �g� �� � �� �q� �� � j
Z
IR

b��x� dxj�
������

Here the function b� refers to the �already computed� b��component of one

of the orbits of type u� � u�� Note that �� is associated to the component

b� and that b� vanishes for all rest points such that the integral in ������ is


nite� Now� we approximate the bounded manifolds completely when freezing

the 
rst ��component ��� lets say �� 	 
� and continuing in the parameter

�� starting with �� 	 
�
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For the above�mentioned illustration� we 
x the transverse  uid viscosity


� heat conductivity � and some c � �
� �c�� �j� e� � Ic� to be speci
c�


 	 
�
�� � 	 �� c 	 
���� �j� e� 	 ������ ������ ����
�

By variation of the remaining free parameter� the ratio � 	 ��	� we observe

the global bifurcation� The numerically calculated orbits of all types except
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u� � u� are displayed in Figure � as projections to the b�v�plane� We picked

out the con
gurations for � 	 ���� ��
� 
���� 
�
�� For the chosen set of pa�

rameters the critical value �� is approximately 
�
���� The graphs in Figure

� display the situation for � 	 �� where only the single orbits u� � u��

u� � u�� and u� � u� exist and � 	 
�
� � �� where also u� � u� is

broken�
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� Boundary Cases� 	Almost�
 Symmetry and Fast�Slow

Dynamics

We now discuss an important special case� along with situations where our

method� though reliable and robust� reaches its limitations� If the component

c of the relative  ux q is strictly bigger than zero the system �� has up to

four isolated rest points u�� � � � � u� located in the invariant subspace E� For

c 	 
� the rest points u�� u� persist in E while u�� u� degenerate to a circle of

rest points �Alfv$en circle� cf� Section ��� In particular� for c 	 
 the solution

set of �� in the b�b�v�space is rotationally symmetric with respect to the

v�axis�

In a series of pictures �Figures �� �
� we show the orbit types u� �
u�� u� � u�� u� � u�� u� � u�� u� � u� for di�erent values of c� We 
xed

� 	 
��� 	 	 � and 
� �� j� e as in ����
�� For c� 
� the phase portrait comes

closer and closer to being symmetric with respect to the b 	 
 axis� obviously�

For c 	 
� the rest points on the Alfv$en circle are not hyperbolic� but the

connecting orbits reach it along the exponentially stable part of the center�

stable manifold�
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We now comment on a numerical problem� arising at two levels� Firstly� for


xed q� the approximation of the heteroclinic manifolds of higher dimension�

say u� � u�� is done by a continuation precedure starting with the orbit lying

in the linear subspace E �for parameter � 	 �
� ��� 	 �
� 
�� and ending with

some orbit close to the boundary of the heterclinic manifold �� 	 �
� �� ��� Dur�

ing this continuation process� the truncation interval "X�
�� X

�
�# is enlarged�

indeed exponentially� to capture the orbits in a satisfying manner� This is

due to the fact that the orbits near the boundary of the manifold are closer

and closer to the further rest point u��

Secondly� if we consider the intervals "X�
�� X

�
�#� �� � "
� ��� for decreasing c�

we observe that the interval length grows even �more�� This happens since in

the limit c� 
� the orbits of type u� � u� become slower and slower� before

in the limit case c 	 
 �the closure of� their union degenerates to the Alfv$en

circle�
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We exemplify these e�ects by the results of a numerical experiment� il�

lustrated in Figure ��� We have plotted� against ��� the minimal intervals

"X�
�� X

�
�#� such that the criterion j�� �X��� u�j � � is satis
ed� for a given

small tolerance � � 
� As �� increases and c decreases� these intervals grow to

an extent which indicates that the method needs a re
nement if one wishes

to resolve these regimes more e�ciently�

� Stability of viscous shock waves

This section discusses an analytical result on the stability of small�amplitude

viscous Laxian shock waves associated with possibly nonconvex modes�

Theorem 
� Consider a system of viscous hyperbolic conservation laws

ut � f�u�x 	 �uxx� ������

f � C��IRn� IRn�� � � 
� Let u� � IRn be a �xed reference state and let

� � IR � IRn denote the pro�le of a Laxian shock wave� near u�� associated

with a simple eigenvalue � of f �� i�e�� the states u� are close to u� and satisfy

