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Abstract. This paper surveys the authors’ recent results on viscous shock waves in
PDE systems of conservation laws with non-convexity and non-strict hyperbolicity.
Particular attention is paid to the physical model of magnetohydrodynamics. The
plan of the paper is as follows. Sections 1 and 2 introduce the classes of systems and
the classes of shock waves we consider and recall how profiles for small-amplitude
shocks are constructed via center manifold analyses of a corresponding system of
ODEs. Section 3 describes the global picture, i. e., large-amplitude shock waves, for
the case of magnetohydrodynamics, first the solution set of the Rankine-Hugoniot
jump conditions, then a heteroclinic bifurcation occurring in the ODE system for the
profiles. Section 4 presents a method for the numerical identification of heteroclinic
manifolds, which is applied in Sections 5 and 6 to the case of magnetohydrodynam-
ics. The numerical treatment confirms and details the analytical findings and, more
notably, extends them considerably; in particular, it allows to study the existence
/ non-existence of profiles and the aforementioned heteroclinic bifurcation globally.
Section 7 dicusses the stability of viscous shock waves; the important nonuniformity
of the vanishing viscosity limit for, in particular, non-classical MHD shock waves is

not addressed in this paper.

1 Classification of shock waves

Let U be an open subset of IR" and ¢, f : U — IR" smooth functions such
that g maps U diffeomorphic onto its image, while (Dg(u))™'Df(u) is IR-
diagonalizable at every u € U. Consider the hyperbolic system of conservation

laws

g(u)e + f(u)e =0, (1.1)
and a non-characteristic inviscid shock wave

u” iz — st <0,
u(z,t) = (1.2)
ut iz —st>0.
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associated with (1.1), i. e., the triple (u~,u",s) € U x U x IR with u~ # u™
satisfies the Rankine-Hugoniot conditions

—s(g(u™) —g(u )+ (f(u®) = f(u")) =0

and s is not an eigenvalue of D f(u™) nor of D f(u™).

To classify such objects, introduce, for arbitrary (u, s) € U x IR, the spaces

R (u,s) = > ker(Df(u)—ADg(u)), R'(u,s) =Y ker(Df(u)—ADg(u)).

A<s A>s

The shock wave is called Lazian, or classical, if the linearized Rankine—
Hugoniot conditions

g(u™) —g(u))o’
+(Df(ut) = sDg(u*))al — (Df(u™) — sDg(u~))u" (1.3)
= —(Df(u*) = sDg(ut))a’ + (Df(u~) — sDg(u~))a
have a unique solution (a_,ua},6") € R (u",s) x R¥(u*,s) x IR for any
(u,,ut) € RT(u™,s) x R~(uT,s). Generally, let
l=dim R™(u™,s) +dim R*(u",s) +1
and
r=dim (R (v ,s)+ R"(u",s) + R(u" —u"))
be the number of unknowns and the rank, respectively, of (1.3). Let
k=1l—12>0, ER=n—-1r>0

denote the degrees of under- resp. overdeterminacy of this linear algebraic
system. A shock wave with £ > 0 (and & = 0) is called (purely) undercompres-
sive; a shock wave with ® > 0 (and k = 0) is called (purely) overcompressive.

For any shock wave, call the ordered pair
(k,R) the algebraic type of the shock wave

and the integer

k=k—K+1

its multiplicity. Letting n~,nT denote the dimensions of the spaces of “in-

coming” modes to the left and right of the shock wave, respectively, i. e.,

n~ =dim R*(u™,s),n" =dim R (u™,s),
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we have

k=n—Il+1l=n—2n—(n +n")=n"+n" —n. (1.4)

Together with the ‘inviscid’ system (1.1), we consider the ‘viscous’ system

g(w)e + f(u)e = (B(u)ug)o (1.5)

with some appropriate viscosity B : U — IR™*". A traveling wave solution
u(t,z) = ¢(x — st) of (1.5) corresponding to a given inviscid shock wave
(1.2) is called its viscous profile. Writing ¢ = —sg(u™) + f(u™), such profile
technically is a heteroclinic orbit of

B(¢)¢' = f(¢) — s9(8) — ¢, (1.6)
with end states
p(£o0) = ut.
t X =st \./\
@ [ X
W .
( +
X

Fig. 1. Laxian shock, (s, %) = (0,0). Example with n =2, k =1 = k.

Assuming for a moment that B has full rank n and the rest points u* of
(1.6) are hyperbolic, we let

k™ = dimW¥(u"), kT = dimW*(u™)

denote the dimensions of the unstable manifold of (1.6) at u~ and the dimen-
sion of the stable manifold of (1.6) at u™, respectively, and define the index

of the viscous profile ¢ as

k=k  +kt —n.
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Fig. 2. Overcompressive shock, ® > 0. Example with n = 2, (k,%) = (0,1),x =
2 =k.

Fig. 3. Undercompressive shock, £ > 0. Example with n = 2, (k,k) = (1,0),k =
0=k.

Under certain conditions on B, the dimensions of W¥(u~) and W#(u™) are
equal to those of RT(u™,s) and R~ (u™,s),i. e, k= =n~, kT =n* so that,
by (1.4),

multiplicity k of the shock = index k of its profile. (1.7)

This holds, e. g., for B = I, the identity matrix, in which case R*(u™,s),
R~ (ut,s) are the tangent spaces, at u™,ut, of W¥(u™), W*¢(uT).) In each
of Figures 1,2,3, the left picture shows an inviscid shock wave together with
characteristics (& = A(u®), A(u®) eigenvalues of Df(u), while the right
picture sketches a corresponding phase portrait for the profile ODE (1.6).

2 Profiles for small-amplitude shock waves

We henceforth restrict attention to symmetric, canonically splitting systems,

i. e., we assume that G = Dg, F' = Df, and B are symmetric matrices with
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G positive definite and B positive semidefinite, and (1.5) decomposes as

<G11(v,w) Glg(v,w)> <v> N (Fu(v,w) Flg(v,w)> (v)
G21(v, w) Gaa(v,w) w/, Fyi (v, w) Foz(v,w) w/,

(2.8)
_ 0O O v
B 0 B(v,w) w/).).
with B positive definite.
Theorem 1. Consider a simple mode (\, 1), i. e.,
(F(u) = AMu)G(u))r(v) =0, (2.9)

where X is real-valued and the vector field r # 0 is unique up to a scalar

F-AG=A= <A“ A“),

factor. Writing

A21 A22

assume that at some state uy,
Aq1(uy) is invertible. (2.10)

Then any small X\-shock near u, (i. e., any shock with end states u™,u™ ~ u.
satisfying A(u™) > s > A(u™)) has a viscous profile w. r. t. the viscosity B if
and only if it satisfies the strict version (E)s of Liu’s entropy condition [L1].
In particular, if the mode is convex (cf. (7.33) below), every sufficiently small
A-shock has a profile.

Proof of Theorem 2.1. Analogously to (2.8), we decompose (1.6) in the

form

0= fi(v,w) —sg1(v,w) — q1 (2.11)
B(v,w)w' = fa(v,w) — sg2(v,w) — ¢a. (2.12)

Consider (1.6) resp. (2.11),(2.12) for u = (v, w) near u, = (v.,w.) and (g, s)

near (g, ) with
S« = Muy) and ¢ = f(ux) — s.g9(us).
Assumption (2.10) implies that (2.11) can be solved locally for v as

v="V(w,q,s), (2.13)
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0= fl (V(w7 q, s),w) — 591 (V(w7 q, s),w) —q1-. (214)

Plugging V into (2.12), we obtain the reduced system

B(w,q, s)w' = h(w,q,s), (2.15)
with
B(w,q,s) = B(V(w,q,s),w), (2.16)
h(wv q, S) = fQ(V(waqv S),U)) - SQQ(V(w7Q7 S),U)) — q2.

More precisely, (2.13) and (2.15) together are equivalent to (1.6). We claim
now that any two states sufficiently close to u, that form a A-shock are located

on a one-dimensional invariant manifold C of (1.6). To see this, note first that

Duyhl(g.5)=(g..5.)72 = 0 (2.17)

S Ar=0 with r=(r;,r),r =—(A;1) ' Aprs.

Equivalence (2.17) follows from

0= A Ais T1
Asq Az T2
&ry = _(All)_1A12T2 and (—A21(A11)_1A12 + Aoo)ra =0
and

Dyh = 451D,V + Ay = _A21(A11)71A12 + Ao,

the latter identity coming from (2.14) as 0 = A11 D,V + Ajs.

Note now that Assumption (2.10) implies that the w-component ro of the
eigenvector 7 = (r1,72) does not vanish. This means that D, h(w., g«, s4), and
thus B‘l(w*, Qs> S+ ) Dywh(wy, g«, s« ), have a one-dimensional kernel spanned
by ro. As B and h,, are symmetric and B is positive, B~'h,, cannot have
any purely imaginary eigenvalue other than 0. Applying the Center Manifold

Theorem to system (2.15) as augmented by the further equations
¢ =0,8 =0, (2.18)

we see that the augmented system has, near (wy, ¢«, S«), a center manifold

with 1-dimensional w-fibres ((g, s)-sections). The left and right states u™, u™
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of any small shock under consideration are rest points of (1.6). As any center
manifold contains locally all rest points of the flow to which it belongs, there
is precisely one fibre C' (—lifting via (2.14), we immediately view C as lying
in u-space—) that contains 4~ and ut. It is now easy to see that the open
segment of C' between 4~ and u™ is the desired profile if and only if there
exists no other fixed point between these two. This is however equivalent to
Liu’s condition in its strict version (E)s: For any u located between v~ and
u™ on the Hugoniot locus

Hw™) ={uelU: 3s=s(u,u”): s(u”,u)(g(u) —g(u7)) = fu) - f(u7)},

the strict inequality s(u,u™) < s(u™,u™) holds. Cf. [Fre2] for details. Theo-

rem 2.1 is considered proved.

A number of important systems from continuum mechanics are of the form
(2.8). Instances are the equations of compressible viscous, heat-conducting
fluids as well as those of compressible magnetohydrodynamics in various vari-
ants corresponding to the simultaneous presence or non-presence of dissipa-
tive mechanisms associated with viscosity, heat conductivity, and electrical
resistivity, when written in entropy variables. Cf. [Kw] for the identification
of this class of systems and that of the mentioned physical systems as exam-
ples. Notice that in most—though not all—of these examples, the existence of
viscous profiles, even for shocks of large amplitude, has been shown through
ad hoc considerations [Gi,CS]. The purpose of the above part of the present
section is to demonstrate the use of the Center Manifold Theorem in the con-
text of degenerate viscosity which is in fact quite similar to the nondegenerate
case[MP].