��u�� � s � ��u���

Let X be the completion of f�u � C�� �IR� IRn��
R�
�� �u�x�dx 	 
g under

the norm k�uk 	 k�ukL� � k�ukH� �

There exist positive constants 
�� �� such that if � satis�es ju��u�j � 
�

and u� � � � X satis�es ku� � �k � ��� then the solution u�x� t� to ������
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with data u��� 
� 	 u� exists for all times t � 
 and has

lim
t��

sup
x�IR

ju�x� t�� ��x � st�j 	 
� ������

Brie y speaking� pro
les of small�amplitude shock waves are time�asymp�

totically stable�

The result described in Theorem � was obtained by Goodman "Go# under

the additional assumption that the eigenvalue � be convex� i�e�

r � r� �	 
 where r 	 ker�f � � �I�� ������

For the general case of possibly non�convex modes� it is due to Fries "Fri�#�

The stability of shock pro
les had been investigated by Il�in and Oleinik

"IO# for the case of a scalar equation with strictly convex  ux function� Sat�

tinger "Sa# used spectral methods to prove a stability result for travelling

wave solutions of general parabolic systems which implies stability of Laxian

shock pro
les under perturbations of exponential decay� Goodman�s proof for

systems used the energy method� an approach that was introduced into the

context of viscous hyperbolic conservation laws by Goodman and indepen�

dently by Matsumura and Nishihara "MN�#� The result of Goodman was ex�

tended by Liu "L��L�# and by Szepessy and Xin "SzeX# to the case of non�zero

mass perturbations!still using the assumption of strict convexity� In "L�# the

energy method was no longer involved� which enabled the derivation of point�

wise decay�estimates� The stability of shock pro
les for the non�convex scalar

equation was shown by Matsumura and Nishihara "MN�# via a weigthed en�

ergy method� Gardner� Jones and Kapitula "JGKp# used a spectral approach�

while Freist�uhler and Serre "FreSe# employed contractivity of the semigroup

to establish global L� stability�

Recently� spectral methods have been developed to investigate the insta�

bility and stability of travelling waves for large classes of systems "GaZ�ZH#�

In contrast with their enormous importance both for qualitative insight as

well as for computational access� these new methods have so far not been able

to provide alternative proofs for facts like the one established in Theorem ��

We return to Theorem � by remarking that it has recently been extended

to the non�zero mass case "Fri�#� in this note� we stay however away from the

subtleties of this much more complicated case� We outline the proof of the

Theorem � in the version it has been stated above�
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We consider the solution u of ������ with initial data u� �close� to the

pro
le �� about which latter we assume without loss of generality that s 	 
�

Subtracting� we have

�u� ��t � �f�u�� f����x � ��u� ��xx 	 


i�e�

�u� ��t � �f �����u � ���x � ��u� ��xx � �Q��� u� ���x 	 
�

where Q is given by the Taylor expansion f�� � u � �� � f��� 	 f �����u �
�� � Q��� u � ��� It is thus natural to diagonalize f �� For simplicity in pre�

sentation we assume that all eigenvalues of f � are simple� Thus we 
nd

smooth matrix valued functions L� R such that Lf �R 	 � 	 diag���� � � � � �n�

where the eigenvalues �k are such that sign�k 	 sign�k � p� for k �	 p and

�p 	 � � s� i�e� �p�u�� � 
 � �p�u��� Introducing the integrated variable

U�x� t� �	
R x
��

u��� t� � ����d� we have U��� 
� � H��IR� and obtain the

integrated equation for U

Ut � f ����Ux � �Uxx �Q��� Ux� 	 
 ������

Changing to characteristic coordinates V �	 LU we obtain a diagonalized

version of �������

Vt � ����Vx � �Vxx � LQ���RVx�

� ����LRxV � ��LRxVx � �LRxxV 	 
�

Multiplying this equation by V T�x� t�W �x�� where W 	 diag�w�� � � � � wn� is

a weight matrix yet to be de
ned� and integrating
R�
��

dx� we arrive at

Z �

��

�

�
�V TWV �t � �

�
V T"W�� �Wx#xV � �VxWVx � error terms 	 
�

������

where integration by parts was used�

Under the assumption of a weak shock and by an appropriate choice of

the weights wi �see below� it is possible to obtain � �
� "W�� �Wx#x � cj�xjI

and W � I and thus

�

�

�

�t
kV k�L� � cj�xjkV k�L� � c�k

p
WVxk�L� � error terms 	 
� ������
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With the assumption of a weak shock �small ju� � u�j� and small perturba�

tions �small ��� we can estimate the error terms against the others� Integrat�

ing
R T
�
dt and returning to the original variable U gives

kU��� T �k�L� �
Z T

�

kUx��� t�k�L�dt 
 CkU��� 
�k�L� � ������

where T � 
 denotes any time until which U exists with U��� t�� 
 
 t 
 T �

lying in the appropriate spaces� and C � 
 is a constant independent of T �

With this estimate it is easy to obtain the same with H� in place of L�� To do

so we di�erentiate ������ once or twice with respect to x and multiply by Ux

or Uxx respectively� Crude estimation of terms involving h and Q then gives

kUx��� T �k�L� �
Z T

�

kUxx��� t�k�L�dt 
 C
�
kUx��� 
�k�L� �

Z T

�

kUx��� t�k�L�dt
�

and

kUxx��� T �k�L� 
 C�kUxx��� 
�k�L� �
Z T

�

kUx��� t�k�L� � kUxx��� t�k�L�dt��

Combining this with the above we obtain

kU��� T �k�H� �

Z T

�

kUx��� t�k�L�dt 
 CkU��� 
�k�H� �

Since ������ is a uniformly parabolic system� one has a short time existence

result for U � Thus the above a�priori estimate gives global existence of U �

thus of u� and 
nally lim
t��

sup
x�IR

ju�x� t�� ��x� st�j 	 lim
t��

sup
x�IR

jUx�x� t�j 	 
�

To summarize� the two main di�culties in the whole argumentation are

the choice of the weights wk to obtain � �
� "W� � �Wx#x � cj�xjI and the

estimate of the error terms �especially the coupling terms involvingWLRx� to

pass from ������ via ������ to ������� As regards the weights� for each k family

with k �	 p� the choice wk�x� 	 exp�� R x�� Cj�xjsign�k� gives � �
� "wk�k �

�wk�x#x � cj�xj if C is su�ciently large and the shock is su�ciently weak

�i�e� ju� � u�j su�ciently small�� In the strictly convex case now� the choice

wp � � yields the same property for k 	 p� allowing at the same time for

straightforward treatment of the error terms "Go#�

For a non�convex mode� i�e� when �p���x�� is not decreasing in x� it

is still possible to obtain � �
� "wp�p � �wp�x#x � cj�xj through appropriate

choice of wp� But in this case it is non�trivial to estimate the error terms�
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The di�culty is easily seen from the following heuristic investigation of some

properties of the weight wp� When restricting to the scalar case� a typical

non�convex  ux would be f�u� 	 u�� In this case we see that ��x 	 h��� is

of the order 
� �
 �	 ju� � u�j�� Since �p is then of the order 
� we see from

� �
� "wp�p � �wp�x# � c

R j�xjdx � 
 that wp is of the order 
��� The point

�of the di�culty� now is that the weight retains this order when considering

a coupled system� Since the weight wp appears in the error terms� it is not

immediately clear that they can be estimated for 
 su�ciently small� So far

for the strategy and the di�culties arising in the proof of Theorem �� For

any further details we must refer the reader to "Fri��Fri�#�

We conclude by remarking that non�convex modes occur naturally in

physical systems� An example is again provided by magnetohydrodynamics�

Restricting the twodimensonal variables b� w� i� e�� the transverse compo�

nents of the magnetic 
eld and the velocity� in ������ to a 
xed line!this

corresponds to restricting the full magnetic 
eld and velocity vectors to a


xed plane� the so�called coplanar case!� one arrives at the � by � system

�t � ��v�x 	 


��v�t � ��v� � p�
�

�
jbj��x 	 	vxx

��w�t � ��vw � ab�x 	 
wxx ������

bt � �vb� aw�x 	 �bxx

Et � �v�E � p�
�

�
�jbj� � a���� awb�x 	 ��xx

�	�vvx�x � 
�wwx�x � ��bbx�x

The coplanar system ������ retains 
ve of the seven modes ����
� of �������

The rotational modes ���� ��� being absent in ������� points �with b 	 
�

that� considered as states of the full system� have eigenvalues of multiplicity �

by ��� coinciding with either ��� or ���� are now� for ������� points of strict

hyperbolicity� and small�amplitude intermediate shocks near these points are

now Laxian shocks associated with the non�convex �&� simple modes ��� or

����

Still� Theorem � does of course not readily apply� as it requires the �arti
�

cial� viscosity B 	 �I � Also� despite the conclusive study of a model problem

"FreL#� it is not clear how to re�proceed from the nonconvex coplanar problem

to the non�classical non�coplanar problem� Work on both issues is in progress�
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