We now turn to non-classical shock waves. Non-classical shock waves of
small amplitude arise near umbilic points, i. e., points near which modes, see
(2.9), change multiplicity. For the construction of viscous profiles for small
non-classical shock waves, one considers center manifolds as above, but with
fibers C' of dimension higher than 1. To illustrate what one can obtain in
this way, we now focus on the concrete system that constitutes the primary

object of our more detailed investigations. Plane waves in viscous, resistive,
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heat-conductive magnetohydrodynamics (MHD) satisfy the equations

pe+ (pv)e =0
(p0)e + (o0 +p + 5B = G
(pW)t + (pvw — ab), = uw,, (2.19)
b; + (vb — aw), = vby,
S+ WwE+p+ %(|b|2 —a®)) —aw - b), = Kbz + C(V0g) s

+u(w-wg)e +v(b-by).,

where v,w and a,b are the longitudinal and transverse components of the
fluid’s velocity V = (v, w) = (v, w;,ws) and the magnetic field B = (a,b) =
(a, by, b2), respectively, (a = const as div B = 0) and & = p(1|V|*+€)+3|B|?,
is the density of total energy. The variables p, p, 8, €, describing density, pres-
sure, temperature, and internal energy of the fluid, are intrinsically related
with each other through the equation of state e = €(7,7) and the identities
p=1"1 p=—€(r,n), § =€) (r,n), where 7 denotes the specific volume
and 7 the entropy of the fluid. The internal energy € is required to satisfy
the conditions —e; > 0, ¢, > 0, D%¢ > 0, —€-, > 0, —€;-r > 0; the first
two of these requirements amount to the positivity of pressure and temper-
ature, the third to the concavity of entropy n as a function of 7 and e, and
the fourth and fifth are known as “Weyl’s conditions.” The two dissipation
coefficients p > 0 and ¢ > 0 correspond to the intrinsic viscosity of the fluid;
more precisely, u = (1, = (o + %(jl with (1,(; > 0 the first and second
viscosity coefficients of the fluid. The two remaining coefficients v > 0 and
k > 0 denote the electrical resistivity and the thermal conductivity of the
fluid. We recall (e. g. from [KuLi]) some basic properties of ideal MHD, i. e.,
Egs. (2.19) with (= p=v =k =0.

The seven characteristic speeds A_3 < A 5 <A1 < Xp <A <A < A3
of this 7 x 7 hyperbolic system of conservation laws are of the form

A =v, Adi1=vxec, Ao=vEeca, Az=vtcy (2.20)

with the fast and slow magnetoacoustic speeds ¢y > c¢_ > 0 given by ¢1 =
sl +p7Ha® + %)) £ /(2 + p~1(a® + b?))? — 4c2p~1a?] (where ¢, is the
sound speed, ¢2 = m,(p,n) with 7(p,n) = p = —€,(7,n)) and the Alfvén

speed c4 > 0 by ¢4 = p~ta?. We assume henceforth that a # 0. Obviously,
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0<c- <ca<ecqif b#0. For b =0 however,

0<c_=ca<ecy if Ay>0,
O0<c_=ca=cy if A,=0, (2.21)
O<c_<ca=cqy if A, <O,

with A, = pc? — a®. Typically, all three cases in (2.21) occur, with A, van-
ishing along a smooth manifold which separates its own complement into two
open sets where A, > 0 and A, < 0, respectively. E. g., A, = vp — a? for a
perfect gas e(7,m) = ¢, exp(n/c,)T 7. For shock waves, with, say w. 1. o. g.,

s = 0, the Rankine-Hugoniot conditions require ©~ and u™ to satisfy

flu)=q (2.22)

with the same value of the relative flux q. For ¢ € @, the set of regular
values of the mapping f, Eqgs. (2.22) have up to four solutions ug, u1,us2, us
satisfying

ﬂ:)\q:3(ul) < 0 < :t)\:':2
ﬂ:)\qzz(’U,Q) < 0 < i)\:Fl
:t/\;l(U3) <0< ﬂ:)\o

)
)
) (2.23)
)

With the two cases in (2.23) differing only by a direction reversal x — —u,
we restrict attention to first one (upper signs) without loss of generality. The
four states ug, u1, u2, ug combinatorially allow for various inviscid shock waves
(2), namely the twelve species u™ = w;, ut =w;, 4,5 €{0,1,2,3},i# j,
which are briefly referred to as being of species ¢ — j. As entropy increases
with the index, i. e., n(uo) < n(u1) < n(u2) < n(usz), only shocks of species
i — j with i < j are thermodynamically possible. One distinguishes between
the classical shocks of species 0 — 1,2 — 3 which are associated with the fast
and slow magnetoacoustic modes ¢4, c_, respectively, and the non-classical
or “intermediate” shocks of species 0 -+ 2,1 — 3,0 — 3, and 1 — 2.

Theorem 2. Consider an arbitrary state u, with transverse magnetic field
b. =0, and an arbitrary array 6 = ({,u,v, k) of positive dissipation coeffi-
cients. Then for any e > 0, there exist shock waves, with |u™ — u.| < ¢, of
types 0 > 1, 0 = 2, and 1 — 2 (if c. < ca = ¢4+ at uy), of types 2 — 3,
123, and1—2 (ifc. =cy <cy atuy), or of types 0 > 1,2 — 3,0 — 2,
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1—-3,0—>3,and 1 — 2 (if c- = ca = ¢4 at us), which possess a viscous
profile with respect to the prescribed 6. More precisely, in each of these cases,
shocks of type i — j have a (j — i)-parameter family of profiles if j —i > 1,
and 2 profiles if (i,7) = (1,2).

The proof via considerations about the flow on 2- respectively 3-dimensional

center manifolds can be found in [Frel].

We conclude the section by connecting the MHD specific distinction of
species “i — j” with the general classification introduced in Section 1. It
suffices to note that shocks of species 0 — 1, 2 — 3 have algebraic type (0, 0),
shocks of species 0 — 2, 1 — 3 have type (1,0), shocks of species 0 — 3 type
(2,0), and shocks of species 1 — 2 are of type (1,1). Thus all intermediate

MHD shock waves are overcompressive.

3 Bifurcation analysis for MHD shock waves

In this section we collect first results of a bifurcation analysis for the Rankine—
Hugoniot relations (2.22) in magnetohydrodynamics, and then recall a con-
jecture on a related global bifurcation occurring for viscous profiles of MHD

shock waves. Attention is now restricted to a perfect gas, p = Rpf, € = ¢, 6.

Equivariance and rescaling considerations entitle restriction, w. L. 0. g., to

the three-parameter family of cases

pv =1,
v+ Rf/v + |bf?/2 =],
w—b=0,

(3.24)
vb; —wy = ¢,

Ub2 — W2 = 0,
v+ |wl|? 2
T+(CU+R)9+U|b| —w-b=e¢.

At first consider the case ¢ > 0. It is well known that there can be up to four
distinct states that solve (3.24). The two fast states ug, u; satisfy vg > vq > 1
while the slow states wuso, us satisfy vs < v < 1. The typical configuration in
the byv—plane is displayed in Figure 4. The subsequent lemma gives a more
precise statement on the existence of physical solutions uy, ... ,us, i.e. states

with positive pressure.
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-15 o5 05 15 o 2 ) 4 6
Fig. 4. Null clines of (3.24) in byv—plane and the set Z..

Lemma 3. For the adiabatic coefficient v =1+ R/c,, let ¢ be the smallest

(positive) solution of

2

. 2 -
c2/3—\/7+1 o= 2.

3y 3y

For each c € (0,¢) there is a non-empty bounded open set I. C (0,00)? such
that for each (j,e) € I. there exist four distinct physical states uo, ... ,us

satisfying (8.24).

Lemma 3 is illustrated in the right picture of Figure 4. The curve I}
denotes the set of all points (j,e) € IR* such that (3.24) has exactly one
fast solution denoted by us—3. For points (j,e) € IR? to the left of I'* there
are no slow solutions, for (j,e) € IR* to the right of I'® there are two slow
solutions uy, uz. I'Y marks the analogous partition of the je-plane for the fast
solutions. The curve Pcf consists of an upper and a lower part, ending in a
cusp-type singularity for (j,e) = (1+3¢*/3, 1 +3¢%/3+2¢4/3). It identifies, for
the upper (lower) part, the loci where the pressure pg = poR8o (p1 = p1Rb1)
vanishes and changes sign. Parts of these three curves —marked with solid
lines in Figure 4—form the boundary of Z..

The singular case ¢ = 0 is of particular interest. The states ui, us degenerate
to a onedimensional curve of states solving (3.24).

Lemma 4. Let ¢ =0 and v = 14+ R/c,. There is a non-empty bounded open
set Ty C (0,00)% such that (j,e) € Lo if and only if
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(i) there are two physical states ug,usz € IR™ with v > 1 > vg solving (3.24),

and

(ii) there is a set A of physical states solving (3.24) given by

A={(p,v,w,b,0)|p=v=1,|w| = |b| =r,0 =

r=+2yj—-2(y-1le—y—1

(G-%-1},

==

A is called the Alfvén circle.

Although Lemmas 3.1, 3.2—to our knowledge— cannot be found in the
literature, we stress that they just refine and complement findings that trace
back to the early work of Germain or Kulikovskii and Liubimov [Ge,KuLi].
For a proof of (a more detailed statement of) Lemma 3 and similar results we
refer to [FreR3]. The profile ODE (1.6) in the MHD case, here rather (2.15),

becomes

(o=v+p+3|bl—j

uw =w — b,

vb =uvb —w+ (¢,0)7,

K0 =c,f — L(|w|> = 2b- w +v|b|?) — § +jv+b-(c,0)T —e.
(2%

Obviously solutions of (3.24) are rest points of X'%. Conley and Smoller showed
that the (Laxian) shock waves ug — u; and us — us admit a viscous profile
[CS] for all § € (0,00)* and all ¢ such that the associated rest points exist.
The situation for the intermediate waves is more complicated. The known
(analytical and numerical) results from literature support the following con-
jecture:

There ezists a threshold w* = w*(q, /¢, k/¢) > 0 such that the following
holds for all ¢ € (0,¢), (j,€) € L., and 6 = (v,(, u, k) € (0,00): If v/( > w*,
then all intermediate shocks (for the given q) have viscous profiles (for the
given §). Conversely, if v/{ < w*, then no intermediate shock wave has a
profile.

A proof of this conjecture for small p and &, following [KuLi], can be

found in [FreSzm)].
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4 Numerical Identification of Heteroclinic Manifolds

Motivated by the dynamics of the ODE-system X we are (mainly) interested
in viscous profiles of shock waves that appear as several-parameter families
of heteroclinic orbits. In this chapter we review a direct method to approxi-
mate general heteroclinic manifolds that has been presented in [FreR1,FreR2].
Although one key ingredient is strongly connected to the analysis of conser-
vation laws, the method can technically be viewed as a straightforward gen-
eralization of Beyn’s work for single connecting orbits [Be].

To describe the method in its general context, consider any vector field
H € C*(IR",IR"), n € N, with two hyperbolic zeros v~ and u*. For the
ODE

¢ = H(¢), (4.25)

consider a non-empty family @ of orbits connecting the rest points v~ and
ut:

& ={¢|¢ = H(¢) and ¢(+o00) = u™}.

Furthermore, we assume that the intersection of the unstable manifold of
v~ and the stable manifold of u™, given by {¢(z)|¢ € &,z € (—o00,00)},
is a smooth manifold of dimension d for some d € {1,...,m}. In order to

parametrize @ define a mapping
:¢ - R"

by
2(¢) = /B A, $(2))((z) — b (2))da,

with some appropriate function A : IR x IR" — IR™*" and ¢, either an
element of @ or given by
u” x <0,
b =
ut 1z >0.

Note that, in the case A = Id, 2(¢) is the relative mass of ¢ with respect
to the reference object ¢., a quantity with a particular natural meaning in
the case of viscous profiles. The subsequent assumption means that (2 is a
chart of &.
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Assumption 5. The mapping (2 is injective and the range S = 2(P) is a
d—dimensional manifold in IR"™ allowing for a global chart P : S — T =
P(S) c R".

The corresponding parameterization of ¢ as {¢"} . with ¢™ defined by

PR )=71,T€T,
is differentiable.

For a detailed discussion of the parametrization by relative masses and
the validity of Assumption 5, in particular for conservation laws, we refer
to [FreR1]. Let us note that in this field the validity of Assumption 5 is a
necessary condition for time-asymptotic stability (in a certain well-defined
sense) of @ as a solution of the associated PDE. Cf. partly also Section 7 of
this paper.

By Assumption 5 the problem

y=n@). dEo = P [ (e-e)=r 4
has a unique solution ¢™ € C*(IR), for 7 € T.

Following the work of Beyn [Be| we restrict the problem (4.26) to a bounded
interval I = [X7, X7], XT < 0 < XT. The approximate solution ¢ € C*(I)
then is supposed to fulfil

§p=H(@]) in I, be(6j(X2) =0, P / @] —d)=7.  (427)

Here the functions b denote asymptotic boundary conditions, for example
the spectral projections associated with the unstable/stable part of the spec-
trum of DH (uT).

Following the analysis of Beyn, as presented in [Be], it is possible to derive a
rigorous convergence estimate for the error ||¢” — @7 ||c1(y) if [ X7 [, X7 tend to
00. For this sake let us assume that the d—parameter family @ is nondegener-
ate in the following sense: The number d +n (d dimension of the heteroclinic
manifold) is given by the sum of the dimensions of the unstable subspace of
DH (u™) and the stable subspace of DH (u™). Furthermore for each 7 € T

we have

§ = DH(¢7)y, y(00) = 0 y € span { 0" o } |

871 T aTd
Under these assumptions (and some technical requirements on b4 ) we can

prove
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Theorem 6. For each 7 € T there is a X > 0 such that for any I =
(X7, X7] with | X7|,XT > X7 we have:

(i) There is a 6 > 0 such that there exists a unique solution ¢7 € C*(I) of
the truncated problem (4.27) with ||¢7 — ¢7||c1(p) < 9.
(i) There is a constant C = C(1) > 0 such that:

167 — ¢"ller(ry < Cllexp (—min{A” XT, -ATX1}), (4.28)

where A= (AT ) are given by the minimal absolute value of the real parts
of the unstable (stable) eigenvalues of DH at u™ (u™).

For a detailed proof we refer to Section 4 in [FreR2]. Note that it cannot
be expected that Theorem 6, in particular (4.28), holds uniformly for all

7 € T. This issue will be further discussed in Section 6 below.

5 Numerical Study of the Heteroclinic Bifurcation in
MHD

In this section we report on systematic investigations into the MHD profiles
ODE system X using the method described in Section 4. The results illus-
trate dynamically interesting scenarios, in particular in regimes that could so
far not be, and seem hard to be, covered analytically.
We consider the global bifurcation scenario of X that has been described in
Section 3. While the validity of this conjecture is only proven for small values
of 4 and &, numerical results that we will present in this section support
the conjecture that the scenario remains globally true, i. e., for all k,u > 0
and (j,e) € I.,c € (0,¢). In [FreR1] we presented two methods to decide
whether the global bifurcation takes place or not. We will not go into detail
but mention that the methods rely on the refined conjecture that the bifur-
cation can be completely analyzed in an four—-dimensional linear subspace E
that is invariant with respect to the flow of X . Figures 5 show some results:
the bifurcation ratio w* for fixed p = 0.01 and different values of  in the left
picture, the bifurcation ratio w* for fixed x = 1 and different values of p in
the right picture. w* was calculated for a series of values for ¢, j, e such that
c€(0,¢) and (jc,ec) € L.

We observe that w* vanishes for ¢ — 0 which coincides with the fact

that the counterparts of the intermediate shock waves in the degenerate case
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Fig. 5. Critical parameter w” versus ¢

¢ = 0 — the switch—on/off shock waves — have profiles for all values of 6 and
(J,e) € Iy (ct. Section 6 for the orbit structure in the case ¢ = 0). However, it
is not true, that the bifurcation parameter is uniformly bounded from above
for all u,k > 0 and all ¢ € (0,¢), (j,e) € I. as certain partial earlier results of
Wu in [W] may suggest. Figure 6 shows that the bifurcation ratio w* tends

to oo as the heat conductivity x tends to oo, for u > 0 and ¢ fixed.

Critical parameter

Fig. 6. Critical parameter w™ versus k.

Now we illustrate the bifurcation by a series of computations with the
method described in Section 4.
Before starting let us mention some details of the implementation. The trun-
cated problem (4.27) can be solved with any kind of BVP-solver, in principle.
We actually use the code COLNEW [BaA] which relies on a variable step—
size collocation method.

Concerning the approximation of the higher dimensional heteroclinic mani-
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folds in X6 we will focus on the manifolds of type ug — u2 and u; — us and
proceed as follows. Define the set T' in (4.27) by

T ={(0,0,0,71,72,0) |1 € R,7» € (—7,7)}, T=7(q,9) = |/ ba(z) dz|.
R
(5.29)

Here the function by refers to the (already computed) bs—component of one
of the orbits of type u; — us. Note that 75 is associated to the component
by and that by vanishes for all rest points such that the integral in (5.29) is
finite. Now, we approximate the bounded manifolds completely when freezing
the first 7—component 7y, lets say 73 = 0, and continuing in the parameter

Ty starting with m = 0.

Fig. 7. Projection to b;v—plane for w = 7.5,1.0,0.25, 0.06.

For the above—mentioned illustration, we fix the transverse fluid viscosity

i, heat conductivity x and some ¢ € (0,¢), (j,e) € I., to be specific:
p=001, k=1, c=025 (je) = (2.68,4.23). (5.30)

By variation of the remaining free parameter, the ratio w = v/(, we observe

the global bifurcation. The numerically calculated orbits of all types except
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ug — ug are displayed in Figure 7 as projections to the b; v—plane. We picked
out the configurations for w = 7.5,1.0,0.25,0.06. For the chosen set of pa-
rameters the critical value w* is approximately 0.0492. The graphs in Figure
8 display the situation for w = w™ where only the single orbits uy — wu,
us — ug, and u; — us exist and w = 0.02 < w, where also u; — us is

broken.

Uy Uy

Fig. 8. Projection to byv—plane for w = 0.0492, 0.02.

6 Boundary Cases: (Almost-) Symmetry and Fast-Slow

Dynamics

We now discuss an important special case, along with situations where our
method, though reliable and robust, reaches its limitations. If the component
c of the relative flux ¢ is strictly bigger than zero the system X% has up to
four isolated rest points ug, ... ,u3 located in the invariant subspace E. For
¢ = 0, the rest points ug, us persist in £ while u1, us degenerate to a circle of
rest points (Alfvén circle, cf. Section 3). In particular, for ¢ = 0 the solution
set of X%in the b;byv-space is rotationally symmetric with respect to the
v—axis.

In a series of pictures (Figures 9, 10) we show the orbit types ug —
Uy, Uy — Uz, U] — Uz, U3 — Uz, Us — uz for different values of c¢. We fixed
v=0.5,(=1and yu,x,jeasin (5.30). For ¢ — 0, the phase portrait comes
closer and closer to being symmetric with respect to the b = 0 axis, obviously.
For ¢ = 0, the rest points on the Alfvén circle are not hyperbolic, but the
connecting orbits reach it along the exponentially stable part of the center—

stable manifold.
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Fig. 9. Viscous profiles of type uo — w1, uo — u2, u1 — u2, u2 — uz and ui — us
for ¢ = 0.25,0.05 and viscous profiles connecting uo/us with the Alfvén circle for

¢ =0, projected to the bv—plane.

A

AR Ly

i

u,

Fig. 10. The heteroclinic manifold uo — u2 for ¢ = 0.25,0.05 and viscous profiles

connecting uo with the Alfvén circle for ¢ = 0, projected to the bibs—plane.

We now comment on a numerical problem, arising at two levels. Firstly, for
fixed ¢, the approximation of the heteroclinic manifolds of higher dimension,
say u; — wus, is done by a continuation precedure starting with the orbit lying
in the linear subspace E (for parameter 7 = (0, 72) = (0,0)) and ending with
some orbit close to the boundary of the heterclinic manifold (7 = (0,7)). Dur-
ing this continuation process, the truncation interval [X7, X7] is enlarged,
indeed exponentially, to capture the orbits in a satisfying manner. This is
due to the fact that the orbits near the boundary of the manifold are closer
and closer to the further rest point us.

Secondly, if we consider the intervals [X7, XT], 7 € [0,7) for decreasing c,
we observe that the interval length grows even “more”. This happens since in
the limit ¢ — 0, the orbits of type u; — u2 become slower and slower, before
in the limit case ¢ = 0 (the closure of) their union degenerates to the Alfvén

circle.
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Fig. 11. Interval end points versus the continuation parameter 7.

We exemplify these effects by the results of a numerical experiment, il-
lustrated in Figure 11. We have plotted, against 75, the minimal intervals
[XT,X7T], such that the criterion |¢, (X5) — uf| < ¢ is satisfied, for a given
small tolerance £ > 0. As 75 increases and ¢ decreases, these intervals grow to
an extent which indicates that the method needs a refinement if one wishes

to resolve these regimes more efficiently.

7 Stability of viscous shock waves

This section discusses an analytical result on the stability of small-amplitude

viscous Laxian shock waves associated with possibly nonconvex modes.
Theorem 7. Consider a system of viscous hyperbolic conservation laws
ur + f(u)y = gy, (7.31)

f e C3(R",R"), e > 0. Let u, € IR" be a fized reference state and let
¢ : IR — IR"™ denote the profile of a Lazian shock wave, near u,, associated
with a simple eigenvalue X\ of f', i.e., the states u™ are close to u, and satisfy
Au™) > s> Aut).

Let X be the completion of {u € C&°(R,R"), [ u(z)dz = 0} under
the norm [[ul| = ||ull, + [[allu:-

There exist positive constants €q, Bo such that if ¢ satisfies |[u™ —u~| < €

and ug — ¢ € X satisfies ||uo — ¢|| < Bo, then the solution u(z,t) to (7.31)
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with data u(-,0) = ug exists for all times t > 0 and has

lim sup|u(z,t) — ¢(x — st)| = 0. (7.32)

t—o00 z€R

Briefly speaking, profiles of small-amplitude shock waves are time-asymp-
totically stable.
The result described in Theorem 7 was obtained by Goodman [Go] under

the additional assumption that the eigenvalue A be convexz, i.e.
7 - VA # 0 where r = ker(f' — \I). (7.33)

For the general case of possibly non-convex modes, it is due to Fries [Fril].

The stability of shock profiles had been investigated by II'in and Oleinik
[I0] for the case of a scalar equation with strictly convex flux function. Sat-
tinger [Sa] used spectral methods to prove a stability result for travelling
wave solutions of general parabolic systems which implies stability of Laxian
shock profiles under perturbations of exponential decay. Goodman’s proof for
systems used the energy method, an approach that was introduced into the
context of viscous hyperbolic conservation laws by Goodman and indepen-
dently by Matsumura and Nishihara [MN1]. The result of Goodman was ex-
tended by Liu [L2,L3] and by Szepessy and Xin [SzeX] to the case of non-zero
mass perturbations—still using the assumption of strict convexity. In [L3] the
energy method was no longer involved, which enabled the derivation of point-
wise decay-estimates. The stability of shock profiles for the non-convex scalar
equation was shown by Matsumura and Nishihara [MN2] via a weigthed en-
ergy method; Gardner, Jones and Kapitula [JGKp] used a spectral approach,
while Freistiihler and Serre [FreSe] employed contractivity of the semigroup
to establish global L; stability.

Recently, spectral methods have been developed to investigate the insta-
bility and stability of travelling waves for large classes of systems [GaZ,ZH].
In contrast with their enormous importance both for qualitative insight as
well as for computational access, these new methods have so far not been able
to provide alternative proofs for facts like the one established in Theorem 7.

We return to Theorem 7 by remarking that it has recently been extended
to the non-zero mass case [Fri2]; in this note, we stay however away from the
subtleties of this much more complicated case. We outline the proof of the

Theorem 7 in the version it has been stated above.
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We consider the solution w of (7.31) with initial data uo “close” to the
profile ¢, about which latter we assume without loss of generality that s = 0.

Subtracting, we have

(u=¢)e + (f(u) = f(9))e — et = P)az =0

(u =)t + (f' (@) (u = 9))e —e(u = P)aa + (Q(d,u — ¢))0 = 0.

where @) is given by the Taylor expansion f(¢ + u — ¢) — f(é) = f'(¢)(u —
) + Q(¢,u — ¢). It is thus natural to diagonalize f'. For simplicity in pre-
sentation we assume that all eigenvalues of f' are simple. Thus we find
smooth matrix valued functions L, R such that Lf'R = A = diag(\1,... ,A\n)
where the eigenvalues Ay are such that sign); = sign(k — p) for k # p and
Ap = A—s, ie. Ap(u_) > 0 > Ap(uy). Introducing the integrated variable
Ulz,t) == [*_u(&t) — ¢(€)dE we have U(-,0) € H?(IR) and obtain the

integrated equation for U
Ui+ f(9)Up — eUps + Q(¢,U,) =0 (7.34)

Changing to characteristic coordinates V := LU we obtain a diagonalized
version of (7.34):

Vi + A(@)Ve — eViw + LQ(¢, RV:)
+ A($)LR,V — 2¢LR,V, — eLR,,V = 0.

Multiplying this equation by VT (z,#)W (x), where W = diag(wy, ... ,w,) is

a weight matrix yet to be defined, and integrating ffooo dx, we arrive at

o 1
/ §(VTWV)t - §VT[WA + eWpleV + eV, WV, + error terms = 0,

— 00

(7.35)

where integration by parts was used.

Under the assumption of a weak shock and by an appropriate choice of
the weights w; (see below) it is possible to obtain —L[WA + W], > cldg |1
and W > I and thus

190

§E||V||i2 + c|<;5m|||V||i2 + cel|V T/VVIHi2 + error terms = 0. (7.36)
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With the assumption of a weak shock (small |u; —u_]|) and small perturba-
tions (small 8y) we can estimate the error terms against the others. Integrat-

ing fOT dt and returning to the original variable U gives

T
UG, DL, +/0 10U (- lIE,dt < CIUC,0)I,, (7.37)

where T' > 0 denotes any time until which U exists with U(-,¢), 0 <t < T,
lying in the appropriate spaces, and C' > 0 is a constant independent of 7.
With this estimate it is easy to obtain the same with H? in place of Ly: To do
so we differentiate (7.34) once or twice with respect to z and multiply by U,
or U,, respectively. Crude estimation of terms involving h and () then gives

T T
10D+ [ War Ol < CIUCOIE, + [ 100 a)

and

T
1Uaa (5 DR, < CIUza (-, 0)IE, +/0 10 (5 I, + 1Uza (- D)IIE, ).

Combining this with the above we obtain

T
IIU(-,T)II?{2+/O 1U=C Ol dt < CINUC, 0l

Since (7.34) is a uniformly parabolic system, one has a short time existence
result for U. Thus the above a-priori estimate gives global existence of U,
thus of u, and finally lim sup|u(z,t) — ¢(z — st)| = lim sup|U,(z,t)| = 0.
t—0 pc R t=ooueR

To summarize, the two main difficulties in the whole argumentation are
the choice of the weights wy to obtain —1[WA + eW,], > c|¢;|I and the
estimate of the error terms (especially the coupling terms involving W LR,) to
pass from (7.35) via (7.36) to (7.37). As regards the weights, for each k family
with k # p, the choice wy(x) = exp(— ffoo Cldg|signAi) gives —[wiAe +
W zle > c|¢z] if C is sufficiently large and the shock is sufficiently weak
(i.e. Juy — u_| sufficiently small). In the strictly convex case now, the choice
wp = 1 yields the same property for £ = p, allowing at the same time for
straightforward treatment of the error terms [Go].

For a non-convex mode, i.e. when A,(¢(z)) is not decreasing in z, it
is still possible to obtain —%[wp)\p + ewp zlz > c¢|¢y| through appropriate

choice of w,. But in this case it is non-trivial to estimate the error terms.
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The difficulty is easily seen from the following heuristic investigation of some
properties of the weight w,: When restricting to the scalar case, a typical
non-convex flux would be f(u) = u®. In this case we see that e¢, = h(¢) is
of the order € (e := |us —u_]). Since A, is then of the order € we see from
—3lwpdy + ewpz] ~ ¢ [|¢z]dx ~ € that w, is of the order e~'. The point
(of the difficulty) now is that the weight retains this order when considering
a coupled system. Since the weight w, appears in the error terms, it is not
immediately clear that they can be estimated for e sufficiently small. So far
for the strategy and the difficulties arising in the proof of Theorem 7. For

any further details we must refer the reader to [Fril,Fri2].

We conclude by remarking that non-convex modes occur naturally in
physical systems. An example is again provided by magnetohydrodynamics.
Restricting the twodimensonal variables b, w, i. e., the transverse compo-
nents of the magnetic field and the velocity, in (2.19) to a fixed line—this
corresponds to restricting the full magnetic field and velocity vectors to a

fixed plane: the so-called coplanar case—, one arrives at the 5 by 5 system

pr+ (pv)e =
(00)e + (00" + -+ ) = (v
(pw)e + (pow — ab)s = s (7.38)
bi + (vb — aw), = Vby,
£+ (€ +p+ (B —a?) — awb), = wbe

¥ (vve)e + plwwy), + v(0by ).

The coplanar system (7.38) retains five of the seven modes (2.20) of (2.19).
The rotational modes A_2, Ao being absent in (7.38), points (with b = 0)
that, considered as states of the full system, have eigenvalues of multiplicity 2
by A1 coinciding with either Ay; or Az, are now, for (7.38), points of strict
hyperbolicity, and small-amplitude intermediate shocks near these points are
now Laxian shocks associated with the non-convex (!) simple modes A1y or
Axs.

Still, Theorem 7 does of course not readily apply, as it requires the “artifi-
cial” viscosity B = el. Also, despite the conclusive study of a model problem
[FreL], it is not clear how to re-proceed from the nonconvex coplanar problem

to the non-classical non-coplanar problem. Work on both issues is in progress.
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